文档库 最新最全的文档下载
当前位置:文档库 › 球磨新技术解决纳米植物粉体制备难题

球磨新技术解决纳米植物粉体制备难题

球磨新技术解决纳米植物粉体制备难题
球磨新技术解决纳米植物粉体制备难题

1

球磨新技术解决纳米植物粉体制备难题

植物中含有大量的蛋白质、氨基酸、维生素、纤维素、微量元素等有机物,以及数十种人体必需的无机矿物元素及药物成分,但是如果不将其破壁,些成分就不会被充分吸收。通过适宜的物理粉碎技术可将其破壁,从而使其有效成分被充分利用。在物理粉碎技术中,球磨技术以其高效率、低成本而受人青睐。但在纳米粉体制备中,尤其是纳米植物粉体制备方面,球磨技术遇到了新的挑战,颗粒不均匀,污染严重,加工时间过长等不足之处使其一度受到轻视。近年来,国内研究人员对多维摆动式纳米球磨技术和多层次分级纳米球磨技术进行了深入研究,并对其进行了改进,较好地解决了纳米植物粉体制备的技术难题。

■罐体夹套循环水冷却降低温度

多维摆动式纳米球磨技术和多层次分级纳米球磨技术均属高能球磨,会迅速升温,易使植物粉体焦化、碳化,为保持植物成分不变,保持恒定的低温是首先需要解决的问题。封闭式球磨法虽然可以加液氮冷却,但由于液氮的纯度问题(通常液氮纯度难以控制,植物容易受到污染),生产成本又高,而实践证明,采用罐体夹套循环水冷却,能够有效地控制加工过程的温度。

■多种方法控制原料湿度

通常植物干品含水量在5%~10%左右,使植物的韧性、弹性增加。为

了增加其脆性,需去掉其中的水份,将微米粉体在55℃干燥4~6小时,

干燥后再球磨加工,取得较好效果。如采用实验型设备做小样,可将根、茎、皮、叶、花、果捣碎(或小型粉碎机粗粉)直接干燥后装罐。如采

用鲜嫩植物,则先用传统粉碎机打浆,再用高能球磨机制备纳米植物浆料,然后喷雾干燥。

■湿法浆磨法减弱物料黏韧性

2 一般植物药材中均含糖分,而含糖量过高会产生黏韧性问题,含油

过多、含胶质过多也会出现黏韧性问题,如熟地、枸杞、大枣、乳香、

没药等,易在球磨中粘球、粘罐、结球成团,不能达到好的粉碎效果。

这些品种,如采用深冷冻球磨,则需加液氮会污染植物,冰箱冷冻取出

加料会产生回温问题。对此,建议采用湿法浆磨,方法是:传统粉碎后

加水搅成浆料,然后用球磨制备成纳米浆料,达到球磨效果后取出,采

用喷雾干燥,较好地解决了此问题,保留了原植物的特性。

■纳米氧化锆球可减少污染

球磨技术,尤其是高能球磨技术污染问题很突出,如果采用钢球,

不做冷却降温,物料污染很严重。在采用水冷却降温后,将钢球换成纳

米氧化锆球,将罐体也换成氧化锆内衬,使物料的污染降到最低。如果

是粉碎植物,半年才换一次磨球,可见污染相当低。加之锆元素也是人

3

体牙齿与骨骼所需求的微量元素,在食品、保健品中有极微量的锆元素存在,有益无害。

■利用添加剂提高颗粒分散性

植物粉碎到纳米尺寸,其比表面积很大,表面能很高,表面电荷很多,加之其中为亲水性物质,极易吸水产生团聚现象,团聚的纳米植物粉体用水冲时很难分散,易产生沉淀,影响感观效果,口感也不佳。克服此缺点的方法一直是人们关注的焦点。近年,国内研究人员摸索出两套行之有效的方法:是磨前将微米级物料中加入分散剂,在球磨过程中进行表面改性,清除表面能,消除表面静电,提高其分散性;另一种是在球磨前在微米级物料中加入表面改性剂,通过球磨过程的研磨分散,对纳米植物颗粒表面进行改性处理,提高其分散性,可以长时间不出现沉淀。

■粒度控制在120~180纳米为宜

在药用植物粉体加工中,纳米植物粉体的平均粒径不应小于100纳米,在120~180纳米之间,因为此区间植物不但破壁,其内的细胞也已经打碎,其物理细化过程已经完成,可达到营养及药物成分的充分吸收作用(用于研究病毒的植物除外)。如果一味追求过小粒径,使其达到100纳米以下,则会增加其改性、变性及产生毒副作用的风险。纳米植物加工目的是为了提高其高吸收度,而以其生产新的改性材料,则言之尚早。

4

均匀度分布愈集中,则表示颗粒愈均匀。球磨制备纳米粉体的均匀度不佳,所以用来制备金属等严格地纳米改性材料很不理想。但用来制备纳米植物粉体则很适用,因为纳米植物物理加工是为了“保性”而不是改性。

颗粒控制大部分在60~180纳米。控制要点为程度地降低球磨时间。一般采用三步法:先经传统粉碎,再经气流粉碎(气流粉碎是物料之间的撞击,并不增加铁的污染),然后将微米级物料进行高能球磨制备成纳米粉体,大大地缩短球磨时间,减少污染。经过前两步的控制(如粉碎、过筛、气流粉碎、再过筛)使球磨颗粒不均匀的问题能在很大程度上得到解决,从而达到预期均匀度。

液相法制备超细粉体的原理及特点

液相法制备超细粉体的原理及特点 一、超细粉体材料 任何固态物质都有一定的形状,占有相应空间,即具有一定的大小尺寸。我们通常所说的粉末或细颗粒,一般是指大小为1毫米以下的固态物质。 当固态颗粒的粒径在0.1μm一10μm之间时称为微细颗粒,或称为亚超细颗粒,空气中漂浮的尘埃,多数属于这个范围。 超细粉通常是指粒径为1 ~100nm的微粒子,其处于微观粒子和宏观物体之间的过渡状态。由于极细的晶粒大量处于晶界和晶粒内,缺陷的中心原子以及其本身具有的量子体积效应、量子尺寸效应、表面效应,介电限域效应和宏观量子隧道效应,使超细粉体材料在光、电、磁等方面表现出其他材料所不具备的特性,是重要的高科技的结构和功能材料,因而受到极大的关注,目前在冶金、化工、轻工、电子、航天、医学和生物工程等领域有着广泛的应用。 目前,超细粉的研究主要有制备、微观结构、宏观性能和应用等四个方面,其中超细粉的制备技术是关键,因为制备工艺和过程控制对纳米微粒的微观结构和宏观性能具有重要的影响。 二、液相法制备的主要特征 (1)可将各种反应的物质溶于液体中,可以精确控制各组分的含量,并实现了原子、分子水平的精确混合。 (2)容易添加微量有效成分,可制成多种成分的均一粉体。 (3)合成的粉体表面活性好。 (4)容易控制颗粒的形状和粒径。 (5)工业化生产成本较低。 (6)液相法可分为物理法和化学法 三、超细粉体的液相制备方法 制备纳米粉体的液相方法主要有液相沉淀法、溶胶-凝胶法、水热法、微乳液法等。 (一)沉淀法 沉淀法是在原料溶液中添加适当的沉淀剂,使得原料液中的阳离子形成各种形式的沉淀物,

