文档库 最新最全的文档下载
当前位置:文档库 › 磁阻传感器HMC用于车辆检测专业技术

磁阻传感器HMC用于车辆检测专业技术

磁阻传感器HMC用于车辆检测专业技术
磁阻传感器HMC用于车辆检测专业技术

磁阻传感器HMC用于车辆检测技术

————————————————————————————————作者:————————————————————————————————日期:

磁阻传感器HMC102用于车辆检测技术

一、引言

目前国内外智能交通行业车辆检测装置采用的技术除了最早研发的地感线圈技术以外,还包括光电技术、超声波技术、微波技术、视频技术等,然而后面几种技术容易受到日照、风雨、电磁场等外界干扰,应用范围受到很大的限制,因此地感线圈仍为主要的检测手段。地感线圈作为车辆检测器,是在道路表层下埋置环形感应线圈,以测定电感变化检测车辆是否存在。地感线圈虽然是相对成熟的车辆检测技术,但仍有许多缺点。利用AMR (Anisotropic Magneto Resistant)各向异性磁传感器进行的地磁车辆检测,通过检测汽车对地磁信号的扰动,判断车辆的到位及通过,从而实现车辆信息的分析、控制及管理,具有安装简便、抗干扰能力强、集成化程度高等更多优点。

二、AMR各向异性磁阻传感器的工作原理

物质在磁场中电阻发生变化的现象称为磁电阻效应。磁电阻效应有基于霍尔效应的普通磁电阻效应和各向异性磁电阻效应之分。对于强磁性金属(铁、钴、镍及其合金),当外加磁场平行于磁体内部磁化方向时,电阻几乎不随外加磁场而变; 当外加磁场偏离金属的内磁化方向时,金属的电阻减小,这就是各向异性磁电阻效应。

AMR各向异性传感器的基本单元是用一种长而薄的坡莫(Ni-Fe)合金用半导体工艺沉积在以硅衬底上制成的,沉积的时候薄膜以条带的形式排布,形成一个平面的线阵以增加磁阻的感知磁场的面积。外加磁场使得磁阻内部的磁畴指向发生变化,进而与电流的夹角发生变化,就表现为磁阻电阻各向异性的变化。从图1可以清楚地看到,坡莫合金薄膜的电阻依赖于磁化强度M 和电流I 方向的夹角θ,即

式中,R// —电流方向与磁化方向平行时的电阻;R⊥—电流方向与磁化方向垂直时的电阻。

当电流方向与磁化方向平行时,传感器最敏感。而一般磁阻都工作于图中45°线性区附近,这样可以实现输出的线性特性。

美国霍尼韦尔公司磁阻传感器HMC102是一款性能优秀的磁阻传感器,其核心部分是由4个带状坡莫合金薄膜构成的惠斯通电桥。当其暴露在变化磁场中时,其电阻有所改变(ΔR),引起相应输出电压的变化,图2所示是HMC1021的输出曲线,在磁场±6Gauss内有一个灵敏度为1mV/Gauss的线性区域,可精确提供磁场强度和方向变化的信息。通过将两个各向异性的磁阻传感器接在一起,该部件成为两轴传感器,将其水平安装后,能够将任何水平磁场分为X轴和Y轴向量分量。图3表示HMC1022传感器中该传感器的组合。当磁场方向为BS方向的地球磁场时,传感器将磁场分成Bx、By向量分量。这样,Bx、By就既能代表分方向,也能代表BS的幅值。当有铁磁性物质靠近传感器时,BS的方向和幅值就会发生变化。要注意的是,该器件在曝露于强磁场范围内使用时必须进行合适的置位/复位操作。霍尼韦尔磁传感器提供了在当地磁场范围内非常灵敏的磁阻传感器。可测量几十微高斯的磁场,这是霍尔元件所不能做到的。由于它的体积小、全固态、在某些场合下可以取代磁通门传感器。

