文档库 最新最全的文档下载
当前位置:文档库 › WCDMA容量规划与双载波业务均衡

WCDMA容量规划与双载波业务均衡

WCDMA容量规划与双载波业务均衡

WCDMA容量规划与双载波业务均衡

WCDMA容量规划与双载波业务均衡

WCDMA即将面临容量问题。

目前全球移动用户突破50亿,3G用户已经占到整个移动用户的15.8%。全球3G用户的同比增长速度是38.2%,远远超过整个移动用户15.3%的增速,3G 在整个新增用户中占比已经达到34%。基于这些数据,专家预言,3G正进入一个快速成长期,3G网络即将出现井喷式的发展。

鉴于目前3G市场发展的良好趋势,加之联通WCDMA独特的技术优势,未来一到两年内,3G用户将迅速倍增,由此给网络系统带来的容量冲击问题将非常突出。如何根据需求适量扩容,以最小的资源代价满足市场发展的需要是网络规划的重点。考虑投资的有效性,双载波或多载波的部署必然采取以业务需求为导向,先局部后连续,滚动发展的策略。因此,为最大限度地发挥资源效率,在双载波非连续部署的情况下,网络规划和业务均衡策略变得非常重要。

负载均衡设备主要参数配置说明

(初稿)Radware负载均衡设备 主要参数配置说明 2007年10月 radware北京代表处

目录 一、基本配置 (3) 1.1 Tuning配置 (3) 1.2 802.1q配置 (4) 1.2 IP配置 (6) 1.3 路由配置 (7) 二、四层配置 (8) 2.1 farm 配置 (8) 2.2 servers配置 (10) 2.3 Client NAT配置 (11) 2.4 Layer 4 Policy配置 (16) 三、对服务器健康检查 (18) 3.1 基于连接的健康检查 (19) 3.2 高级健康检查 (21) 四、常用系统命令 (25)

一、基本配置 Radware负载均衡设备的配置主要包括基本配置、四层配置和对服务器健康检查配置。注:本文档内容,用红色标注的字体请关注。 1.1 Tuning配置 Rradware设备tuning table的值是设备工作的环境变量,在做完简单初始化后建议调整tuning值的大小。调整完tuning table后,强烈建议,一定要做memory check,系统提示没有内存溢出,才能重新启动设备,如果系统提示内存溢出,说明某些表的空间调大了,需要把相应的表调小,然后,在做memory check,直到没有内存溢出提示后,重启设备,使配置生效。 点击service->tuning->device 配置相应的环境参数,

在做一般的配置时主要调整的参数如下:Bridge Forwarding Table、IP Forwarding Table、ARP Forwarding Table、Client Table等。 Client NAT Addresses 如果需要很多网段做Client NAT,则把Client NAT Addresses 表的值调大。一般情况下调整到5。 Request table 如果需要做基于7层的负载均衡,则把Request table 的值调大,建议调整到10000。 1.2 80 2.1q配置 主要用于打VLAN Tag Device->Vlan Tagging

深信服负载均衡AD彩页解决方案

深信服应用交付AD 深信服,作为中国最大最有竞争力的前沿网络设备供应商,为3万多家客户提供了稳定可靠的访问,每秒钟经过深信服AD处理的业务交易量高达数千万笔,在中国入选世界500强的企业中,85%以上企业都是深信服的客户。 中国第一品牌 全球知名分析机构Frost & Sullivan发布的《2013年中国应用交付产品(ADC)市场分析报告》显示:深信服应用交付AD在2013年依然保持强劲增长,在中国市场占比中,超越Radware,升至第二,与F5再次缩小距离,并继续保持国产厂商第一的领导地位。 ④报告数据显示,Sangfor(深信服)2013年在中国地区应用交付市场 的份额达到14.1%,排名升至第二位。 ④自2009年推出到市场上以来,深信服AD产品由第九名一跃进入三 甲,在国产厂商中名列前茅。AD产品广泛应用于国家部委单位的核心 系统与电信运营商的生产网。 ④优异的市场表现,也促使深信服成为唯一入选Gartner应用交付魔力 象限的国产厂商,分析师对深信服产品的安全性评价尤为突出。 面向未来的应用交付产品 随着大数据时代的来临,即便是当前强劲的10Gbps性能设备在面对数十G业务量的并发处理时,也难免也会捉襟见肘。顺应网络发展的趋势,深信服AD系列产品采取基于原生64位系统的软硬架构设计,在确保高性能处理能力的同时,提供电信级的设备可靠性。 深信服AD可帮助用户有效提升 ?应用系统的处理性能与高可用性 ?多条ISP出口线路的访问通畅、均衡利用 ?分布式数据中心的全局调度、业务永续 ?业务应用的安全发布与高效访问 ④兼顾高性能与高稳定性的架构设计,原生64位内核OS,数据面与控制面相分离,确保软件系统的稳定高效。 ④非对称多处理架构发挥出多核硬件平台的极致性能,实现高达60Gbps的单机性能处理性能。 ④提供100Gbps 以上业务量的性能扩容方案,以满足运营商和金融行业对于扩展性与高可用性的追求。

中国联通WCDMA网编号计划及扰码规划(汇总)

