文档库 最新最全的文档下载
当前位置:文档库 › 高斯积分点

高斯积分点

高斯积分点
高斯积分点

单元节点和积分点有什么区别

学过数值积分的应该知道,有限元中的积分点指高斯积分点,因为这些点的收敛性好,精度高。

1、节点7_J1D o(^

在单元内,采用形函数来表述单元内变量的分布规律。而节点值是在节点处的对应物理量。

以简单矩形单元的温度为例:1n-]*}1p"g I }

四个节点i,j,m,n的温度分别为Ti,Tj,Tm,Tn.

则以单元内自然坐标(x,y),(-1,-1),(-1,1),(1,-1),(1,1)分别为四个节点,单元内温度分布为:

T={Si, Sj, Sm, Sn} {Ti, Tj, Tm, Tn}

Si=1/4(1-x)(1-y)

Sj=1/4(1+x)(1-y)] q v5u

Sm=1/4(1+x)(1+y) E g@0w4]y6l.?-a

Sn=1/4(1-x)(1+y)M r S1T~6]+d:C

(单元的形函数我们可以从手册中查到)

从而我们知道了温度在单元内的分布。

2、积分节点5G z)\ \

我们需要对温度在单元内的面积上进行积分时,因为节点的温度显然与x,y无关,我们只需要考虑对形函数积分。 f"X] r1O

采用Gauss_Legendre多项式计算积分时,我们只需要计算根据特定积分点的值(在自然坐标系下是固定的,可以查手册,这些点也叫高斯点、积分点)并加以权重就可以。这就把复杂的积分问题变成了简单的代数问题。因为形函数只有单元有关,所以积分点也只与单元形状有关。

3.应力一般采用多个积分点的相互插值或外延来计算节点应力。这只是为了减少误差。因为在积分点应力比节点具有更高阶的误差。

从理论上说,形函数已知后,用Maple或者Mathematic等软件进行符号积分的话,是可以精确计算出刚度矩阵和质量矩阵,但是这样做的话,对于工程实际应用来说并不合适(9W F;c#j

原因:1,费时;2,Mindlin中厚板有剪力锁死问题,有时候需要采用缩聚积分),所以有些书上会把2节点梁单元的刚度阵直接写出来,但是再复杂点的单元,就使用数值积分(Newton-Cotes积分和高斯积分)

高斯积分的话,积分点不在节点上9B N V4L2K*o

牛顿-科斯的积分点就是节点,这样得到的质量矩阵是集中质量阵形式

个人理解:

1.节点作用构造形函数,节点的多少描述规则形状单元内的应力的近似分布情况,并获取节点上的位移值m0D8Y.p5p

2.积分点作用是构造规则形状单元与曲边(曲面)单元的转化的变换函数,积分点的选取多少和选取的位置直接关系到这种“映射”

-y-j A.|K7r

的精确程度,刚度矩阵、边界条件的转化都用到了坐标变换的积分关系,一般取高斯积分点能使被积函数计算精度尽量高。对于newton-cote积分点的选取,这种“映射”看起来,节点和积分点是同一个位置或说是同一点,而对于高斯积分点位置与节点是不同的。

故有如下结果:

1.由于高斯积分点的这种变换比较高,在方程求解结束,返回积分点上的应力解比较准确

2.至于Mindlin中厚板有剪力锁死问题,采用缩聚积分,也是应为这种坐标的变换关系(可见《有限单元法基本原理和数值方法》p345页10.4.11式可知),力的边界条件只有剪切,采用缩聚积分可以较大降低剪切力的影响,但是也可能引起刚度矩阵的奇异,所以对于中厚板的积分点选取不同一般的方案

1.ANSYS手册(Chapter 13)上列出各种单元的积分点位置。

2.王瑁成的《有限单元法》第五章,有解释为什么积分点应力更加精确。E"b7X

3.因为积分点应力更精确,所以我们一般采用积分点的应力内插或外延确定节点应力。特殊情况除外。

单元节点和积分点是不同的两个概念!

