文档库 最新最全的文档下载
当前位置:文档库 › 第二章20-35 ADS系统仿真基础

第二章20-35 ADS系统仿真基础

第二章20-35 ADS系统仿真基础
第二章20-35 ADS系统仿真基础

实验二系统模拟基础

概要

这一章介绍了如何使用行为模型建立一个系统(例如我们要做的接收系统),这一步是设计系统的第一步,通过对系统级行为模型的模拟,来接近所需的系统性能。先设定系统组件为所需的性能,然后逐步用独立的电路替换,并可以比较两者的性能差异。

目标

●使用上一章的技巧和经验

●使用行为模型(滤波器、放大器、混频器)建立一个RF接收器的系统

项目,RF=1900MHz,IF=100MHz

●使用一个RF源,带相位噪声的本振LO和一个噪声控制器

●测试系统:S参数,频谱,噪声等等

目录

1.建立一个新的系统项目和原理图 (21)

2.建立一个由行为模型构成的RF接收系统 (21)

3.设置一个带频率转换的S参数模拟 (22)

4.画出S21数据 (24)

5.提高增益,再模拟,绘制出另一条曲线 (25)

6.设置一个RF源和一个带相位噪声的本振LO (26)

7.设置一个谐波噪声控制器 (27)

8.设置谐波模拟 (29)

9.模拟并画出响应:pnmx和V out (32)

10.选学-SDD(象征性定义的元件)模拟 (33)

步骤

1.建立一个新的系统项目和原理图

使用上一章学到的方法,建立一个新的项目取名rf_sys

2. 建立一个由行为模型构成的RF接收系统

a.Butterworth滤波器:在元件模型列表窗口中找到带通滤波器项目Filters-Bandpass。插入一个Butterworth滤波器。设定为:中心频率Fcenter=

1.9GHz。通带带宽BWpass=200MHz,截止为BWstop=1GHz。

b.放大器:在元件模型列表窗口中找到System-Amps&Mixers项目,插入放大器Amplifier。设定S21=dbpolar(10,180)。

c.Term:在port1插入一个端口。端口Terms在元件模型列表窗口的Simulation-S_Param中找。

关于Butterworth滤波器请注意-Butterworth滤波器的行为模型是理想情况的,所以在通带内没有波纹。换成滤波器和放大器的电路模型以后,会产生波纹。对于带波纹的系统滤波器,可以采用椭圆滤波器的行为模型。

接下来要往系统中添加混频器和本振LO的行为模型。

d.在元件模型列表窗口中找到System-Amps&Mixers项目,在功放amp输出口

插入一个混频器Mixer的行为模型,注意是插入Mixer而不是Mixer2。

Mixer2是用于非线性分析的。

e.设定混频器Mixer ConvGain=dbpolar(3,0)。这里dbpolar是极坐标表示,代表3dB。设定Mixer SideBand=LOWER,设定取混频器两个输出的低端。

f.可以按F5键,再点击原理图上的组件图形,移动组件的文字。

g.在元件模型列表窗口中找到Sources-Freq Domain项目,插入V_1Tone源和上图中标出的50ohm电阻和地,这样可以提供100MHz的中频输出。

h.如图所示,在混频器的输出口加一个低通Bessel滤波器(在元件模型列表窗口中的Filters-Lowpass项目中),设置Fpass=200MHz。

i.在port2放一个端口Term。最终的系统电路如下所示:

3.设置一个带频率转换的S参数模拟

a.插入控制齿轮,设定模拟参数为:1GHz到3GHz,step步长为100MHz。

b.编辑模拟控制器,在Parameters标签内选上Enable AC frequency conversion。

c.在Display标签内选择FreqConversion和FreqConversionPort两项,让它们在原理图中显示出来。

此时,仿真控件变为,

d.点击Simulate>Simulation Setup。当对话框出现,把缺省的dataset名称改为rf_sys_10dB,代表该系统有10dB的放大器增益。

e.点击Apply和Simulate开始模拟。

4 画出S21数据

a.在数据显示窗口中插入一个网格显示的S21图形。

b.把一个三角标记放到1900MHz的线上。增益为混频器的转换增益减去因为失配造成的一些损耗。

5.提高增益,再模拟,绘制出另一条曲线

a.回到原理图,改变放大器增益S21到20dB。

b.点击Simulate>Simulation Setup,改dataset名称为rf_sys_20dB。点击Apply,开始模拟。

c.当模拟结束以后,你会被提醒是否改变缺省dataset,回答No。

d.双击编辑已经有的10dB线。当对话框出现,点击下拉框查看可用的datasets 和等式,选择rf_sys_20dB dataset。

e.选择显示S21数据,单位选dB,让S21在数据显示窗口显示,注意整个dataset 的路径会显示出来,因为它不是缺省dataset。

f.把新的三角标志放到新的线上,选择所有的标志,点击命令Marker>Delta Mode On,看看两个模拟之间10dB的差值。保存。

6. 设置一个RF源和一个带相位噪声的本振LO

接下来演示如何使用谐波平衡模拟器模拟振荡器的行为模型带来的相位噪声。

a.用新名称rf_sys_phnoise保存当前的原理图。

b.在已经保存的原理图中,删除S_param simulation controller就是那个齿轮,V_1Tone 本振源LO source,50ohm电阻和地。

c.用P_1Tone源更换port1Term,设定功率和频率如下:Freq=1.9GHz,P

=polar(dbmtow(-40),0)。注意polar与dbpolar单位不同,把源的名称改

为RF_source,Num=1;

d.利用快捷键在输出端插入一个线标记V out(节点),完成后的原理图

如下:

e.在元件模型列表窗口中找到Sources-Freq Domain项目,插入

OSCwPhNoise,连接到混频器mixer上。设定Freq=1.8GHz,修改PhaseNoise

list如下图所示。OSCwPhNoise已经自带了50ohm电阻注意这和『2』节中的

V_1Tone加50ohm的电阻的功能类似,就是多了相位噪声。

7.设置一个谐波噪声控制器

a.在元件模型列表窗口中找到Simulation-HB项目,在原理图上插入噪声控制器NoiseCon。

注意:NoiseCon组件和HB谐波模拟一齐使用。它便于你把模拟控制和噪声测量分开。你也可以在仅仅使用一个HB控制器的情况下,为不同的噪声测量设定和使用多个噪声控制。

b.Freq tab频率标签-编辑Noise Con-设定Sweep Type为log,范围从10Hz到10KHz,步长5。

噪声控制器同其它的ADS组件一样,能够在原理图中修改节点的名称。

d.在PhaseNoise标签中选择相位噪声类型Phose Noise Type为Phase Noise spectrum,设定载频carrier Frequency为100MHz。这是带由LO引入的相位噪

