文档库 最新最全的文档下载
当前位置:文档库 › 旋转型相似专题

旋转型相似专题

旋转型相似专题
旋转型相似专题

旋转型相似专题

1、已知:AD 是△ABC 的高,且AD=4,若AB=5,AC=8,BC 边的长为( )

A 、7

B 、3+43

C 、+3+43

D 、9

2、四边形ABCD 中,AC 平分∠BAD ,AB=4,AC=6,若△ABC 与△ACD 相似,则AD 的长为( )

A 、4

B 、6

C 、9

D 、4或9

3、△ABC 的高BC 、CE 相交于H ,则图中相似三角形

的对数是( )

A 、5对

B 、6对

C 、7对

D 、8对

4、如图,△ABC 和△DEF 都是正三角形,点P 是BC 边的中点,

也是EF 边的中点,当△DEF 绕点P 旋转时,CF

AD 的值为( )

A 、2

B 、2

C 、3

D 、3

5、如图,△ABC 是等腰直角三角形,∠ACB=90°,

D 、

E 分别为AB 、AC 边上的点,且DE ∥BC,把△ADE

绕点A 旋转时,则CE

BD 的值为( ) A 、2 B 、2 C 、3 D 、3

6、如图:△ABC 的高AD 、BE 相交于H ,若BD=3,

CD=2,AH=5,则△ABC 的面积为( )

A 、15

B 、20

C 、25

D 、30

7、已知:如图①,四边形ABCD 和四边形AEFG 都是以A 为顶点的正方形。(1)、

求证:CF=2DG;

(2)、把正方形AEFG 绕点A 旋转到如图②所示的位置时,(1)中的关系是否

还成立,如果成立,请证明你的结论;如果不成立,试说明理由;

(3)、把正方形AEFG 绕点A 旋转到如图③所示的位置时,若AG=25 ,BG=

5,求CF 的长。

8、已知在矩形ABCD 中,AB=2,AD=4,将∠POQ 的顶点O 与点A 重合,且∠POQ=∠DBC ,此角的一边OP 与边BC 所在射线交于点E ,与对角线BD 交于点M ,另一边OQ 与边CD 所在射线交于点F ,与对角线BD 所在射线交于点N 。

(1)当点F 与点C 重合时(如图),求证:AD=BE+2

5DN. (2)将∠POQ 绕点O 逆时针旋转,E 点在BC 延长线上时,

线段AD 、BE 、DN 的关系为 。

(3)设BE 的长为x ,△AND 的面积为y ,当y=5

8时,连接EF , 求线段EF 的长。

9、如图1,等腰R t △ABC 中,∠BAC=90°,∠DAE=45°,∠DAE 绕A 旋转,直线AD 、直线AE 与直线BC 交于点D 、E 两点,CG ⊥AC 交AE 于G.

(1)求证:AB=CG+2BD.

(2)当∠DAE 旋转至图2,图3时,上述关系是否改变?若改变,写出新关系;

(3)图3中,若当BE:CE=3:1,BD=22时,连BG 交直线AD 于H ,求GH 的长。

已知:四边形ABCD中,BD平分∠ABC,点E在BD上,且∠BCE=∠ADB.

求证:∠EAD=∠ECD.

已知:AD是△ABC的高,且AD=3,若AB=4,AC=6,则△ABC的外接圆的直径为()A、7 B、8 C、9 D、10

9、已知:△ABC中,AB=AC,AD⊥BC于D,DE⊥AB于E,F是DE的中点。

求证:AF⊥CE.

相似三角形知识点及典型例题

相似三角形知识点及典型例题 知识点归纳: 1、三角形相似的判定方法 (1)定义法:对应角相等,对应边成比例的两个三角形相似。 (2)平行法:平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角 形与原三角形相似。 (3)判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两 个三角形相似。简述为:两角对应相等,两三角形相似。 (4)判定定理2:如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似。简述为:两边对应成比例且夹角相等,两三角形相似。 (5)判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似。简述为:三边对应成比例,两三角形相似。 (6)判定直角三角形相似的方法: ①以上各种判定均适用。 ②如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例, 那么这两个直角三角形相似。 ③直角三角形被斜边上的高分成的两个直角三角形与原三角形相似。 #直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项。 每一条直角边是这条直角边在斜边上的射影和斜边的比例中项。 如图,Rt△ABC中,∠BAC=90°,AD是斜边BC上的高, 则有射影定理如下: (1)(AD)2=BD·DC,(2)(AB)2=BD·BC , (3)(AC)2=CD·BC 。 注:由上述射影定理还可以证明勾股定理。即(AB)2+(AC)2=(BC)2。