三、AMR传感器在车辆检测中的应用

由于几乎所有的道路车辆的底盘都含有一定数量的黑色金属(铁、钢、镍、钴等),所以磁传感器很适合用于检测车辆。但并不是所有的车辆都发出在检测中磁传感器可以使用的磁场,所以就不能用诸如霍尔传感器“强磁场”的大多数传感装置,“弱磁场”传感器被用来收集该磁场以及附近车辆产生的干扰,图4说明了一个铁磁性物体,如汽车,是如何干扰

地球磁场的。大的铁磁物体的磁扰动,如汽车,可看作多个双极性磁铁组成的模型。这些双极性磁铁具有北-南的极化方向,引起地球磁场的扰动。这些扰动在汽车发动机和车轮处尤为明显,但也取决于在车辆内部、车顶或后备箱中有没有其它铁磁物质。总之,其综合影响是对地球磁场磁力线的扭曲和畸变。

对于检测停车位上车辆的存在,可用一个HMC1021(单轴)和一个HMC1222(双轴)组成一个三轴传感器,将传感器放置在停车位中间,当磁场方向为BS方向的地球磁场时,传感器将磁场分成Bx、By、Bz向量分量。这样,Bx、By、Bz就既能代表分方向,也能代表BS 的幅值。当车辆接近传感器时,BS的方向和幅值就会发生变化。一个各向异性的磁传感器能够检测到一个轴的变化,有三轴的传感器能够在检测范围边缘上更加可靠的检测车辆,为检测提供更可靠的保障。通过对AMR传感器简单的设置,可以有效而可靠地检测车辆的存在。图5是简单的车辆检测电路,HMC1021电桥上采用5V供电,增益为200,10kΩ的电位器用于电桥补偿和修整地球磁场偏置,当传感器电桥的外加磁场为地球磁场时(地一般在0.5Gauss左右),通过10 kΩ电位器将放大器输出设置为2.5V。正确选择R7、R8、R9、R10的值,可以调整传感器输出范围。HMC1021也可用其它HMC10xx系列传感器代替,只是灵敏度不同,HMC1021规定的灵敏度为1mV/V/Gauss。对于实际使用中,若HMC1021磁阻传感器测量的磁场范围超出±6Gauss,传感器就不能很好的保持线性输出,它的灵敏度也会随之降低,此时就不能用它来检测极弱的磁场,一旦出现这种情况,可用脉冲电路施加到SET/RESET 电流带来恢复其原来的灵敏度。

实验利用微控制器D0口每隔10s送出一个1ms低电平,通过IRF7509(一个N沟道和一个P沟道集成的MOS管芯片)和外接电容产生设置/重置脉冲,对传感器进行设置/重置。图5中只给出单轴电路,对于需要精确测量车子存在和方向的可按照上图铺设出完全一样的电路来检测。对于车辆方向和存在进行测定的实验设置,三轴磁传感器安放在地面,东-西方向放置,X、Y、Z轴方向定义如图6所示。

在这个实验中,一辆轿车从磁传感器上方正中央沿东-西方向开过。原点代表轿车车头刚好到达传感器位置。X、Y、Z 三轴输出曲线分别如图7所示。

从实验数据可以看出,当车头离传感器有一定距离时,传感器的各输出轴几乎不会发生变化,车辆渐渐靠近传感器时,车辆的附近的地磁场朝车子方向发生了偏移,此时,X轴为传感器灵敏轴,X轴的输出有了较明显变化变化,当车辆的前轮轴通过传感器上方时,车辆的车轮(含有铁镍合金)对地磁场有较大的影响,此时,Y轴为灵敏轴,Y轴的输出变化最大。车辆继续前行,当传感器的位置位于车辆的发动机下方时,由于发动机对附近磁场有较大影响,此时,X轴、Z轴为传感器灵敏轴,X、Z轴输出变化最大。当车辆的后轮到达传感器位置时,Y轴输出又有了较大变化。当车子快离开传感器时,X轴、Z轴输出有了较大变化,这是因为车辆的后备箱里面有装备用胎,对X、Z方向的磁场造成一定的干扰。当车辆远离开传感器上方时,各轴输出回复到原来的状态。