声的中频频率。

e.在显示标签Display tab中把如下图示出的项目显示在原理图上,并作出相应的修改。

最后显示的噪声控制器设置如下图所示。

8.设置谐波模拟

a.在元件模型列表窗口中找到Simulation-HB项目,在原理图中插入HB模拟

控制器。

b.编辑HB控制器(双击)。把缺省的频率值改为1.8GHz,点击Apply。然后增加RF频率1.9GHz,点击Apply。

c.在Display标签中,让MaxOrder显示出来,点击Apply。

注意:你只需要在控制器中指定本振LO的频率(1.8GHz)和RF频率(1.9GHz)。不需要指定其它的频率,因为Order(谐波)和Maximum order(混

频产物)的缺省值将计算电路中其它的tones,包括100MHz的中频IF。

d.如下图所示,在NoiseCon标签中选择NoiseCons。然后使用Edit按钮选择NC1为你设定的Noise Con的实例名称。点击Add和Apply。

e.在显示Display标签的HB Display标签中,选择下图项目显示在原理图上。

完整的原理图如下所示,在开始模拟之前,检查是否相符:

9. 模拟并画出响应:pnmx和Vout

a.插入一个rectangular绘制pnmx。使用Plot Options设定X轴的单位为Log。插入一个三角标记观察频偏。插入一个rectangular绘制Vout,单位设定为dBm,在中频信号100MHz处放一个三角标记。输入功率为-40dBm,加上23dB的功放增益和转换增益,输出为图中所示的-17dBm。

b.储存。你现在已经完成了设计RF接收器的第一步,在下面的章节中,你将用电路替换系统模型组件。

10.选学——SDD(符号定义元件)仿真

SDD允许你对一个线性或非线性元件节点的特性以方程形式说明。本步骤中,你将对一个3端口SDD输出端的和与差用一个简单的线性方程来描述。

a. 用命令Save Design As对当前设计(rf_sysy_phnoise)命名为:rf_sys_sdd。

b. 删除电路中的特性混频器。

c. 从Eqn based Nonlinear面板中调出3 port SDD放在原理图上。在mixer上,负端

与地相连,如下图所示。

d. 在文本框中直接插入光标,修改[2,0]值,加入“-_v1*_v3”,即减去混频端

开口的RF[_v1]和LO(_v3),保留IF(_v2)电压值。此时SDD就是一个无转换增益的mixer,在输出端会输出差频与和频。

e. 对V out的频谱进行仿真,绘图。如下图所示。

因为没有转换增益,IF信号电平很低。同时产生差频与和频。尽管如此,SDD对特性描述很有用,而且,可以写出复杂但较合适的方程。这需要进一步的学习。

f. 运行瞬态仿真(仿真步骤如下),并将结果与使用Fs函数dBm(fs(V out))的HB 结果进行对比。

g. 保存设计数据。

附加练习:

1、尝试对系统(无SDD)进行瞬态仿真,并将结果与用了fs函数的结果比较。

2、回到巴特沃思滤波器,用一个椭圆函数滤波器模型代替它进行仿真。尝试设

计不同范围的波纹值或用调谐器调节波纹参数。显示结果并观察通带的纹

波。为完成工作,你将会用到数据显示命令中的Zoom命令(图像放大/缩小)。

3、对设计中各参数进行调整。

4、退特性混频器输入LO和RF的反射值,观察仿真结果。

5、建立关于SDD混频器转换增益I[2,0]方程的实验。

系统建模与仿真

一、基本概念 1、数字正弦载波调制 在通信中不少信道不能直接传送基带信号,必须用基带信号对载波波形的某些参量进行控制,使得载波的这些参量随基带信号的变化而变化,即所谓数字正弦载波调制。 2、数字正弦载波调制的分类。 在二进制时, 数字正弦载波调制可以分为振幅键控(ASK)、移频键控(FSK)和移相键控(PSK)三种基本信号形式。如黑板所示。 2、高斯白噪声信道 二、实验原理 1、实验系统组成 2、实验系统结构框图

图 1 2FSK信号在高斯白噪声信道中传输模拟框图 各个模块介绍p12 3、仿真程序 x=0:15;% x表示信噪比 y=x;% y表示信号的误比特率,它的长度与x相同FrequencySeparation=24000;% BFSK调制的频率间隔等于24KHz BitRate=10000;% 信源产生信号的bit率等于10kbit/s SimulationTime=10;% 仿真时间设置为10秒SamplesPerSymbol=2;% BFSK调制信号每个符号的抽样数等于2 for i=1:length(x)% 循环执行仿真程序 SNR=x(i);% 信道的信噪比依次取中的元素 sim('project_1');% 运行仿真程序得到的误比特率保存在工作区变量BitErrorRate中 y(i)=mean(BitErrorRate); end hold off% 准备一个空白的图 semilogy(x,y);%绘制的关系曲线图,纵坐标采用对数坐标 三、实验结论

图 4 2FSK信号误比特率与信噪比的关系曲线图 系统建模与仿真(二) ——BFSK在多径瑞利衰落信道中的传输性能 一、基本概念 多径瑞利衰落信道 二、实验原理 1、实验系统组成

系统建模与仿真习题2

系统建模与仿真习题二 1. 考虑如图所示的典型反馈控制系统框图 (1)假设各个子传递函数模型为 66.031.05 .02)(232++-+=s s s s s G ,s s s G c 610)(+=,2 1)(+=s s H 分别用feedback ()函数以及G*Gc/(1+G*Gc*H)(要最小实现)方法求该系统的传递函数模型。 (2) 假设系统的受控对象模型为s e s s s G 23 )1(12 )(-+=,控制器模型为 s s s G c 32)(+=,并假设系统是单位负反馈,分别用feedback ()函数以及G*Gc/(1+G*Gc*H)(要最小实现)方法能求出该系统的传递函数模型?如果不能,请近似该模型。 2. 假定系统为: )(0001)(111000100001024269)(t u t x t x ????? ???????+????????????----= [])(2110)(t x t y = 请检查该系统是否为最小实现,如果不是最小实现,请从传递函数的角度解释该模型为何不是最小实现,并求其最小实现。 3. 双输入双输出系统的状态方程:

)(20201000)()(20224264)(75.025.075.125 .1125.15.025.025.025.125.425.25.025.1525.2)(t x t y t u t x t x ??????=????? ???????+????????????------------= (1)试将该模型输入到MATLAB 空间,并求出该模型相应的传递函数矩阵。 (2)将该状态空间模型转化为零极点增益模型,确定该系统是否为最小实现模型。如果不是,请将该模型的传递函数实现最小实现。 (3)若选择采样周期为s T 1.0=,求出离散后的状态方程模型和传递函数模型。 (4)对离散的状态空间模型进行连续变化,测试一下能否变回到原来的系统。 4. 假设系统的传递函数模型为: 222 )(2+++=s s s s G 系统状态的初始值为?? ????-21,假设系统的输入为t e t u 2)(-=。 (1)将该传递函数模型转化为状态空间模型。 (2)利用公式 ?--+=t t t A t t A d Bu e t x e t x 0 0)()()()(0)(τττ求解],0[t 的状态以及系统输出的解析解。 (3)根据上述的解析解作出s ]10,0[时间区间的状态以及系统输出曲线。 (4)采用lsim 函数方法直接作出s ]10,0[时间区间的状态以及系统输出曲线,并与(3)的结果作比较。 5. 已知矩阵 ???? ??????----=212332110A (1)取1:1.0:0=t ,利用expm(At)函数绘制求A 的状态转移矩阵,看运行的速度如何? (2)采用以下程序绘制A 的状态转移矩阵的曲线,看运行的速度如何? clc;clear; A=[0 1 -1;-2 -3 3;2 1 -2]; t=0:0.1:2; Nt=length(t);

道路交通系统建模与仿真学习总结

交通系统建模与仿真学习总结 《道路交通系统建模与仿真》是面向交通工程、交通运输、车辆工程等专业高年级学生的必修专业基础课。它为该专业学生进一步学习、研究道路交通问题打下了基础。其目的是通过对系统仿真的一般理论和研究方法的学习,了解应用系统仿真技术对各种道路交通问题进行仿真的基本方法,同时通过开发型试验,培养该专业学生今后从事交通工程、交通运输研究、应用的基本技能。 这门课对数学以及计算机程序编写都有较高的要求,但经过一个学期的学习,通过老师的讲解、多媒体教案的演示以及小组讨论完成作业,我对道路交通系统建模与仿真有了一些初步的认识和粗浅的理解,下面我把学习的心得体会作如下总结。 一、系统建模 随着智能交通系统(ITS)在全球范围内的兴起,作为其核心内容之一的交通仿真正成为国内外的研究热点。传统的交通仿真系统存在对道路、交通环境信息的管理能力不足等问题,而地理信息系统(GIS)作为一种新兴的、迅速发展的技术,具有很强的信息管理能力和信息可视化能力。 系统建模主要向我们介绍了传统的科学方法与建模、系统建模以及建模的一些方法。 系统建模是通过计算机技术开发一些软件通过程序语言实现对一些实体系统进行模拟来达到研究学习的目的。系统的建模有很多种软件和语言,其中一种为UML(统一建模语言)。 公认的面向对象建模语言出现于70年代中期。从1989年到1994年,其数量从不到十种增加到了五十多种。在众多的建模语言中,语言的创造者努力推崇自己的产品,并在实践中不断完善。但是,OO方法的用户并不了解不同建模语言的优缺点及相互之间的差异,因而很难根据应用特点选择合适的建模语言,于是爆发了一场“方法大战”。90年代中,一批新方法出现了,其中最引人注目的是Booch 1993、OOSE和OMT-2等。此外,还有Coad/Y ourdon方法,即著名的OOA/OOD,它是最早的面向对象的分析和设计方法之一。该方法简单、易学,适合于面向对象技术的初学者使用,但由于该方法在处理能力方面的局限,目前已很少使用。概括起来,首先,面对众多的建模语言,用户由于没有能力区别不同语言之间的差别,因此很难找到一种比较适合其应用特点的语言;其次,众多的建模语言实际上各有千秋;第三,虽然不同的建模语言大多类同,但仍存在某些细微的差别,极大地妨碍了用户之间的交流。因此在客观上,极有必要在精心比较不同的建模语言优缺点及总结面向对象技术应用实践的基础上,组织联合设计小组,根据应用需求,取其精华,去其糟粕,求同存异,统一建模语言。 二、关于仿真技术 所谓系统仿真(system simulation),就是根据系统分析的目的,在分析系统各要素性质及其相互关系的基础上,建立能描述系统结构或行为过程的、且具有一定逻辑关系或数量关系的仿真模型,据此进行试验或定量分析,以获得正确决策所需的各种信息。 系统仿真的实质是一种对系统问题求数值解的计算技术。尤其当系统无法通过建立数学模型求解时,仿真技术能有效地来处理。仿真是一种人为的试验手段。它和现实系统实验的差别在于,仿真实验不是依据实际环境,而是作为实际系统映象的系统模型以及相应的“人造”环境下进行的。这是仿真的主要功能。仿真可以比较真实地描述系统的运行、演变及其发展过程。 仿真的过程也是实验的过程,而且还是系统地收集和积累信息的过程。尤其是对一些复杂的随机问题,应用仿真技术是提供所需信息的唯一令人满意的方法。对一些难以建立物理模型和数学模型的对象系统,可通过仿真模型来顺利地解决预测、分析和评价等系统问题。通过系统仿真,可以把一个复杂系统降阶成若干子系统以便于分析。通过系统仿真,能启发新的思想或产生新的策略,还能暴露出原系统中隐藏着的一些问题,以便及时解决。 仿真软件包括为仿真服务的仿真程序、仿真程序包、仿真语言和以数据库为核心的仿真软件系统。仿真软件的种类很多,在工程领域,用于系统性能评估,如机构动力学分析、控制力学分析、结构分析、热分析、加工仿真等的仿真软件系统MSC Software在航空航天

系统建模与仿真考试题

1.信息时代认识世界(科学研究)的三种方法是:理论研究、(_实验研究_)、(__ 仿真___)。 2.根据系统状态随时间变化是连续性还是间断性的,可将系统划分为(_连续系统_)、 (__离散系统__)。 3.系统仿真中的三个基本概念是系统、(__模型_)、仿真。 4.拟对某系统进行研究,首先要对系统作出明确的描述,即确定系统各个要素:实体、 属性、活动、(__状态_)、(_事件___)。 ?阶段性知识测试 5.系统仿真有三个基本的活动,即系统建模、仿真建模和(__仿真实验__),联系这 三个活动的是系统仿真的三要素,即系统、模型和计算机(硬件和软件)。 6.系统仿真的一般步骤是:(1)调研系统,明确问题、(2)(___设立目标,收集数据 __)、(3)建立仿真模型、(4)编制程序、(5)运行模型,计算结果、(6)(_统计分析,进行决策__) ?阶段性知识测试 7.仿真软件发展经历了四个阶段(1)高级程序语言阶段;(2)仿真程序包、初级仿 真语言阶段;(3)商业化仿真语言阶段;(4) (_一体化建模与仿真环境_)阶段。 8.常用的仿真软件有Arena、Automod、MATLAB、Promodel、(__WITNESS______)、 (______FLEXSIM___)。 9.求解简单系统问题的“原始”方法是(___解析解决____),借助(___实验__)可大大 提高该方法的效率和精度。 ?阶段性知识测试 10.排队系统可简化表示为A/B/C/D/E。其中A为到达模式;B为(服务模式)、C为服 务台数量、D为系统容量;E为排队规则。 11.常见的排队规则有:先到先服务、后到后服务、优先级服务、最短处理时间优先服 务、随机服务等。请以连线方式将下列排队规则名称的中英文对照起来。 先进先出FIFO 后进先出LIFO 随机服务SIRO 最短处理时间优先SPT 优先级服务PR ?阶段性知识测试 12.模型中,习惯称实体为成分。成分可分为主动成分和被动成分。请问排队系统中的 随机到达的顾客属于(主动)成分(主动/被动)。 13.事件是改变系统状态的瞬间变化的事情。一般指活动的开始和结束。事件可分为必 然事件(主要)、条件事件(次要)、系统事件。其中(______)一般不出现在将来事件表中(FEL)。 14.活动是具有指定长度的持续时间,其开始时间是确定。排队系统主要活动有 (_______)和服务活动。 ?阶段性知识测试 15.仿真时钟表示仿真时间的变量。Witness仿真系统中仿真钟用系统变量(TIME)表 示。 仿真策略,也称仿真算法。离散事件系统适用的仿真策略有(_事件调度法_)、活动扫描法、进程交互法、三阶段法等。 16.建立输入数据模型需要4个步骤:(1)从现实系统收集数据;(2)(_确定输入数据