积分点是在进行函数积分的时候,为了增加精度,选取的积分点,也就是高斯积分t }g8? @ G Y7h

单元节点是你选取单元的时候就已经定下的点,,?4_6| `

一定有单元节点,但不一定有积分点

在网格划分完了所有的节点就都给定了,就是你网格中的每个点,他是有限元模型中“真实存在”的点。

但是高斯点纯粹是因为高斯积分这种积分方式引入的。数值分析告诉我们,数值积分有很多方法,比如辛普森积分,高斯积分等,比如说,如果你采用辛普森积分就不存在高斯点这个概念,只有当你采用高斯积分才会有高斯点,不过有限元大多都采用高斯积分。看过高斯积分就知道高斯点是怎么一回事了。@:c

有限元求解的结果是每个节点的位移,然后通过形函数插值得到单元任何一个点的位移,当然可以计算出高斯积分点的位移。至于应力,一般是先求解出高斯点出的应力,然后通过平均化的技术平均到每个节点上,高斯点处的应力精度最高,节点最差。

数值分析 高斯—勒让德积分公式

高斯—勒让德积分公式 摘要: 高斯—勒让德积分公式可以用较少节点数得到高精度的计算结果,是现在现实生活中经常运用到的数值积分法。然而,当积分区间较大时,积分精度并不理想。 T he adva ntage of Gauss-Legendre integral formula is tend to get high-precision calculational result by using fewer Gauss-points, real life is now often applied numerical integration method. But the precision is not good when the length of integral interval is longer. 关键字: … 积分计算,积分公式,高斯—勒让德积分公式,MATLAB Keyword: Integral Calculation , Integral formula ,Gauss-Legendre integral formula, Matlab 引言: 众所周知,微积分的两大部分是微分与积分。微分实际上是求一函数的导数,而积分是已知一函数的导数,求这一函数。所以,微分与积分互为逆运算。 】 实际上,积分还可以分为两部分。第一种,是单纯的积分,也就是已知导数求原函数,称为不定积分。 相对而言,另一种就是定积分了,之所以称其为定积分,是因为它积分后得出的值是确定的,是一个数,而不是一个函数。 计算定积分的方法很多,而高斯—勒让德公式就是其中之一。 高斯积分法是精度最高的插值型数值积分,具有2n+1阶精度,并且高斯积分总是稳定。而高斯求积系数,可以由Lagrange多项式插值系数进行积分得到。 高斯—勒让德求积公式是构造高精度差值积分的最好方法之一。他是通过让节点和积分系数待定让函数f(x)以此取i=0,1,2....n次多项式使其尽可能多的能够精确成立来求出积分节点和积分系数。高斯积分的代数精度是2n-1,而且是最

高斯型积分公式

高斯型积分公式-CAL-FENGHAI.-(YICAI)-Company One1

2 Guass-Legendre 积分程序 1. 目的意义: 可以提高数值积分的代数精度 2. 数学公式: ) ()()(1k n k k b a x f A dx x f x ∑?=≈ρ 3. 程序: #include<> #include<> #define N 10 #define f(x) (cos(x)) int main() { int n=0; int k=0; int i=0; double x[N]={}; double A[N]={}; double s=; n=2; switch(n)

{ case 1: { x[1]=0; A[1]=2; break; } case 2: { x[1]=; x[2]=; A[1]=1; A[2]=1; break; } case 3: { x[1]=; x[2]=0; x[3]=; A[1]=; A[2]=; 3

A[3]=; break; } case 4: { x[1]=; x[2]=; x[3]=; x[4]=; A[1]=; A[2]=; A[3]=; A[4]=; break; } default: { printf("error! 请添加数据!\n"); return 0; } } 4

for(i=1;i<=n;i++) { s=s+A[i]*f(x[i]); } printf("由高斯-勒让德积分公式计算得I=%lf\n",s); return 0; } 4.运行结果: 5.参考文献: [1] 谭浩强. C语言程序设计[M]. 北京:清华大学出版社,2005. [2] 秦新强. 数值逼近, 西安,2010. 5