四、结论

从实验数据中可以看出,汽车位置变化可以引起地磁场的变化,当传感器上方有车子时,传感器周围稳定的地磁场分布收到了扰动,这个扰动可以被传感器确定的扑捉到,传感器输出变化明显,可以此检测出特定车位上车辆的到位其情况。是一种实用的车辆检测传感器。它具有不容易受温度变化及风雪天气干扰等的优点。在智能化交通系统和相关应用中,地磁车辆检测必将以器性能可靠,安装方便,价格经济等优势取代目前普遍使用的车辆检测产品。

车辆检测传感器

车辆检测传感器——地磁传感器简介 发布时间:2008年10月13日 Audo look6.0下载地磁传感器可用于检测车辆的存在和车型识别。这种利用车辆通过道路时对地球磁场的影响来完成车辆检测的传感器与目前常用的地磁线圈(又称地感线圈)检测器相比,具有安装尺寸小、灵敏度高、施工量小、使用寿命长,对路面的破坏小等优点,在智能交通系统的信息采集中必将起到非常重要的作用。 车辆检测传感器的现状 交通监控系统的主要目标是适应动态交通状况的变化。即通过采集交通数据并将其传输到交通管理中心,在中心进行分析,根据分析结果,中心通过控制车辆出入和信号灯,从而更好地管制交通;中心还可以利用这些数据在发生交通事故时迅速采取措施。同时管理中心可把采集的交通数据传给司机,这有助于减缓交通拥挤,优化行车路线。运用交通监控系统可以提高现有道路的通行能力,协调处理突发性交通事件,缓和交通阻塞,从而改善交通状况。数据采集系统在交通监控系统中起着非常重要的作用,所以研究有更高应用价值的数据采集系统是必要的。车辆检测传感器是数据采集系统的关键部分,传感器的性能对数据采集系统的准确性起决定作用。传统的交通数据采集是通过在路面上铺设地感线圈传感器,这种方法有以下缺点: 1.是线圈在安装或维护时必须直接埋入车道,这样交通会受到阻碍; 2.是埋置线圈的切缝软化了路面,容易使路面受损; 3.是工程施工时,出于无意或由于需要切断线圈的现象也会发生,结果常常使线圈无法使用; 4.是感应线圈易受到冰冻、盐碱或繁忙交通的影响; 5.是感应线圈寿命一般为二年,之后要破坏路面,重新铺设等。其它传感器如超声波传感器容易受环境的影响,当风速6级以上时,反射波产生漂移而无法正常检测;探头下方通过的人或物也会产生反射波,造成误检;红外传感器工作现场的灰尘、冰雾会影响系统的正常工作。 而且,以上几种传感器都是根据车长来识别车辆的类型,无法识别载重车辆。 在未来的智能交通运输系统中,交通数据采集器将大范围覆盖街道和公路,从而发挥数据采集的优势。传感器的检测准确度对区域监控方案的产生非常重要,所以用一种先进的、稳定准确的传感系统代替现有的落后的传感系统就成为一个亟待解决的问题。 另外,由于建设高速公路的投资较大,贷款筑路、收费还贷的政策早已深入人心。但是