中国联通WCDMA网编号计划和频率及扰码规划 1 编号 1.1 移动用户相关编号 MSISDN、IMSI、HON、TMSI、P-TMSI等号码的分配仍遵循现有GSM网的分配方式,新增号段由总部再统一分配。具体参见QB/CU 040-2008《中国联通GSM/WCDMA数字蜂窝移动通信网技术体制》V2.0第9.1节。 MSRN号码遵循目前使用的编号结构: ?结构1: 8613000 M1M2M3 ABC ?结构2: 8613090 M1M2M3 ABC ?结构3: 8613200 M1M2M3 ABC ?结构4: 8613254 M1M2M3 ABC ?结构5: 8615644 M1M2M3 ABC 其中:M1M2由总部统一分配,随着网络发展,可以扩展。当前网络中的具体分配方案见附件一,M3由各省自行分配,每个VLR分配一个M3。 1.2 位臵相关编号 1.2.1 位臵区标识(LAI) GSM与WCDMA的位臵区独立进行分配,由三部分组成:MCC+MNC+LAC。其中,MCC与IMSI中的前3位相同,MNC与IMSI中的前2位或3位相同,LAC为一个2字节编码,表示为 X1 X2 X3 X4 。(范围为0000~FFFF)。全部为0的编码和FFFE 编码不用。 GSM系统的X1 X2 的分配见表1,X3 X4 的分配由各省市自行分配。

WCDMA系统的X1 X2 的分配见表2,X3 X4 的分配由各省市自行分配。

各省应在全省范围内对X3 X4进行统一规划和分配,并遵循以下原则: (1)根据各地市移动用户数、人口数等按比例分配; (2)一个地市的编码连续分配,不同地市号段间有一定预留; (3)一个地市无论是否设臵MSC和RNC,均应设臵独立的位臵区及LAC码。 (4)网络建设初期位臵区以RNC为单位划分,今后随着业务量提高进行细分。 1.2.2 基站识别码(BSIC) 基站识别码(BSIC)用于识别的相邻基站,为6比特编码。其结构为: NCC(3bits)+BCC(3bits) 网络色码(NCC):识别不同国家(国内区别不同的省)及不同运营者,结构为XY1Y2,其中,X可扩展使用;Y1Y2的分配如表3。 基站色码(BCC):用于区分相同BCCH频率的小区,由各MSC (Server)局自行设定。 1.2.3 路由区编号(RAI) GPRS、WCDMA的路由区编号独立进行分配。 路由区标识(RAI)由位臵区标识(LAI)加上路由区域码(RAC)组成,由于位臵区标识(LAI)由MCC+MNC+LAC三部分组成,因此,路由区标识是由以下四部分组成的: MCC+MNC+LAC+RAC RAC是一个固定长度为1字节的标识,取值范围为 0x00 ~ 0xFF(0~255),用于标识一个位臵区内的一个路由区,RAC在该位臵区中应是唯一的。RAC由各省市自行分配。 在建网初期,位臵区和路由区宜设臵为相同区域,在网络开通后根据寻呼信

WCDMA各业务承载用户分析

WCDMA基站各业务承载用户分析 当前WCDMA主要有3种业务,本文从3种业务展开分析: R99: 受限于上下行CE,CE受限于软件license数目和BBU上的基带板类型 HSUPA: 受限于上行CE数,CE受限于软件license数目和BBU上的基带板类型 HSDPA: 受限于HSDPA码字license。 CE、HSDPA、HSUPA释义 CE 基带处理能力的单位(Channel Element) CE是1个12.2k的AMR语音业务所占用的NodeB基带处理资源,每种业务等效CE都不同。 HSUPA 高速下行分组接入(High Speed Uplink Packet Access) 上行业务,分两种Phase1 (1.92M per user)和Phase2(5.76M per user)。 HSDPA 高速上行分组接入(High Speed Downlink Packet Access) 目前室外每载扇10个,室内每载扇15个,HSDPA码字可以在小区间共享。 WBBP 基带处理单板(WCDMA BaseBand Process Unit) 各种业务CE消耗规则 HSDPA CE消耗规则 下行业务只消耗Code,不消耗CE,下行伴随信令,每用户消耗1CE;上行不消耗CE。 HSUPA业务CE消耗规则 CE

CE计算规则 基站全业务: 上行CE=max(R99业务消耗上行CE+HSDPA业务消耗上行CE+HSUPA消耗上行CE(平均吞吐量),HSUPA消耗上行CE(峰值吞吐量)) 下行CE=R99业务消耗下行CE+HSDPA业务消耗下行CE+HSUPA业务消耗下行CE 注:HSUPA业务达到峰值吞吐量时,受限于空口环境,除单用户的HSUPA业务外,其他业务无法再接入。 R99业务: 上行CE=语音用户数*单语音用户消耗上行CE数+VT用户数*单个VT用户消耗上行CE数+PS64用户数*单PS64k消耗上行CE数 下行CE=语音用户数*单语音用户消耗下行CE数+VT用户数*VT用户消耗的下行CE数+PS128用户数*单PS128k消耗下行CE数 HSDPA业务: 上行不消耗,CE=0 ; 下行CE=HSDPA用户数*每用户伴随信令消耗的1个CE HSUPA业务: 上行CE(平均吞吐量)=每用户平均吞吐量消耗的CE*HSUPA用户数+每用户伴随信令消耗的1个CE*HSUPA用户数 上行CE(峰值吞吐量)=单用户峰值吞吐量消耗的CE*1+每用户伴随信令消耗的CE*1 下行不消耗CE ,CE=0 CE计算举例 上行CE =max( 24*1+ 2*2.5+ 4*2.5+ 4*6+4,24+1)= 67/每载扇 下行CE = 24*1+ 2*1+ 4*2+ 4 = 38/每载扇 考虑HSDPA每扇载同时可调度32个用户,HSUPA每扇载同时可调度32个用户。 HSPA伴随信令,每个用户消耗1个CE。 上行CE = MAX(67*3, 32*3) =201CE 下行CE = MAX(38*3, 32*3) =114CE