典型例题: 例1 如图,已知等腰△ABC 中,AB =AC ,AD ⊥BC 于D ,CG ‖AB ,BG 分别交AD ,AC 于E 、 F ,求证:BE2=EF·EG 证明:如图,连结EC ,∵AB =AC ,AD ⊥BC , ∴∠ABC =∠ACB ,AD 垂直平分BC ∴BE =EC ,∠1=∠2,∴∠ABC-∠1=∠ACB-∠2, 即∠3=∠4,又CG ∥AB ,∴∠G =∠3,∴∠4=∠G 又∵∠CEG =∠CEF ,∴△CEF ∽△GEC ,∴EG CE =CE EF ∴EC 2 =EG· EF,故EB 2 =EF·EG 【解题技巧点拨】 本题必须综合运用等腰三角形的三线合一的性质,线段的垂直平分线的性质和相似三角形的基本图形来得到证明.而其中利用线段的垂直平分线的性质得到BE=EC ,把原来处在同一条直线上的三条线段BE ,EF ,EC 转换到相似三角形的基本图形中是证明本题的关键。 例2 已知:如图,AD 是Rt △ABC 斜BC 上的高,E 是AC 的中点,ED 与AB 的延长线相交于F ,求证:BA FB =AC FD 证法一:如图,在Rt △ABC 中,∵∠BAC =Rt ∠,AD ⊥BC , ∴∠3=∠C ,又E 是Rt △ADC 的斜边AC 上的中点, ∴ED=21 AC =EC ,∴∠2=∠C ,又∠1=∠2,∴∠1=∠3, ∴∠DFB =∠AFD ,∴△DFB ∽△AFD ,∴FD FB =AD BD (1) 又AD 是Rt △ABC 的斜边BC 上的高,∴Rt △ABD ∽Rt △CAD ,∴AD BD =AC BA (2) 由(1)(2)两式得FD FB =AC BA ,故BA FB =AC FD 证法二:过点A 作AG ∥EF 交CB 延长线于点G ,则BA FB =AG FD (1) ∵E 是AC 的中点,ED ∥AC ,∴D 是GC 的中点,又AD ⊥GC ,∴AD 是线段GC 的垂直平分线,∴AG =AC (2) 由(1)(2)两式得:BA FB =AC FD ,证毕。 【解题技巧点拨】 本题证法中,通过连续两次证明三角形相似,得到相应的比例式,然后通过中间比“AD BD ”过渡,使问题得证,证法 二中是运用平行线分线段成比例定理的推论,三角形的中位线的判定,线段的垂直平分线的判定与性质使问题得证.

相似三角形典型模型及例题

文档来源为:从网络收集整理.word版本可编辑.欢迎下载支持. 1:相似三角形模型 一:相似三角形判定的基本模型 (一)A字型、反A字型(斜A字型) (平行)(不平行) (二)8字型、反8字型 B C B C(蝴蝶型) (平行)(不平行) (三)母子型 (四)一线三等角型: 三等角型相似三角形是以等腰三角形(等腰梯形)或者等边三角形为背景,一个与等腰三角 形的底角相等的顶点在底边所在的直线上,角的两边分别与等腰三角形的两边相交如图所示: (五)一线三直角型: 三直角相似可以看着是“一线三等角”中当角为直角时的特例,三直角型相似通常是以矩形或者正方形形为背景,或者在一条直线上有一个顶点在该直线上移动或者旋转的直角,几种常见的基本图形如下:当题目的条件中只有一个或者两个直角时,就要考虑通过添加辅助线构造完整的三直角型相似, 这往往是很多压轴题的突破口,进而将三角型的条件进行转化。 (六)双垂型: 二:相似三角形判定的变化模型 一线三等角的变形

. 一线三直角的变形 2:相似三角形典型例题 (1)母子型相似三角形 例1:如图,梯形ABCD 中,AD ∥BC ,对角线AC 、BD 交于点O ,BE ∥CD 交CA 延长线于E . 求证:OE OA OC ?=2 . 例2:已知:如图,△ABC 中,点E 在中线AD 上, ABC DEB ∠=∠. 求证:(1)DA DE DB ?=2; (2)DAC DCE ∠=∠. 例3:已知:如图,等腰△ABC 中,AB =AC ,AD ⊥BC 于D ,CG ∥AB ,BG 分别交AD 、AC 于E 、F . 求证:EG EF BE ?=2 . 1、如图,已知AD 为△ABC 的角平分线,EF 为AD 的垂直平分线.求证:FC FB FD ?=2 . 2、已知:AD 是Rt △ABC 中∠A 的平分线,∠C=90°,EF 是AD 的垂直平分线交AD 于M ,EF 、BC 的延长线交于一点N 。求证:(1)△AME ∽△NMD; (2)ND 2 =NC·NB 3、已知:如图,在△ABC 中,∠ACB=90°,CD ⊥AB 于D ,E 是AC 上一点,CF ⊥BE 于F 。 求证:EB·DF=AE·DB 4.在?ABC 中,AB=AC ,高AD 与BE 交于H ,EF BC ⊥,垂足为F ,延长AD 到G ,使DG=EF ,M 是AH 的中点。 求证:∠=?GBM 90 5 已知:如图,在Rt △ABC 中,∠C =90°,BC =2,AC =4,P 是斜边AB 上的一个动点,PD ⊥AB ,交边AC 于点D (点D 与点A 、C 都不重合),E 是射线DC 上一点,且∠EPD =∠A .设A 、P 两点的距离为x ,△BEP 的面积为y .(1)求证:AE =2PE ; (2)求y 关于x 的函数解析式,并写出它的定义域; (3)当△BEP 与△ABC 相似时,求△BEP 的面积. (2)双垂型 A C D E B D E

旋转型相似三角形应用的分析方法

旋转型相似三角形应用的分析方法 ∠BAD=∠CAE,∠ACB=∠AED=> △ABC∽△ADE, △ABD∽△ACE=> AB?AE=AC?AD 在几何问题中,出现了由一点发出的四条两两交成等角的成比例线段时,就要应用旋转型相似三角形进行证明,找相似三角形的方法是将由这个公共端点发出的四条两两交成等角的成比例线段两两组成相似三角形,也就是将成比例的四条线段的端点两两连结得到相似三角形,且可以得到两对旋转型相似三角形。 由于由同一点发出的四条线段,总有顺序关系,而1、4和2、3组成的三角形是不相似的,所以必定是两种可能:即1、2和3、4组成相似三角形;1、3和2、4组成相似三角形,也就相应地得到这两对同时出现的旋转型相似三角形。 在几何问题中,出现了由一点发出的四条两两交成等角的成比例线段会出现一种特殊情况,就是其中的两条相乘线段重叠在角平分线上时,仍然要应用旋转型相似三角形进行证明,找相似三角形的方法也仍然是将由这个公共端点发出的四条两两交成等角的成比例线段两两组成相似三角形。 例1,已知:⊙O与⊙O'相交于A、B,⊙O的弦AC交⊙O'于D,⊙O'的弦AE交⊙O于F,连结BC、BD、BE、BF. 求证:BC?BE=BD?BF 分析1:本题要证明的结论BC?BE=BD?BF 是线段之间的比例关系, 所以首先进行描图,搞清楚比例线段之间的位 置关系,