然后再经过虑、洗涤、干燥,有时还需加热分解等工艺过程制得纳米粉体的方法。沉淀法具有设备简单、工艺过程易控制、易于商业化等优点,能制取数十纳米的超细粉。沉淀法可分为共沉淀法、直接沉淀法、均匀沉淀法和水解法等。 1、共沉淀法 在混合的金属盐溶液中加入合适的沉淀剂,由于解离的离子是以均一相存在于溶液中,经反应后可以得到各种成分具有均一相的沉淀,再进行热分解得到高纯超细粉体。 如果原料溶液中有2种或2种以上的阳离子,它们以均相存在于溶液中,加入沉淀剂进行沉淀反应后,就可得到成分均一的沉淀,这就是共沉淀法。它是制备含有2种以上金属元素的复合氧化物超微粉的重要方法。 采用共沉淀法制备纳米粉体,反应物需充分混合,使反应两相间扩散距离缩短,以有利于晶核形成,同时要注意控制生成产物的化学计量比。不足之处是过剩的沉淀剂会使溶液中的全部正离子作为紧密混合物同时沉淀。利用共沉淀法制备超细粉体时,洗涤工序非常重要。此外,离子共沉淀的反应速度也不易控制。 2、直接沉淀法 这种方法是使溶液中的金属阳离子直接与沉淀剂发生化学反应而形成沉淀物。 3、均匀沉淀法 均匀沉淀法是在溶液中加入某种物质,这种物质不会立刻与阳离子发生反应生成沉淀,而是在溶液中发生化学反应缓慢地生成沉淀剂。是利用某一化学反应使溶液中的构晶离子由溶液中缓慢而均匀地产生出来的方法。 该方法的优点是颗粒均匀致密,可以避免杂质的共沉淀。缺点是反应时间过长。 4、水解沉淀法 水解沉淀法是指通过原料溶液的PH值或者通过改变原料液温度而使金属离子水解产生沉淀。 水解沉淀法以无机盐为原料,具有原料便宜、成本低的优势,是最经济的制备方法。除此之外,它还具有诸多优点,最显著的一点就是可以在常温常压条件下,采用简单的设备,于原子、分子水平上通过反应、成核、成长、收集或处理而获得高纯度的、组分均一的、尺寸达几十纳米的超细体。此外它还可以精确控制化学组成,容易添加微量的有效成分,制备粉体的表面活性好。易控制颗粒的形状和粒径。但是,因为必须通过液固分离才能得到沉淀物,要完全洗净无机杂质离子较困难;另一个需要特别重视的问题是容易形成团聚体,如控制不当,团聚将会严重影响分体的后续使用。 (二)溶胶-凝胶法 溶胶-凝胶工艺是60年代发展起来的一种超细粉体的制备工艺,它是指金属有机或无机化合

镁铝尖晶石粉体的制备方法

【摘 要】:综述了目前常用的制备镁铝尖晶石粉体的各种方法的工艺过程、特点及其产物的性能特征。经分析指出纯度和粒度是粉体最重要的两个性能指标;降低合成温度、简化工艺过程是今后制备技术发展的趋势。金属醇盐可能成为获得高纯度产物最有应用前景的前驱物;水热处理、溶剂蒸发、超临界干燥等物理手段是解决粒度最有效的途径。 【关键词】:耐火材料,镁铝尖晶石,粉体,制备方法 引 言 镁铝尖晶石(Magnesium Aluminium Spinel,以下简称MAS)材料是一种熔点高、热膨胀系数小、热导率低、抗热震性好、抗碱侵蚀能力强的材料[1],主要应用于钢包内衬、平炉炉顶、水泥回转窑烧成带衬砖。MAS单晶体是一种高熔点、高硬度的晶体材料。在10GHz以上的微波段上,MAS单晶的声衰减比蓝宝石或石英低得多,可作为介质制作微波声体波器件[2]。MAS还具有优良的电绝缘性,且与Si的匹配性能好,其线膨胀系数与Si相近,因而其外延Si形成膜的形变小,是一种重要的集成电路衬底材料[3]。 近年来,制备MAS粉体的方法受到人们的广泛关注,并在原有制备工艺基础上,涌现出许多新的制备技术。本文拟总结近年来国内外对获取高性能MAS体制备方法,以期找到解决粉体的纯度、粒度、化学均匀性等问题的途径,从而在获取高性能粉体,发挥其优越性能。 1 固相法 1.1传统固相法 固相法是固体与固体之间发生化学反应生成新的固体物质的反应过程,其中反应温度高于600℃称为高温 固相反应。Lepkova D[4]等研究了MgO和Al 2O 3 的固 相反应中,添加剂对尖晶石形成温度和转化率的影响。 将α-Al 2O 3 和Mg(HCO 3 ) 2 分解后的MgO及添加剂均 匀混合后,在一定的温度下反应制备尖晶石粉,添加剂 为B 2O 3 和TiO 2 ,或B 2 O 3 和氟化物(LiF,CaF 2 ,ZnF 2 , BaF 2 )的混合物。尖晶石合成转化率在85%~95%之间, 加入B 2 O 3 和TiO 2 复合添加剂时,尖晶石粉的生成量最大。 传统固相法无疑是最简单、最方便的合成尖晶石的工艺, 存在的显著缺点是合成温度高。而添加剂又会影响产物 的纯度,无法满足高技术领域的要求。 1.2凝胶固相法 凝胶固相法是将初始原料同有机单体、交联剂、引 发剂等混合形成凝胶,干燥后经焙烧制备粉体。粉体具 有颗粒细小均匀、纯度高、分散性好等优点。仝建峰[5] 等以Mg(OH) 2 ·4MgCO 3 ·6H 2 O和Al 2 O 3 按n(Mg)∶ n(Al)=1∶2进行混合,有机单体丙烯酰胺(C 3 H 5 NO)为 凝胶,N,N′-亚甲基双丙烯酰胺为交联剂,过硫酸铵 (NH 2 ) 2 SO 6 水溶液为引发剂,4-甲基乙二胺(C 6 H 16 N 2 ) 为催化剂,选用JA-281试剂为分散剂,用NH 3 ·H 2 O 调节pH值。将干凝胶在1250℃左右保温3h,便可得到 平均粒径为0.5μm的球形MgAl 2 O 4 微粉。王修慧[6]等 先以异丙醇水溶液将高纯MgO粉体分散成浆体,再将异 丙醇铝水解得到凝胶,然后按n(Mg)∶n(Al)=1∶2配 料球磨混合24h,干燥后进行焙烧,800℃即开始出现尖 晶石相,1200℃时形成了完善的MAS相结构,最终得 到纯度高达99.99%MAS粉体。之所以能够降低合成温 度,是原因反应物之一的AlOOH凝胶替代Al 2 O 3 ,活性 高,粒度细,混合过程中可达到高度的均匀性;在加热 至500℃~600℃范围内会生成高活性Al 2 O 3 。此法解决 了产物的纯度问题,可以应用于提拉法生长尖晶石单晶 材料;但其缺点是粒度偏粗大,不适于透明多晶体的制备。 2 沉淀法 2.1 均匀沉淀法 均匀沉淀法是利用某一化学反应,将溶液中的构 晶离子从溶液中缓慢、均匀地释放出来,与溶液中的 Mg2+和Al3+生成沉淀,然后再经干燥、焙烧制得粉 体。Hokazono S[7]等采用2种溶液体系来制备MAS粉 体:一是Al(NO 3 ) 3 、Mg(NO 3 ) 2 、尿素水溶液体系;二 是Al 2 (SO 4 ) 3 、MgSO 4 、尿素水溶液体系。按n(Mg)∶ n(Al)=1∶2进行配料;其中,C 尿素 =1.8mol·L-1, C Al 3+=0.1mol·L-1,C Mg 2+= 0.08mol·L-1,分别用 HNO 3 、H 2 SO 4 调至pH值为2,在90℃水浴分别加热 22.5h和38h,生成的沉淀经离心分离后于100℃干燥 24h,在800℃~1000℃焙烧,得到比表面积为25~ 66m2·g-1的MAS粉体。硝酸盐体系制备的前驱物含 镁铝尖晶石粉体的制备方法 王修慧1,2,王程民2,司 伟2,李 刚2,曹冬鸽2,翟玉春1 (1东北大学材料与冶金学院, 沈阳 110006; 2大连交通大学材料科学与工程学院, 大连 116028) 收稿日期:2008-1-24 基金项目:国家自然科学基金资助项目,编号:50104003 作者简介:王修慧(1964-),男,博士研究生,副教授; 从事金属醇盐、高纯氧化物粉体制备研究。 E-mail:dl_wangxh@https://www.wendangku.net/doc/c513041306.html, 文章编号:1001-9642(2008)07-0003-04

