文档库 最新最全的文档下载
当前位置:文档库 › 微电子材料概述

微电子材料概述

微电子材料概述
微电子材料概述

微电子材料概述

[摘要]微电子材料的应用与影响在我们的日常生活中随处可见。近年来微电子

材料更是几乎已成为所有电子产品的心脏。在本文里,将简要地叙述微电子材料的发展历史和现状、实际应用、发展趋势和展望,增进对微电子材料的了解。

[关键词] 晶体管集成电路微电子工业微电子材料硅晶

综观人类社会发展的文明史,一切生产方式和生活方式的重大变革都是由于新的科学发现和新技术的产生而引发的,科学技术作为革命的力量,推动着人类社会向前发展。从50多年前晶体管的发明到目前微电子技术成为整个信息社会的基础和核心的发展历史充分证明了“科学技术是第一生产力”。目前科技的飞速进展与集成电路(是将各种电路器件集成于半导体表面而形成的电路)的发展应用有着密不可分的关系。十九世纪工业革命主要以机器节省人力,二十世纪的工业革命则以电脑为人脑分劳。而电脑的发展归于集成电路工业微小化的趋势,使电子产品得以“轻、薄、短、小”,故集成电路又称微电子工业。

1、微电子工业的发展历史和现状

19 世纪末 20 世纪初的物理学革命,为微电子技术的产生奠定了理论基础。半导体三个重要物理效应——光电导效应、光生伏特效应、整流效应的发现,量子力学的建立和材料物理的发展,都起到了理论推动作用。1946 年 1 月,Bell 实验室正式成立了半导体研究小组,成员为肖克莱、理论物理学家巴丁、实验物理学家布拉顿。在系统的研究过程中,巴丁提出了表面态理论,肖克莱给出了实现放大器的场效应基本设想,巴丁设计进行了无数次实验,于 1947 年 12月观察到了该晶体管结构的放大特效,标志着世界上第一个点接触型晶体管的诞生。差不多在同时数字计算器的发展提供了集成电路的庞大潜在市场。新器件的出现与应用的配合,造就了晶体管与计算机工业的爆炸性成长。同时因为计算机、太空卫星、飞弹电子系统“轻、薄、短、小”的需求刺激了集成电路的发展。

到了1952 年,肖克莱又与斯帕克斯、迪尔一起发明了单晶锗NPN结型晶体管。1952 年 5 月,英国科学家达默第一次提出了集成电路的构想。1958 年,以德克萨斯仪器公司的科学家基尔比为首的研究小组研制出世界上第一块集成电路。自此以后,集成电路技术更一日千里。演变至今,各电路器件基本尺寸不断缩小(至深次微米大小),工作速度加快(每秒可执行百亿个指令),耐用性增加,而价格大为减低。估计过去三十年中,电子器件基组使用量每年增加一倍,亦即每年增加数量为该年以前所有生产及使用期间数量总和。同期间,每执行一个工作指令的器件单元价格,却以每年百分之二十到三十的幅度降低。这种价格与功能的关系,是工业革命以来所有工业产品从未出现的异常现象。尤其近年来个人电脑的

发展,不仅使微电子产品自工厂进入办公室及家庭,而且更促成其他各种工业革命性改变。所以有人称二十世纪中叶以后的时代为半导体时代。

2、微电子材料介绍

微电子材料主要是大直径(400mm)硅单晶及片材技术,大直径(200mm)硅片外延技术,150mmGaAs和100mmInP晶片及其以它们为基的III-V族半导体超晶格、量子阱异质结构材料制备技术,GeSi合金和宽禁带半导体材料等。

从1940年代末期晶体管问世以来,电子工业始终以基础材料科学为先导,日新月异,材料科学与工程在电子工业的成长中扮演了极重要的角色。高纯度及几乎无缺陷硅晶的生长,靠“区段纯化”及“柴氏拉伸法”才得已实现,因而促成微电子工业的全面发展。其他各种处理材料的工艺步骤,以及各种物性、结构、成分及缺陷的分析,无一不与材料的工艺及分析息息相关。近年来集成电路晶圆大型化及器件单元微小化的趋向,使产品的良品率不断提高,是促使集成电路价格不升反降的主要原因。但也使工艺步骤日益精细复杂,生成缺陷的机会也增加。各电路器件基组尺寸缩小,缺陷对它的不良影响也相对增加。要维持一定的良品率,对材料科学是莫大的挑战。微电子工业在现代工业中居关键枢纽地位,而居于微电子材料中心地位的硅晶也因此有“新钢铁”之誉。

2.1硅晶集成电路

集成电路是将各种电路器件包括电阻、电容及集成晶体管链接与半导体表面而形成的电路。集成电路自1960年代问世以来,一直朝器件微小化,制造大型化发展。目前各电路器件尺寸以缩小至深亚微米大小。

材料在半导体工业上的应用十分广泛,目前用于半导体集成电路(IC)的衬底,几乎全为硅单晶(即硅圆晶),以IC工业来看,硅晶材料具有价格低,强度佳,相关工艺技术成熟的优点,因此,大半的IC工业,借以硅晶为衬底,同时也投入相当多的人力、物力在相关技术的研发,而造就了所谓的硅晶时代。目前已步入极大规模集成电路时代,每一芯片实际尺寸约为1.5cm X 1.5cm上含高达两千万个晶体管以上。在制造大型化方面,主要为缩减生产成本,增加产量,晶圆尺寸由1970年代的2英寸到目前的8英寸,而即将有12英寸厂商出现。

集成电路的制造工艺主要包括以下内容:

图形装换技术:主要是光刻和刻蚀技术。

薄膜制备技术:主要是外延、氧化、化学气相淀积、物理气相淀积等。

掺杂工艺:主要是扩散与离子注入。

其他工艺:接触与互连、隔离技术、封装技术和辅助工艺等。

随着集成电路规模的发展,工艺的不断提高,其种类趋于繁多,应用环境的变化,集成电路的设计也起着越来越大的作用。尤其是电子设计自动化EDA工具

的应用,在保证实际准确性的同时,大大缩短了设计周期,降低了设计的成本。目前,我们已经进入纳米时代。0.25 微米的CMOS工艺技术已进入大量生产,以该项技术制作出来的 256Mb 的 DRAM 和 600MHz 的微处理器芯片上,每片上的集成的晶体管数已经达到了 108~109 数量级;10nm的器件已经在实验室研制成功,相应的栅氧化层只有 1.0-2.0nm;90nm-32nm 工艺已进入规模生产,晶体管本身宽度只有 30nm-50nm. 微电子产业发展高速、辐射面广,极大地影响了社会的方方面面,已经被列为是支柱产业之一。

2.2微电子材料的特性

微电子器件的发展在二十世纪后期掀起第二次工业革命,“轻、薄、短、小”成了时代进步的象征,主要因为微电子器件具有功能替代性:大体而言,以轻工业替代重工业,以信息技术替代机械技术;如以电脑替代人脑,传真电话替代信件传递,计算器替代算盘及机械计算器,电子表替代机械表,交通信号替代交通警察,自动售货机替代售货员。同时在替代过程中,具有下列特性:(1)节省材料:较“轻、薄、短、小”,所需材料总量不大。