系统建模与仿真习题3及答案

系统建模与仿真习题三及答案 1.已知系统 )24(32)(21+++=s s s s s G 、2 103)(2+-=s s s G 求G 1(s)和G 2(s)分别进行串联、并联和反馈连接后的系统模型。 解: clc;clear; num1=[2 3]; den1=[1 4 2 0]; num2=[1 -3]; den2=[10 2]; G1=tf(num1,den1); G2=tf(num2,den2); Gs1=series(G1,G2) Gp1=parallel(G1,G2) Gf=feedback(G1,G2) 结果: Transfer function: 2 s^2 - 3 s - 9 ------------------------------ 10 s^4 + 42 s^3 + 28 s^2 + 4 s Transfer function: s^4 + s^3 + 10 s^2 + 28 s + 6 ------------------------------ 10 s^4 + 42 s^3 + 28 s^2 + 4 s Transfer function: 20 s^2 + 34 s + 6 -------------------------------- 10 s^4 + 42 s^3 + 30 s^2 + s – 9 2.某双闭环直流电动机控制系统如图所示:

利用feedback( )函数求系统的总模型。 解: 模型等价为: 编写程序: clc;clear; s=tf('s'); G1=1/(0.01*s+1); G2=(0.17*s+1)/(0.085*s); G3=G1; G4=(0.15*s+1)/(0.051*s); G5=70/(0.0067*s+1); G6=0.21/(0.15*s+1); G7=(s+2)/s; G8=0.1*G1; G9=0.0044/(0.01*s+1); sys1=feedback(G6*G7,0.212); sys2=feedback(sys1*G4*G5,G8*inv(G7)); sys=G1*feedback(sys2*G2*G3,G9) 结果: Transfer function:

系统建模与仿真课程简介

系统建模与仿真 开课对象:工业工程开课学期:6 学分:2学分;总学时:48学时;理论课学时:40学时; 实验学时:0 学时;上机学时:8学时 先修课程:概率论与数理统计 教材:系统建模与发展,齐欢,王小平编著,清华大学出版社,2004.7 参考书: 【1】离散事件系统建模与仿真,顾启泰,清华大学出版社 【2】现代系统建模与仿真技术,刘兴堂,西北工业大学出版社 【3】离散事件系统建模与仿真,王维平,国防科技大学出版社 【4】系统仿真导论,肖田元,清华大学出版社 【5】建模与仿真,王卫红,科学出版社 【6】仿真建模与分析(Simulaton Modeling and Analysis)(3rd eds.),Averill M. Law, W.David Kelton,清华大学出版社/McGraw-Hill 一、课程的性质、目的和任务 建模与仿真是当代现代科学技术的主要内容,其技术已渗透到各学科和工程技术领域。本课程以一般系统理论为基础,让学生掌握适用于任何领域的建模与仿真的一般理论框架和基本方法。 本课程的目的和任务是使学生: 1.掌握建模基本理论; 2.掌握仿真的基本方法; 3.掌握一种仿真语言及仿真软件; 4.能够运用建模与仿真方法分析、解决工业工程领域的各种常见问题。 二、课程的基本要求 1.了解建模与仿真的作用和发展,理解组成要素。 2.掌握建模的几种基本方法,及模型简化的技术手段。 3.掌握建模的一般系统理论,认识随机数的产生的原因及统计控制方式。 4.能对离散事件进行仿真,并能分析运行结果。 三、课程的基本内容及学时分配 第一章绪论(3学时) 1.系统、模型、仿真的基本概念

物流系统建模与仿真-考前复习题资料-共12页

物流系统建模与仿真考前复习题 1、名词解释(5*4分) (1)系统:系统是由若干可以相互区别、相互联系而又相互作用的要素所组成,在一定的阶层结构形成中分布,在给定的环境约束下,为达到整体的目的而存在的有机集合体。 (2)物流系统模型:物流系统模型是对物流系统特征要素、有关信息和变化规律的一种抽象表达,描述了系统各要素之间的相互关系、系统与环境之间的相互作用,以反映系统的某些本质。 (3)系统仿真:应用数学模型、相应的实用模型的装置、计算机系统、部分实物的仿真系统,对某一给定系统进行数学模拟、半实物模拟、实物模拟,以便分析、设计、研究这种给定系统;或者利用这种仿真训练给定系统的专业人员。 (4)离散事件系统:指系统状态在某些随机时间点上发生离散变化的系统。离散事件动态系统,本质上属于人造系统 (4)实体:实体是描述系统的三个基本要素(实体、属性、活动)之一。在离散事件系统中的实体可分为两大类:临时实体及永久实体。在系统中只存在一段时间的实体叫临时实体。这类实体由系统外部到达系统,通过系统,最终离开系统。临时实体按一定规律不断地到达(产生),在永久实体作用下通过系统,最后离开系统,整个系统呈现出动态过程。 (5)事件:事件就是引起系统状态发生变化的行为。从某种意义上说,这类系统是由