拟南芥原生质体制备转化方法整理

溶液配制 1、纤维素酶解液:

2、PEG4000溶液(一次配置可以保存五天,但是最好现用现配,每个样品需100μl PEG4000溶液,可根据实验样品量调整溶液配置总量)

3、W5 溶液 4、MM G溶液

5、WI溶液 拟南芥原生质体制备转化方法整理 一、土培室播种种植的拟南芥。 二、生长良好情况下在未开花前用于取材叶片制备原生质体。 三、剪取中部生长良好的叶片用刀片切成0.5 -1 mm宽的叶条。 四、将切好叶条掷入预先配置好的酶解液中(每5-10 ml酶解液大约需10-20片叶子)。并用镊子帮助使叶子完全浸入酶解液。

五、用真空泵于黑暗中抽30分钟。(此时可配制PEG4000溶液,200和1000 ul 枪头去尖使操作时吸打缓和。) 六、在室温中无须摇动继续黑暗条件下酶解至少3个小时。当酶解液变绿时轻轻摇晃培养皿促使原生质体释放出来。(此时预冷一定量W5溶液) 七、显微镜下检查溶液中的原生质体,拟南芥叶肉原生质体大小大约30-50 um。 八、在过滤除去未溶解的叶片前用等量的W5溶液稀释含有原生质体的酶液。 九、先用W5溶液润湿35-75 um的尼龙膜或60-100目筛子,然后用它过滤含有原生质体的酶解液。 十、用30毫升的圆底离心管100g,1-2分钟离心沉淀原生质体。尽量去除上清然后用10ml 冰上预冷的W5溶液轻柔重悬原生质体。 十一、在冰上静至原生质体30分钟。 以下操作在室温23℃下进行

十二、100g离心八至十分钟使原生质体沉淀在管底。在不碰触原生质体沉淀的情况下尽量去除W5溶液。然后用适量MMG溶液(1m)重悬原生质体,使之最终浓度在2X105个/ml。 十三、加入10 ul DNA(10-20微克约5-10kb的质粒DNA)至2ml离心管中。 十四、加入100 ul原生质体(2x104个),轻柔混合。 十五、加入110 ul PEG溶液,轻柔拍打离心管完全混合(每次大约可以转化6-10个样品)。 十六、诱导转化混合物5-15分钟(转化时间视实验情况而定,要表达量更高也许需要更高转化时间)。 十七、室温下用400-440 ul W5溶液稀释转化混合液,然后轻柔颠倒摇动离心管使之混合完好以终止转化反应。 十八、室温下用台式离心机100g离心2分钟然后去除上清。再加入1ml W5溶液悬浮清洗一次,100g离心两分钟去上清。

高能球磨法综述

高能球磨法研究进展

高能球磨法研究进展 摘要:复合材料的性能与应用和其合成所用的粉体密切相关,合成粉体的方式是提高材料特性的重要途径。高能球磨法相比于传统方法,有着反应温度低、产量大和粉体粒径分布均匀等优点,使得其在合成粉体中有重要作用。本文综述了高能球磨法(机械力化学法)在合成粉体方面的具体原理、影响因素和当前研究进展,并进一步展望这种方法在未来的发展前景。 关键字:高能球磨、机械力化学、粉体合成、纳米制备 传统上,新物质的生成、晶型转化或晶格变形都是通过高温(热能) 或化学变化来实现的。按照反应体系的状态,目前合成超细功能粉体的方法可分为固相法、液相法和气相法;若根据合成原理则可分为物理法和化学法。这些方法在粉体合成方面得到了广泛的应用,但也发现存在着各自的不足。例如,物理法可制得粒径易控的超细粒子,但所需设备昂贵;化学法成本低,条件简单,易于通过过程控制和调整粒子大小,但适用范围窄,流程长,收率低,无法工业化生产[1]。高能球磨(high-energy ball milling)又被称为机械力化学(mechanochemistry),是将物理法和化学法结合,其基本原理是晶体物质通过超细磨的过程中,机械力的作用可以启动其化学活性,使得通常需要在高温下进行反应能在较低的温度下进行。因此,高能球磨法可以合成一般化学方法和加热方法所不能得到的具有特殊的超细粉体。这种独特的性质让这种粉体制备方法制备出特殊的超细粉体,使复合材料的合成工艺水平大大提高。因此,本文综述了高能球磨法的最新发展并展望了其在未来的发展趋势。 1. 高能球磨法的原理与特点 高能球磨法是通过球磨机的转动或振动使硬球对原料进行强烈的撞击、研磨和搅拌,能明显降低反应活化能、细化晶粒、增强粉体活性、提高烧结能力、诱