全局负载均衡解决方案

全局负载均衡解决方案 1 需求分析 无论用户的数据中心内部采用多么完善的冗余机制、安全防范工具以及先进的负载均衡技术,单个数据中心的运行方式仍然不能保证关键业务可以7*24不间断运行。 而为了满足处于全球范围内不同地点的用户在访问应用时可以具备相同的快速访问感受,单一的数据中心却完法实现。 基于以上两个最主要的原因,用户通过在不同物理位置构建多个数据中心的方式已经成为用户的必然选择。然而,在构建了多个数据中心后,如何通过有效手段实现多个数据中心间的协调工作,引导用户访问最优的站点,或者当某个站点出现灾难性故障后使用户仍然可以访问其他站点上的关键业务等问题成为用户最关注的问题。 2 Radware 全局负载均衡解决方案 Radware 的全局负载均衡解决方案能够帮助客户通过将相同服务内容布署在处于不同物理地点的多个数据中心中得到更高的可用性、性能、以及更加经济和无懈可击的安全性,以便在全球范围内的客户获得更快的响应时间。 Radware的全局负载均衡解决方案支持Radware 下一代APSolute OS 软件体系结构的全部功能,彻底解决了网络可用性、性能和安全问题,使得应用在多个数据中心中获得更高的灵敏并具有自适应性。配合Radware 的高速度、高容量ASIC芯片+NP处理器的专用硬件应用交换设备,可有效保障网络应用的高可用性、提升网络性能,加强安全性,全面提升IT服务器等网络基础设施的升值潜力。 结合Radware多年来在智能应用流量管理领域的经验,以及对用户实际需求的分析,我们认为负载均衡器应具备如下功能:

?能够通过唯一的IP地址或域名的方式作为所有提供相同服务的数据中心的逻辑入口点。 ?全局负载均衡交换机具有灵活的流量分配算法与机制,以确保用户总能访问可以为其提供最优服务的数据中心的内容。 ?通过部署高性能的负载均衡产品,能够及时发现各数据中心或数据中心内部的服务器的健康状况,当某个数据中心出现故障时,保证把后续用户的访问导向到正常运行的数据中心上。 ?针对基于会话的业务,可以提供多种会话保持机制,确保用户在处理业务时的连续性。避免将用户的相同会话的业务请求,分配到不同的数据中心而造成访问失败。 ?应具备安全过虑及防DOS/DDOS的功能,为服务器提供多一层安全保障 ?具有很好的升级与可扩展性,能够适应特定的和不断变化的业务需求。 2.1 方案拓扑图 2.2 AppDirector-Global实现全局及本地负载均衡 在全局及本地负载均衡方面,AppDirector-Global主要在网络中实现以下功能: 2.2.1 全局负载均衡策略 Radware支持多种全局负载均衡策略,能够通过唯一的IP地址或域名的方式作为所有提供相同服务的数据中心的逻辑入口点。根据用户的实际情况,可以选择其中以下的一种,也可以组合同时使用。

F5负载均衡配置文档

F5配置手册 2016年12月

目录 1. 设备登录 (3) 1.1图形化界面 (3) 1.2命令行界面 (3) 2. 基础网络配置 (3) 2.1创建vlan (3) 2.2创建self ip (4) 2.3创建静态路由 (4) 3. 应用负载配置 (6) 3.1 pool配置 (6) 3.2 Virtual Server配置 (7) 4. 双机 (8) 4.1双机同步配置 (8) 4.2主备机状态切换 (9)

1.设备登录 1.1图形化界面 通过网络形式访问F5任一接口地址,或pc机直连F5的MGMT带外管理口,打开浏览器,输入https://192.168.1.245(MGMT地址在设备液晶面板查看)将进入F5的图形管理界面。该界面适合进行设备的基础以及高级调试,是管理员常用的管理界面。 默认用户名/密码:admin/admin 现密码已更改,并交由管理员妥善保管。 1.2命令行界面 通过DB9console线直连F5的console口,或通过securecrt等工具以SSH2的形式访问F5任一接口地址,将进入命令行模式。该界面适合进行底层操作系统的调试以及排错。 默认用户名/密码:root/default 现密码已更改,并交由管理员妥善保管。 2.基础网络配置 2.1创建vlan 进入“Network”-“VLANs”选项,点击“create”创建新vlan,如下图:

2.2创建self ip 进入“Network”-“self ips”进行F5设备的地址配置,点击“create”新建地址,如下图: 填写相应地址和掩码,在vlan处下拉选择之前创建好的vlan,将该地址与vlan绑定,即ip地址与接口做成了对应关系。在双机部署下,浮动地址的创建需要选择Traffice Group 中的traffice-group-1(floating ip) 点击“Finish”完成创建。 2.3创建静态路由 F5的静态路由分缺省路由和一般路由两种。任何情况下,F5部署上线都需要设置缺省路由。 缺省路由创建 首先进入“Local Traffic”-“pools”,为缺省路由创建下一条地址,点击“create”,如下图:

深信服智能DNS全局负载均衡解决方案

智能DNS全局负载均衡解决方案 ——深信服AD系列应用交付产品 背景介绍 在数据大集中的趋势下,多数组织机构都建立了统一运维的数据中心。考虑到单 一数据中心在遭遇到不抗拒的因素(如火灾、断电、地震)时,业务系统就很有 可能立即瘫痪,继而造成重大损失,因此很多具有前瞻性的组织机构都在建设多 数据中心以实现容灾。那么如何充分利用多个数据中心的资源才能避免资源浪 费?如何在一个数据出现故障时,将用户引导至正常的数据中心?在多个数据中 心都健康的情况下如何为用户选择最佳的数据中心? 问题分析 随着组织的规模扩大,用户群体和分支机构分布全国乃至全球,这一过程中组织对信息化应用系统的依赖性越来越强。对于企事业单位而言,要实现业务完整、快速的交付,关键在于如何在用户和应用之间构建的高可用性的访问途径。 跨运营商访问延迟-由于运营商之间的互连互通一直存在着瓶颈问题,企业在兴建应用服务器时,若只采用单一运营商的链路来发布业务应用,势必会造成其他运营商的用户接入访问非常缓慢。在互联网链路的稳定性日益重要的今天,通过部署多条运营商链路,有助于保证应用服务的可用性和可靠性。 多数据中心容灾-考虑到单数据中心伴随的业务中断风险,以及用户跨地域、跨运营商访问的速度问题,越来越多组织选择部署同城/异地多数据中心。借助多数据中心之间的冗余和就近接入机制,以保障关键业务系统的快速、持续、稳定的运行。