(2)节省能源:不仅在使用时,且在制造上均节省能源,如晶体管替代真空管。

(3)节省空间:如个人电脑与早期利用真空管工作的计算器,功能有过之而无不及,所占空间大为减小。

(4)增进性能:如机械操作自动化、新机件自动校准、现场诊断测试能力大增。

(5)耐用可靠:如微电子器件控制相比于真空管控制的家电产品,如收音机、电视机。

(6)价格低廉:微电子器件制造随其微小化,生产力逐渐增加,相关产品价格亦逐渐下降,与一般产品价格逐年上涨有明显差异。

3、微电子材料的应用

微电子材料为微电子器件的构成材料。微电子器件为微电子产品的心脏。微电子产品在现代生活中不论在工厂、办公室及家庭可谓无所不在。

3.1民用家电用品

微电子材料产品和微处理器不再是专门用于科学仪器世界的贵族,而落户于各式各样的普及型产品之中,进人普通百姓家。例如电子玩具、游戏机、学习机及其他家用电器产品等。就连汽车这种传统的机械产品也渗透进了微电子技术,使用微电子材料的电子引擎监控系统。汽车安全防盗系统、出租车的计价器等已得到广泛应用,现代汽车上有时甚至要有十几个到几十个微处理器。现代的广播电视系统更是使微电子技术大有用武之地的领域,集成电路代替了彩色电视机中

大部分分立元件组成的功能电路,使电视机电路简捷清楚,维修方便,价格低廉。由于采用微电子技术的数字调谐技术,使电视机可以对多达100个频道任选,而且大大提高了声音、图像的保真度。

3.2信息产品

目前电子信息产业在国际国内均已跃升至第一大产业,微电子作为信息时代发展的基础和核心,将继续发挥越来越重要的作用,微电子产业的飞速发展又进一步刺激了以信息技术为主的新经济。现在信息技术中的数字化概念正被人们广泛地接受,以机顶盒(STB)、DVD播放机、MP3播放机、数码相机、数字电视广播、移动电话等为代表的数字消费电子新产品的市场正在蓬勃发展。追根溯源,微电子是这场革命的原动力。

在微电子技术的推动下,电子整机或数字化系统的性能、功能、体积和功耗不仅得到显著改善,而且价格不断下降。系统或电子整机产品中的IC技术和成本含量不断增加,下面是一些电子产品硅芯片占整个成本的比例:

PC机 40~50% DVD 35~40%

STB 35~40% 传真机 20~30%

近几年来,随着TV、PC、STB、PDA、手机、DVD、Internet设备等行业的蓬勃发展,特别是消费电子类产品数量的快速增长,全球的微电子产业得到了迅猛发展,微电子已成为信息社会的支柱产业,是衡量一个国家综合国力的重要因素。

3.3医疗及工业设备

微电子材料与生物医学之间有着非常紧密的联系。一方面微电子材料的发展,将大大地推动生物医学的发展,另一方面生物医学的研究成果同样也对微电子材料的发展起着巨大的促进作用。其在医疗方面的主要有两个应用:一是用微电子材料制造的微机械系统(MEMS),微机械在医疗领域的应用有着极其诱人的前景。例如微小血管检测器,用于心脏衰弱者的心脏起搏器,微小人工血管,用于外科手术中可实现各种微细操作的微型可控镊子等等。二是微电子材料与生物技术紧密结合,其是以DNA芯片等为代表的生物工程芯片,它将是21世纪微电子领域的另一个热点和新的经济增长点。

微电子材料的发展对各种传统产业具有强有力的带动作用:几乎所有的传统产业与微电子材料结合。对集成电路芯片进行智能改造,都可以使传统产业焕发青春。例如火电厂的锅炉给水泵送风机、引水机站电厂全部耗能的 72%,而仅仅对全国风机、水泵采用变频调速等电子技术进行改造,每年即可节电659亿度,相当于三个葛洲坝的发电量。电子设备的更新换代都基于微电子材料的进步。只有微电子材料的发展取得突破,才能制造出更高性能的集成电路,从而导致相关的一系列电子产品的更新。

3.4国防设备。

微电子技术在军事国防方面同样有重要的应用。微电子技术的发展和应用,不仅提升了军事装备和作战平台的性能,而且导致了新式武器以及新兵种的产生。微电子技术的产生改变了传统战争的模式,将面对面的战斗演变为超视距作战。

4、未来挑战与展望

微电子作为一个非常有活力的领域,依然在不断快速发展。一些技术已经投入应用,在社会各个方面为人类提供便利;而另一些技术还处于试验阶段,有待科学家们的继续研究。目前,微电子领域的前沿技术包括微电子制造工艺、微电子材料的研究、超大规模集成电路的设计以及MEMS技术等。微加工工艺是制造MEMS 的主要手段,IC制造技术含(如光刻、薄膜淀积、注入扩散、刻蚀等)、微机械加工技术(如牺牲层技术、各向异性刻蚀、双面光刻以及软光刻技术等)和特殊微加工技术。目前微电子的制造工艺采用光刻和刻蚀等微加工方法,将大的材料制造为小的结构和器件,并与电路集成,实现系统微型化。对半导体材料的研究也是微电子领域的热门。由最原始的元素半导体(锗、硅、硒、硼、锑、碲),到化合物半导体(砷化镓、磷化锢、锑化锢、碳化硅、硫化镉及镓砷硅等),乃至热门的有机半导体和无定型半导体。半导体材料的改变必然会引起半导体器件性能的改变。随着研究的深入,新型宽禁带半导体材料的开发可能会在极大程度上决定半导体器件的性能。集成电路的设计必须考虑多方面的因素,要求速度更快、面积更小、功能更多。多种验证方法相结合,数模、软件协同等,将极大程度上提高集成电路设计效率。MEMS 技术是利用集成电路制造技术和微加工技术把一系列微结构制造在一块或多块芯片上的微型集成系统。MEMS 的出现是芯片不再局限于处理电信号为目的的集成电路,其功能拓展到了机、光、电、化学、生物等领域。

传统IC金属化工艺主要采用铝作为互连材料,其在信号的高速传导方面表现出很大的局限性。而选用电阻率较小的铜作为互连材料和介电材料作为层间介质是降低信号延迟、提高时钟频率的理想选择。系统芯片(SOC)的出现,让人们看到了微电子技术一个崭新的发展方向。SOC将原来多个芯片完成的功能集中到单个芯片中实现,但却不是各个子芯片功能的简单叠加,而是从系统整体的功能和特性出发,用软硬件结合的设计和验证方法,在一个芯片上实现极其复杂的功能。SOC相较IC而言有很多优势,减少功耗开销、减少印刷电路板上部件数和管脚数、降低板卡失效可能性、减少系统开发成本等,给IC带来一系列技术上的挑战。因此,人们普遍认为,SOC代表了21世纪IC朝系统集成发展的方向。

[参考文献]

[1] 蒋燕燕 . 微电子技术的现状与未来展望 . 广西物理,2007, 2

[2] 晏伯武,兆春 . 微电子技术发展与展望 . 舰船电子工程,2007,5

[3] 张兴,黄如,李晓彦著 . 微电子学概论(第二版) . 北京大学出版社,2010

[4] 王阳元,黄如,李晓彦,张兴 . 面向产业需求的21世纪微电子技术的

发展(上) . 物理,2007, 5

[5] 陈力俊主编 . 微电子材料与制造 . 复旦大学出版社,2009

智能制造技术

人机一体化智能系统 车辆15-2班刘博洋智能制造,源于人工智能的研究。一般认 为智能是知识和智力的总和,前者是智能的基 础,后者是指获取和运用知识求解的能力。智 能制造应当包含智能制造技术和智能制造系 统,智能制造系统不仅能够在实践中不断地充 实知识库,而且还具有自学习功能,还有搜集与理解环境信息和自身的信息,并进行分析判断和规划自身行为的能力。 一、智能制造的制造原理 从智能制造系统的本质特征出发,在分布式制造网络环境中,根据分布式集成的基本思想,应用分布式人工智能中多Agent系统的理论与方法,实现制造单元的柔性智能化与基于网络的制造系统柔性智能化集成。根据分布系统的同构特征,在智能制造系统的一种局域实现形式基础上,实际也反映了基于Internet 的全球制造网络环境下智能制造系统的实现模式。 二、智能制造系统 智能制造系统是一种由智能机器和人类专家共同组成的人机一体化系统,它突出了在制造诸环节中,以一种高度柔性与集成的方式,借助计算机模拟的人类专家的智能活动,进行分析、判断、推理、构思和决策,取代或延伸制造环境中人的部分脑力劳动,同时,收集、存储、完善、共享、继承和发展人类专家的制造智能。由于这种制造模式,突出了知识在制造活动中的价值地位,而知识经济又是继工业经济后的主体经济形式,所以智能制造就成为影响未来经济发展过程