超细粉体材料的制备技术现状及应用形势

文章编号:1008-7524(2005)03-0034-03 超细粉体材料的制备技术现状及应用形势* 房永广1,梁志诚2,彭会清3 (1.江西理工大学环建学院,江西赣州341000;2.化工部连云港设计研究院, 江苏连云港222004;3.武汉理工大学资环学院,湖北武汉430070) 摘要:综述了国内超细粉体材料的制备工艺、设备现状及进展,并介绍了超细粉体材料在电子信息、医药、农药、模具、军事、化工等方面的应用。 关键词:超细粉体;制备;综述 中图分类号:TD921+.4文献标识码:A 0引言 从上世纪50年代日本首先进行超细材料的研究以后,到上世纪80~90年代世界各国都投入了大量的人力、物力进行研究。我国早在上世纪60年代就对非金属矿物超细粉体技术、装备进行了研究,对于超细粉体材料的系统的研究则开始于上世纪80年代后期。 超细粉体从广义上讲是从微米级到纳米级的一系列超细材料,在狭义上讲是从微米级、亚微米级到100纳米以上的一系列超细材料。材料被破碎成超细粉体后由于粒度细、分布窄、质量均匀,因而具有比表面积大、表面活性高、化学反应速度快、溶解速度快、烧结体强度大以及独特的电性、磁性、光学性等,因而广泛应用于电子信息、医药、农药、军事、化工、轻工、环保、模具等领域。可以预见超细粉体材料将是21世纪重要的基础材料。1超细粉体的制备设备 超细粉体的制备方法有很多,但从其制备的原理上分主要有两种:一种是化学合成法,一种是物理粉碎法。化学合成法是通过化学反应或物相转换,由离子、原子、分子经过晶核形成和晶体长大而制备得到粉体,由于生产工艺复杂、成本高、而产量却不高,所以化学合成法在制备超细粉体方面应用不广。物理粉碎法是通过机械力的作用,使物料粉碎。物理粉碎法相对于化学合成法,成本较低,工艺相对简单,产量大。因此,目前制备超细粉体材料的主要方法为物理粉碎法。常用的超细粉碎设备有气流粉碎机、机械冲击粉碎机、振动磨、搅拌磨、胶体磨以及球磨机等。 1.1气流粉碎机 自从1892年美国人戈麦斯第一次提出挡板式气流粉碎机的模型并申请专利以来,经过百余年的发展,目前气流磨已经发展成熟,成为国内外用于超细粉体加工的主要设备。我国研制气流粉碎机开始于上世纪80年代初。目前气流粉碎机可分为圆盘式、对喷式、靶式、循环式、流化床式等。 气流粉碎机又称流能磨或喷射磨,由高压气体通过喷射嘴产生的喷射气流产生的巨大动能,使颗粒相互碰撞、冲击、摩擦、剪切而实现超细粉碎。粉碎出的产品粒度细,且分布较集中;颗粒表面光滑,形状完整;纯度高,活性大,分散性好。目前超细粉碎机有很多的机型,其中流化床式气流粉碎机是其效率最高的。其工作原理为物料进入粉碎室,超音速喷射流在下部形成向心逆喷射流场,在压差作用下,使磨底物料流态化,被加速的物料在多喷嘴的交汇点汇合,产生剧烈的冲击碰撞,摩擦而粉碎,被粉碎的细粉随气流一起运动至上部的涡轮分级机处,在离心力作用下,将符合细度要求的微粉排出。其优点是粉碎效率高,能耗 # 34 # *收稿日期:2004-09-24

粉体材料的制备方法有几种

粉体材料的制备方法有几种?各有什么优缺点?(20分) 答:粉末的制备方法: 气相合成、湿化学合成、机械粉碎. 1. 物理方法 (1)真空冷凝法 用真空蒸发、加热、高频感应等方法使原料气化或形成等离子体,然后骤冷。其特点纯度高、结晶组织好、粒度可控,但技术设备要求高。 (2)物理粉碎法 通过机械粉碎、电火花爆炸等方法得到纳米粒子。其特点操作简单、成本低,但产品纯度低,颗粒分布不均匀。 (3)机械球磨法 采用球磨方法,控制适当的条件得到纯元素纳米粒子、合金纳米粒子或复合材料的纳米粒子。其特点操作简单、成本低,但产品纯度低,颗粒分布不均匀。 2. 化学方法 (1)气相沉积法 利用金属化合物蒸气的化学反应合成纳米材料。其特点产品纯度高,粒度分布窄。 (2)沉淀法 把沉淀剂加入到盐溶液中反应后,将沉淀热处理得到纳米材料。其特点简单易行,但纯度低,颗粒半径大,适合制备氧化物。 (3)水热合成法 高温高压下在水溶液或蒸汽等流体中合成,再经分离和热处理得纳米粒子。其特点纯度高,分散性好、粒度易控制。 (4)溶胶凝胶法 金属化合物经溶液、溶胶、凝胶而固化,再经低温热处理而生成纳米粒子。其特点反应物种多,产物颗粒均一,过程易控制,适于氧化物和Ⅱ~Ⅵ族化合物的制备。 (5)微乳液法 两种互不相溶的溶剂在表面活性剂的作用下形成乳液,在微泡中经成核、聚结、团聚、热处理后得纳米粒子。其特点粒子的单分散和界面性好,Ⅱ~Ⅵ族半导体纳米粒子多用此法制备 2. 为什么要对粉体材料的表面进行改性?什么是物理吸附?什么是化学吸附?试举例说明。(20分) 答: 材料表面改性的目的 力学性能:表面硬化、防氧化、耐磨等 电学性能:表面导电、透明电极 光学性能:表面波导、镀膜玻璃 生物性能:生物活性、抗菌性 化学性能:催化性 装饰性能:塑料表面金属化 材料表面改性的意义 通过较为简单的方法使一个部件部件或产品产品具有更为综合的性能第一节材料表面结构的变化 粉体表面改性是指用物理、化学、机械等方法对粉体材料表面进行处理,根据应用的需要有目的改变粉体材料表面的物理化学性质,如表面组成、结构和官能团、