深信服解决方案 智能DNS全局负载均衡解决方案,旨在通过同步多台深信服AD系列应用交付设备,以唯一域名的方式将多个数据中心对外发布出去,并根据灵活的负载策略为访问用户选择最佳的数据中心入口。 用户就近访问 ④支持静态和动态两种就近性判断方法,保障用户在访问资源时被引导至最合适的数据中心 ④通过对用户到各站点之间的距离、延时、以及当前数据中心的负荷等众多因素进行分析判断 ④内置实时更新的全球IP地址库,进一步提高用户请求就近分配的准确性,避免遭遇跨运营商访问 站点健康检查 ④对所有数据中心发布的虚拟服务进行监控,全面检查虚拟服务在IP、TCP、UDP、应用和内容等所有协议 层上的工作状态 ④实时监控各个数据中心的运行状况,及时发现故障站点,并相应地将后续的用户访问请求都调度到其他的 健康的数据中心 入站流量管理 ④支持轮询、加权轮询、首个可用、哈希、加权最小连接、加权最少流量、动态就近性、静态就近性等多种 负载均衡算法,为用户访问提供灵活的入站链路调度机制 ④一旦某条链路中断仍可通过其它链路提供访问接入,实现数据中心的多条出口链路冗余 方案价值 ④合理地调度来自不同用户的入站访问,提升对外发布应用系统的稳定性和用户访问体验 ④多个数据中心之间形成站点冗余,保障业务的高可用性,并提升各站点的资源利用率 ④充分利用多条运营商链路带来的可靠性保障,提升用户访问的稳定性和持续性

TD邻区频点扰码规划指导手册

一、邻区规划 1.1TD-SCDMA几个基本原则 地理位置上直接相邻的小区一般要作为邻区; 邻区一般都要求互为邻区,即A扇区载频把B作为邻区,B也要把A作为邻区;在一些特殊场合,可能要求配置单向邻区,如当高层室内覆盖的窗口室外宏小区的信号较强, 为了避免UE重选到室外小区起呼后往室内走产生掉话,配置室外到室内小区的单向邻区, 这样可以降低室外宏小区的负荷。 对于密集城区和普通城区,由于站间距比较近(0.5~1.5公里),邻区应该多做。 目前对于同频、异频和异系统邻区理论最大可以配置32个(但是目前在LMT-R只能配置24 个),所以在配置邻区时,需注意邻区的个数,把确实存在相邻关系的配进来,不相干的 一定要去掉,以免占用了邻区名额,把真正的相邻邻区没有配置而在某些区域形成干扰。 实际网络中,既要求配置必要的邻区,又要避免过多的邻区。 对于市郊和郊县的基站,虽然站间距很大,但一定要把位置上相邻的作为邻区,保证能够及时切换,避免掉话。 因为TD-SCDMA的邻区不存在先后顺序的问题,而且检测周期比较短(一般32个同频邻区只需要320ms的测量周期),所以只需要考虑不遗漏邻区,而不需要严格按照信号 强度来排序相邻小区。 由于仿真模型误差或者人工参照mapinfo添加邻区主观上的误差会造成重要邻区的漏配等,可参考2G H1表,来避免重要邻区的漏配。 页脚内容1

1.2GSM-TD的邻区配置原则 邻区配置原则 配置总体策略 1)TD-GSM网络同PLMN 2)空闲状态 用户优先驻留TD网 T D<->GSM双向重选 3)连接状态 C S业务进行TD->GSM单向切换,挂机后通过小区重选返回TD网络 P S业务进行TD<->GSM双向重选 TD->GSM相邻小区配置规则 建议邻区数量控制在6个以内; GSM->TD相邻小区配置规则 目前23G操作策略为CS单向切换(TD->GSM),IDLE/PS双向重选。通话过程中发生TD->G 网切换在通话结束后UE若检测到TD网络,则尽快发起由G网到T网的重选。为了保证能及时回到T网,需要给现网中大多数的GSM小区配置TD邻区,工作量大且容易出错。 页脚内容2