经过描图可以发现这是由同一点B发出的四条成比例线段,同时通过观察可以判断它们是两两交成等角的,从而可应用旋转型相似三角形进行证明,根据由B发出的四条成比例线段BC、BD、BF、BE两两组成相似三角形的方法,如选取BC、BD组成△BCD,那么BF、BE就应组成△BFE, 如选取BC、BD组成△BCD,那么BF、BE就应组成△BFE,问题也就成为应证△BCD 和△BFE相似,

中考数学旋转与相似的典型类型总结

旋转与全等、相似的典型类型总结 25. 含30°角的直角三角板ABC 中,∠A =30°.将其绕直角顶点C 顺时针旋转α角(0120α?<

已知:在四边形ABCD中,AD∥BC,∠BAC=∠D,点E、F分别在BC、CD上,且∠AEF=∠ACD,试探究AE与EF之间的数量关系. (1)如图①,若AB=BC=AC,则AE与EF之间的数量关系为________. (2)如图②,若AB=BC,你在(1)中得到的结论是否发生变化写出你的猜想,并加以证明. (3)如图③,若AB=kBC,你在(1)中得到的结论是否发生变化写出你的猜想,并加以证 明. [ 第25题图

基本图形分析法七 从旋转型全等三角形到旋转型相似三角形(徐方瞿教授讲座)

从旋转型全等三角形到旋转型相似三角形 旋转型全等三角形AB=AD,AC=AE,∠BAD=∠CAE=> △ABC≌△ADE,∠ABD=∠ACE, ∠ADB=∠AEC;将△ABC绕三角形的顶点A旋转一个角度成为△ADE,这两个三角形就是一对旋转型全等三角形。 而由AB=AD,这是两条具有公共端点的相等线段, 所以它们可以组成一个等腰三角形,同样,由AC=AE,它们也可以组成一个等腰三角形,而这两个等腰三角形的顶角是相等的,所以这两个等腰三角形一定相似,而由∠ABD=∠ACE 和∠ADB=∠AEC,如果延长BD与CE相交,则可得两个圆内接四边形。 所以,一对绕三角形的顶点旋转得到的旋转型全等三角形的基本图形中,一定同时出现一对相似的等腰三角形和两个圆内接四边形。 由于这是旋转型全等三角形的基本图形的本质属性,所以只有在整体上进行教学,才能将这个基本图形的特征、性质、应用条件和应用方法讲清楚。然而,按照通常的教学进度,在进行全等三角形的教学时,显然还不可能进行相似三角形和圆周角这两部分内容的教学,而在进行相似三角形和圆周角的教学时,又不可能再回过来进行全等三角形的教学,也就是本质上是完整的内容被割裂开来进行教学了,所以老师就很难讲清楚,讲清楚问题的本质,将清楚思想方法的规律性,这也就是旋转型全等三角形在教学中出现的困难所在。 解决的方法:一是在进行旋转型全等三角形的教学时,可适当地进行拓展,让学生较早地接触、知道并形成一定的概念、性质,到进入相似三角形和圆周角的教学时再进行强化;二是在进行旋转型全等三角形的教学时,如果没有拓展的话,则可在进入相似三角形和圆周角的教学时,尤其是在总复习阶段可安排专题性的教学。 在进行全等三角形的教学时,由于在相似的等腰三角形中,有两类特殊的等腰三角形,它们是必定相似的,这就是等边三角形和等腰直角三角形,所以在给出等边三角形或等腰直角三角形的条件时,就可以实质上出现相似的等腰三角形而又可以避免出现相似三角形的概念,成为旋转型全等三角形的可实施的教学内容。 于是,就可以发现只要出现两个具有公共顶点的等边三角形或等腰直角三角形(半个正方形)时,就一定得到一对旋转型全等三角形。

相似三角形基本模型——A字型、旋转型相似

课题:相似三角形基本模型——A字型、旋转型相似 教学目标: 1、通过习题引入,了解“A字型、旋转型”的特征与其中两个三角形相似的条件,并掌握其中两个相似三角形的性质; 2、利用“A字型、旋转型”中两个三角的相似性解决一些计算、证明等简单问题; 3、在“A字型、旋转型”变化的过程中经历图形动态思考,积累做“A字型、旋转型”相似解题的特点与经验。 教学重点难点: 1、在已知图形中观察关键特征——“A字型、旋转型”; 2、在“A字型、旋转型”图的两个三角形中,探索其相似条件。 教学过程: 一、复习与回顾: 相似三角形的性质和判定定理; 二、引入 相似三角形是初中数学中重要的内容,应用广泛,可以证明线段的比例式;也可证明线段相等、平行、垂直等;还可计算线段的长、比值,图形面积及比值。而识别(或构造)A字型、8字型、母子相似型、旋转型等基本图形是解证题的关键。 三、新课讲解: (一)、模型分析有一个公共角(图①、图②)或角有公共部分(图③,∠BAC与∠DAE有公共部分∠DAF),此时需要找另一对角相等,另外若题中未明确相似三角形对应顶点,则需要分类讨论,如图③中可找条件∠D=∠C或∠D=∠B. (二)、基础巩固 1、若△ABC∽△ADE,你可以得出什么结论?(图1) 2、D、E分别是△ABC边AB、AC上的点,请你添加一个条件,使△ADE与△ABC相似。(图2)(三)、例题探究:

(四)课堂练习: 三、课堂小结: 我们今天这堂课收获了什么呢? (1)学习了A型相似; (2)学会从复杂图形中分解出基本图形。 (3)数学思想:方程思想,转化思想,分类讨论思想四、作业布置: 中考新航线251页

相似三角形模型分析大全(精)

第一部分相似三角形知识要点大全 知识点1..相似图形的含义 把形状相同的图形叫做相似图形。(即对应角相等、对应边的比也相等的图形) 解读:(1)两个图形相似,其中一个图形可以看做由另一个图形放大或缩小得到. (2)全等形可以看成是一种特殊的相似,即不仅形状相同,大小也相同. (3)判断两个图形是否相似,就是看这两个图形是不是形状相同,与其他因素无关. 例1.放大镜中的正方形与原正方形具有怎样的关系呢? 分析:要注意镜中的正方形与原正方形的形状没有改变. 解:是相似图形。因为它们的形状相同,大小不一定相同. 例2.下列各组图形:①两个平行四边形;②两个圆;③两个矩形;④有一个内角80°的两个等腰三角形;⑤两个正五边形;⑥有一个内角是100°的两个等腰三角形,其中一定是相似图形的是_________(填序号). 解析:根据相似图形的定义知,相似图形的形状相同,但大小不一定相同,而平行四边形、矩形、等腰三角形都属于形状不唯一的图形,而圆、正多边形、顶角为100°的等腰三角形的形状不唯一,它们都相似.答案:②⑤⑥. 知识点2.比例线段 对于四条线段a,b,c,d ,如果其中两条线段的长度的比与另两条线段的长度的比相等,即a c b d =(或 a:b=c:d)那么这四条线段叫做成比例线段,简称比例线段. 解读:(1)四条线段a,b,c,d成比例,记作a c b d =(或a:b=c:d),不能写成其他形式,即比例线段 有顺序性. (2)在比例式a c b d =(或a:b=c:d)中,比例的项为a,b,c,d,其中a,d为比例外项,b,c为比例内项,d 是第四比例项. (3)如果比例内项是相同的线段,即a b b c =或a:b=b:c,那么线段b叫做线段和的比例中项。 (4)通常四条线段a,b,c,d的单位应一致,但有时为了计算方便,a和b统一为一个单位,c和d统一为另一个单位也可以,因为整体表示两个比相等. 例3.已知线段a=2cm, b=6mm, 求a b . 分析:求a b 即求与长度的比,与的单位不同,先统一单位,再求比. 例4.已知a,b,c,d成比例,且a=6cm,b=3dm,d=3 2 dm,求c的长度. 分析:由a,b,c,d成比例,写出比例式a:b=c:d,再把所给各线段a,b,,d统一单位后代入求c. 知识点3.相似多边形的性质 相似多边形的性质:相似多边形的对应角相等,对应边的比相等. 解读:(1)正确理解相似多边形的定义,明确“对应”关系. (2)明确相似多边形的“对应”来自于书写,且要明确相似比具有顺序性. 例5.若四边形ABCD的四边长分别是4,6,8,10,与四边形ABCD相似的四边形A1B1C1D1的最大边长为30,则四边形A1B1C1D1的最小边长是多少? 分析:四边形ABCD与四边形A1B1C1D1相似,且它们的相似比为对应的最大边长的比,即为1 3 ,再根据相似多 边形对应边成比例的性质,利用方程思想求出最小边的长.知识点4.相似三角形的概念 对应角相等,对应边之比相等的三角形叫做相似三角形.解读:(1)相似三角形是相似多边形中的一种;(2)应结合相似多边形的性质来理解相似三角形; (3)相似三角形应满足形状一样,但大小可以不同;(4)相似用“∽”表示,读作“相似于”; (5)相似三角形的对应边之比叫做相似比.

相似三角形模型分析大全(非常全面经典)

相似三角形模型分析大全 一、相似三角形判定的基本模型认识 (一)A字型、反A字型(斜A字型) B (平行) B (不平行) (二)8字型、反8字型 B C B C (蝴蝶型) (平行)(不平行) (三)母子型 B

(四)一线三等角型: 三等角型相似三角形是以等腰三角形(等腰梯形)或者等边三角形为背景 (五)一线三直角型: (六)双垂型:

二、相似三角形判定的变化模型 旋转型:由A 字型旋转得到。 8字型拓展 C B E D A 共享性 G A B C E F 一线三等角的变形 一线三直角的变形 第二部分 相似三角形典型例题讲解

母子型相似三角形 例1:如图,梯形ABCD 中,AD ∥BC ,对角线AC 、BD 交于点O ,BE ∥CD 交CA 延长线于E . 求证:OE OA OC ?=2 . 例2:已知:如图,△ABC 中,点E 在中线AD 上, ABC DEB ∠=∠. 求证:(1)DA DE DB ?=2 ; (2)DAC DCE ∠=∠. 例3:已知:如图,等腰△ABC 中,AB =AC ,AD ⊥BC 于D ,CG ∥AB ,BG 分别交AD 、AC 于E 、F . 求证:EG EF BE ?=2 . A C D E B

相关练习: 1、如图,已知AD 为△ABC 的角平分线,EF 为AD 的垂直平分线.求证:FC FB FD ?=2 . 2、已知:AD 是Rt △ABC 中∠A 的平分线,∠C=90°,EF 是AD 的垂直平分线交AD 于M ,EF 、BC 的延长线交于一点N 。 求证:(1)△AME ∽△NMD; (2)ND 2 =NC ·NB 3、已知:如图,在△ABC 中,∠ACB=90°,CD ⊥AB 于D ,E 是AC 上一点,CF ⊥BE 于F 。 求证:EB ·DF=AE ·DB

相似三角形常见模型(总结)