《汽车传感器技术》课程标准

《汽车传感器技术》课程教学标准 课程编码:课程类别:专业素质课 适用专业:汽车电子技术课程管理单位:汽车工程系 学时:60 学分:3 制定日期:2010-11-12 第一次修订日期:2011-03-26 第二次修订日期: ... 1、课程概述 1. 1课程性质 《汽车传感器技术》属于人才培养方案中四个课程模块中的专业基础课,是汽车电子技术专业的专业必修课,是技能考证课程,《汽车传感器技术》是一门实践性很强的技术应用型课程,它是来自企业的特色课程。 1.2课程的定位 《汽车传感器技术》课程,是汽车电子技术专业课程开发与教学资源建设中的一门课程,是汽车电子技术专业一门重要的职业必修课程。 该课程的学习需要以前修课程《汽车电工技术》、《汽车电子技术》、《汽车机械制图》为前导课程;该课程在后续课程《汽车电器与电子设备》、《汽车车身电控系统故障诊断与维修》、《发动机电控系统检修》、《汽车底盘电控系统检修》、《汽车总成拆装实训》、《整车电路实训》、《汽车性能检测与故障诊断》的学习以及企业顶岗实习、毕业实践等环节中,起着重要的支撑作用。该课程与前后续课程共同形成了完整的职业能力培养体系,是实现汽车电器与电子检测与维修专业人才培养目标的重要环节。该课程属于能力培养第二阶段,是一门重要的专业基础课程。 1.3修读条件 具有高等数学和简单的工程数学的分析和应用能力,具有基本的物理和化学基础;具有基本的读图和识图能力,英语水平较好。前期必须已经合格修读完电工技术和电子技术等专业基础课程。 2、课程目标 2.1知识目标: ①能正确描述传感器的作用、组成和常用术语。 ②能正确描述汽车电控系统中各传感器的类型和工作原理。 ③掌握汽车电控系统中各传感器的故障现象、故障检测与故障排除的流程方法。 2.2技能目标: ①能辨别和说出汽车电器设备各部位传感器的名称和功用。 ②能将传感器实物转化成简图并分析工作过程。 ③通过简图能在实物中找出相应的零部件并分析它的工作过程和工作原理。 ④能正确拆装汽车电器的各个传感器,并有维修和排除故障的能力。

传感器与检测技术(知识点总结)

传感器与检测技术(知识点总结) 一、传感器的组成2:传感器一般由敏感元件,转换元件及基本转换电路三部分组成。①敏感元件是直接感受被测物理量,并以确定关系输出另一物理量的元件(如弹性敏感元件将力,力矩转换为位移或应变输出)。②转换元件是将敏感元件输出的非电量转换成电路参数(电阻,电感,电容)及电流或电压等电信号。③基本转换电路是将该电信号转换成便于传输,处理的电量。 二、传感器的分类 1、按被测量对象分类(1)内部信息传感器主要检测系统内部的位置,速度,力,力矩,温度以及异常变化。(2)外部信息传感器主要检测系统的外部环境状态,它有相对应的接触式(触觉传感器、滑动觉传感器、压觉传感器)和非接触式(视觉传感器、超声测距、激光测距)。 2、传感器按工作机理(1)物性型传感器是利用某种性质随被测参数的变化而变化的原理制成的(主要有:光电式传感器、压电式传感器)。(2)结构型传感器是利用物理学中场的定律和运动定律等构成的(主要有①电感式传感器;②电容式传感器; ③光栅式传感器)。 3、按被测物理量分类如位移传感器用于测量位移,温度传感器用于测量温度。

4、按工作原理分类主要是有利于传感器的设计和应用。 5、按传感器能量源分类(1)无源型:不需外加电源。而是将被测量的相关能量转换成电量输出(主要有:压电式、磁电感应式、热电式、光电式)又称能量转化型;(2)有原型:需要外加电源才能输出电量,又称能量控制型(主要有:电阻式、电容式、电感式、霍尔式)。 6、按输出信号的性质分类(1)开关型(二值型):是“1”和“0”或开(ON)和关(OFF);(2)模拟型:输出是与输入物理量变换相对应的连续变化的电量,其输入/输出可线性,也可非线性;(3)数字型:①计数型:又称脉冲数字型,它可以是任何一种脉冲发生器所发出的脉冲数与输入量成正比;②代码型(又称编码型):输出的信号是数字代码,各码道的状态随输入量变化。其代码“1”为高电平,“0”为低电平。 三、传感器的特性及主要性能指标 1、传感器的特性主要是指输出与输入之间的关系,有静态特性和动态特性。 2、传感器的静态特性是当传感器的输入量为常量或随时间作缓慢变化时,传感器的输出与输入之间的关系,叫静态特性,简称静特性。表征传感器静态特性的指标有线性度,敏感度,重复性等。 3、传感器的动态特性是指传感器的输出量对于随时间变化的输入量的响应特性称为动态特性,简称动特性。传感器的动态特