事件来驱动的。在一个系统中,往往有许多类事件,而事件的发生一般与某一类实体相联系,某一类事件的发生还可能会引起别的事件发生,或者是另一类事件发生的条件等,为了实现对系统中的事件进行管理,仿真模型中必须建立事件表,表中记录每一发生了的或将要发生的事件类型和发生时问,以及与该事件相联的实体的有关属性等。 (6)仿真时钟:仿真钟用于表示仿真时间的变化。离散事件动态系统的状态是在离散时间点上发生变化的,并且由于引起状态变化的事件发生时间的随机性,仿真钟的推进步长是随机的。如果两个相邻发生的事件之间系统状态不发生任何变化,则仿真钟可以跨过这些“不活动”周期。从一个事件发生时刻推进到下一事件发生时刻,仿真钟的推进呈跳跃性,推进速度具有随机性。 (7)事件调度法:仿真模型中的时间控制部件用于控制仿真钟的推进。在事件调度法中,事件表按事件发生时间先后顺序安排事件。时间控制部件始终从事件表中选择具有最早发生时问的事件记录,然后将仿真钟修改到该事件发生时刻。对每一类事件,仿真模型有相应的事件子程序。每一个事件记录包含该事件的若干个属性,其中事件类型是必不可少的,要根据事件类型调用相应的事件子程序。在事件子程序中,处理该事件发生时系统状态的变化,进行用户所需要的统计计算;如果是条件事件,则应首先进行条件测试,以确定该事件是否确能发生。如果条件不满足,则推迟或取消该事件。该事件子程序处理完后返回时问控制部件。 (8)进程交互法:一个进程包含若干个有序事件及有序活动。进程交互法采用进程描述系统,它将模型中的主动成分所发生的事件及活动按时间顺序进行组合,从而形成进程表,一个成分一旦进入进程,它将完成该进程的全部活动。 (9)连接:通过对象之间的连接定义仿真模型的流程,模型中对象之间是通过端口来

生产系统建模与仿真试卷(A卷)

上海海洋大学试卷 姓名:学号:专业班名: 一.简述题(共40分) 1.什么是事件?在单通道排队系统中,哪两个典型事件影响系统的状态?这两个典型事件分别发生时,可能会改变系统哪些状态?(5分) 事件是指引起系统状态发生变化的行为或者事情 在单通道派对系统中的典型事件是:顾客到达和服务结束 顾客到达发生,系统可能会由闲开始变为忙,可能引起队长发生变化 服务结束,系统的状态可能有忙变为闲,可能引起队长发生变化 2.分析FMS(柔性制造系统)中的实体、状态、事件和活动。要求每一项写出2个。(8分) 实体:机床、工件 状态:空闲、加工 事件:工件到达、加工结束 活动:工件到达与工件加工开始这之间的一段事件是一个活动

3.在排队模型中,假定用链表来存放排队等待服务的顾客。链表中只有“到达时间”这样的单属性,当前CLOCK =10,已用空间表和可用空间表的情形见下图1,并且任何时候队列中的顾客数不会超过4位。若已知排队系统中依次发生的事件如下表1。 请根据表1中列出的事件画出CLOCK =15,CLOCK =20,CLOCK =25时的已用空间表和可用空间表的情形(注意:画出的图形中必须标上行号)。(8分)

4.库存系统仿真中有哪4种类型的事件?当这4种事件同时发生时,系统如何处理4种事件?(4分) 1 货物到达 2 顾客需求 3 仿真结束 4 月初清库 5.请问输入数据分析的基本步骤有哪些,并简述各个步骤的基本内容?(6分) 输入数据收集 分布的识别 参数估计 拟合度检验 6.在稳态仿真中,哪两种方法能够提高仿真结果的精度?(4分) 重复运行次数和增加运行长度

哈工大工程系统建模与仿真实验报告

研究生学位课 《工程系统建模与仿真》实验报告 (2017 年秋季学期) 姓名 学号 班级研一 专业机械电子 报告提交日期 哈尔滨工业大学

报告要求 1.实验报告统一用该模板撰写: (1)实验名称 (2)同组成员(必须写) (3)实验器材 (4)实验原理 (5)实验过程 (6)实验结果及分析 2.正文格式:小四号字体,行距单倍行距; 3.用A4纸单面打印;左侧装订; 4.报告需同时提交打印稿和电子文档进行存档,电子文档请发送至: xxx@https://www.wendangku.net/doc/c513109389.html,。 5.此页不得删除。 评语: 教师签名: 年月日

实验一报告正文 一、 实验名称 TH -I 型智能转动惯量实验 二、 同组成员(必须写) 17S 三、 实验器材(简单列出) 1. 扭摆及几种有规则的待测转动惯量的物体 2. 转动惯量测试仪 3. 数字式电子台秤 4. 游标卡尺 四、 实验原理(简洁) 将物体在水平面内转过一角度θ后,在弹簧的恢复力矩作用下物体就开始绕垂直轴作往返扭转运动。 根据虎克定律,弹簧受扭转而产生的恢复力矩M 与所转过的角度θ成正比,即 M =-K θ (1) 式中,K 为弹簧的扭转常数,根据转动定律 M =I β 式中,I 为物体绕转轴的转动惯量,β为 角加速度,由上式得 M I β= (2) 令2I K ω= ,忽略轴承的磨擦阻力矩,由式(1)、(2)得 222d K dt I θβθωθ==-=- 上述方程表示扭摆运动具有角简谐振动的特性,角加速度与角位移成正比, 且方向相反。此方程的解为: c o s () A t θωφ=+ 式中,A 为谐振动的角振幅,φ为初相位角,ω为角速度,此谐振动周期为 22T π ω = = (3) 由式(3)可知,只要实验测得物体扭摆的摆动周期,并在I 和K 中任何一个量已知时即可计算出另一个量。 五、 实验过程(简洁) 1. 用游标卡尺测出实心塑料圆柱体的外径D 1、空心金属圆筒的内、外径D 内、 D 外、木球直径D 直、金属细杆长度L ;用数字式电子秤测出各物体质量m (各测量3次求平均值)。

系统建模与仿真习题答案forstudents

第一章习题 1-1什么是仿真?它所遵循的基本原则是什么? 答:仿真是建立在控制理论,相似理论,信息处理技术和计算技术等理论基础之上的,以计算机和其他专用物理效应设备为工具,利用系统模型对真实或假想的系统进行试验,并借助专家经验知识,统计数据和信息资料对试验结果进行分析和研究,进而做出决策的一门综合性的试验性科学。 它所遵循的基本原则是相似原理。 1-2在系统分析与设计中仿真法与解析法有何区别?各有什么特点? 答:解析法就是运用已掌握的理论知识对控制系统进行理论上的分析,计算。它是一种纯物理意义上的实验分析方法,在对系统的认识过程中具有普遍意义。由于受到理论的不完善性以及对事物认识的不全面性等因素的影响,其应用往往有很大局限性。 仿真法基于相似原理,是在模型上所进行的系统性能分析与研究的实验方法。 1-3数字仿真包括那几个要素?其关系如何? 答: 通常情况下,数字仿真实验包括三个基本要素,即实际系统,数学模型与计算机。由图可见,将实际系统抽象为数学模型,称之为一次模型化,它还涉及到系统辨识技术问题,统称为建模问题;将数学模型转化为可在计算机上运行的仿真模型,称之为二次模型化,这涉及到仿真技术问题,统称为仿真实验。 1-4为什么说模拟仿真较数字仿真精度低?其优点如何?。 答:由于受到电路元件精度的制约和容易受到外界的干扰,模拟仿真较数字仿真精度低 但模拟仿真具有如下优点: (1)描述连续的物理系统的动态过程比较自然和逼真。 (2)仿真速度极快,失真小,结果可信度高。 (3)能快速求解微分方程。模拟计算机运行时各运算器是并行工作的,模拟机的解题速度与原系统的复杂程度无关。 (4)可以灵活设置仿真试验的时间标尺,既可以进行实时仿真,也可以进