思科负载均衡的配置实例

1.负载均衡的介绍 软/硬件负载均衡 软件负载均衡解决方案,是指在一台或多台服务器相应的操作系统上,安装一个或多个附加软件来实现负载均衡,如DNS 负载均衡等。它的优点是基于特定环境、配置简单、使用灵活、成本低廉,可以满足一般的负载均衡需求。硬件负载均衡解决方案,是直接在服务器和外部网络间安装负载均衡设备,这种设备我们通常称之为负载均衡器。由于专门的设备完成专门的任务,独立于操作系统,整体性能得到大量提高,加上多样化的负载均衡策略,智能化的流量管理,可达到最佳的负载均衡需求。一般而言,硬件负载均衡在功能、性能上优于软件方式,不过成本昂贵。[1] 本地/全局负载均衡 负载均衡从其应用的地理结构上,分为本地负载均衡和全局负载均衡。本地负载均衡是指对本地的服务器群做负载均衡,全局负载均衡是指在不同地理位置、有不同网络结构的服务器群间做负载均衡。本地负载均衡能有效地解决数据流量过大、网络负荷过重的问题,并且不需花费昂贵开支购置性能卓越的服务器,可充分利用现有设备,避免服务器单点故障造成数据流量的损失。有灵活多样的均衡策略,可把数据流量合理地分配给服务器群内的服务器,来共同负担。即使是再给现有服务器扩充升级,也只是简单地增加一个新的服务器到服务群中,而不需改变现有网络结构、停止现有的服务。全局负载均衡,主要用于在一个多区域拥有自己服务器的站点,为了使全球用户只以一个IP地址或域名就能访问到离自己最近的服务器,从而获得最快的访问速度,也可用于子公司分散站点分布广的大公司通过Intranet (企业内部互联网)来达到资源统一合理分配的目的。 更高网络层负载均衡 针对网络上负载过重的不同瓶颈所在,从网络的不同层次入手,我们可以采用相应的负载均衡技术来解决现有问题。更高网络层负载均衡,通常操作于网络的第四层或第七层。第四层负载均衡将一个Internet上合法注册的IP地址,映射为多个内部服务器的IP地址,对每次TCP连接请求动态使用其中一个内部IP地址,达到负载均衡的目的。第七层负载均衡控制应用层服务的内容,提供了一种对访问流量的高层控制方式,适合对HTTP服务器群的应用。第七层负载均衡技术通过检查流经的HTTP报头,根据报头内的信息来执行负载均衡任务。 [编辑本段] 网络负载平衡的优点 1、网络负载平衡允许你将传入的请求传播到最多达32台的服务器上,即可以使用最多32台服务器共同分担对外的网络请求服务。网络负载平衡技术保证即使是在负载很重的情况下它们也能作出快速响应。 2、网络负载平衡对外只须提供一个IP地址(或域名)。 3、如果网络负载平衡中的一台或几台服务器不可用时,服务不会中断。网络负载平衡自动检测到服务器不可用时,能够迅速在剩余的服务器中重新指派客户机通讯。此保护措施能够帮助你为关键的业务程序提供不中断的服务。可以根据网络访问量的增多来增加网络负载平衡服务器的数量。 4、网络负载平衡可在普通的计算机上实现。在Windows Server 2003中,网络负载平衡的应用程序包括Internet信息服务(IIS)、ISA Server 2000防火墙与代理服务器、VPN虚拟专用网、终端服务器、Windows Media Services(Windows视频点播、视频广播)等服务。同时,网络负载平衡有助于改善你的服务器性能和可伸缩性,以满足不断增长的基于Internet 客户端的需求。

数据库负载均衡解决方案

双节点数据库负载均衡解决方案 问题的提出? 在SQL Server数据库平台上,企业的数据库系统存在的形式主要有单机模式和集群模式(为了保证数据库的可用性或实现备份)如:失败转移集群(MSCS)、镜像(Mirror)、第三方的高可用(HA)集群或备份软件等。伴随着企业的发展,企业的数据量和访问量也会迅猛增加,此时数据库就会面临很大的负载和压力,意味着数据库会成为整个信息系统的瓶颈。这些“集群”技术能解决这类问题吗?SQL Server数据库上传统的集群技术 Microsoft Cluster Server(MSCS) 相对于单点来说Microsoft Cluster Server(MSCS)是一个可以提升可用性的技术,属于高可用集群,Microsoft称之为失败转移集群。 MSCS 从硬件连接上看,很像Oracle的RAC,两个节点,通过网络连接,共享磁盘;事实上SQL Server 数据库只运行在一个节点上,当出现故障时,另一个节点只是作为这个节点的备份; 因为始终只有一个节点在运行,在性能上也得不到提升,系统也就不具备扩展的能力。当现有的服务器不能满足应用的负载时只能更换更高配置的服务器。 Mirror 镜像是SQL Server 2005中的一个主要特点,目的是为了提高可用性,和MSCS相比,用户实现数据库的高可用更容易了,不需要共享磁盘柜,也不受地域的限制。共设了三个服务器,第一是工作数据库(Principal Datebase),第二个是镜像数据库(Mirror),第三个是监视服务器(Witness Server,在可用性方面有了一些保证,但仍然是单服务器工作;在扩展和性能的提升上依旧没有什么帮助。

W-小区主扰码规划操作指导书-20041101-A-2.0

WCDMA RNP 小区主扰码规划操作指导书 (仅供内部使用) For internal use only 拟制: URNP-SANA 日期: 2003-04-24 审核: 日期: 审核: 日期: 批准: 日期: H U A W E I 华为技术有限公司 Huawei Technologies Co., Ltd. 版权所有 侵权必究 All rights reserved

修订记录

目录 1概述 (7) 1.1 写作目的 (7) 1.2 规划原则 (8) 1.3 规划方法 (8) 2应用小区主扰码规划工具之前的准备工作 (9) 2.1 是否创建了一个PLMN网络, (9) 2.2 是否在地图视图上建立了基站和小区的分布 (11) 2.3 是否建立了3g 载频并附加到小区上 (11) 2.4 是否进行了小区覆盖预测 (12) 3小区主扰码规划工具的操作过程 (13) 3.1 设置需要规划的小区范围 (13) 3.2 同频相邻小区自动规划 (13) 3.3 设置扰码组和扰码的范围 (14) 3.4 运行UMTS扰码规划工具 (15) 3.4.1 Step 1 (16) 3.4.2 Step 2 (16) 3.4.3 Step 3 (17) 3.4.4 Step 4 (18) 4小区主扰码规划的分析 (20) 4.1 对自动生成的扰码规划报告的分析 (20) 4.1.1 相关参数设置 (20) 4.1.2 调整方法 (21) 4.1.3 码资源复用的举例说明 (22) 4.2 手工配置小区主扰码的分析 (24) 4.2.1 确定使用的码资源 (24) 4.2.2 规划方法 (25) 4.3 最小复用距离及扰码资源的预留 (25)