《传感器与检测技术》全套教案

!知识目标:掌握接近开关的基本工作原理,了解各种接近开关的环境特性及使用方法,掌握应用接近开 T丨关进行工业 技术检测的方法 教学■ 口h I能力目标:对不同接近开关进行敏感性检测,使用霍尔接近开关完成转动次数的测量。 目标! i素质目标: ■ ■ ■ W ■?Fr??T??* 教学 重点 .■该学…t 难点i接近开关的基本工作原理 I ---一一 ^—--十一- ——一一-一-一一--- —一-- . - — - - _-一- --- 教学]理实一体千 輕丨实物讲解手段!小组讨论、协作 接近开关的应用 教学! 学时丨10 教学内容与教学过程设计 1理论学习〗 项目一开关量检测 任务一认识接近开关 一、霍尔效应型接近开关 1.霍尔效应 霍尔效应的产生是由于运动电荷在磁场作用下受到洛仑兹力作用的结果。把N型半导体薄片放在磁场中,通以固定方向的电流i图1-2霍尔效应 么半导体中的载流子(电子)将沿着与电流方向相反的方向运动。 如图1-2所示,i || (从a点至b点),那\ I讲解霍尔效应基i本原 理,及霍尔电 I动势。 2.霍尔元件 霍尔元件的结构简单,由霍尔片、四根引线和壳体组成,如图1-3 所示。 图1-3 霍尔元件

—H ■ ——= H H H —H ■ ■ H H H H — H I 3.霍尔原件的性能参数 1)额定激励电流 2)灵敏度KH 3)输入电阻和输出电阻 4)不等位电动势和不等位电阻 5)寄生直流电动势 6)霍尔电动势温度系数 4.霍尔开关 霍尔开关是在霍尔效应原理的基础上,利用集成封装和组装工艺制作而成,可把磁输入信号转换成实际应用中的电信号,同时具备工业场合实际应用易操作和可靠性的要求。 图1-6霍尔开关 5.霍尔传感器的应用 1)霍尔式位移传感器 霍尔元件具有结构简单、体积小、动态特性好和寿命长的优点,有功功率及电能 参数的测量,也在位移测量中得到广泛应用。 1-7 霍尔式位移传感器的工作原理图 2)霍尔式转速传感器 图1-8所示的是几种不同结构的霍尔式转速传感器。 图1-8 几种霍尔式转速传感器的结构 3)霍尔计数装置 图1-9所示的是对钢球进行计数的工作示意图和电路图。当钢球通过霍尔开关传感器 时,传感器可输出峰值20 mV的脉冲电压,该电压经运算放大器(卩A741)放大后,驱动半导 蒞H尤 {牛 吐n惑坳强屢曲同的传黑 器 霜晦疋件 \ -Av 骷]罰腋的怖楞传想 器 雷耳朮件 At 畑铀构柑同的拉牌传感盟 1 了解霍尔传感器 I i的应用。 它不仅用于磁感应强度、 U) 2

地磁车辆检测器安装(参考指南)说明书V1.0

地球磁场型车辆检测器/车位探测器安装说明书 参考指南(V1.0) 概述 地磁车辆检测器安装方式有两种: 一、埋入路面下安装。埋入路面下安装优点:车辆距离检测器安装固定后,其离车辆地 盘距离可控制在某个范围内(一般0.5米以内),需要埋设设备和牵引电缆线,要对路面挖掘安装空和引线槽。但工程量相对埋设线圈是很少的。另外灵敏度调节和其他参数设置可离线设置,相对占用车道时间也是很短的。所以该方式并不会在施工方面带来特别大的困扰。 二、道路侧(路)边安装。 也可选择路边安装。特别适合某些不能破坏路面或路面比较松软(安装后无法保证检测器位置长期不发生位移的)场合。这种场合下,能够在道路侧边安装仍能实现车辆检测,且综合考虑价格、性能因素,地磁检测器某种意义上将是唯一的有性价比的产品选择了。另外车道较窄,宽度不超过3~4米,可选择侧边安装方式,道路两侧各安装一个检测器,就可非常方便的检测每一侧车辆;如高速公路出入口匝道,一般很窄,就可直接将检测器安装在护栏上,非常方便,高速公路收费站的出入口,也可选择侧边安装(在收费亭上)。 安装方式一:埋入路面下安装