的制造业的重要生产模式。智能制造系统是智能技术集成应用的环境,也是智能制造模式展现的载体。 一般而言,制造系统在概念上认为是一个复杂的相互关联的子系统的整体集成,从制造系统的功能角度,可将智能制造系统细分为设计、计划、生产和系统活动四个子系统。在设计子系统中,智能制定突出了产品的概念设计过程中消费需求的影响;功能设计关注了产品可制造性、可装配性和可维护及保障性。另外,模拟测试也广泛应用智能技术。在计划子系统中,数据库构造将从简单信息型发展到知识密集型。在排序和制造资源计划管理中,模糊推理等多类的专家系统将集成应用;智能制造的生产系统将是自治或半自治系统。在监测生产过程、生产状态获取和故障诊断、检验装配中,将广泛应用智能技术;从系统活动角度,神经网络技术在系统控制中已开始应用,同时应用分布技术和多元代理技术、全能技术,并采用开放式系统结构,使系统活动并行,解决系统集成。 由此可见,IMS理念建立在自组织、分布自治和社会生态学机理上,目的是通过设备柔性和计算机人工智能控制,自动地完成设计、加工、控制管理过程,旨在解决适应高度变化环境的制造的有效性。 三、智能制造系统的综合特征 (1)自律能力 即搜集与理解环境信息和自身的信息,并进行分析判断和规划自身行为的能力。具有自律能力的设备称为“智能机器”,“智能机器”在一定程度上表现出独立性、自主性和个性,甚至相互间还能协调运作与竞争。强有力的知识库和基于知识的模型是自律能力的基础。 (2)人机一体化

工程科学与技术

BE.0102005春季 第一讲讲义 工程科学与技术 本讲概要: -工程科学与技术组成的讨论 -生物医学工程师的职业路径和行业 -过去和现在的工程学与生物学交叉点的比较 讲师简介 生化工程教授Douglas https://www.wendangku.net/doc/cb13979746.html,uffenburger是生物工程与环境卫生系的联执主任。他的研究方向包括分子细胞生物工程和生物与生理系统的计算模型的建立。 工程科学与技术 工程化产品的过程通常由三部分组成:分析,综合与设计。分析即对系统进行研究以了解其功能。综合是在分析的基础上进行系统的实际构建。上述两步均有助于实现工程化的最终目标,通常就是产品的最终设计。 在麻省理工学院,在特定的纯科学领域,存在许多不同的工程学科。如物理学的不同分支是土木工程、机械工程和电子工程的基础。同样的,化学的不同分支是化学工程、核工程和材料科学与工程的基础。工程学科从传统科学出发,并以其研究、创新从而最终实现设计。 定量工程范例概述了一个产品工程化的典型步骤。它确立一个研究方向和研究范围。设想首先实验于计算模型,再在现实生活中测试。对于每个独立部件,均进行性能评估,如果必要的话,还要进行改进。 生物/医药工程前景 目前MIT的化学工程、电子工程、机械工程、材料科学与工程和即将成立的生物工程系,建基于MIT一般研究院对生物学、化学、物理学和数学的科研要求上。这些专业的学生被授予必要的背景知识以进入生物学相关学科。一边是生物技术,通常应用于各行各业以及健康相关设备和医药品的发展;另一边是生物医学工程,通常用于医疗设备研发。生物工程就应用于这两者之间。 生物医学工程的传统职业领域 传统的生物医学工程的工作事实上并不需要很深的生物知识。由于很多这样那样的原因,很长一段时间以来,生物学并没有展开工程分析与工程综合设计研究。 本节介绍了一些工程师依靠在他们自己的学科内掌握的设计和实施技能来解决生物学问题的例子。直到最近,诊断特殊医疗情况下的成像技术的发展,主要还是靠物理学。体结

微电子工艺制程

微电子工艺概论 做layout,对工艺的了解至关重要,以下是本人在拜读前辈门的心血后,自己总结的内容,由于不知怎么的不能插图片,所以略有遗憾,还请个位高手指教!我将分几篇文章将其叙述完毕。 1扩散工艺 A扩散是掺杂的一种工艺 B半导体中常用的杂质有:受主杂质(P型):硼施主杂质(N型):磷,砷,锑 C 扩散三步曲 (1)预淀积扩散:在扩散过程中,硅片表面杂质浓始终不变,又称恒表面源扩散。 (2)推进扩散:除表面以外的任何地方的初始杂质浓度均为0。 (3)激活:激活杂质原子,改变了硅的导电率。 D 杂质扩散种类 替代扩散和间隙扩散,现今流行的是替位扩散 2 离子注入工艺 A 离子注入工艺是掺杂工艺中最重要的一项,各方面都明显优于扩散。 B 离子在注入时有2种能量损失的类型 (1)电子碰撞(与核外电子作用):离子质量比电子质量大很多,每次碰撞后离子能量损失小,产生小角度散射。 (2)原子碰撞(同核碰撞):由于两者质量相当,能量损失大,产生大角度的散射。 C 沟道效应 离子注入时,离子即未与电子也未与原子核发生碰撞而是穿过了晶格间隙使得该离子比那些发生碰撞的原子穿透得更深。他的控制方法主要有以下几种: (1)倾斜硅片,偏离垂直方向7度已大于临界角注入。 (2)屏蔽氧化层

(3)硅预非晶化,预先注入点不活泼粒子si+ (4)用质量较大的原子 D 退火 (1)分类:高温炉退火;快速热退火(RTA) (2)退火作用:修复硅晶格结构并激活杂质——硅键。 (3)退火时间越长,温度越高,杂质的激活就越充分。 3 热氧化工艺 一始,先讲一下SiO2的问题,这有助于理解以后的内容 A SiO2薄膜结构:其基本单元是一个由Si——O原子组成的正四面体(图插不进,就略了) B SiO2的化学性质:它不溶于水和酸,但溶于HF C SiO2的作用: (1)作为杂质选择扩散的掩蔽膜 (2)作为器件表面的保护和钝化膜 首先,可以避免硅表面被镊子划伤以及蒸发,烧结,封装中可能 带来的杂质玷污,起了保护硅的作用。 其次,它可以使硅片表面,p-n结与外界气氛隔离开来,从而减 弱了环境气氛对硅片表面性质的影响。 (3)作为集成电路的隔离介质和绝缘介质 (4)作为电容器,栅氧或储存器单元结构中的介质材料 (5)作为MOS场效应管的绝缘栅材料。 现在,再来讲氧化物生长 D 热氧化方法 (1)干氧法:用氧作为氧化剂 (2)湿氧法:用氧和水的混合剂作为氧化剂 E 影响氧化物生长的因素(速率影响) (1)掺杂效应:重掺杂的硅要比轻掺杂的氧化速度快