WCDMA基本网络结构

2008-04-08 12:26 WCDMA是3G三种主流标准的一种。WCDMA系统可以分为无线接入和网络结构两部分,本文介绍其网络结构部分。WCDMA网络结构可分为无线接入网和核心网两部分,本文首先重点阐述了无线接入网的结构,对Iu、Iur、Iub接口协议模型进行了分析;接着对R99的核心网和全IP的核心网结构和相关功能实体进行了概述。 引言 WCDMA是目前全球三种主要的第三代移动通信体制之一,是未来移动通信的发展趋势。WCDMA系统是IMT-2000家族的一员,它由CN(核心网)、UTRAN(UMTS陆地无线接入网)和UE(用户装置)组成。UTRAN 和UE采用WCDMA无线接入技术。WCDMA网络在设计时遵循以下原则:无线接入网与核心网功能尽量分离。即对无线资源的管理功能集中在无线接入网完成,而与业务和应用相关功能在核心网执行。无线接入网是连接移动用户和核心网的桥梁和纽带。其满足以下目标: -允许用户广泛访问电信业务,包括一些现在还没定义的业务,象多媒体和高速率数据业务。 -方便的提供与固定网络相似的高质量的业务(特别是话音质量)。 -方便的提供小的、容易使用的、低价的终端,它要有长的通话和待机时间。 - 提供网络资源有效的使用方法(特别是无线频谱)。 目前,WCDMA系统标准的R99版本已经基本稳定,其R4、R5和R6版本还在紧锣密鼓的制订中。WCDMA系统的网络结构如图1所示。 图1 WCDMA系统结构 WCDMA系统由三部分CN(核心网)、UTRAN(无线接入网)和UE(用户装置)组成。

CN与UTRAN的接口定义为Iu接口,UTRAN与UE的接口定义为Uu接口。 本文将重点阐述WCDMA系统的网络结构。其网络结构的基本特点是核心网从GSM的核心网逐步演进和过渡;而无线接入网则是革命性的变化,完全不同于GSM的无线接入网;而业务是完全兼容GSM的业务,体现了业务的连续性。 无线接入网 UTRAN包括许多通过Iu接口连接到CN的RNS。一个RNS包括一个RNC和一个或多个Node B。Node B通过Iub接口连接到RNC上,它支持FDD模式、TDD模式或双模。Node B 包括一个或多个小区。 UTRAN内部,RNSs中的RNCs能通过Iur接口交互信息, Iu接口和Iur接口是逻辑接口。Iur接口可以是RNC之间物理的直接相连或通过适当的传输网络实现。UTRAN结构如图2所示。 图2 UTRAN结构 Iu、Iur、Iub接口分别为CN与RNC、RNC与RNC、RNC与Node B之间的接口。图3所示为UTRAN接口通用协议模型。此结构依据层间和平面间相互独立原则而建立。

H3C负载均衡项目配置手册

XXXX负载均衡项目配置手册 杭州华三通信技术有限公司 版权所有侵权必究 All rights reserved

1 组网方案1.1 网络拓扑 1.2 负载均衡资源

注:红色表示该实服务不存在。 1.3 网络设备资源 交换机管理IP地址是:10.4.41.54/255.255.255.192; LB设备的管理IP地址是:10.4.41.34/255.255.255.192; 设备的网关是:10.4.41.62; 2 交换机S75E配置 2.1 创建VLAN及添加端口 systemview [H3C] vlan 101 //创建VLAN 101 [H3C] interface GigabitEthernet0/0/1 //进入接口G0/0/1 [H3C- GigabitEthernet0/0/1] port access vlan 101 //该端口属于vlan101 2.2 配置设备管理IP地址及默认路由 [H3C] interface Vlan-interface101 //创建VLAN 101的三层接口 [H3C -Vlan-interface101] ip address 10.4.41.54 255.255.255.192 //配置交换机管理地址[H3C -Vlan-interface101] quit [H3C] ip route-static 0.0.0.0 0.0.0.0 10.4.41.62 //配置默认路由 2.3 配置telnet登陆账号 [H3C]telnet server enable //打开设备的telnet服务 [H3C]user-interface vty 0 4 [H3C-ui-vty0-4]authentication-mode scheme //配置用户登录需要进行账户验证 [H3C]local-user h3c //创建用户名为h3c [H3C-luser-huawei]service-type telnet level 3 //该账号类型为telnet,级别为3(最高级)[H3C-luser-huawei]password cipher h3c //配置密码为h3c 注:配置登陆账号后切记不能遗忘了登陆密码; 2.4 配置内部万兆接口 S75E交换机和LB设备是通过内部的万兆接口互联的,所以需要对此接口进行配置,

服务器负载均衡三种部署方式典型配置..