第一部分 相似三角形模型分析 一、相似三角形判定的基本模型认识 (一)A 字型、反A 字型(斜A 字型) B (平行) B (不平行) (二)8字型、反8字型 B C B C (蝴蝶型) (平行) (不平行) (三)母子型 B (四)一线三等角型:

C A D 二、相似三角形判定的变化模型 旋转型:由A 字型旋转得到。8字型拓展 C B E D A 共享性 G A B C E F 一线三等角的变形 一线三直角的变形

第二部分 相似三角形典型例题讲解 母子型相似三角形 例1:如图,梯形ABCD 中,AD ∥BC ,对角线AC 、BD 交于点O ,BE ∥CD 交CA 延长线于E . 求证:OE OA OC ?=2 . 例2:已知:如图,△ABC 中,点E 在中线AD 上,ABC DEB ∠=∠. 求证:(1)DA DE DB ?=2 ; (2) DAC DCE ∠=∠. 例3:已知:如图,等腰△ABC 中,AB =AC ,AD ⊥BC 于D ,CG ∥AB ,BG 分别交AD 、AC 于E 、F . 求证:EG EF BE ?=2 . 相关练习: 1、如图,已知AD 为△ABC 的角平分线,EF 为AD 的垂直平分线.求证:FC FB FD ?=2 . 2、已知:AD 是Rt △ABC 中∠A 的平分线,∠C=90°,EF 是AD 的垂直平分线交AD 于M ,EF 、BC 的延长线交于一点N 。 求证:(1)△AME ∽△NMD; (2)ND 2 =NC ·NB 3、已知:如图,在△ABC 中,∠ACB=90°,CD ⊥AB 于D ,E 是AC 上一点, CF ⊥BE 于F 。 求证:EB ·DF=AE ·DB 4.在?ABC 中,AB=AC ,高AD 与BE 交于H ,EF BC ⊥,垂足为F ,延长AD 到G ,使DG=EF ,M 是AH 的中点。 求证:∠=?GBM 90 5.(本题满分14分,第(1)小题满分4分,第(2)、(3)小题满分各5分) 已知:如图,在Rt △ABC 中,∠C =90°,BC =2,AC =4,P 是斜边AB 上的一个动点,PD ⊥AB ,交边AC 于点D (点D 与点A 、C 都不重合),E 是射线DC 上一点,且∠EPD =∠A .设 A 、P 两点的距离为x ,△BEP 的面积为y . A C D E B B P G M F E H D C B A

相似三角形模型分析大全之母子型

第五讲 、相似三角形判定的基本模型认 识 (一)A字型、反A字型(斜A字型) 相似三角形模型分析大全 (平行) (二)8字型、反8字 型 (平行)(三)母子型(不平行) 三等角型相似三角形是以等腰三角形(等腰梯形)或者等边三角形为背景(五)一线三直角型: (六)双垂型: 二、相似三角形判定的变化模型 旋转型:由A字型旋转得到(不平行) b ■ a c IiI 1 -- =—a h c

厶4 — S 亠弘六TTZ 一线三直角的变形 母子型相似三角形 例1:如图,梯形ABCD 中,AD// BC,对角线AC BD 交于点O, BE// CD 交CA 延长线于E. 2 K 如图.已知AD ABC 的角平分线.EF 为AD 的垂直平分线?求证: 求证:OC OA OE . ABC. 2、已知:AD 是RtA ABC 中/ A 的平分线,/延长线交于一点No 求证:□)△ AMOA NMD; (2)ND 2 =NC ?3、已知:如图,在厶 ABC 中,/ ACB=90 ,求证:EB- DF=AE ? DB A E 共享性B 相关练习: 2 FD 2 FB FC . 例2:已知:如图,A ABC 中,点E 在中线AD 上,DEB 例3:已知: CF1 BE F Fo CD!ABT D”E

4. 在ABC中,AB=AC高AD与BE交于H, EF BC,垂足为F,延长AD到G,使DG=EF M是AH勺中

求证:GBM 90 5. (本题满分14分,第⑴小题满分4分,第(2)、(3)小题满分各5分) 已知:如图,在RtA ABC中,/ C=90°, BO2, AC=4, P是斜边AB上的一个动点,PDLAB DC上一点,且/ EPD 交边AC于点D (点D与点A、C都不重合),E是射线/ A. 设力 P两点的距离为x,A BEP的面积为y. (1) 求证:AE=2PE (2) 求y关于x的函数解析式,并写出它的定义域; ⑶当厶BE£A ABC相似时,求厶BEP的面积.

相似三角形典型模型及例题

1:相似三角形模型一:相似三角形判定的基本模型 (一)A字型、反A字型(斜A字型) B ?(平行)(不平行) (二)8字型、反8字型 B C B C(蝴蝶型) (平行) (不平行) (三)母子型 B (四)一线三等角型: 三等角型相似三角形是以等腰三角形(等腰梯形)或者等边三角形为背景,一个与等腰三角形的底角相等的顶点在底边所在的直线上,角的两边分别与等腰三角形的两边相交如图所示:

(五)一线三直角型: 三直角相似可以看着是“一线三等角”中当角为直角时的特例,三直角型相似通常是以矩形或者正方形形为背景,或者在一条直线上有一个顶点在该直线上移动或者旋转的直角,几种常见的基本图形如下: 当题目的条件中只有一个或者两个直角时,就要考虑通过添加辅助线构造完整的三直角型相似, 这往往是很多压轴题的突破口,进而将三角型的条件进行转化。 ( 六)双垂型: C A D 二:相似三角形判定的变化模型 旋转型:由A字型旋转得到8字型拓展 C B E D A 共享性 一线三等角的变形 G A B C E F