高温合金概述

1.1 高温合金 1.1.1 高温合金及其发展概况 高温合金是指以铁、钴、镍为基体,能在600℃以上温度,一定应力条件下适应不同环境短时或长时使用的金属材料。具有较高的高温强度、塑性,良好的抗氧化、抗热腐蚀性能,良好的热疲劳性能,断裂韧性,良好的组织稳定性和使用可靠性。高温合金为单一奥氏体组织,在各种温度下具有良好的组织稳定性和使用的可靠性,基于上述性能特点,且高温合金的合金化程度很高,故在英美称之为超合金(Superalloy)。 高温合金于20世纪40年代问世,最初就是为满足喷气发动机对材料的耐高温和高强度要求而研制的,高温合金的发展与航空发动机的进步密切相关,1939年英国Mond镍公司首先研究出Nimonic75,随后又研究出Nimonic80合金,并在1942年成功用作涡轮气发动机的叶片材料,此后该公司又在合金中加入硼、锆、钴、钼等合金元素,相继开发成功Nimonic80A、Nimonic90等合金,形成Nimonic合金系列。如今先进航空发动机中高温合金用量已超过50%。此外,在航天、核工程、能源动力、交通运输、石油化工、冶金等领域得到广泛的应用。高温合金在满足不同使用条件中得到发展,形成各种系列的合金,除传统的高温合金外,还开发出一批高温耐磨、高温耐蚀的合金。 高温合金是航空发动机、火箭发动机、燃气轮机等高温热端部件的不可代替的材料,由于其用途的重要性,对材料的质量控制与检测非常严格。高温合金的基本用途仍旧是飞行器的燃气轮发动机的高温部分,它要占先进的发动机重量的50%以上。然而,这些材料在高温下极好的性能已使其用途远远超出了这一行业。除了航空部件之外,规定将这些合金用于舰船、工业、陆地发电站以及汽车用途的涡轮发动机上。具体的发动机部件包括涡轮盘、叶片、压缩机轮、轴、燃烧室、后燃烧部件以及发动机螺栓。除了燃气发动机行业之外,高温合金还被选择用于火箭发动机、宇宙、石油化工、能源生产、内燃烧发动机、金属成形(热加工工模具)、热处理设备、核电反应堆和煤转换装置。

焊接工艺设计综述

安徽机电职业技术学院 《焊接结构课程设计说明书》 --------------------------支撑座的设计 姓名: 班级: 系部:机械工程系 学号: 2014年6月27日星期五

目录 前言 (1) 第一章设计支撑座的目的 (2) 第二章板材的矫正 (3) 第三章放样 (4) 第四章划线(号料) (6) 第五章下料工艺过程 (9) 第六章装配——焊接工艺 (13) 6.1 焊接装配的基础知识 (13) 第七章焊接工艺制定 (19) 7.1 焊接方法的选择 (19) 7.2 焊接工艺参数的选择 (19) 7.3 焊接工艺卡的内容 ..................................... 错误!未定义书签。第八章课程设计总结 .. (22)

前言 “焊接结构制造工艺及实施”是一门涉及多种焊接相关知识及多种工程技术,理论与实践结合极为紧密的课程。接近生产实际经验,贴近生产,贴近工程实践,体系完善。通过对焊接制造工艺过程中各个环节相关知识的学习,使学生初步掌握现代化焊接结构工艺编制方法,培养理论联系实际,分析问题和解决问题的能力。帮助我们了解产品的制造工艺和企业通用焊接技术文件样本,还有制造工艺及一些典型的工艺要求,初步积累经验,为以后走上工作岗位打下良好的基础。 当然课程设计是我们学习中必不可少的,有助于帮助我们更好地去了解一个产品的生产过程和制造过程,对于提高我们的能力还是有很大的帮助的,而且在实习中还有老师的指导,和同学的交流,这些在以后的工作岗位上是很少的,学习的机会也会很少的,没有在学校中的这种氛围。对于这次实习我们还是非常的珍惜的。 1

微电子工艺复习

第一章: 1.看懂这是一个三极管 利用基区、发射区扩散形成电阻的结构2.看懂电极 外延层电阻结构 3.看懂电极 MOS集成电路中的多晶硅电阻 4.电容结构包括哪些要素? 两端是金属,中间是介电材料。

集成电路中电容的结构5.这是电容结构 Pn结位于空间电荷区,是一个电容结构。 PN结电容结构 6. MOS场效应晶体管中以SiO2为栅极层 MOS场效应晶体管电容结构

7.有源器件? 二极管,三极管,MOS管 集成电路中二极管的基本结构 8.看懂二极管,三极管的结构 集成电路中二极管的结构 9.三极管分清npn与pnp?有什么区别?怎么画的? 结构上,NPN三极管的中间是P区(空穴导电区),两端是N区(自由电子导电区),而PNP三极管正相反。 使用上,NPN三极管工作时是集电极接高电压, 发射极接低电压,基极输入电压升高时趋向导通,基极输 入电压降低时趋向截止;而PNP三极管工作时则是集电极 接低电压,发射极接高电压,基极输入电压升高时趋向截 止,基极输入电压降低时趋向导通。 晶体管的基本结构

10.什么叫NMOS?什么叫PMOS? PMOS是指利用空穴来传导电性信号的金氧半导体。 NMOS是指利用电子来访传导电性信号的金氧半晶体管。 MOS管的结构图和示意图 11.集成电路包括哪些阶段?核心阶段? 阶段: 硅片(晶圆)的制备、掩膜版的制作、硅片的制造及元器件封装 集成电路制造的阶段划分 半导体芯片的制造框图

半导体芯片制造的关键工艺 12.硅的基本性质?它的优点? 硅的禁带宽度较大(1.12eV),硅半导体的工作温度可以高达200℃。硅片表面可以氧化出稳定且对掺杂杂质有极好阻挡作用的氧化层(SiO2) 优点: (1)硅的丰裕度硅是地球上第二丰富的元素,占到地壳成分的25%,经合理加工,硅能够提纯到半导体制造所需的足够高的纯度,而消耗的成本比较低。 (2)更高的熔化温度允许更宽的工艺容限硅的熔点是1412℃,远高于锗937℃的熔点,更高的熔点使得硅可以承受高温工艺。 (3)更宽的工作温度范围用硅制造的半导体器件可以工作在比锗制造的半导体器件更宽的温度范围,增加了半导体器件的应用范围和可靠性。 (4)氧化硅的自然生成硅表面有能够自然生长氧化硅(SiO2)的能力,SiO2是一种高质量、稳定的电绝缘材料,而且能充当优质的化学阻挡层以保护硅不受外部沾污。 13.硅生长有哪两个生长方法?用于什么样的地方? (1)直拉法(CZ) 直拉法生长单晶硅是将熔化了的半导体级多晶硅变成有正确晶向并被掺杂成N型或P型的固体硅锭。均匀的大直径晶体 (2)区熔法 区熔法是另一种单晶生长方法,它所生产的单晶硅中含氧量非常少,能生产目前为止最纯的单晶硅。 第二章 1.隔离分为哪些?怎么样来做隔离? ①PN结隔离 未加正向偏压的PN结几乎无电流流动,因而PN结可作器件隔离用,双极型集成电路中的隔离主要采用PN结隔离。