Gauss型积分公式

摘要 求函数在给定区间上的定积分,在微积分学中已给出了许多计算方法,但是,在实际问题计算中,往往仅给出函数在一些离散点的值,它的解析表达式没有明显的给出,或者,虽然给出解析表达式,但却很难求得其原函数。这时我们可以通过数值方法求出函数积分的近似值。 当然再用近似值代替真实值时,误差精度是我们需要考虑因素,但是除了误差精度以外,还可以用代数精度来判断其精度的高低。已知n+1点的Newton-Cotes型积分公式,当n为奇数时,其代数精度为n;当n为偶数时,其代数精度达到n+1。若对随机选取的n+1个节点作插值型积分公式也仅有n次代数精度。 如何选取适当的节点,能使代数精度提高?Gauss型积分公式可是实现这一点,但是Gauss型求积公式,需要被积函数满足的条件是正交,这一条件比较苛刻。因此本实验将针对三种常用的Gauss型积分公式进行讨论并编程实现。 关键词:Newton-Cotes型积分公式正交多项式代数精度

1、实验目的 1)通过本次实验体会并学习Gauss型积分公式,在解决如何取节点能提 高代数精度这一问题中的思想方法。 2)通过对Gauss型积分公式的三种常见类型进行编程实现,提高自己的 编程能力。 3)用实验报告的形式展现,提高自己在写论文方面的能力。 2、算法流程 下面介绍三种常见的Gauss型积分公式 1)高斯-勒让德(Gauss-Legendre)积分公式 勒让德(Legendre)多项式 如下定义的多项式 称作勒让德多项式。由于是次多项式,所以是n次多项式,其最高次幂的系数与多项式 的系数相同。也就是说n次勒让德多项式具有正交性即勒让德多项式 是在上带的n次正交多项式,而且 这时Gauss型积分公式的节点就取为上述多项式的零点,相应的Gauss型积分公式为 此积分公式即成为高斯-勒让德积分公式。 其中Gauss-Legendre求积公式的系数

高斯-勒让德积分公式

实习论文 题目高斯勒让德积分公式 专业信息与计算科学 班级计算092 学号3090811065 学生周吉瑞 指导教师秦新强 2011 年

高斯勒让德积分公式 专 业: 信息与计算科学 学 生: 周吉瑞 指导老师: 秦新强 摘要 关于数值积分公式0 ()()b n k k k a f x dx A f x =≈∑?,除了用误差来分析其精度以外,还可以 用代数精度来判断其代数精度的高低,已知n+1点Newton-Cotes 型积分公式,当n 为奇数时,其代数精度为n ,当n 为偶数时,其代数精度达到n+1。 n+1点的Newton-Cotes 型积分公式属于插值积分型积分公式,一般地,若对随机选取的n+1个节点作插值型积分公式也仅有n 次代数精度,但是,如果求积节点选取适当,就有可能提高数值积分的代数精度,高斯型积分公式就可以实现这一目标。 关 键 词:数值积分,代数精度,高斯型积分公式

一、目的意义 构造Gaoss 型求积公式除需要求出正交多项式外,还需要求出正交多项式的零点和求积系数,当3n ≥时,这些工作均很困难,因此给出高斯-勒让德积分公式的零点和系数。 二、公式 高斯-勒让德积分公式:1 1 1 ()()n k k k f x A f x -=≈∑?; 三、算法流程 Step1:输入所用的点数n ; Step2:对i=1,2,···,n 循环执行步3; Step3:I= I+ ()i i A f x ; Step4:输出I ;结束。

四、算法程序 #include #include double Leg(double x) { double z; z=8/(4+(1+x)*(1+x)); return z; } void main() { double x[9],A[9],I=0; int i,n; printf("请输入点数n:"); scanf("%d",&n); switch(n) { case 1: x[1]=0,A[1]=2;break; case 2: x[1]=0.5773502692,x[2]=-0.5773502692,A[1]=A[2]=1;break; case 3: x[1]=0.77459666920,x[2]=0,x[3]=-0.77459666920,A[1]=A[3]=0.5555555556, A[2]=0.8888888889;break; case 4: x[1]=0.8611363116,x[2]=0.3399810436,x[3]=-0.8611363116,x[4]=-0.339981 0436; A[1]=A[3]=0.3478548451,A[2]=A[4]=0.6521451549;break; case 5: x[1]=0.9061798459,x[2]=0.53845931010,x[3]=0,x[4]=-0.9061798459,x[5]=-0.53845931010; A[1]=A[4]=0.2369268851,A[3]=0.5688888889,A[2]=A[5]=0.4786286705;b reak; case 6: x[1]=0.9324695142,x[2]=0.6612093865,x[3]=0.2386191816,x[4]=-0.9324695 142,x[5]=-0.6612093865,x[6]=-0.2386191816; A[1]=A[4]=0.1713244924,A[2]=A[5]=0.3607615730,A[3]=A[6]=0.4679139 346;break; case 7: x[1]=0.9491079123,x[2]=0.7415311856,x[3]=0.40584515140,x[4]=0,x[5]=-0 .9491079123,x[6]=-0.7415311856,x[7]=-0.40584515140;