图一检测器埋设安装示意图 图一为车辆检测器在路面下安装示意图, 安装步骤如下: 1、在路面上挖掘或钻一个安装孔,宽度以能放入检测器为适宜,深度为0.2~0.6米。 2、在路面挖掘引线槽。 3、将套好(地磁检测器的)电缆线的PVC管放入槽中。 4、调节电缆线,将地磁检测器放入孔中,调整好距离地面高度H=0.2~0.4米。电缆线 要出于松弛状态。 5、往地磁检测器与安装孔间隙处填充固化且防水材料。 6、将电缆线连接到客户控制系统。 材料与安装要点: 1、PVC管选择不要太粗,比电缆线直径稍大,能套入电缆线为妥。 2、电缆线在PVC管中应处于适当松弛状态(不可处于紧绷状态),避免PVC管变形, 拉断电缆电气线。PVC与电缆出入口出要填充防水材料。 3、同样的,装PVC管的引线槽宽度以能埋下PVC槽为合适。 4、引线槽深度不能太浅,太浅,容易被车轮压塌该槽,并影响到其中的电缆性能,甚至 会压断。 5、安装孔与检测器间隙的填充材料可选用水泥或环氧树脂,沥青等,视情况而定。 参数调试: 1、参数预设置: 预固定好检测器(只要确实保证检测器不会移动,)。然后,根据参数设置步骤设置背景参数,灵敏度,反应设置,恢复设置等,可按参考下表。 表1 反应设置数恢复设置数灵敏度 小于5 小于5 30~200 高速100公里/小时 较高速60~100公里/小时 5~30 5~30 30~200 中速40~80公里/小时 20~30 20~30 30~200 大于30 大于30 30~200 低速10~40公里/小时 设置后,按规定速度范围,通过一辆汽车,应能被检测到,否则要检查检测器与安装孔是否有问题。 2、固化安装,如果预调通过,说明安装高度基本合适,检测器没有故障,可填入防水、 固化材料,进行防水和加固。 安装方式二:道路侧边安装 道路侧边安装是本检测器不同与线圈型检测器的鲜明特点,它由于这种特点,它可为客户提供更高的性价比,最小的施工量。

常用车辆检测传感器综述

常用车辆检测传感器综述 前言随着城市规模的不断扩大以及人口持续增加,人们的工作生活越来越依赖于各种交通工具。经济不断发展,人们收入的增加,以及国家一系列的购车优惠政策,越来越多的人拥有汽车。城市各种车辆的增加给人们出行提供了方便,但是由于交通量的增加,容易造成交通拥堵,甚至出现交通事故。为了解决日益严重的交通问题,不能够仅仅依靠扩宽现有的道路或者修建新的道路,构建智能交通系统(Intelligent Transportation Systems,简称ITS)此时解决日益严重的道路交通问题的有效办法,而车辆检测传感器则是ITS中最重要的交通数据采集部分。 实时准确地检测道路车辆的交通流信息并预测未来道路交通状况,进而将预测信息提供给交通控制中心,才可能有效避免交通阻塞,减少出行时间和交通事故的发生。精确和可靠的检测数据是在交通控制中进行合理的信号配时优化的基础,有效地利用实时的交通数据预测未来的交通状况,是实现有效的交通控制关键所在。本文集中介绍了集中生活中常用的几种固定式车辆检测传感器的原理和特点,分析了在不同环境中,车辆检测传感器的选择方式。 固定式车辆检测传感器一般包括感应线圈式检测器、超声波检测器、微波检测器、红外线检测器、视频检测器、磁力检测器以及声学检测器等。 一、感应线圈检测器 1.1 工作原理 感应线圈车辆检测器在检测过程中利用了涡流效应,即根据电磁感应定律,当金属导体置于交变磁场中时,导体内就会产生感应电流,在导体内形成闭合回路电流。检测器LC谐振电路产生一定频率的正弦振荡信号,同时,正弦振荡信号经互感线圈感应到埋设在路面的环形激励线圈上,使其周围空间形成正弦交变磁场。 图1 线圈检测系统组成示意图 其主要构成包括:埋于路面以下较浅处的绝缘线圈、路边拉紧盒到控制箱的数据输入线以及装于控制箱内的电子元件,如图1所示。环形线圈检测系统与控制中心的主控机通过电缆连接、通信,主控机可发送信号,设置检测器的检测周期等工作状态,并监测检测器故障;检测器则将检测数据如车辆计数、占有率等传送至主控机,以便完成控制系统的信息存储、优化配置、方案选择和事件检测等功能,实现系统的最佳控制效果。当汽车停在或驶过绝缘线圈,车辆的金属部分产生涡流电流,且电流方向与线圈电流的方向相反,因此,引起涡流电流产生的磁场与线圈电流产生的磁场方向相反,使得线圈磁场场强减小,而线圈磁场场强的减小使得振荡电路的振荡频率增加,从而引发电子元件向控制箱发出脉冲,以表征车辆的出现和经过。 1.2 典型应用 感应线圈车辆检测器具有稳定性好、技术成熟、正常使用寿命长、性价比和精确度高等