微电子技术概论期末试题

《微电子技术概论》期末复习题 试卷结构: 填空题40分,40个空,每空1分, 选择题30分,15道题,每题2分, 问答题30分,5道题,每题6分 填空题 1.微电子学是以实现电路和系统的集成为目的的。 2.微电子学中实现的电路和系统又称为集成电路和集成系统,是微小化的。 3.集成电路封装的类型非常多样化。按管壳的材料可以分为金属封装、陶瓷封装和塑料封装。 4.材料按其导电性能的差异可以分为三类:导体、半导体和绝缘体。 5. 迁移率是载流子在电场作用下运动速度的快慢的量度。 6.PN 结的最基本性质之一就是其具有单向导电性。 7.根据不同的击穿机理,PN 结击穿主要分为雪崩击穿和隧道击穿这两种电击穿。 8.隧道击穿主要取决于空间电荷区中的最大电场。 9. PN结电容效应是PN结的一个基本特性。 10.PN结总的电容应该包括势垒电容和扩散电容之和。 11.在正常使用条件下,晶体管的发射结加正向小电压,称为正向偏置,集电结加反向大电压,称为反向偏置。 12.晶体管的直流特性曲线是指晶体管的输入和输出电流-电压关系曲线, 13.晶体管的直流特性曲线可以分为三个区域:放大区,饱和区,截止区。 14.晶体管在满足一定条件时,它可以工作在放大、饱和、截止三个区域中。 15.双极型晶体管可以作为放大晶体管,也可以作为开关来使用,在电路中得到了大量的应用。 16. 一般情况下开关管的工作电压为 5V ,放大管的工作电压为 20V 。 17. 在N 型半导体中电子是多子,空穴是少子; 18. 在P 型半导体中空穴是多子,电子是少子。 19. 所谓模拟信号,是指幅度随时间连续变化的信号。 20. 收音机、收录机、音响设备及电视机中接收、放大的音频信号、电视信号是模拟信号。 21. 所谓数字信号,指在时间上和幅度上离散取值的信号。 22. 计算机中运行的信号是脉冲信号,但这些脉冲信号均代表着确切的数字,因而又叫做数字信号。 23. 半导体集成电路是采用半导体工艺技术,在硅基片上制作包括电阻、电容、二极

化工工艺设计基础-个人总结

化工工艺设计基础-个人总结.txt丶︶ ̄喜欢的歌,静静的听,喜欢的人,远远的看我笑了当初你不挺傲的吗现在您这是又玩哪出呢?本文由scutbiao贡献 doc文档可能在WAP端浏览体验不佳。建议您优先选择TXT,或下载源文件到本机查看。 《化工工艺设计》讲座化工工艺设计》 1. 概述要建设一个化工厂,必须具有一批化工工艺专业技术人员, 1.1 要建设一个化工厂,必须具有一批化工工艺专业技术人员,这批化工工艺专业技术人员必须具备下列基本条件. 业技术人员必须具备下列基本条件. 掌握化工基本理论如化工热力学,流体力学,传热,传质,化学反应动力学(化学反应工程) . 如化工热力学,流体力学,传热,传质,化学反应动力学(化学反应工程) 掌握化工工艺设计方法和技能熟悉环保,安全,消防等方面的法规熟悉环保,安全,消防等方面的法规环保一定的工作经验 1.2 化工建设项目阶段 1. 2.1 建设项目阶段的划分以工程公司为主体,通常分为三个阶段建设项目阶段的划分以工程公司为主体, 项目前期工程设计按国内审批要求分为按国内审批要求分为: 批准后建设单位即可开工. 初步设计→批准后建设单位即可开工. 施工图设计按国际常规做法分为: 按国际常规做法分为: 工艺设计基础设计详细设计施工,安装,试车,性能考核及国家验收(验收后工厂投入正常运行) 施工,安装,试车,性能考核及国家验收(验收后工厂投入正常运行) 建设项目阶段的划分以建设单位为主体, 1.2.2 建设项目阶段的划分以建设单位为主体,通常分为四个阶段项目前期工程设计工程建设工厂投入生产 2. 工艺设计的内容和深度工艺设计的文件包括三大内容文件包括三大内容: 2.1 工艺设计的文件包括三大内容: 文字说明(工艺说明) 文字说明(工艺说明) 图纸表格文字说明(工艺说明) 2.1.1 文字说明(工艺说明) 工艺设计的范围. 工艺设计的范围. 设计基础:生产规模,产品方案,原料,催化剂,化学品,公用工程燃料规格, 设计基础:生产规模,产品方案,原料,催化剂,化学品,公用工程燃料规格, 产品及副产品规格. 产品及副产品规格. 副产品规格工艺流程说明:生产方法,化学原理,工艺流程叙述. 工艺流程说明:生产方法,化学原理,工艺流程叙述. 原料,催化剂,化学品及燃料消耗定额及消耗量. 原料,催化剂,化学品及燃料消耗定额及消耗量. 公用工程(包括水, 公用工程(包括水,电,汽,脱盐水,冷冻,工艺空气,仪表空气,氮气)消耗脱盐水,冷冻,工艺空气,仪表空气,氮气) 定额及消耗量. 定额及消耗量. 三废排放:包括排放点,排放量, 三废排放:包括排放点,排放量,排放组成及建议处理方法装置定员安全备忘录(另行成册) 安全备忘录(另行成册) 技术风险备忘录(通常为对内使用,另行成册) 技术风险备忘录(通常为对内使用,另行成册) 操作指南(通常为对内使用,另行成册.供工艺系统,配管等专业使用) 操作指南(通常为对内使用,另行成册.供工艺系统,配管等专业使用) 2.1.2 图纸 PFD: 的设计依据,供基础设计使用(通常分版次逐版深化) PFD:是 PID 的设计依据,供基础设计使用(通常分版次逐版深化) . 包括全部工艺设备,主要物料管道(表示出流向,物料号) 主要控制回路, ,主要控制回路包括全部工艺设备,主要物料管道(表示出流向,物料号) 主要控制回路,联锁 , 方案,加热和冷却介质以及工艺空气进出位置. 方案,加热和冷却介质以及工艺空气进出位置. 建议设备布置图:是总图布置,装置布置的依据,供基础设计使用( 建议设备布置图:是总图布置,装置布置的依据,供基础设计使用(通常为平面布置图) 根据工艺流程的特点和要求进行布置. .根据工艺流程的特点和要求进行布置布置图) 根据工艺流程的特点和要求进行布置. . PCD:通常是设计院内部设计过程文件, PCD:通常是设计院内部设计过程文件,最终体现在终版 PFD 中(通常由自控专业完成) . 完成) 2.1.3 表格物料平衡表工艺设备数据表工艺设备表取样点汇总表装置界区条件表工艺设计方法(化工基本理论的应用) 3. 工艺设计方法(化工基本理论的应用) 3.1 工艺路线的选择 原料来源经济效益和社会效益(生产成本) 经济效益和社会效益(生产成本) 环境保护其它,如操作条件, 其它,如操作条件,安全,消防,投资,工艺先进性,可行性,合理性. 消防,

智能制造概述

智能制造概述 摘要:介绍了智能制造提出的背景、主要研究内容和目标, 人工智能与I M T、I M S的关系, I M S 和C I M S, 智能制造的物质基础及理论基础, 智能制造系统 的特征及框架结构, 并简要介绍了智能加工中心IMC, 智能制造技木的发展趋势,以及智能制造系统研究成果及存在问题。 关键词:智能制造,IMS, IMC, IMT。 Abstract:Intelligent Manufacturing introduced the background, main contents and objectives, Artificial Intelligence and IMT, IMS relations, IMS and CIMS, intelligent manufacturing and the material basis of the theoretical basis of the characteristics of intelligent manufacturing system and the framework structure, and gave a briefing on intelligence Machining Center IMC, intelligent manufacturing technology development trend of wood, as well as the Intelligent Manufacturing Systems research results and problematic. Key words: Intelligent Manufacturing, IMS, IMC, IMT。 一. 智能制造提出的背景 制造业是国民经济的基础工业部门, 是决定国家发展水平的最基本因素之一。从机械制造业发展的历程来看, 经历了由手工制作、泰勒化制造、高度 自动化、柔性自动化和集成化制造、并行规划设计制造等阶段。就制造自动化 而言, 大体上每十年上一个台阶: 50~60年代是单机数控, 70 年代以后则是CNC 机床及由它们组成的自动化岛, 80 年代出现了世界性的柔性自动化热潮。 与此同时, 出现了计算机集成制造, 但与实用化相距甚远。随着计算机的问世与 发展, 机械制造大体沿两条路线发展: 一是传统制造技术的发展, 二是借助计算 机和自动化科学的制造技术与系统的发展。80年代以来, 传统制造技术得到了 不同程度的发展,但存在着很多问题。先进的计算机技术和制造技术向产品、工 艺和系统的设计人员和管理人员提出了新的挑战, 传统的设计和管理方法不能 有效地解决现代制造系统中所出现的问题, 这就促使我们借助现代的工具和方法, 利用各学科最新研究成果, 通过集成传统制造技术、计算机技术与科学以及 人工智能等技术, 发展一种新型的制造技术与系统, 这便是智能制造技术( In