一线三直角的变形 2:相似三角形典型例题 (1)母子型相似三角形 例1:如图,梯形ABCD中,AD∥BC,对角线AC、BD交于点O,BE∥CD交CA延长线于E.求证:OE OA OC? = 2. 例2:已知:如图,△ABC中,点E在中线AD上, ABC DEB∠ = ∠. 求证:(1)DA DE DB? = 2; (2)DAC DCE∠ = ∠. 例3:已知:如图,等腰△ABC中,AB=AC,AD⊥BC于D,CG∥AB,BG分别交AD、AC于E、F. 求证:EG EF BE? = 2. 1、如图,已知AD为△ABC的角平分线,EF为AD的垂直平分线.求证:FC FB FD? = 2. A C D E B

旋转型相似

旋转型相似 如图,△ABC 中,AB=AC ,AO 是角平分线,D 为AO 上一点,作△CDE ,使DE=DC ,∠EDC=∠BAC ,连接BE . (1)若∠BAC=60°,求证:△ACD ≌△BCE ; (2)若∠BAC=90°,AD=DO ,求的值; (3)若∠BAC=90°,F 为BE 中点,G 为 BE 延长线上一点,CF=CG ,AD=nDO ,直接写出 的值. 已知AB=AC=BD=k ?BE .∠BAC=2∠BED ,∠DBE=90°,点O 为CE 的中点连接AO : (1)如图1,C ,D ,E 在一条直线上,k=1, ①求∠BDE 的度数; ②线段AO ,CD 有怎样的数量关系; (2)如图2,将△BED 绕点B 旋转,其他条件不变,求AO CD 的值(用含k 的式子表示).

如图,两等腰直角三角形ABC和DEF有一条边BC与EF在同一直线上,DE=4,AB=2. 设EC=m (0≤m≤4),点M在线段AD上,且∠MEB=45°. (1)当m=4时,AM DM =; (2)当m=4时△ABC绕点C逆时针旋转90°,求AM DM 的值; (3)当0<m<4时,△ABC绕点C逆时针旋转?度(0<?<90°),原题中其它条件不变, 求AM DM 的值(用含m的代数式表示). 已知在△ABC中,AB=AC,DB=DC,点F是AB边上一点,点E在线段DF的延长线上,∠BAE=∠BDF,点M在线段DF上,∠EBM=∠ABD. (1)如图1,当∠ABC=45°时,求证:AE=2MD. (2)如图2,当∠ABC=60°时,延长BM到点P,使MP=BM,AD与CP交于点N,若AB=7,BE=3.①求证:BP⊥CP;②求AN的长.

相似三角形经典模型总结(修改版)

相似三角形经典模型总结 经典模型 【精选例题】 “平行型” 【例1】 如图,111EE FF MM ∥∥,若AE EF FM MB ===, 则1 11 1 1 1 :::_________AEE EE F F FF M M MM CB S S S S ?=四边形四边形四边形 M 1F 1E 1M E F A B C

【例2】 如图,A D E F M N B C ∥∥∥,若9AD =,18BC =,::2:3:4AE EM MB =,则 _____EF =,_____MN = M N A B C D E F 【例3】 已知,P 为平行四边形ABCD 对角线,AC 上一点,过点P 的直线与AD ,BC ,CD 的延 长线,AB 的延长线分别相交于点E ,F ,G ,H 求证: PE PH PF PG = P H G F E D C B A 【例4】 已知:在ABC ?中,D 为AB 中点,E 为AC 上一点,且 2AE EC =,BE 、CD 相交于点F , 求 BF EF 的值 F E D C B A

【例5】 已知:在ABC ?中,BD AD 21= ,延长BC 到F ,使1 3 CF BC =,连接FD 交AC 于点E 求证:①DE EF = ②2AE CE = A B C D F E 【例6】 已知:D ,E 为三角形ABC 中AB 、BC 边上的点,连接DE 并延长交AC 的延长线于点F , ::BD DE AB AC = 求证:CEF ?为等腰三角形 F E D C B A 【例7】 如图,已知////AB EF CD ,若AB a =,CD b =,EF c =,求证:111 c a b =+. F E D C B A

相似三角形常见模型总结

第一部分相似三角形模型分析一、相似三角形判定的基本模型认识 (一)A字型、反A字型(斜A字型) (平行) B (不平行) (二)8字型、反8字型 B C B C (蝴蝶型)(平行)(不平行) (三)母子型 (四)一线三等角型: (五)一线三直角型:

(六)双垂型: 二、相似三角形判定的变化模型 旋转型:由A 字型旋转得到。 8字型拓 展 C B E D A 共享性 G A B E F 一线三等角的变形 一线三直角的变形

第二部分 相似三角形典型例题讲解 母子型相似三角形 例1:如图,梯形ABCD 中,AD ∥BC ,对角线AC 、BD 交于点O ,BE ∥CD 交CA 延长线于E . 求证:OE OA OC ?=2. 例2:已知:如图,△ABC 中,点E 在中线AD 上, ABC DEB ∠=∠. 求证:(1)DA DE DB ?=2; (2)DAC DCE ∠=∠. 例3:已知:如图,等腰△ABC 中,AB =AC ,AD ⊥BC 于D ,CG ∥AB ,BG 分别交AD 、AC 于E 、F . 求证:EG EF BE ?=2. 相关练习: 1、如图,已知AD 为△ABC 的角平分线,EF 为AD 的垂直平分线.求证:FC FB FD ?=2. 2、已知:AD 是Rt △ABC 中∠A 的平分线,∠C=90°,EF 是AD 的垂直平分线交AD 于M ,EF 、BC 的延长线交于一点N 。 求证:(1)△AME ∽△NMD; (2)ND 2=NC ·NB 3、已知:如图,在△ABC 中,∠ACB=90°,CD ⊥AB 于D ,E 是AC 上一点,CF ⊥BE 于F 。 求证:EB ·DF=AE ·DB 4.在?ABC 中,AB=AC ,高AD 与BE 交于H ,EF BC ⊥,垂足为F ,延长AD 到G ,使DG=EF ,M 是AH