传感器与检测技术试卷及答案

传感器与检测技术试卷及答案 ((((试卷一试卷一试卷一试卷一)))) 第一部分选择题(共24 分) 一、单项选择题(本大题共12小题,每小题2 分,共24分)在每小题列出的四个选项中只有一个选项 是符合题目要求的,请将正确选项前的字母填在题后的括号内。错选、多选和未选均无分。 1.下列被测物理量适合于使用红外传感器进行测量的是(C)A.压力B.力矩C.温度D.厚度 2.属于传感器动态特性指标的是( D ) A.重复性B.线性度C.灵敏度D.固有频率 3.按照工作原理分类,固体图象式传感器属于( A )A.光电式传感器B.电容式传感器C.压电式传感器D.磁电式传感器4.测量范围大的电容式位移传感器的类型为(D ) A.变极板面积型B.变极距型 C.变介质型D.容栅型 5.利用相邻双臂桥检测的应变式传感器,为使其灵敏度高、非线性误差小( C ) A.两个桥臂都应当用大电阻值工作应变片 B.两个桥臂都应当用两个工作应变片串联 C.两个桥臂应当分别用应变量变化相反的工作应变片 D.两个桥臂应当分别用应变量变化相同的工作应变片 6.影响压电式加速度传感器低频响应能力的是( D )A.电缆的安装与固定方式B.电缆的长度 C.前置放大器的输出阻抗D.前置放大器的输入阻抗 7.固体半导体摄像元件CCD 是一种() A.PN结光电二极管电路B.PNP 型晶体管集成电路 C.MOS型晶体管开关集成电路D.NPN型晶体管集成电路 8.将电阻R 和电容C 串联后再并联到继电器或电源开关两端所构成的RC吸收电路,其作用是 () A.抑制共模噪声B.抑制差模噪声C.克服串扰D.消除电火花干扰 9.在采用限定最大偏差法进行数字滤波时,若限定偏差△Y≤0.01,本次采样值为0.315,上次 采样值为0.301,则本次采样值Yn应选为() A.0.301 B.0.303 C.0.308 D.0.315 10.若模/数转换器输出二进制数的位数为10,最大输入信号为2.5V,则该转换器能分辨出的最 小输入电压信号为() A.1.22mV B.2.44mV C.3.66mV D.4.88mV 11.周期信号的自相关函数必为() A.周期偶函数B.非周期偶函数C.周期奇函数D.非周期奇函数12.已知函数x(t)的傅里叶变换为X(f),则函数y(t)=2x(3t)的傅里叶变换为() 第二部分非选择题(共76分) 二、填空题(本大题共12小题,每小题1分,共12分)不写解答过程,将正确的答案写在每小 题的空格内。错填或不填均无分。 13.对传感器进行动态的主要目的是检测传感器的动态性能指标。 14.传感器的过载能力是指传感器在不致引起规定性能指标永久改变的条件下,允许超过 的能力。 15.传感检测系统目前正迅速地由模拟式、数字式,向方向发展。 16.已知某传感器的灵敏度为K0,且灵敏度变化量为△K0,则该传感器的灵敏度误差计算公式为rs= 。 17.为了测得比栅距W更小的位移量,光栅传感器要采用技术。 18.在用带孔圆盘所做的光电扭矩测量仪中,利用孔的透光面积表示扭矩大小,透光面积减小,则表明扭矩。19.