超细粉体的应用及制备

应用与开发 超细粉体的应用及制备 刘宏英,李春俊,白华萍,李凤生 (南京理工大学超细粉体与表面科学技术研究所,江苏南京210094) 摘要:介绍了超细粉体在国民经济各领域的应用,研究了各种超细粉体的制备技术、分级技术及设备的性能特点,分析了国内外相关技术,对超细粉体技术今后的发展和研究方向提出了建议。 关键词:超细粉碎;制备;分级 中图分类号:T B44 文献标识码:A 文章编号:1002-1116(2001)01-0030-03 超细粉体技术是指制备与使用超细粉体及其相关的技术。其研究内容包括超细粉体的制备技术,分级技术,分离技术,干燥技术,输送、混合与均化技术,表面改性技术,粒子复合技术,检测及应用技术等。南京理工大学超细粉体与表面科学技术研究所在国内率先开展了易燃易爆材料、纤维材料、塑性材料和刚柔混合材料等特殊材料的超细粉碎、混合、乳化、分级与表面改性技术研究。经过多年的研究和实际应用,取得了一些成功的经验。目前该技术与设备已广泛用于军民各个领域,为国防现代化和国民经济的发展作出了一定的贡献。由于超细粉体技术是一门综合性很强的技术,涉及知识面很广,本文就超细粉体的应用、超细粉碎技术、分级技术作简要综述。 1 超细粉体应用的研究进展 超细粉体不仅本身是一种功能材料,而且为新的功能材料的复合与开展展现了广阔的应用前景[1]。超细粉体由于粒度细、分布窄、质量均匀,因而具有比表面积大、表面活性高、化学反应速度快、溶解速度快、烧结体强度大以及独特的电性、磁性、光学性等,因而广泛应用于许多高新技术领域。 1.1 在材料领域的应用 超细粉体在材料领域应用广泛。如磁性材料、隐身隐形材料、高耐磨及超塑材料、新型冶金材料及建筑材料。利用超细陶瓷粉可制成超硬塑性抗冲击材料,可用其制造坦克和装甲车复合板,这种复合板较普通坦克钢板重量轻30%~50%,而抗冲击强度较之提高1~3倍,是一种极好的新型复合材料[2]。将固体氧化剂、炸药及催化剂超细化后,制成的推进剂的燃烧速度较普通推进剂的燃烧速度可提高1~10倍[3],这对制造高性能火箭及导弹十分有利。1.2 在化工领域的应用 将催化剂超细化后可使石油的裂解速度提高1~5倍,赤磷超细化后不仅可制成高性能燃烧剂,而且与其它有机物反映可生成新的阻燃材料。油漆、涂料、染料中固体成分超细化后可制成高性能高附着力的新型产品。在造纸、塑料及橡胶产品中,其固体填料如:重质碳酸钙、氧化钛、氧化硅等超细化后可生产出高性能的铜板纸、塑料及橡胶产品。 1.3 在生物医药领域的应用 医药经超细化后,外用或内服时可提高吸收率、疗效及利用率,适当条件下可改变剂型,如微米、亚微米及纳米药粉可制成针剂使用[4]。在医疗诊断方面可将超细粉经适当处理后注入或服入人体内进行各种病理诊断。 南京理工大学超细粉体与表面科学技术研究所已成功地为上海XX医药公司、常州XX公司及浙江XX公司等单位生产了大量超细硫糖铝及超细阿基诺维奇等药,产品性能提高,达到国际标准,因而大 第29卷第1期2001年2月 江苏化工 Jiangsu Chem ical Industry V ol.29N o.1  Feb.2001 收稿日期:2000-10-18 作者简介:刘宏英(1954年出生),女,江苏南京人,高级工程师,1980年毕业于华东工学院机械制造专业,长期从事超细粉体物料的制备、粉碎、分级等技术研究,已发表论文数篇。

细胞原生质体的制备

细胞原生质体的制备 —植物原生质体分离和活性鉴定 一、实验目的 1.学习植物细胞原生质体分离纯化的方法。 2.了解原生质体活性鉴定的原理。 3.了解植物原生质体分离、融合和培养的基本原理及其过程 二、实验原理 去掉植物细胞壁的方法可以是机械的人工操作,也可以利用酶解法。较早利用机械法制备原生质体的 酶解法分离原生质体是一个常用的技术,其原理是植物细胞壁主要由纤维素、半纤维素和果胶质组成,因而使用纤维素酶、半纤维素酶和果胶酶能降解细胞壁成分,除去细胞壁,即可得到原生质体。由于原生质体内部与外界环境之间仅隔一层薄薄的细胞膜,必须保持在渗透压平衡的溶液中才能保持其完整性。其次,还应当考虑取材、酶的种类和纯度、酶液的渗透压、酶解时间及温度等因素对分离原生质体的影响。 测定原生质体的活性有多种方法。荧光素双醋酸酯(FDA)染色是常用的一种方法,FAD 本身无荧光,无极性,可透过完整的原生质膜。一旦进入原生质体后,由于受到酯酶分解而产生具有荧光的极性物质荧光素。它不能自由出入原生质膜,因此有活力的细胞能产生荧光,无活力的原生质体不能分解FAD无荧光产生。 PEG作为一种高分子化合物,20~50%的浓度能对原生质体产生瞬间

冲击效应,原生质体很快发生收缩与粘连,随后用高Ca高pH法进行清洗.使原生质体融合得以完成。 PEG诱导融合的机理:PEG由于含有醚键而具负极性,与水、蛋白质和碳水化合物等一些正极化基团能形成氢键,当PEG分子足够长时,可阼为邻近原生质表面之间的分子桥而使之粘连。PEG也能连接Ca2+等阳离子,Ca2+可在一些负极化基团和PEG之间形成桥,因而促进粘连。在洗涤过程中,连接在原生质体膜上的PEG分子可被洗脱.这样将引起电荷的紊乱和再分布.从而引起原生质体融合:高Ca高pH由于增加了质膜的流动性,因而也大大提高了融合频率,洗涤时的渗透压冲击对融合也可能起作用。 原生质体分离纯化或融合后,在适当的培养基上应用合适的培养方法,能够再生细胞壁,并启动细胞持续分裂,直至形成细胞团,长成愈伤组织或胚状体,再分化发育成苗。其中,选择合适的培养基及培养方法是原生质体培养中最基础也是最关键的环节。 三、实验用品 1.材料:绿豆,烟草幼苗叶片,油菜或菠菜或烟草等。 2.试剂: 酶解液(绿豆):1%(W/V) 纤维素酶,1% (W/V)果胶酶,0.7mol/L 甘露醇;10mmol/L CaCl,2.2H2O,0.7mmol/L KH2PO4,pH 6.8~ 7.0。 13%CPW洗涤液(绿豆):27.2mg/L KH2PO4,101.0 mg/L KNO3,

纳米材料的制备技术及其特点

纳米材料的制备技术及其特点 一纳米材料的性能 广义地说,纳米材料是指其中任意一维的尺度小于100nm的晶体、非晶体、准晶体以及界面层结构的材料。当小粒子尺寸加入纳米量级时,其本身具有体积效应、表面效应、量子尺寸效应和宏观量子隧道效应等。从而使其具有奇异的力学、电学、光学、热学、化学活性、催化和超导特性,使纳米材料在各种领域具有重要的应用价值。通常材料的性能与其颗粒尺寸的关系极为密切。当晶粒尺寸减小时, 晶界相的相对体积将增加,其占整个晶体的体积比例增大,这时,晶界相对晶体整体性能的影响作用就非常显著。此外,由于界面原子排列的无序状态,界面原子键合的不饱和性能都将引起材料物理性能上的变化。研究证实,当材料晶粒尺寸小到纳米级时,表现出许多与一般材料截然不同的性能,如高硬度、高强度和陶瓷超塑性以及特殊的比热、扩散、光学、电学、磁学、力学、烧结等性能。而这些特性主要是由其表面效应、体积效应、久保效应等引起的。由于纳米粒子有极高的表面能和扩散率,粒子间能充分接近,从而范德华力得以充分发挥,使得纳米粒子之间、纳米粒子与其他粒子之间的相互作用异常激烈,这种作用提供了一系列特殊的吸附、催化、螯合、烧结等性能。 二纳米材料的制备方法