系统建模与仿真(2)

第九讲系统建模与仿真(2) 四、仿真 1. 仿真(模拟)(Simulation)概念 1)定义 利用模型复现实际系统中发生的本质过程, 并通过对系统模型的实验来研究存在的或设计中的系统. 2)分类 物理仿真:即实物仿真, 如风洞 计算机仿真(数学仿真): 模拟数字混合 半实物仿真: 控制器(实物)+计算机上实现的控制对象 3)建模、仿真与计算机 建模与仿真的五个组成部分(实际系统、试验框架、基本模型、集总模型、计算机模型)

实际系统:行为描述(可观测变量、不可观测变量) 试验框架:假设或条件集合,同模型有效性之间相关 基本模型:在试验框架下,解释实际系统的行为 集总模型:基本模型的简化 计算机:复杂(仿真) 4)基本要素 ●对仿真问题的描述 ●行为产生器 ●模型行为及其处理 5)仿真的发展阶段 ●模型驱动的仿真 ●含实物的仿真 ●人在回路中的仿真 6)仿真的发展趋势 ●面向对象仿真 ●定性仿真 ●智能仿真 ●分布交互仿真 ●可视化仿真 ●多媒体仿真 ●虚拟现实仿真 ●Internet网上仿真

7)仿真的对象 ●系统过于复杂(如存在过多的随机因素),难以采用解析法求解 时,通过仿真可得到系统的动态特征。 ●系统实际运行费用过高或无法作实际运行时,借助仿真可以得到 系统的有关参数。 优化设计、安全性和经济性、预测、完善系统模型、重复实验 8)仿真的一般过程 9)仿真的分类

●物理仿真,模拟机仿真,数字仿真,数字机与模拟机混合仿 真,仿真器仿真 ●连续和离散系统仿真 ●静态和动态系统仿真 ●稳态和终态仿真 ●确定性和随机性仿真 10)仿真的输出类型 ●确定型和随机型 ●连续观测值和离散观测值 ●连续分布和离散分布观测值 ●一元和多元输出 ●稳态型仿真和终止型仿真输出 11)仿真的局限性 1) 往往只能得到特解,而得不到通解 2) 结果往往是间接的,而不是直接的 12)仿真的技术工具 连续系统仿真:DYNAMO, CSMP 离散事件系统仿真:GPSS, SIMSCRIPT, SIMULA, GPSS-F 混合仿真:GASP-IV

系统建模与仿真复习

概念-10 填空-20 数学运算-30 绘图--20 论述-20 系统建模与仿真基本概念 描述系统“三要素”:实体、属性、活动 ――实体确定了系统的构成,也就确定了系统的边界; ――属性也称为描述变量,描述每一实体的特征; ――活动定义了系统内部实体之间的相互作用,从而确定了系统内部发生变化的过程。 按照系统的时间特性对系统的分类 连续系统:系统的状态是随时间连续变化的。可以使用微分方程或一组状态方程来描述。有时,在连续系统中可能要使用一些离散的数据,这时也可以用差分方程或一组离散状态方程来描述。 离散系统:系统的状态变化只在系统离散的时刻发生,而且往往又是随机的。是人造系统中比较常见的一种系统形式。如:管理系统、计算机系统、软件系统、交通系统等 混合系统:系统中既有连续成份又有离散成分。一般为人造系统与自然系统相互作用而生成的新系统。如:连续过程的生产系统、流体机械等。 建立系统模型的原因:1-复杂系统设计。如:软件设计 2-更新或优化设计。如:高效低噪声的风扇的设计 3-情势推演或者游戏。如:兵棋推演 4-低成本预测。如:设计效果预测 5-在线设计。如:单片机仿真系统 系统仿真的基本步骤

系统的定义:为了达到某种目的的一组具有特定的功能、彼此互相联系的若干要素的有机整体。 系统的两种分类方法: 系统分类之1——按照系统的生成方式:自然系统、人造系统 系统分类方法之2——按系统中起主导作用的变化是否连续:连续系统、离散系统 系统的特点: 第1——系统的整体性。系统由许多要素组成的,各部分是不可分割的。(最小原则) 第2——系统的相关性。系统内部的各个要素之间互相以一定的规律联系着,它们之间的特定关系就形成了特定定能的系统(依赖原则) 系统模型:是为了研究系统的一种表示,是系统的内在规律及它与外界的相互作用关系的描述。 模型的分类及其描述:物理模型、数学模型 物理模型:又称实体模型,是实际系统在尺寸上的缩小或放大后的相似体 数学模型:用数学方程(常用代数方程和微分方程的组合)或其它图形与符号手段来描述实际系统的结构和性能的方法。与时间有关称为动态模型,与时间无关则称为静态模型。 数学模型的特点 “数学模型”是人们对自然世界的一种抽象理解,它与自然世界/现象/问题具有“性能相似”的特点,人们可利用“数学模型”来研究/分析自然世界的问题与现象,以达到认识世界与改造世界的目的。 模型验证 在仿真实验过程中,其结果的有效性取决于“系统模型”的可靠性;因此,模型验证是一项十分重要的工作,它应该贯穿于“系统建模—仿真实验”这一过程中,直到仿真实验取得满意的结果。 模型验证的内容 验证“系统模型”能否准确地描述实际系统的性能与行为;

第一章 系统建模与仿真概述

第一章系统建模与仿真概述 系统:系统是由两个以上相互区别或相互作用的单元有机的结合在起来,完成某一功能的综合体。 系统的特征:1.系统的整体性 2.系统的层次性 3.系统的相关系 4.系统的目的性 5.系统对环境的适应性系统: 模型:模型是对系统的特征要素,有关信息和变化规律的一种抽象表述、它反映 了系统某些本质属性,描述了系统各要素间的相互关系,系统与环境之间的相互 作用。 模型的意义:1.客观实体系统很难做试验,或者根本不能做实验。 2.对象问题虽然可以做试验,但是利用模型更便于理解。 3.模型易于操作,利用模型的参数变化来了解现实问题的本质和规 律更加经济方便。 系统模型的种类:抽象模型和形象模型 抽象模型:数学模型图形模型计算机模型概念模型 形象模型:模拟模型实体模型 建立模型的步骤: 1.弄清问题,掌握实际情况 2.搜集资料 3.确定因素之间的关系 4.构造建模 5.求解模型 6.检验模型的正确性 系统建模预防针的一般方法和步骤(P17) 仿真的发展趋势:建模方法面对对象仿真分布交互仿真人工智能与 计算机仿真虚拟现实仿真 Internet网上仿真 第二章商贸物流系统建模与仿真 商贸流通在社会经济中的地位与作用:1,商贸流通是连接生产和消费的纽带; 2,商贸流通对生产具有反作用; 3,商贸流通是国民经济现代化的支柱。 商贸活动的内容: 1,商流,对象物所有权转移的活动称为商流。 2,物流,是指事物从供给方向需求方的转移。