相似三角形典型模型及例题

1:相似三角形模型一:相似三角形判定的基本模型 (一)A字型、反A字型(斜A字型) B (平行)(不平行) (二)8字型、反8字型 B C B C(蝴蝶型) (平行) (不平行) (三)母子型 B (四)一线三等角型: 三等角型相似三角形是以等腰三角形(等腰梯形)或者等边三角形为背景,一个与等腰三角形的底角相等的顶点在底边所在的直线上,角的两边分别与等腰三角形的两边相交如图所示:

(五)一线三直角型: 三直角相似可以看着是“一线三等角”中当角为直角时的特例,三直角型相似通常是以矩形或者正方形形为背景,或者在一条直线上有一个顶点在该直线上移动或者旋转的直角,几种常见的基本图形如下: 当题目的条件中只有一个或者两个直角时,就要考虑通过添加辅助线构造完整的三直角型相似,这往往是很多压轴题的突破口,进而将三角型的条件进行转化。 (六)双垂型: C A D 二:相似三角形判定的变化模型 旋转型:由A字型旋转得到8字型拓展 C B E D A 共享性 一线三等角的变形 G A B C E F

一线三直角的变形 2:相似三角形典型例题 (1)母子型相似三角形 例1:如图,梯形ABCD中,AD∥BC,对角线AC、BD交于点O,BE∥CD交CA延长线于E.求证:OE OA OC? = 2. 例2:已知:如图,△ABC中,点E在中线AD上, ABC DEB∠ = ∠. 求证:(1)DA DE DB? = 2;(2)DAC DCE∠ = ∠. 例3:已知:如图,等腰△ABC中,AB=AC,AD⊥BC于D,CG∥AB,BG分别交AD、AC于E、F.求证:EG EF BE? = 2. 1、如图,已知AD为△ABC的角平分线,EF为AD的垂直平分线.求证:FC FB FD? = 2. A C D E B

相似三角形的几种基本图形及复习题

A 相似三角形的几种基本图形: (1)如图: 称为“平行线型”的相似三角形. (2)如图:其中∠1=∠2,则△ADE ∽△ABC 称为“相交线型”的相似三角形. A B C D E 1 2A A B B C C D D E E 124 1 2 (∠B=∠D ) (双垂直) (3)如图:∠1=∠2,∠B=∠D ,则△ADE ∽△ABC ,称为“旋转型”的相似三角形. (4)一线三等角型 B E A C D 1 2A B C D E B D B B C D

相似三角形复习题 1、(1)求能与数 2、 3、4成比例的数x.. (2)若43=-b b a ,则b a =_________ (3)由 3 2 =y x 不能推出的比例是 ( ) (A )3 2y x = (B ) 35=+y y x ( C) 31=-y y x (D) )3(3232-≠=++y y x 2、如图,已知直线a ∥b ∥c ,直线m 、n 与a 、b 、c 分别交于点A 、C 、E 、B 、D 、F ,AC = 4,CE = 6,BD = 3,则BF =( ) A . 7 B . 7.5 C . 8 D . 8.5 3、(1)若(2x-3y )∶(x+y)=1∶2,求x ∶y ; (2)已知三角形三边之比为a ∶b ∶c=2∶3∶4,三角形的周长为18㎝,求各边的长. (3)若k b c a a c b c b a =+=+=+,求k 的值; a b c A B C D E F m n

4、已知 z y x 7 32==,求2 22z y x yz xz xy ++++的值。 5、△ABC ∽△DEF ,若△ABC 的边长分别为5cm 、6cm 、7cm ,而4cm 是△DEF 中一边的长度,你能求出△DEF 的另外两边的长度吗?试说明理由. 解析:因没有说明4cm 的线段是△DEF 的最大边或最小边,因此需分三种情况进行讨论. 6、已知△ABC 与△A 1B 1C 1的相似比为2:3,△A 1B 1C 1与△A 2B 2C 2的相似比为4:5,那么△ABC 与△A 2B 2C 2的相似比是多少? 7、如果整张纸和它的一半相似,那么整张纸的长和宽的比是多少? 8、边长为4的等边△ABC 中,DE 为中位线,则四边形BCED 的面积为( ) (A )32 (B )33 (C )34 (D )36 9、如图, □ABCD 中, G 是AB 延长线上一点, DG 交AC