纳米材料从制备手段来分,一般可归纳为物理方法和化学方法。 1 物理制备方法 物理制备纳米材料的方法有: 粉碎法、高能球磨法[4]、惰性气体蒸发法、溅射法、等离子体法等。 粉碎法是通过机械粉碎或电火花爆炸而得到纳米级颗粒。 高能球磨法是利用球磨机的转动或振动,使硬球对原料进行强烈的撞击,研磨和搅拌,将金属或合金粉碎为纳米级颗粒。高能球磨法可以将相图上几乎不互溶的几种元素制成纳米固溶体,为发展新材料开辟了新途径。 惰性气体凝聚- 蒸发法是在一充满惰性气体的超高真空室中,将蒸发源加热蒸发,产生原子雾,原子雾再与惰性气体原子碰撞失去能量,骤冷后形成纳米颗粒。由于颗粒的形成是在很高的温度下完成的,因此可以得到的颗粒很细(可以小于10nm) ,而且颗粒的团、凝聚等形态特征可以得到良好的控制。 溅射技术是采用高能粒子撞击靶材料表面的原子或分子交换能量或动量,使得靶材表面的原子或分子从靶材表面飞出后沉积到基片上形成纳米材料。常用的有阴极溅射、直流磁控溅射、射频磁控溅射、离子束溅射以及电子回旋共振辅助反应磁控溅射等技术。 等离子体法的基本原理是利用在惰性气氛或反应性气氛中

金属超细粉体制备的研究进展

金属超细粉体制备的研究进展 摘要:简要介绍了超细粉体的制备方法,并介绍了电爆炸法和电弧等离子法制备AI、Mg 粉体的工艺技术及其研究进展。这2种方法具有产品颗粒直径分布窄、粒度大小易于控制和调节、产品纯度高、便于收集、无污染等优点,且易于工业化。它们是目前生产金属细颗粒较环保和成本较低的方法。 关键词:水反应金属燃料;Al;M g;粉体;电爆炸法;电弧等离子法 1. 引言 俄罗斯“暴风雪”超高速鱼雷利用“超空泡”(supercavitation)原理突破了水下航行体的速度限制.达到了200节航速【1】。。其所用动力推进系统为水冲压发动机,该发动机使用的燃料是“水反应金属燃料”,该鱼雷具体使用的是“Mg基水反应金属燃料”【2】。“暴风雪”鱼雷的出现引起了美、德、日等国对水冲压发动机和水反应金属燃料的极大关注,并展开大规模的研究。水反应金属燃料的优点是不仅能量特性高,而且具有充分利用雷外海水作为能源的特点,能够显著提高燃料单位体积的能量密度,使鱼雷超高速、远航程航行成为可能【3】。 目前研究所采用的水反应金属燃料的主要原料有:活性金属如Al、Mg、B、Ti、Li、Na、K、zr、w等,金属氢化物如AlH 3、M gH 2、B 2H。、ZrH:及LiAIH。及一些活性较高的金属氧化物和金属碳化物等。考虑到成本、毒性、能量密度等各方面的问题,Mg和Al 是最佳选择14】。与Mg基金属水反应燃料相比,A1的成本更低,来源更广,稳定性更好,最主要的是Al基燃料的比冲要大于Mg基燃料的比冲【5】。 对于金属燃料能否用于水冲压发动机的要求,除了看其能量密度能否满足要求外,还要看其粒度、纯度能否满足点火要求等;而决定其点火温度的主要因素是金属粒子粒度的大小。若想降低或选择合适的金属粒子的点火温度,就必须制备出超细颗粒(包括微米级、亚微米级和纳米级粒子)的金属粒子。 超细粒子的制备方法 对于超细粒子的制备已经报道了许多方法,从这些报道来看,超细粉体的制备方法可根据反应体系的不同而分为气相法、液相法和固相法【6】。 气相法一般是指用气体原料或将原料蒸发成气体,然后通过化学反应或物理作用再生成超细颗粒的方法。这类方法中包括气相化学反应、激光合成法、电爆炸法、惰性气体冷凝法和电弧等离子体法。 气相法制备金属超细粒子的特点是产品纯度高、分散性良好、粒子粒径分布窄、粒径小。此外,通过控制气氛可以制备液相法难以制备的金属、碳化物、氮化物、硼化物等非氧化物超细粉体【7】o 液相法(也称溶液反应法)是当前实验室和工业上广泛采用的合成高纯超细粉体的方法。其主要优点是能精确控制化学组成,易于添加微量有效成分,超细粒子形状和尺寸也较容易

原生质体制备

1.影响原生质体数量和活力的因素 (1)细胞壁降解酶的种类和组合 不同植物种类或同一植物种的不同器官以及它们的培养细胞,由于它们的细胞壁结构组成不同,分解细胞壁所需的酶类也不同。例如,叶片及其培养细胞用纤维素酶和果胶酶,根尖细胞以果胶酶为主附加纤维素酶或粗制纤维素酶(Driselase酶),花粉母细胞和四分体期小孢子用蜗牛酶和胼胝质酶,成熟花粉用果胶酶和纤维素醇。 (2)渗造压稳定剂 用酶法降解细胞壁前,为防止原生质体的破坏,一般需先用高渗液处理细胞,使细胞处于微弱的质壁分离状态,有利于完整原生质体的释放。这种高渗液称为渗透压稳定剂。常用的滲透压稳定剂有甘露醇、山梨醇、蔗糖、葡萄糖、盐类(KCI、MgSO4.7H2O)等。在降解细胞壁时,渗透压稳定剂往往和酶制剂混合使用。滲透压稳定剂中,用得最多的是甘露醇,常用于烟草、胡萝ト、柑橘、蚕豆原生质体制备;蔗糖常用于烟草、月季等;山梨醇常用于油菜原生质体制备。滲透压稳定剂种类及浓度的选择应根据植物种类而异,例如胡萝ト用0.56mol /L甘露醇,月季用14%蔗糖,柑橘用0.8mol/L甘露醇,蚕豆用0.7mol/L甘露醇,烟草的四分体用7%熊糖,烟草的成熟花粉用13%甘露醇。 (3)质膜稳定剂 质膜稳定剂可以增加完整原生质体数量、防止质膜破坏,促进原生质体胞壁再生和细胞分裂形成细胞团。如在分离烟草原生质体时,在酶液中加人入葡聚糖硫酸钾,一旦洗净确液进行培养,原生质体很快长壁并持续细胞分裂形成细胞团。而未加葡聚糖硫酸钾的对照,原生质体经一周培养即解体。常用的原生质膜稳定剂有葡聚糖硫酸钾、MES、氯化钙、磷酸二氢钾等。 (4)pH的影响 分离原生质体时,酶液的pH是值得注意的问题。因为降解酶的活力和细胞活力最适pH是不一致的低pH时(<4.5),酶的活力强,原生质体分离速度快,但细胞活力差,破坏的细胞较多;pH偏高时,酶活力差,原生质体分离速度慢,完整的原生质体数目较多。分离原生质体时,酶液的pH因植物种类不同而有差异,如胡萝ト为5.5、月季为5.5~6.0、烟草为5.4~5.8、柑橘为5.6、蚕豆为5.6~5.7。 (5)温度影响 制备生质体时,一般在26土1℃条件下酶解。 (6)植物材料的生理状态 一般应选择植物体细胞分裂旺盛的部分进行取材。采用那些颗粒细小、疏松易碎的胚性愈伤组织和由其建立的胚性悬浮细胞系,更容易获得高质量的原生质体。要得到良好的供体材料,必要时应对材料进行预处理及预培养。 2.植物原生质体的纯化 材料经过一段时间的酶解后,需要将酶解混合物中破碎的原生质体、未去壁的细胞、细胞器及其他碎片去除出去。纯化原生质体的常用方法有过滤、离心、飘浮法,在实际操作中一般联合运用这三种方法。 1)过滤法用滤网过滤酶解混合物,滤去未被酶解的细胞、细胞团及组织块 2)离心法利用比重原理,在具有一定渗透压的溶液中,先进行过滤然后低速离心,使纯净完整的原生质体沉积于离心管底部。 3)飘浮法采用比原生质体比重大的高渗溶液(如蔗糖、Ficoll溶液),使原生质体漂浮在溶液表面。