目录 服务器负载均衡三种部署方式典型配置 (2) 【应用场景】 (2) 【工作原理】 (2) 【三种方式的典型配置方法】 (3) 一、服务器负载均衡NA T模式配置 (3) 1、配置拓扑 (3) 2、拓扑说明 (3) 3、设备配置及说明 (4) 二、服务器负载均衡DR模式配置 (16) 1、配置拓扑 (16) 2、拓扑说明 (16) 3、设备配置及说明 (16) 三、服务器负载均衡NA T模式旁路部署配置 (23) 1、配置拓扑 (23) 2、拓扑说明 (23) 3、设备配置及说明 (23)

服务器负载均衡三种部署方式典型配置 服务器负载均衡部署方式可以分为三种方式:网络地址转换模式(NAT)、直接路由(DR)模式、NAT模式旁路部署。 【应用场景】 1、NA T模式应用场景:用户允许修改网络拓扑结构,此模式同时可以实现加速和流控的功 能。 2、DR模式应用场景:用户不允许修改网络拓扑结构,但是此模式配置需要修改服务器配 置。 3、NA T模式旁路模式应用场景:用户既不允许修改网络拓扑结构,也不允许修改服务器配 置。 【工作原理】 1、NAT模式:负载均衡设备分发服务请求时,进行目的IP地址转换(目的IP地址为实服务的IP),通过路由将报文转发给各个实服务。 客户端将到虚拟IP的请求发送给服务器群前端的负载均衡设备,负载均衡设备上的虚服务接收客户端请求,依次根据持续性功能、调度算法,选择真实服务器,再通过网络地址转换,用真实服务器地址重写请求报文的目标地址后,将请求发送给选定的真实服务器;真实服务器的响应报文通过负载均衡设备时,报文的源地址被还原为虚服务的虚拟IP,再返回给客户,完成整个负载调度过程。 2、DR模式:负载均衡设备分发服务请求时,不改变目的IP地址,而将报文的目的MAC 替换为实服务的MAC后直接把报文转发给实服务。 DR方式的服务器负载均衡时,除了负载均衡设备上配置了虚拟IP,真实服务器也都配置了虚拟IP,真实服务器配置的虚拟IP要求不能响应ARP请求。实服务除了虚拟IP,还需要配置一个真实IP,用于和负载均衡设备通信,负载均衡设备和真实服务器在同一个链路域内。发送给虚拟IP的报文,由负载均衡设备分发给相应的真实服务器,从真实服务器返回给客户端的报文直接通过交换机返回。

WCDMA标准发展概述

WCDMA标准发展概述 WCDMA是IMT-2000家族最主要的三种技术标准之一。本文将从标准方面介绍WCDMA标准现状、未来发展方向以及华为公司在WCDMA标准推动中不懈的努力。 WCDMA标准的现状 WCDMA的标准由第三代合作伙伴计划(3GPP)制定,历经多年努力,目前有R99、R4、R5三个版本完成定稿,正在进行R6版本的制定工作。每个版本都有独特的性质。各版本功能冻结时间表见下图: 成熟、稳定的R99 版本 目前,在全球已安装和试开通的WCDMA网络都是基于这个版本的基础。R99版本最大的特征在于网络结构上继承了广泛采用的第二代移动通信系统-GSM/GPRS核心网结构。与GSM不同的是在WCDMA无线接入网部分引入了全新的无线接口WCDMA,并采用了分组化传输,更有利于实现高速移动数据业务的传输。在接口方面引入了基于ATM 的 Iub, Iur,Iu 接口,该版本功能在2000年3月份确定,目前标准已相当完善。后续版本将都向2002年3月版兼容。 R99的无线接入部分引入了适于分组数据传输的协议和机制,数据速率可支持144kbit /s、384kbit/s,静止时可达2Mbit/s。其核心技术包括:Rake接收技术、功率控制技术、软切换/更软切换技术、发射分集技术、宏分集合并技术、不同的传输信道按照传输信道特性进行速率适配、先进的无线资源管理方案、基于网络性能的语音AMR可变速率控制技术、压缩模式技术、支持多种定位等新技术。 R99核心网则充分考虑与二代网络GSM/GPRS的兼容性,更增加了服务级别的概念,使系统能更好地提供QoS保证。R99智能网CAMEL phase3增加了SCP对分组域的控制,

负载均衡方案及详细配置

Apache+Tomcat+mod_jk实现负载均衡方案 一、概述: 原理图: 提高系统可用性,对系统性能影响较小。对于一台服务器Down机后,可自动切换到另 最少需要两台机器,Tomcat1 和Tomcat2可在同一台服务器上。若条件允许最好是各用一台服务器。 二、详细配置步骤: 1、Apache http Server安装 32位的按照提示操作即可。 64位系统的不是安装包。 64位安装配置: 以管理员身份运行cmd 执行:httpd -k install 若无法运行并提示配置错误,请先安装vcredist_x64.exe后再执行。 安装后在Testing httpd.conf...时会报错,不影响。 httpd -k start 启动Apache、httpd -k shutdown 停止Apache 、httpd -k restart重启测试Apache:

在IE中输入:127.0.0.1 打开网页显示It work就OK 2、将Mod_jk的压缩包解压,找到mod_jk.so 复制到Apache目录下modules目录下 64位的下载mod_jk1.2.30_x64.zip 32位的下载tomcat-connectors-1.2.35-windows-i386-httpd-2.0.x.zip 3、修改Apache conf目录下的httpd.conf文件 在最后增加:Include conf/extra/mod_jk.conf 4、在conf/extra 下创建mod_jk.conf文件 增加如下: #load module mod_jk.so LoadModule jk_module modules/mod_jk.so #mod_jk config #load workers JkWorkersFile conf/workers.properties #set log file JkLogFile logs/mod_jk.log #set log level JkLogLevel info #map to the status server #mount the status server JkMount /private/admin/mystatus mystatus JkMount /* balance 5.在conf目录下创建workers.properties文件 增加:worker.tomcat1 中的tomcat1和tomcat2必须和Tomcat中的配置相同。Tomcat配置下面介召 worker.list=balance,mystatus #first worker config worker.tomcat1.type=ajp13 worker.tomcat1.host=192.168.8.204 worker.tomcat1.port=8009 #Tomcat的监听端口 worker.tomcat1.lbfactor=1 worker.tomcat1.socket_timeout=30 worker.tomcat1.socket_keepalive=1 #second worker config worker.tomcat2.type=ajp13 worker.tomcat2.host=192.168.8.204 worker.tomcat2.port=8010 #Tomcat的监听端口实验是在同一机器上做的,所以两个不同