核工程与核技术概论试题

核工程与核技术概论试题 第一章 1.核电与火电相比有哪些优势? 2.先进核电的四个评价标准是什么? 3.第三代核电与第二代核电相比有哪些本质上的区别? 第二章 1.衰变、放射性、半衰期的定义分别是什么? 2.锕系核素的定义、来源以及特性分别是什么? 3.核反应的定义是什么?分别列举出核裂变反应、核聚变反应、中子吸收反应的例子各一例。 4.热中子的定义及特征分别是什么? 5.中子与物质有哪几种作用形式。 6.举出三种中子慢化剂。 第三章 1.天然铀中,U235的含量是多少? 2.为什么要发展快中子反应堆? 3.列举三种易裂变核素与三种可裂变但难裂变核素。 4.为什么核裂变反应终止后,核反应堆还需要继续冷却? 5.列举三种核反应堆冷却剂。 6. U238吸收中子后最终演变成什么? 7.列举三种核反应堆控制材料。

第四章 1.大亚湾压水堆中,进行核裂变反应的是哪类中子?慢化剂是什么?冷却剂是什么?一、二回路的温度与压力分别是多少? 2.压水堆包容放射性物质的四道屏障是什么? 3.压水堆的专设安全设施有哪些?这些专设安全设施主要针对的是哪种事故? 4.压水堆一回路压力边界主要由什么构成? 5.压水堆一回路有哪四个主要设备? 6.压水堆堆本体有那四个主要组成? 7.大亚湾压水堆堆芯有盒燃料组件?每盒组件有多少燃料棒?燃料棒内芯块是什么材料?包壳是什么材料?包壳材料高温下与水会发生什么化学反应? 第五章 1.沸水堆与压水堆有哪些区别? 2.重水堆与压水堆有哪些区别? 3.切尔诺贝利反应堆是什么堆型?它在哪些方面与沸水堆、重水堆分别有相似之处? 4.高温气冷堆的优缺点分别是什么? 5.快堆为什么用Na做冷却剂而不用水?Na的优缺点分别是什么?快堆为什么有三个回路? 第七章 1.核安全的最高目标是什么?

微电子工艺扫盲课程.pdf

)))))))) Warning and explanation:文中所引用图片均来自于互联网和中科院半导体所官方网站。本人只是用于讲解知识所用,并未用于商业获利行为。产生任何法律纠纷均与我无关。请勿盗链文中的 图片,后果自负! 介货就是硅 微电子制造工艺在微电子整体产业中处于中游阶段(上游是电路设计,下游是封装测试)。一个芯片的制造能否达到设计要求,与制造工艺有很大的关系,因此有必要对工艺线的流程为大家说 明讲清楚。我们手中使用的mobilephone,camera,ipad内部电路板上焊接的形状各异外形诡 异的小芯片都是如何造出来?想必大家都是有兴趣知道的。即使没有电子工程的基础,通过我的讲解也是可以,你对这个最精密自动化程度最高的行业有一个清晰的轮廓。 IC(integrate circuit)的制造分为前工序和后工序。 前工序:IC制造工程中,晶圆光刻的工艺(即所谓流片),被称为前工序,这是IC制造的最要害技术。 后工序:晶圆流片后,其切割、封装等工序被称为后工序。 我们所要了解的就是前工序的内容,打蛇打七寸,直入要害。 首先,光刻过程的操作流程为: 衬底氧化—涂胶—光刻机曝光—显影烘干—刻蚀—清洗干燥—离子注入(等离子刻蚀、金属淀积)—去胶。 其中最费钱的一步大家知道是什么吗? 光刻机曝光。流片光刻的费用约占到总体花费的40%左右。很多研究机构或者高校做芯片设计 只是通过软件模拟一下,由此就以这些数据写论文,很少有经费可以去流片测试。况且一个可以投产的芯片并不是一次流片就能成功的,通常情况下需要四次甚至更多次数。以西电微电子学院的军用RFID为例,流片次数已过4次,电路尺寸逐步达到设计标准。军用研发经费充足,不计 成本,不过半导体产业高投入的现状可见一斑。 现在通过图片讲解对各部工序逐一讲解: ))))))))). ))))))))

核工程材料

核反应堆材料 压水堆核电站结构 ●核电站原理:核裂变释放出的核能,被载热剂一回路水带出,并经过蒸汽发生器使 二回路水变成蒸汽,蒸汽再驱动汽轮发电机组进行发电。 ●反应堆所用的各种材料在成份、工艺、组织和性能上,都比常规电站材料要求严格第一章绪论 ●一、. 堆材料在核电站中的作用 ●反应堆材料在核电站运行中影响反应堆的安全性和机组寿命; ●反应堆材料对核电站的建设速度、质量、数量和水平都起到重要的作用。 ●在核电站的发展和新堆型的开发中,需要材料科学的发展,以大量材料数据作为基 础,开发新材料。 ●首先各国反应堆运行经验表明,运行上出现的问题或故障抢修,追究其原因, 多半都与材料有关。 ●其次,反应堆材料的工况比较复杂,除受温度、压力和腐蚀介质作用外,还受到中 子辐照,由此而引起的性能恶化,对安全存在威胁。 ●第三,如果堆材料的使用性能与工况要求不相匹配或者余量不足,将会使零、部件 失去预定服役效能而引起失效或损坏。这表明,在设计和建造反应堆过程中,每个部件、每个环节都离不开材料问题。 ●第四,从降低成本、延长寿命和改进堆型考虑,必然涉及到合理选材、改进工艺和 开发新材料的问题。 ●第五,在核电站的定型化、标准化、系列化和商品化的各阶段中,都需要有大量 材料数据作基础 ●二、材料结构 ●材料结构是指组成材料的原子(或离子、分子)相互结合的方式或构成的形式以及 结构要素按一定次序的组合、排列及相互间的各种联系。 ●三、材料结构的具体内容 ● 1.组成材料的原子(或离子、分子)的构造 ● 2.组成材料的原子(或离子、分子)间的结合 ● 3.组成材料的原子(或离子、分子)的排列 ● 4.材料结构内存在的缺陷 ●四、材料的性能 ● 1.材料的性能是材料结构反作用于环境的能力 ● 2.材料的性能是由材料结构所决定的 ● 3.材料性能具有多面性 ● 4.材料性能是可以改变的 原子——晶格——晶粒——相——组织——金属材料。 1.燃料(核裂变材料) ?压水堆核电站燃料用的是UO2陶瓷材料。 耐高温 在铀的氧化物中密度最高 抗蚀 抗肿胀 燃料(核裂变材料)