相似三角形知识点梳理

相似三角形知识点大总结 知识点1 有关相似形的概念 (1)形状相同的图形叫相似图形,在相似多边形中,最简单的是相似三角形. (2)如果两个边数相同的多边形的对应角相等,对应边成比例,这两个多边形叫做相似多边形.相似多边形对应边长度的比叫做相似比(相似系数). 知识点2 比例线段的相关概念 (1)如果选用同一单位量得两条线段b a ,的长度分别为n m ,,那么就说这两条线段的比是 n m b a =,或写成n m b a ::=.注:在求线段比时,线段单位要统一。 (2)在四条线段d c b a ,,,中,如果b a 和的比等于d c 和的比,那么这四条线段d c b a ,,,叫做成比例线段,简称 比例线段.注:①比例线段是有顺序的,如果说a 是d c b ,,的第四比例项,那么应得比例式为:a d c b =.② ()a c a b c d b d ==在比例式::中,a 、d 叫比例外项,b 、c 叫比例内项, a 、c 叫比例前项,b 、d 叫比例后项, d 叫第四比例项,如果b=c ,即 a b b d =::那么b 叫做a 、d 的比例中项, 此时有2 b ad =。 (3)黄金分割:把线段AB 分成两条线段)(,BC AC BC AC >,且使AC 是BC AB 和的比例中项,即 2AC AB BC =?,叫做把线段AB 黄金分割,点C 叫做线段AB 的黄金分割点,其中AB AC 2 1 5-= ≈0.618AB .即 AC BC AB AC == 简记为:长短=全长 注:黄金三角形:顶角是360 的等腰三角形。黄金矩形:宽与长的比等于黄金数的矩形 知识点3 比例的性质(注意性质立的条件:分母不能为0) (1) 基本性质: ①bc ad d c b a =?=::;②2 ::a b b c b a c =?=?. 注:由一个比例式只可化成一个等积式,而一个等积式共可化成八个比例式,如bc ad =,除 了可化为d c b a ::=,还可化为d b c a ::=,b a d c ::=,c a d b ::=,c d a b ::=,b d a c ::=,a b c d ::=,a c b d ::=. (2) 更比性质(交换比例的内项或外项): ()()()a b c d a c d c b d b a d b c a ?=?? ?=?=???=??, 交换内项,交换外项. 同时交换内外项 (3)反比性质(把比的前项、后项交换): a c b d b d a c =?=. (4)合、分比性质:a c a b c d b d b d ±±=?=. 注:实际上,比例的合比性质可扩展为:比例式中等号左右两个比的前项,后项之间

旋转类相似

旋转类相似 1.如图,△ABC与△DEF均为等边三角形,O为BC、EF的中点,则AD:BE的值为() A.:1B.:1C.5:3D.不确定 2.如图,在平面内,四边形ABCD和BEFG均为正方形,则AG:DF:CE=.

3.(1)如图1,△ABC和△DEF都是边长为2的等边三角形,O是BC和EF的中点,连接CF,判断CF与AD的位置关系和数量关系. (2)如图2,设直线CF与直线AD的交点为G,将△DEF绕点O旋转,在旋转过程中,EG的最大值为.

4.如图1,等腰R t△ABC中,∠BAC=90°,∠DAE=45°,∠DAE绕A旋转,直线AD、直线AE 与直线BC交于点D、E两点,CG⊥AC交AE于G. (1)求证:AB=CG+2BD. (2)当∠DAE旋转至图2,图3时,上述关系是否改变?若改变,写出新关系; (3)图3中,若当BE:CE=3:1,BD=22时,连BG交直线AD于H,求GH 的长。 、

5.等腰△ABC,AB=AC=8,∠BAC=120°,P为BC的中点,小慧拿着含30°角的透明三角板,使30°角的顶点落在点P,三角板绕P点旋转. (1)如图a,当三角板的两边分别交AB、AC于点E、F时.求证:△BPE∽△CFP;(2)操作:将三角板绕点P旋转到图b情形时,三角板的两边分别交BA的延长线、边AC于点E、F. ①探究1:△BPE与△CFP还相似吗?(只需写出结论) ②探究2:连接EF,△BPE与△PFE是否相似?请说明理由; ③设EF=m,△EPF的面积为S,试用m的代数式表示S.

5.如图1,在平面直角坐标系中,O为坐标原点,点A的坐标为(﹣8,0),直线BC经过点B(﹣8,6),C(0,6),将四边形OABC绕点O按顺时针方向旋转α度得到四边形OA′B′C′,此时直线OA′、B′C′分别与直线BC相交于P、Q.(1)四边形OA′B′C′的形状是,当α=90°时,的值是; (2)①如图2,当四边形OA′B′C′的顶点B′落在y轴正半轴上时,求的值; ②如图3,当四边形OA′B′C′的顶点B′落在直线BC上时,求△OPB′的面积;(3)在四边形OABC旋转过程中,当0°<α≤180°时,是否存在这样的点P和点Q,使BP=BQ?若存在,请直接写出点P的坐标;若不存在,请说明理由.

相似三角形基本模型与证明

相似三角形基本模型与证明一、基本图形回顾 经典模型

构造相似辅助线——双垂直模型 1.在平面直角坐标系xOy中,点A的坐标为(2,1),正比例函数y=kx的图象与线段OA的夹角是45°,求这个正比例函数的表达式. 2.在△ABC中,AB=,AC=4,BC=2,以AB为边在C点的异侧作△ABD,使△ABD为等腰直角三角 形,求线段CD的长. 3.在△ABC中,AC=BC,∠ACB=90°,点M是AC上的一点,点N是BC上的一点,沿着直线MN折叠,使得点C恰好落在边AB上的P点.求证:MC:NC=AP:PB. 4.如图,在直角坐标系中,矩形ABCO的边OA在x轴上,边OC在y轴上,点B的坐标为(1,3),将矩形沿对角线AC翻折B点落在D点的位置,且AD交y轴于点E.那么D点的 坐标为() A. B. C. D.

5.已知,如图,直线y=﹣2x+2与坐标轴交于A、B两点.以AB为短边在第 一象限做一个矩形ABCD,使得矩形的两边之比为1﹕2。 求C、D两点的坐标。 构造相似辅助线——A、X字型 6.如图:△ABC中,D是AB上一点,AD=AC,BC边上的中线AE交CD于F。 求证: 7.四边形ABCD中,AC为AB、AD的比例中项,且AC平分∠DAB。 求证: 8.已知:如图,在△ABC中,M是AC的中点,E、F是BC上的两点,且BE=EF=FC。求BN:NQ:QM. 相似之共线线段的比例问题

9.(1)如图1,点在平行四边形ABCD的对角线BD上,一直线过点P分别交BA,BC的延长线于点Q,S,交于点.求证: (2)如图2,图3,当点在平行四边形ABCD的对角线或的延长线上时,是否仍然成立?若成立,试给出证明;若不成立,试说明理由(要求仅以图2为例进行证明或说明);

相关文档
相关文档 最新文档