负载均衡器配置实例与管理界面

前言:最近一直在对比测试F5BIG-IP和CitrixNetScaler负载均衡器的各项性能,于是写下此篇文章,记录F5BIG-IP的常见应用配置方法。 目前,许多厂商推出了专用于平衡服务器负载的负载均衡器,如F5Network公司的BIG-IP,Citrix公司的NetScaler。 F5BIG-IPLTM的官方名称叫做本地流量管理器,可以做4-7层负载均衡,具有负载均衡、应用交换、会话交换、状态监控、智能网络地址转换、通用持续性、响应错误处理、IPv6网关、高级路由、智能端口镜像、SSL加速、智能HTTP压缩、TCP优化、第7层速率整形、内容缓冲、内容转换、连接加速、高速缓存、Cookie加密、选择性内容加密、应用攻击过滤、拒绝服务(DoS)攻击和SYNFlood保护、防火墙—包过滤、包消毒等功能。 以下是F5BIG-IP用作HTTP负载均衡器的主要功能: ①、F5BIG-IP提供12种灵活的算法将所有流量均衡的分配到各个服务器,而面对用户,只是一台虚拟服务器。

②、F5BIG-IP可以确认应用程序能否对请求返回对应的数据。假如F5BIG-IP后面的某一台服务器发生服务停止、死机等故障,F5会检查出来并将该服务器标识为宕机,从而不将用户的访问请求传送到该台发生故障的服务器上。这样,只要其它的服务器正常,用户的访问就不会受到影响。宕机一旦修复,F5BIG-IP就会自动查证应用已能对客户请求作出正确响应并恢复向该服务器传送。 ③、F5BIG-IP具有动态Session的会话保持功能。 ④、F5BIG-IP的iRules功能可以做HTTP内容过滤,根据不同的域名、URL,将访问请求传送到不同的服务器。 下面,结合实例,配置: ①、如图,假设域名被解析到F5的外网/公网虚拟IP:(vs_squid),该虚拟IP下有一个服务器池(pool_squid),该服务器池下包含两台真实的Squid服务器(和)。 ②、如果Squid缓存未命中,则会请求F5的内网虚拟IP:(vs_apache),该虚拟IP下有一个默认服务器池 (pool_apache_default),该服务器池下包含两台真实的Apache服务器(和),当该虚拟IP匹配iRules规则时,则会访问另外一个服务器池(pool_apache_irules),该服务器池下同样包含两台真实的Apache服务器(和)。

浙江移动TD频点扰码使用规范—V1

中国移动通信集团浙江有限公司 TD频点扰码使用规范 版本号:1.0.1 2012-9-20

背景 随着TD用户规模不断扩大,数据业务大规模推广,智能终端更新普及,各地市网络规模、用户数量以及网络负荷逐步升高,全省TD网络由于频点扰码规划不合理导而引发的诸多问题也逐步凸显出来,成为制约网络质量进一步提升的关键因素。 在此背景下规范全省TD频点扰码使用,保证频点扰码的统一性、规范性,使网络优化管理向规范化、标准化方向发展,为TD网络建设提供一个相对规整的频点环境,为日后频点优化工作提供的更多的调整余地,特制定本规范。 本规范分为三部分,第一部分为TD频率规划原则,第二部分为TD扰码规划原则,第三部分为TD邻区规划原则,第四部分为A频段1.4M压缩技术应用原则。 适用范围 本规范规定了全省TD-SCDMA频点扰码的使用原则,本标准适用于全省各地市TD改频及日常频点扰码优化。 TD频率资源状况 根据工业和信息化部的《关于中国移动通信集团公司使用第三代公众移动通信系统频率的批复》(工信部无函 [2009] 11号)和《关于中国移动通信集团公司增加TD-SCDMA系统使用频率的批复》(工信

部无函 [2009] 572号)文件,目前中国移动TD-SCDMA系统可使用频率资源为85MHz,具体如下: A频段(2010~2025 MHz):共计15MHz,可供室内室外覆盖使用。 F频段(1880~1920MHz):共计40MHz,可供室内室外覆盖使用。但目前鉴于TDL试点情况,F频段后20MHz(1900-1920)暂时可以用于TDS的频率组网,同时尽量规避小灵通的频点。 浙江全省目前现网使用A频段和F频段。 TD频率规划原则 1.鉴于现网大量TD终端仅支持A频段,为保证这些终端能够正常 使用业务,全网所有TD小区均采用A频段作主载波,F频段仅 作辅载波。Fa1-Fa3用于室内站点规划,Fa4-Fa9用于室外站点 规划。 2.为兼顾市场上大量仅支持A频段的HSDPA终端,需在A频段上 保持一定数量的HSDPA载波。A频段必须满足规划4个H载波 Fa2/ Fa3/ Fa4/ Fa5,F频段必须满足规划4个H载波Ff2/ Ff3/ Ff5/ Ff6 3.为降低干扰,提升网络质量,室内、室外应尽可能保持异频。 4.HSDPA载波和R4载波必须采用异频组网方式。且H与R4均可 做主载波。Fa2/ Fa3/ Fa4/ Fa5/ Ff2/ Ff3/ Ff5/ Ff6固定做 HSDPA载波, Fa1/ Fa6/ Fa7/ Fa8/ Fa9/ Ff1/ Ff4固定做R4 载波;

相关文档
相关文档 最新文档