3,资金流,主要是指资金流的转移过程,包括付款,转账等过程,是 整个商贸活动的目的。 4,信息流,指商品信息的提供,商品促销信息,技术支持,售后服务 等内容,也包括诸如询单价,报单价,付款通知单,转账通知单等商业贸易单证以及交易 方的支付能力和支付信誉。 预测:所谓预测就是人们对某一不确定的或未知事件的表述。 预测的作用:从变化的事物中找出使事物发生变化的变化的固有规律,寻找和研究各种变化现象的背景及其演变的逻辑关系,从而去揭示事物未来的面貌。 判断预测方法:一,部门负责人评判预测法;二,销售人员估计法;三,德尔菲法;四, 历时类比法。 德尔菲法:依靠技术专家小组背靠背景来判断,来代替面对面的会议,是不同专家将分歧的幅度和理由都能够表达出来,经过客观分析以求达到客观规律的一致意见。 时间序列预测技术:一,移动平均预测法(计算题p30例2); 二,指数平均预测法。 DRP:是分销需求计划的简称,它是MRP原理和技术在流通领域中的应用。该技术主要解决分销物资的应用和调度问题,其基本目标是合理进行分销物资和资源配置,以达到既有效 地满足市场需求优势的配置费用最省的目的。 *DRP的基本概念 1.库存:指仓库或物流中心实际存在的物资数量。 2.安全库存:为便于生产经营活动正常进行,防止因需求货供应的波动 引起缺货或停工待料,经常在仓库各项目保持一定数量的计划库存量, 成为安全库存。 3.期初和期末库存:指在论述的时间段开始和结束时本单位的实际库存。 4.进货提前期:指从发出订货到所定货物运回并入库所需要的时间长度。 5.送货提前期:指从接收订单到货物送到用户手中并接收入库的时间长度。 6.在途物资:指供应商已经接受订单备货,但尚未来到本单位入库的物资。 7.订货批量:指一次订货所订的物资数量。 8.时间周期:就是根据实际需要划分的时间段信息,如一日,周,月划分。 9.计划期:是指DRP尽心运算的整个时间段,可能是一个月,一个季度 或一年,他可划分为几个计划周期。 10.物流中心:从事物流活动的具有完善的信息网络的场所或组织。 BOD简介:B OD是MRP中物料清单BOM的概念和结构在分销领域的运用,它同BOM在产品结构树中连接各零件和成品一样,在供应方和各个需求方之间架起了一座沟通的桥梁。 DRP在分销网络中的运作原理(p43DRP原理图)

系统建模与仿真

系统建模仿真技术的历史现状和发展趋势分析 工程133 胡浩3130212026 【摘要】:经过半个多世纪的发展,仿真技术已经成为对人类社会发展进步具有重要影响的一门综合性技术学科。本文对建模与仿真技术发展趋势作了较全面分析。仿真建模方法更加丰富,更加需要仿真模型具有互操作性和可重用性,仿真建模VVA与可信度评估成为仿真建模发展的重要支柱;仿真体系结构逐渐形成标准,仿真系统层次化、网络化已成为现实,仿真网格将是下一个重要发展方向;仿真应用领域 更加丰富,向复杂系统科学领域发展,并将更加贴近人们的生活。 工程系统的仿真,起源于自动控制技术领域。从最初的简单电子、机械系统,逐步发展到今天涵盖机、电、液、热、气、电、磁等各个专业领域,并且在控制器和执行机构两个方向上飞速发展。 控制器的仿真软件,在研究控制策略、控制算法、控制系统的品质方面提供了强大的支持。随着执行机构技术的发展,机、电、液、热、气、磁等驱动技术的进步,以高可靠性、高精度、高反应速度和稳定性为代表的先进特征,将工程系统的执行品质提升到了前所未有的水平。相对控制器本身的发展,凭借新的加工制造技术的支持,执行机构技术的发展更加富于创新和挑战,而对于设计、制造和维护高性能执行机构,以及构建一个包括控制器和执行机构的完整的自动化系统也提出了更高的要求。 AMESIM软件正是能够提供平台级仿真技术的工具。从根据用户需求,提供液压、机械、气动等设计分析到复杂系统的全系统分析,

到引领协同仿真技术的发展方向,AMESIM的发展轨迹和方向代表了工程系统仿真技术的发展历程和趋势。 一、系统仿真技术发展的现状 工程系统仿真作为虚拟设计技术的一部分,与控制仿真、视景仿真、结构和流体计算仿真、多物理场以及虚拟布置和装配维修等技术一起,在贯穿产品的设计、制造和运行维护改进乃至退役的全寿命周期技术活动中,发挥着重要的作用,同时也在满足越来越高和越来越复杂的要求。因此,工程系统仿真技术也就迅速地发展到了协同仿真阶段。其主要特征表现为: 1、控制器和被控对象的联合仿真:MATLAB+AMESIM,可以覆盖整个自动控制系统的全部要求。 2、被控对象的多学科、跨专业的联合仿真:AMESIM+机构动力学+CFD+THERMAL+电磁分析 3、实时仿真技术 实时仿真技术是由仿真软件与仿真机等半实物仿真系统联合实现的,通过物理系统的实时模型来测试成型或者硬件控制器。 4、集成进设计平台 现代研发制造单位,尤其是设计研发和制造一体化的大型单位,引进PDM/PLM系统已经成为信息化建设的潮流。在复杂的数据管理流程中,系统仿真作为CAE工作的一部分,被要求嵌入流程,与上下游工具配合。