Gauss型积分公式

Gauss型积分公式

摘要 求函数在给定区间上的定积分,在微积分学中已给出了许多计算方法,但是,在实际问题计算中,往往仅给出函数在一些离散点的值,它的解析表达式没有明显的给出,或者,虽然给出解析表达式,但却很难求得其原函数。这时我们可以通过数值方法求出函数积分的近似值。 当然再用近似值代替真实值时,误差精度是我们需要考虑因素,但是除了误差精度以外,还可以用代数精度来判断其精度的高低。已知n+1点的Newton-Cotes型积分公式,当n为奇数时,其代数精度为n;当n 为偶数时,其代数精度达到n+1。若对随机选取的n+1个节点作插值型积分公式也仅有n次代数精度。 如何选取适当的节点,能使代数精度提高?Gauss型积分公式可是实现这一点,但是Gauss型求积公式,需要被积函数满足的条件是正交,这一条件比较苛刻。因此本实验将针对三种常用的Gauss型积分公式进行讨论并编程实现。 关键词:Newton-Cotes型积分公式正交多项式代数精度

1、实验目的 1)通过本次实验体会并学习Gauss型积分公式,在解决如何取节点能提 高代数精度这一问题中的思想方法。 2)通过对Gauss型积分公式的三种常见类型进行编程实现,提高自己的 编程能力。 3)用实验报告的形式展现,提高自己在写论文方面的能力。 2、算法流程 下面介绍三种常见的Gauss型积分公式 1)高斯-勒让德(Gauss-Legendre)积分公式 勒让德(Legendre)多项式 如下定义的多项式 称作勒让德多项式。由于是次多项式,所以是n次多项式,其最高次幂的系数与多项式 的系数相同。也就是说n次勒让德多项式具有正交性即勒让德多项式是在上带的n次正交多项式,而且 这时Gauss型积分公式的节点就取为上述多项式的零点,相应的Gauss型积分公式为 此积分公式即成为高斯-勒让德积分公式。 其中Gauss-Legendre求积公式的系数 1

高斯-拉盖尔积分公式

实习论文 题目高斯拉盖尔积分公式 专业信息与计算科学 班级计算092 学号3090811065 学生周吉瑞 指导教师秦新强 2011 年

高斯拉盖尔积分公式 专 业: 信息与计算科学 学 生: 周吉瑞 指导老师: 秦新强 摘要 关于数值积分公式0()()b n k k k a f x dx A f x =≈∑?,除了用误差来分析其精度以外,还可以 用代数精度来判断其代数精度的高低,已知n+1点Newton-Cotes 型积分公式,当n 为奇数时,其代数精度为n ,当n 为偶数时,其代数精度达到n+1。 n+1点的Newton-Cotes 型积分公式属于插值积分型积分公式,一般地,若对随机选取的n+1个节点作插值型积分公式也仅有n 次代数精度,但是,如果求积节点选取适当,就有可能提高数值积分的代数精度,高斯型积分公式就可以实现这一目标。 关 键 词:数值积分,代数精度,高斯型积分公式

一、目的意义 构造Gaoss 型求积公式除需要求出正交多项式外,还需要求出正交多项式的零点和求积系数,当3n ≥时,这些工作均很困难,因此给出高斯-拉盖尔积分公式的零点和系数。 二、公式 高斯-拉盖尔积分公式:10()()n x k k k e f x A f x ∞-=≈∑?; 三、算法流程 Step1:输入所用的点数n ; Step2:对i=1,2,···,n 循环执行步3; Step3:I= I+ ()i i A f x ; Step4:输出I ;结束。 四、算法程序 #include #include double Lag(double x) { double z; z=1/(1+exp(2*x)); return z; } void main() { double x[7],A[7],I=0; int i,n; printf("请输入点数n:"); scanf("%d",&n); switch(n) { case 2: x[1]=0.5857864376,x[2]=3.4142135624; A[1]=0.853*******,A[2]=0.1464466094;break;