高能球磨法

高能球磨法 制备纳米晶Zn铁氧体 姓名:李成利 学号:1104030118 班级:无机非金属111

摘要:用高能球磨法制备了纳米晶Zn 铁氧体.通过样品的穆斯堡尔(Mossbauer )谱及RD 谱的测定,研究了纳米晶的形成过程.结果表明:球磨约3h ——Fe 2O 3即与ZnO 发生机械化学反应生成Zn 铁氧体,这种反应是通过先形成。α——Fe 203——ZnO 固溶体而进行的.制得的纳米晶铁氧体有一定的晶格崎变. 关键词:纳米晶、Zn 铁氧体、高能球磨法 Mossbauer 谱、XRD

内容:Leefslhtel等(1)在70年代后期研究了α——Fe203与Zn0混合粉体在惰性气体气氛下在普通球磨过程中的变化,发现球磨400多 小时后有ZnFe 204形成;KosmaC等(2)利用振 动式球磨机,发现在球磨的初期可以形成Zn 铁氧体,但最终得到的是非平衡态的固溶体(Fe,Zn)0.作者利用行星式高能球磨机首次合成了晶粒大小为snm的zn铁氧体纳米晶(3).本 文研究由α——Fe 203与ZnO合成纳米晶 ZnFe204的过程.

?实验方法 ?原料为(纯度高于99.5%)的α——Fe203和ZnO粉体.先将两种粉体分别过200目筛,然后以1:1的摩尔比在玛瑙研钵中混合均匀.球磨在1ooml的不锈钢球磨罐中进行,用60个直径为8mm的硬质钢球,钢球与原料的质量比20:1. 所用高能球磨机的型号为QM一1F行星式.球磨在室温下进行,球磨机转速为200r/min.当球磨达不同的预定时间后停机取少量样品进行性能测试. ?在室温下用等加速电磁驱动型Mossbauer谱仪测定不同球磨时间所得样品的Mossbuaer谱,放射源为57Co(Rh); 用25μm厚的α——Fe 203箔进行速度定标.XRD测定所用 靶为cuKa,入=1.54nm·

水稻原生质体制备及转化方法

原生质体制备及转化 1.去皮的日本晴种子在75%的酒精中消毒1 min。然后用 2.5%的次氯酸钠消毒20 min。用无菌水洗至少5次,然后在1/2 MS培养基上,12 h光照(大约150umol m-1 s-1)十二小时黑暗,26 ℃培养7-10天,提前一天烧好去尖的黄蓝枪头备用。 2.取40-60棵水稻幼苗的茎和叶鞘的绿色组织。 3.将一捆水稻植株(大概10棵幼苗)用剃刀一起切成大约0.5 mm的小段。 4.将小片段立刻放进0.6 M的甘露醇中,黑暗中放置10 min。 5.用100目钢制滤网去掉甘露醇,将小片段放在加入15mL酶液的25mL锥形瓶中, (1.5% Cellulase RS,0.75% Macerozyme R-10,0.6 M甘露醇,pH5.7的10mM MES,10mM CaCl2,0.1% BSA),28℃摇床中轻轻摇晃(50rpm),黑暗孵育4-6 h。 6.此时配置40%的PEG4000,酶消化后,分三次加入等体积15mL的W5溶液(154 mM NaCl,125mM CaCl2,5 mM KCl,pH 5.7的2mM MES)。用手充分摇晃10s。 7.用400目钢制滤网过滤得到原生质体在圆底管中。 8.80g离心(升降速度设为1档)5min,缓慢吸走上清液。 9.沿壁缓慢加入4mL W5溶液,轻轻悬浮,再离心80g,5min,弃上清 10.沿壁缓慢加入4mL Mmg溶液,离心80g,5min,弃上清 11.再加Mmg溶液,补至每个样品100μl原生质体 12.分装2mL离心管,每100μl原生质体,加入20μl质粒和120μl新鲜制备的 40%的PEG4000,混匀 13.28℃避光静置转化20--25min 14.加1.5 mL W5溶液混匀,80g离心3min,弃上清。 15.重复步骤14 16.加2mL W5溶液重悬,轻轻混匀,移到细胞培养板,锡箔纸包裹避光28℃避 光静置培养15-20小时 17.培养完成后,将培养板中沉淀的原生质体轻轻混匀,吸到2 mL离心管中,80g 离心3min,弃上清,保留100μl上清液 18.共聚焦显微镜观察拍照 配制溶液方法:

植物组织培养 第十章 原生质体培养

第十章原生质体培养 ?教学目的与要求: ?深入了解植物细胞结构功能与细胞全能性表达的关系,掌握原生质体的分离以 及培养过程中渗透压和激素的调控原理与技术。 第一节、原生质体研究概况 一、原生质体的概念 ?原生质体(p r o t o p l a s t):指除去细胞壁的细胞或是说一个被质膜所包围的裸露 细胞。 二、原生质体研究进展 ?据统计,目前已有49个科,146个属的320多种植物经原生质体培养得到了再 生植株(1993)。其趋势仍以农作物和经济作物为主,但从一年生向多年生、草本向木本、高等植物向低等植物扩展。 三、原生质体研究的意义 ?1、除去了细胞壁为植物细胞之间的融合扫平了障碍,同时叶为制造新杂种开辟 了道路。2、原生质体可摄入外源D N A,细胞器、细菌或病毒颗粒,这些特性与植物全能性相结合为高等植物的遗传饰变打下基础。3、获得细胞无性系和选育突变体的优良起始材料。 第二节、原生质体的制备 1、用于分离原生质体的材料准备 ?无菌试管苗叶片 ?上胚轴和子叶 ?培养细胞 2、酶处理 ?原生质体分离常用的商品酶 ?纤维素酶类 ?果胶酶类 ?半纤维素酶 酶溶剂及其渗透压 ?酶溶剂:原生质体培养基或特殊配制。 ?渗透压调节剂:葡萄糖、甘露醇、山梨醇等。 ?酶浓度及酶解时间 ?酶解时间 ?酶浓度酶解温度 3、原生质体的收集和纯化 ?飘浮法:常用的飘浮剂有蔗糖、P e r c o l l、F i c o l l。 ?P e r c o l l是一种包有乙烯吡咯烷酮的硅胶颗粒。渗透压很低(<20m o s m/k g H2O), 粘度也很小,可形成高达1.3g/m l密度,采用预先形成的密度梯度时可在低离心力(200~1000g)于数分至数十分钟内达到满意的细胞分离结果。由于P e r c o l l 扩散常数低,所形成的梯度十分稳定。此外,P e r c o l l不穿透生物膜,对细胞无毒害,因此广泛用于分离细胞、亚细胞成分、细菌及病毒,还可将受损细胞及其碎片与完好的活细胞分离。

无机盐超细粉体制备技术的回顾与展望_吴健松

无机盐超细粉体制备技术的回顾与展望 吴健松,李海民 (中国科学院青海盐湖研究所,青海西宁 810008) 摘 要:评述了制备无机盐超细粉体的传统方法以及一些传统方法的改进,对当前几种新技术做了介绍与展望。 关键词:无机盐;超细粉体;纳米材料;微乳液法;微波法;超重力技术 中图分类号:T Q115 文献标识码:A 文章编号:1008-858X (2004)03-0050-05 0 前 言 时下,无机盐超细粉体的制备技术引起了科学界和企业界的极大关注。一些传统的制备技术已不能满足工业发展的需要。许多学者对传统方法做了某些改进但依然没有取得突破性的进展,高效率低成本获取优质超细粉体材料的技术,仍然是当今学者研究的重点。本文对传统的(以及经改进的)物理、化学制备技术做了简要的回顾与评述,对当前已报道的微乳液水热法、微波法和超重力技术法等新的制备技术做了介绍与展望。 1 技术回顾 1.1 传统的(以及经改进的)制备技术 无机盐超细粉体制备的传统(以及经改进的)方法很多,这些方法中有些方法可以用来制纳米微粒。目前,已经报道的工艺方法主要有 以下几种[1] :物理气相沉积法(PVD )、化学气相沉积法(C VD )、等离子体法、惰性气体凝聚法、共沉淀法、水热法、水解法、溶胶—凝胶法、电弧 放电法、气体蒸发法、磁控溅射法、激光诱导 C V D 、等离子加热气相合成法、非水溶剂合成 法、超临界液相合成法和超声波合成法等。这些方法不是存在纯度低、颗粒分布不均匀的缺点,就是要求技术设备高,难以进行生产推广。如气相沉积法,其缺点很多,如:温度高、能耗大等,不能满足工业化的要求。再如液相反应法,这种方法常用的设备是搅拌槽式反应器,其特 点是反应条件温和,成本较低。但缺点有:(1)粒度分布不均且不易控制;(2)粒度不够细;(3)批次间产品品质再现性差;(4)工业放大困难等。近年来国内外有不少学者报道对上述方法的改进,改进的重点在抑制粒子的二次或多次凝聚现象 [2-6] ,这自然也因为抑制粒子的二次 或多次凝聚现象是很多无机盐粉体生产的重要环节。为摸索出更好的抑制凝聚现象,近年来围绕表面活性剂的选择和配方,国内外开展了许多工作,同时针对超微粒子改性提出了微胶囊技术,已达到可用各种合成材料包覆不同材 料(芯物质)的水平。还可制作毫微胶囊。为无机盐材料产品的应用开辟了广阔的前景。许多学者在这方面取得了可喜的成果。如在洗涤剂的改进上,李强[7] 等人在研究纳米Zn0制备工艺中电位与分散性的关系时发现采用011m ol 收稿日期:2003-10-09;修回日期:2003-12-21 作者简介:吴健松(19-),男,硕士研究生,从事无机盐工艺研究. 第12卷 第3期2004年9月 盐湖研究JOURNA L OF S A LT LAKE RESE ARCH V ol.12 N o.3 Sep. 2004

粉体材料的合成与制备

《材料合成与制备》课程教学大纲 一、课程说明 (一)课程名称、所属专业、课程性质、学分; 课程名称:材料的合成与制备 所属专业:材料化学 课程性质:专业必修课 学分:2学分(36学时) (二)课程简介、目标与任务、先修课与后续相关课程; 课程简介: 材料的合成与制备课程是介绍现代材料制备技术的原理、方法与技能的课程,是材料化学专业一门重要的专业必修课程。 目标与任务:通过本课程的学习,使学生掌握材料制备过程中涉及的材料显微组织演化的基本概念和基本规律;掌握材料合成与制备的基本途径、方法和技能;掌握目前几种常见新材料制备方法的发展、原理、及制备工艺;培养学生树立以获取特定材料组成与结构为目的材料科学研究核心思想,培养学生发现、分析和解决问题的基本能力,培养创新意识,为今后的材料科学相关生产实践和科学研究打下坚实的基础。 先修相关课程: 无机化学、有机化学、物理化学、材料科学基础 (三)教材与主要参考书 教材:自编讲义 主要参考书: 1. 朱世富,材料制备科学与技术,高等教育出版社,2006 2. 许春香,材料制备新技术,化学工业出版社,2010 3. 李爱东,先进材料合成与制备技术,科学出版社,2013

二、课程内容与安排 第一章引言 1.1 材料科学的内涵 1.2 材料科学各组元的关系 (一)教学方法与学时分配 讲授,2学时。 (二)内容及基本要求 主要内容:材料科学学科的产生、发展、内涵;材料科学与工程学科的四个基本组元:材料的合成与制备、材料的组成与结构、材料的性质与性能、材料的使用效能;材料科学四组元的相互关系。 【掌握】:材料科学学科的内涵、材料科学学科的四组元、四组元间的相互关系。 【了解】:几个材料合成与制备导致不同组成与结构并最终决定性质与性能的科研实例。 【难点】:树立以获取特定材料组成与结构为核心的学科思想。 第二章材料合成与制备主要途径概述 2.1 基于液相-固相转变的材料制备 2.3 基于固相-固相转变的材料制备 2.4 基于气相-固相转变的材料制备 (一)教学方法与学时分配 讲授,2学时。 (二)内容及基本要求 主要内容:材料科学学科的产生、发展、内涵;材料科学与工程学科的四个基本组元:材料的合成与制备、材料的组成与结构、材料的性质与性能、材料的使用效能;材料科学四组元的相互关系。 【了解】:材料合成与制备的三种主要途径。 【难点】:三种主要途径选择与取舍的依据。

相关文档