微电子加工工艺总结资料

1、分立器件和集成电路的区别 分立元件:每个芯片只含有一个器件;集成电路:每个芯片含有多个元件。 2、平面工艺的特点 平面工艺是由Hoerni于1960年提出的。在这项技术中,整个半导体表面先形成一层氧化层,再借助平板印刷技术,通过刻蚀去除部分氧化层,从而形成一个窗口。 P-N结形成的方法: ①合金结方法 A、接触加热:将一个p型小球放在一个n型半导体上,加热到小球熔融。 B、冷却:p型小球以合金的形式掺入半导体底片,冷却后,小球下面形成一个再分布结晶区,这样就得到了一个 pn结。 合金结的缺点:不能准确控制pn结的位置。 ②生长结方法 半导体单晶是由掺有某种杂质(例如P型)的半导体熔液中生长出来的。 生长结的缺点:不适宜大批量生产。 扩散结的形成方式 与合金结相似点: 表面表露在高浓度相反类型的杂质源之中 与合金结区别点: 不发生相变,杂质靠固态扩散进入半导体晶体内部 扩散结的优点 扩散结结深能够精确控制。 平面工艺制作二极管的基本流程: 衬底制备——氧化——一次光刻(刻扩散窗口)——硼预沉积——硼再沉积——二次光刻(刻引线孔)——蒸铝——三次光刻(反刻铝电极)——P-N结特性测试 3、微电子工艺的特点 高技术含量设备先进、技术先进。 高精度光刻图形的最小线条尺寸在亚微米量级,制备的介质薄膜厚度也在纳米量级,而精度更在上述尺度之上。 超纯指工艺材料方面,如衬底材料Si、Ge单晶纯度达11个9。 超净环境、操作者、工艺三个方面的超净,如 VLSI在100级超净室10级超净台中制作。 大批量、低成本图形转移技术使之得以实现。 高温多数关键工艺是在高温下实现,如:热氧化、扩散、退火。

微电子学概论复习题及答案(详细版)

第一章 绪论 1.画出集成电路设计与制造的主要流程框架。 2.集成电路分类情况如何? ?????????????????? ????????????????????????????????????????????????????????????????????????????????????按应用领域分类数字模拟混合电路非线性电路线性电路模拟电路时序逻辑电路组合逻辑电路数字电路按功能分类GSI ULSI VLSI LSI MSI SSI 按规模分类薄膜混合集成电路厚膜混合集成电路混合集成电路B iCMOS B iMOS 型B iMOS CMOS NMOS PMOS 型MOS 双极型单片集成电路按结构分类集成电路 3.微电子学的特点是什么? 微电子学:电子学的一门分支学科 微电子学以实现电路和系统的集成为目的,故实用性极强。 微电子学中的空间尺度通常是以微米(m, 1m =10-6m)和纳米(nm, 1nm = 10-9m)为单位的。 微电子学是信息领域的重要基础学科 微电子学是一门综合性很强的边缘学科 涉及了固体物理学、量子力学、热力学与统计物理学、材料科学、电子线路、信号处理、计算机辅助设计、测试与加工、图论、化学等多个学科 微电子学是一门发展极为迅速的学科,高集成度、低功耗、高性能、高可靠性是微

电子学发展的方向 微电子学的渗透性极强,它可以是与其他学科结合而诞生出一系列新的交叉学科,例如微机电系统(MEMS)、生物芯片等 4.列举出你见到的、想到的不同类型的集成电路及其主要作用。 集成电路按用途可分为电视机用集成电路、音响用集成电路、影碟机用集成电路、录像机用集成电路、电脑(微机)用集成电路、电子琴用集成电路、通信用集成电路、照相机用集成电路、遥控集成电路、语言集成电路、报警器用集成电路及各种专用集成电路。 5.用你自己的话解释微电子学、集成电路的概念。 集成电路(integrated circuit)是一种微型电子器件或部件。采用一定的工艺,把一个电路中所需的晶体管、二极管、电阻、电容和电感等元件及布线互连一起,制作在一小块或几小块半导体晶片或介质基片上,然后封装在一个管壳内,成为具有所需电路功能的微型结构;其中所有元件在结构上已组成一个整体,使电子元件向着微小型化、低功耗和高可靠性方面迈进了一大步。 6.简单叙述微电子学对人类社会的作用。 可以毫不夸张地说,没有微电子技术的进步,就不可能有今天信息技术的蓬勃发展,微电子已经成为整个信息社会发展的基石。随着微电子的发展,器件的特征尺寸越来越小第二章半导体物理和器件物理基础 1.什么是半导体?特点、常用半导体材料 什么是半导体? 金属:电导率106~104(W?cm-1),不含禁带; 半导体:电导率104~10-10(W?cm-1),含禁带; 绝缘体:电导率<10-10(W?cm-1),禁带较宽; 半导体的特点: (1)电导率随温度上升而指数上升; (2)杂质的种类和数量决定其电导率; (3)可以实现非均匀掺杂; (4)光辐照、高能电子注入、电场和磁场等影响其电导率; 硅:地球上含量最丰富的元素之一,微电子产业用量最大、也是最重要的半导体材料。 硅(原子序数14)的物理化学性质主要由最外层四个电子(称为价电子)决定。每个硅原子近邻有四个硅原子,每两个相邻原子之间有一对电子,它们与两个原子核都有吸引作用,称为共价键。 化合物半导体:III族元素和V族构成的III-V族化合物,如,GaAs(砷化镓),InSb(锑化铟),GaP(磷化镓),InP(磷化铟)等,广泛用于光电器件、半导体激光器和微波器件。2.掺杂、施主/受主、P型/N型半导体(课件) 掺杂:电子摆脱共价键所需的能量,在一般情况下,是靠晶体内部原子本身的热运动提供的。常温下,硅里面由于热运动激发价健上电子而产生的电子和空穴很少,它们对硅的导电性的影响是十分微小的。室温下半导体的导电性主要由掺入半导体中的微量的杂质(简称掺杂)来决定,这是半导体能够制造各种器件的重要原因。 施主:Donor,掺入半导体的杂质原子向半导体中 提供导电的电子,并成为带正电的离子。如 Si中掺的P 和As(最外层有5个价电子) 受主:Acceptor,掺入半导体的杂质原子向半导体中 提供导电的空穴,并成为带负电的离子。如 Si中掺的B(硼)(最外层只有3个价电子)

智能制造概述

智能制造概述 1 智能制造国内外发展与应用状况 1.1 美国智能制造的发展与应用 1.1.1背景 20世纪80年代以来,随着经济全球化、国际产业转移及虚拟经济不断深化,美国产业结构发生了深刻的变化,制造业日益衰退,“去工业化”趋势明显。因发展中国家占据廉价劳动力,产业资源丰富等优势,所以部分美国企业将工厂外迁,同时美国加大对房地产、金融等方面的投入,也降低了对制造业的投入。制造业的萎缩导致美国出口产品竞争力下降,净进口规模不断增加,贸易逆差由1980年的190亿美元迅速增加至2008年的6983亿美元。不仅美国低端产品在丧失出口竞争力,高端产品的领先优势也开始动摇,美国高新技术产品在全球市场出口份额所占权重由20世纪末的20%下降至2008年的11%。2008年金融危机爆发后,美国经济遭受重创,美国国内生产总值增长停滞。2009年,金融危

机进一步蔓延,美国国内生产总值萎缩2.6%,创下1947年以来的新低。失业率方面,2009年失业率高达9.3%,远高于1990~2008年的平均失业率。此后,在美国政府一系列救助政策的强力干预下,经济下滑势头得以缓解,但失业率一直在8.5%~10%徘徊。 面对由虚拟经济危机爆发导致的增长乏力、失业率居高不下的困境,美国社会各界深刻认识到实体经济的重要性,美国国内主张发展制造业、改变经济过分依赖金融业的呼声不断高涨。2009年年末,美国提出了重振制造业的经济复活战略,提出了一系列的重振制造业措施。美国政府提出重振制造业战略,不仅是为了尽快摆脱所面临的经济困境,更重要的是要通过发展先进制造业,再次领导全球科学技术的发展,继续保持对全球经济和技术的强大领导力,为经济的繁荣和持久增长打下坚实的基础。 1.1.2发展历程与支持政策 美国在2008年金融危机之前就已经提出了先进制造技术(Advanced Manufac-turing Technology,AMT)的理念,也意识到了制造业的重要性,因此在经济危机爆发后美国需要重振制造业。 20世纪90年代,美国开始了制造业信息化。1993年,美国政府开始实施AMT计划。该计划的目标是研究世界领先的先进制造技术,以满足美国对先进制造技术的需求,提升美国制造业的竞争力。美国国家科