《系统建模与仿真》复习题样例 江苏大学

《系统建模与仿真》复习题样例:考试内容主要但不 限于如下内容 一、单项选择题(每题.5分,共32题) 1、下列哪个图标表示输送链Conveyor元素(C)。----序号17 A、 B、 C、 D、 2、某条生产线生产产品A,生产速率为1件/3分钟,生产的产品将送入仓库Buf 存储起来,假设生产线产出的第一件A在仿真时刻3,则运行至仿真时刻60,统计进入Buf的零件A的数量可以使用下面的函数(B)。----序号507 A、NPARTS(Buf) B、NPARTS(A) C、NPARTS2(Buf,A,1) D、APARTS(Buf) 3、一次能处理多个部件,即n个部件输入n个部件输出的是:(B )。----序号218 A、单处理机 B、批处理机 C、装配机 D、生产机 4、在模型中有一属性元素process_time,表示不同的零件在某一机器上所需要的加工时间,那么,在机器详细设计中,对机器的加工时间cycle time栏中应输入()----序号144 A、process_time B、process_time() C、match D、cycle time 5、对缓冲器(buffer)中几个缓冲区用矩形框框起来的可视化设计,其所需要使用的可视化属性是(B )。----序号134 A、name B、rectangle C、patch D、part queue 6、零件(part)到达系统的时间间隔规律在零件详细设计对话框的( C)中进行设置。----序号148 A、type B、first arrival C、inter arrival D、to 7、有3个零件nut一次性进入系统缓冲区buf1中等待机器加工,机器加工该零部件的时间为3分钟,则计算Bmaxtime(buf1)的结果是()。----序号261 A、3 B、6 C、8 D、9 8、可以用于机器(machine)输入(from)规则的是( A)。----序号80 A、pull B、push C、send D、take 9、下列哪个图标表示时间序列曲线Timeseries元素(A )。----序号21 A、 B、 C、 D、

生物系统建模与仿真题目综合

根据质量守恒定律,血液中药物变化量等于该时刻药物进入血液速率与从血液排泄出去的速率之差,得: 由于静脉推注时输入f10=D δ(t) 得: 求解此微分方程,得: 那么,药物血药浓度为: 三、计算题 6.在标准状况下,常人进行一次有效呼吸约吸入500ml 空气,其中氧含量约为21%,二氧化碳含量为0.03%,经过一次气体交换呼出气体中氧含量变为15%,二氧化碳量占20%。 试求:呼出气体容量E V 、耗氧量2Q V 及二氧化碳产生量2CO V 解:呼出气体容量 E V =+-2O I V V 2CO V 其中耗氧量 2Q V =I ICO E ECO V F V F ..22-(其中F.为气体含量百分比) 其中吸入气体中二氧化碳量很少,在计算中可忽略不计,所以可得二氧化碳产生量为 2CO V =E ECO V V .2 由已知数据代入以上三式得: ? ?? ??=-?=+-=E CO E O CO O E V V V V V V V 2.015.050021.0500222 2 10 1011 )() (f t x k dt t dx +-=??? ??=-=+D x t x k dt t dx )0()() (11011t k De t x 01)(1-=t k e V D t C 011)(-=

可解得: ??? ??===ml V ml v ml V co o E 5.12195.136072 2 (2)(心电正问题)是研究心脏电兴奋在不同的心脏状态下是如何传播及形成体表电位的;(心电逆问题)是指从体表电位分布推断心脏内的电活动进程即求取心电源的分布。 计算题 主动脉模型中,有3个胸主动脉段内含有气囊,故在这三段的建模中,其容积下限设定为该段内气囊的瞬时体积。由于气囊的介入,在这三个胸主动脉段内产生血流等效粘滞阻力和惯性项。那么血流等效粘滞阻力和惯性项的计算公式是什么? L n =L 0/(+) R n =R 0/[1.333r b +0.667 式中和分别为第n 段主动脉和其内气囊的半径。 L 0和R 0由下式给出 L 0=L* R 0=R* 1、建立模型一般过程为(实验设计)、(模型结构的确定)、(参数估计)、(模型验证)。 2、体温控制系统热交换系统需从热量在体内的(产生)、(传导)、(散出)过程中分析规律。 选择 1、古典生物膜理论建立基础是(A 、D ) A 、扩散 B 、布朗运动 C 、定向运动 D 、漂移 2、LFX 仿真能得到(A 、B 、D )信息。 1、体表点位分布图 B 、12导联心电图C 、心磁D 、心脏兴奋时序图 3、半知模型称为(C ) A 、白箱 B 、黑箱 C 、灰箱 D 、透箱 以下几种算法哪一种训练神经网络收敛速度最快( b ) A. 模拟退火算法 B.带有免疫算子的遗传算法 C.蒙特卡洛算法 D.遗传算法 2.以下那个选项不属于呼吸过程( d ) A.外呼吸 B.气体在血液中的运输 C.内呼吸 D.琥珀酸循环 3.生物系统建模时常用四种模型是物理近似模型、物理模拟模型、图解文字或符号式模型、数学模型。 4.常用来解决非线性模式识别问题的生物系统模型是神经网络。 5.在标准状况下测得某人吸入空气后,呼出氧气16% 氮气78% 二氧化碳4% 稀有气体1% 较多的水汽。测得当时空气各成分含量氧气21% 氮气78% 二氧化碳0.03% 稀有气体0.94% 较少的水汽。假设吸入呼出气体体积不变。请计算呼吸气体交换比。 气体交换比R=[4%*(1-21%)]/(21%-21%*4%-4%)=1.96 选择: 1, 建立模型的步骤有:○ 1试验设计○2模型结构的确定○3参数估计

(整理)控制系统数字仿真第二章习题答案

控制系统数字仿真与CAD第二章习题答案 2-1 思考题: (1)数学模型的微分方程,状态方程,传递函数,零极点增益和部分分式五种形式,各有什么特点? (2)数学模型各种形式之间为什么要互相转换? (3)控制系统建模的基本方法有哪些?他们的区别和特点是什么? (4)控制系统计算机仿真中的“实现问题”是什么含意? (5)数值积分法的选用应遵循哪几条原则? 答:(1)微分方程是直接描述系统输入和输出量之间的制约关系,是连续控制系统其他数学模型表达式的基础。状态方程能够反映系统内部各状态之间的相互关系,适用于多输入多输出系统。传递函数是零极点形式和部分分式形式的基础。零极点增益形式可用于分析系统的稳定性和快速性。利用部分分式形式可直接分析系统的动态过程。 (2)不同的控制系统的分析和设计方法,只适用于特定的数学模型形式。 (3)控制系统的建模方法大体有三种:机理模型法,统计模型法和混合模型法。机理模型法就是对已知结构,参数的物理系统运用相应的物理定律或定理,经过合理的分析简化建立起来的各物理量间的关系。该方法需要对系统的内部结构和特性完全的了解,精度高。统计模型法是采用归纳的方法,根据系统实测的数据,运用统计规律和系统辨识等理论建立的系统模型。该方法建立的数学模型受数据量不充分,数据精度不一致,数据处理方法的不完善,很难在精度上达到更高的要求。混合法是上述两种方法的结合。 (4)“实现问题”就是根据建立的数学模型和精度,采用某种数值计算方法,将模型方程转换为适合在计算机上运行的公式和方程,通过计算来使之正确的反映系统各变量动态性能,得到可靠的仿真结果。 (5)数值积分法应该遵循的原则是在满足系统精度的前提下,提高数值运算的速

相关文档
相关文档 最新文档