高斯型积分公式

Guass-Legendre 积分程序 1. 目的意义: 可以提高数值积分的代数精度 2. 数学公式: ) ()()(1k n k k b a x f A dx x f x ∑?=≈ρ 3. 程序: #include<> #include<> #define N 10 #define f(x) (cos(x)) int main() { int n=0; int k=0; int i=0; double x[N]={}; double A[N]={}; double s=; n=2; switch(n)

{ case 1: { x[1]=0; A[1]=2; break; } case 2: { x[1]=; x[2]=; A[1]=1; A[2]=1; break; } case 3: { x[1]=; x[2]=0; x[3]=; A[1]=; A[2]=;

A[3]=; break; } case 4: { x[1]=; x[2]=; x[3]=; x[4]=; A[1]=; A[2]=; A[3]=; A[4]=; break; } default: { printf("error! 请添加数据!\n"); return 0; } }

for(i=1;i<=n;i++) { s=s+A[i]*f(x[i]); } printf("由高斯-勒让德积分公式计算得I=%lf\n",s); return 0; } 4.运行结果: 5.参考文献: [1] 谭浩强. C语言程序设计[M]. 北京:清华大学出版社,2005. [2] 秦新强. 数值逼近, 西安,2010.

Gauss-Legendre积分公式

数值逼近实习 题目二重积分的复化梯形公式 专业信息与计算科学 班级计算092 学号3090811072 学生薛藏朋 指导教师秦新强 2011 年

一、实验目的 1.利用Gauss-Legendre 公式计算积分 2.比较计算误差与实际误差 二、数学模型 ??? ????∈--=++≈?∑-=),(),(12)(][)]()(2)([2)(''211b a f h a b f R b f x f a f h dx x f n b a n k k ηη 三、算法 Step 1:输入等分数n Step2:输入积分上下限; Step3: 求出步长及对应个点; Step4: 由??? ????∈--=++≈?∑-=),(),(12)(][)]()(2)([2)(''211b a f h a b f R b f x f a f h dx x f n b a n k k ηη计算积分结果 Step5:将积分结果输出; 四、程序 #include using namespace std; #include"math.h" #define N 10

double f(double x) {double z; z=cos(x); return(z); } int main() { int i, n,m; double X[N],A[N],F=0; cout<<"请输入代数精度n"<>n; m=(n+1)/2; switch(m) { case 1:X[1]=0;A[1]=2; break; case 2:X[1]=0.5773502692;X[2]=-X[1];A[1]=A[2]=1;break ;

高斯积分节点表

高斯积分点表 N = 2 节点权重 -0.5773502691896250 1.0000000000000000 0.5773502691896250 1.0000000000000000 N = 3 节点权重 -0.7745966692414830 0.5555555555555550 0.0000000000000000 0.8888888888888880 0.7745966692414830 0.5555555555555550 N = 4 节点权重 -0.8611363115940520 0.3478548451374530 -0.3399810435848560 0.6521451548625460 0.3399810435848560 0.6521451548625460 0.8611363115940520 0.3478548451374530 N = 5 节点权重 -0.9061798459386640 0.2369268850561890 -0.5384693101056830 0.4786286704993660 0.0000000000000000 0.5688888888888880 0.5384693101056830 0.4786286704993660 0.9061798459386640 0.2369268850561890 N = 6 节点权重 -0.9324695142031520 0.1713244923791700 -0.6612093864662640 0.3607615730481380 -0.2386191860831960 0.4679139345726910 0.2386191860831960 0.4679139345726910 0.6612093864662640 0.3607615730481380 0.9324695142031520 0.1713244923791700 N = 7 节点权重 -0.9491079123427580 0.1294849661688690 -0.7415311855993940 0.2797053914892760 -0.4058451513773970 0.3818300505051180 0.0000000000000000 0.4179591836734690 0.4058451513773970 0.3818300505051180 0.7415311855993940 0.2797053914892760 0.9491079123427580 0.1294849661688690

相关文档