微电子工艺技术-复习要点答案

第四章晶圆制造 1.CZ法提单晶的工艺流程。说明CZ法和FZ法。比较单晶硅锭CZ、MCZ和FZ三种生长方法的优缺点。 答:1、溶硅2、引晶3、收颈4、放肩5、等径生长6、收晶。CZ法:使用射频或电阻加热线圈,置于慢速转动的石英坩埚内的高纯度电子级硅在1415度融化(需要注意的是熔硅的时间不宜过长)。将一个慢速转动的夹具的单晶硅籽晶棒逐渐降低到熔融的硅中,籽晶表面得就浸在熔融的硅中并开始融化,籽晶的温度略低于硅的熔点。当系统稳定后,将籽晶缓慢拉出,同时熔融的硅也被拉出。使其沿着籽晶晶体的方向凝固。籽晶晶体的旋转和熔化可以改善整个硅锭掺杂物的均匀性。 FZ法:即悬浮区融法。将一条长度50-100cm 的多晶硅棒垂直放在高温炉反应室。加热将多晶硅棒的低端熔化,然后把籽晶溶入已经熔化的区域。熔体将通过熔融硅的表面张力悬浮在籽晶和多晶硅棒之间,然后加热线圈缓慢升高温度将熔融硅的上方部分多晶硅棒开始熔化。此时靠近籽晶晶体一端的熔融的硅开始凝固,形成与籽晶相同的晶体结构。当加热线圈扫描整个多晶硅棒后,便将整个多晶硅棒转变成单晶硅棒。 CZ法优点:①所生长的单晶的直径较大,成本相对较低;②通过热场调整及晶转,坩埚等工艺参数的优化,可以较好的控制电阻率径向均匀性。缺点:石英坩埚内壁被熔融的硅侵蚀及石墨保温加热元件的影响,易引入氧、碳杂质,不易生长高电阻率单晶。 FZ法优点:①可重复生长,提纯单晶,单晶纯度较CZ法高。②无需坩埚、石墨托,污染少③高纯度、高电阻率、低氧、低碳④悬浮区熔法主要用于制造分离式功率元器件所需要的晶圆。缺点:直径不如CZ法,熔体与晶体界面复杂,很难得到无位错晶体,需要高纯度多晶硅棒作为原料,成本高。 MCZ:改进直拉法优点:较少温度波动,减轻溶硅与坩埚作用,降低了缺陷密度,氧含量,提高了电阻分布的均匀性 2.晶圆的制造步骤【填空】 答:1、整形处理:去掉两端,检查电阻确定单晶硅达到合适的掺杂均匀度。 2、切片 3、磨片和倒角 4、刻蚀 5、化学机械抛光 3. 列出单晶硅最常使用的两种晶向。【填空】 答:111和100. 4. 说明外延工艺的目的。说明外延硅淀积的工艺流程。 答:在单晶硅的衬底上生长一层薄的单晶层。 5. 氢离子注入键合SOI晶圆的方法 答:1、对晶圆A清洗并生成一定厚度的SO2层。2、注入一定的H形成富含H的薄膜。3、晶圆A翻转并和晶圆B键合,在热反应中晶圆A的H脱离A和B键合。4、经过CMP和晶圆清洗就形成键合SOI晶圆 6. 列出三种外延硅的原材料,三种外延硅掺杂物【填空】 7、名词解释:CZ法提拉工艺、FZ法工艺、SOI、HOT(混合晶向)、应变硅 答:CZ法:直拉单晶制造法。FZ法:悬浮区融法。SOI:在绝缘层衬底上异质外延硅获得的外延材料。HOT:使用选择性外延技术,可以在晶圆上实现110和100混合晶向材料。应变硅:通过向单晶硅施加应力,硅的晶格原子将会被拉长或者压缩不同与其通常原子的距离。 第五章热处理工艺 1. 列举IC芯片制造过程中热氧化SiO2的用途?

智慧树知到 《陶瓷厂工艺设计概论(山东联盟)》章节测试答案

第一章 1、工厂设计的主体是()? A:工艺设计 B:总图设计 C:运输设计 答案: 工艺设计 2、基本建设是指工厂的()。 A:新建 B:扩建 C:改建 答案: 新建,扩建,改建 3、项目建议书中产品的内容包括()? A:产品名称 B:规格 C:生产能力 D:销售方向 答案: 产品名称,规格,生产能力,销售方向 4、陶瓷工厂根据生产特点,要尽可能靠近()?A:销售地区 B:原料基地 C:燃料产区 答案: 销售地区,原料基地

5、设计基础资料中风向和风速要有冬季、夏季和年主导风向及其频率,附风玫瑰图。 A:对 B:错 答案: 对 6、编制项目建议书或技术改造规划时,相应要做的工作()。 A:确定建厂地区 B:初选厂址 C:原料性能试验 答案: 确定建厂地区,初选厂址,原料性能试验 7、对建设项目的经济效果分析时不仅计算项目本身的微观效果,而且要衡量项目对国民经济的宏观效果和社会的影响。 A:对 B:错 答案: 对 8、建厂厂址选择时,陶瓷半成品在运输过程中易于破损,因此,要尽可能避免地形起伏变化过大。 A:对 B:错 答案: 对 9、可行性研究报告中关于环境保护涉及环境现状,预测项目对环境的影响,提出环境保护、三废治理和回收的初步方案。 A:对 B:错 答案: 对

10、厂址选择的工作程序,一般分为()几个阶段。 A:预备阶段 B:现场阶段 C:结束阶段 答案: 预备阶段,现场阶段,结束阶段 第二章 1、厂区内的建筑物、构筑物及交通运输线路的布置应使工艺流程顺捷,并保证合理的生产作业线。 A:对 B:错 答案: 对 2、陶瓷工厂的厂房可分为两大类()。 A:单层厂房 B:多层厂房 C:三层厂房 答案: 单层厂房,多层厂房 3、如果一个地区主导风向随季节而变化,则以()风向图为主。 A:春季 B:夏季 C:秋季 D:冬季 答案: 夏季

工艺设计说明

工艺设计说明

PROJECT NAME TAR DISTILLATION REVAMPING PROJECT 连云港美盛沃利工程有限公司 MAISONWORLEYPARSONS (LYG) ENGINEERING CO., LTD 中华人民共和国 住房和城乡建设部 工程设计甲级证书 A132005352 工程设计乙级证书 A232005359 项目号 PROJECT No. CC0914D1298 阶 段 PHASE 施工图 装置/工区名称 UNIT NAME 工艺生产装置 PROCESS UNIT 页码 SHEET 2 / 6 文件号 DOC. No. CC0914D1298-00-AR-REQ-0001 版次 REV. 1 工艺说明 PROCESS DESCRIPTION 1 ISSUE FOR CONSTRUCTION Gao CQ Yin YG 2010-04-15 版 次REV. 说 明 DESCRIPTION 设 计P RE’D 校 对CHK’D 审 核APP’D 审 定AUTH’D 日 期 DATE 专业D I S C I P L I N E 签字S I G N A T U R E 日期D A T E 本文件仅用于该项目。未经连云港美盛沃利工程有限公司或业主的书面许可,不得披露或复制。 T H I S D O C U M E N T I S O N L Y U S E D F O R T H E C U S T O M E R P R O J E C T . A N Y D I S C L O S U R E O R C O P Y O F T H I S D O C U M E N T I S N O T P E R M I T T E D W I T H O U T T H E W R I T T E N A P P R O V A L O F M A I S O N W O R L E Y P A R S O N S (L I A N Y U N G A N G ) O R T H E C U S T O M E R O F T H E P R O J E C T .

相关文档