电容式压力传感器是变型的。 20.一个半导体应变片的灵敏系数为180,半导体材料的弹性模量为1.8×105Mpa,其中压阻系数πL为Pa-1。 21.图像处理过程中直接检测图像灰度变化点的处理方法称为。 22.热敏电阻常数B 大于零的是温度系数的热敏电阻。 23.若测量系统无接地点时,屏蔽导体应连接到信号源的。 24.交流电桥各桥臂的复阻抗分别为Z1,Z2,Z3,Z4,各阻抗的相位角分别为?1? 2? 3 ?4,若电桥平衡条件为Z1/Z4=Z2/Z3,那么相位平衡条件应为。 三、问答题(本大题共6小题,每小题4分,共24分) 25.简述压电式传感器分别与电压放大器和电荷放大器相连时各自的特点。 26.回答与直线式感应同步器有关的下列问题: (1)它由哪两个绕组组成? (2)鉴相式测量电路的作用是什么? 27.简述压磁式扭矩仪的工作原理。 28.说明薄膜热电偶式温度传感器的主要特点。 29.简述激光视觉传感器将条形码的信息传输的信号处理装置的工作过程。 30.采用逐次逼近法的模/数转换器主要由哪几部分组成? ((((答案一答案一答案一答案一)))) 一、单项选择题(本大题共12小题,每小题2分,共24分) 1.C 2.D 3.A 4.D 5.C 6.D 7.C 8.D 9.A 10.B 11.A 12.B 二、填空题(本大题共12小题,每小题1分,共12 分) 三、问答题(本大题共6小题,每小题4分,共24 分) 25.传感器与电压放大器连接的电路,其输出电压与压电元件的输出电压成正比,但容易受电 缆电容的影响。 传感器与电荷放大器连接的电路,其输出电压与压电元件的输出电荷成正比,电缆电容的影响小。 26.(1)由固定绕组和滑动绕组组成。 (2)检测感应电动势的相位,从而根据相位确定位移量的大小和方向。 27.压磁式扭矩仪的轴是强导磁材料。根据磁弹效应,当轴受扭矩作用时,轴的磁导率发生 变化,从而引起线圈感抗变化,通过测量电路即可确定被测扭矩大小。28.主要特点是:热容量小(或热惯性小),时间常数小,反应速度快。29.(1)多面棱镜高速旋转,将激光器发出的激光束反射到条形码上作一维扫描。 (2)条形码反射的光束经光电转换及放大元件接收并放大后再传输给信号处理装置。 30.由电压比较器、数/模转换器、顺序脉冲发生器、数码寄存器和逐次逼近寄存器组成。 四、计算题(本大题共3小题,每小题8分,共24 分) ((((试卷二试卷二试卷二试卷二)))) 一、填空题(每空1分,共15分) 1.如果仅仅检测是否与对象物体接触,可使用_______作为传感器。 2.红外图像传感器由红外敏感元件和_______电路组成。 3.在电阻应变片公式,dR/R=(1+2μ)ε+λEε中,λ代表_______。 4.利用电涡流位移传感器测量转速时,被测轴齿盘的材料必须是_______。 5.当磁头相对于磁尺不动时,仍有感应电动势输出的是静态磁头,且输出电势的幅值由_______所决定。 6.动态标定的目的,是检验测试传感器的_______指标。 7.确定静态标定系统的关键是选用被测非电量(或电量)的标准信号发生器和_______。 8.传感器的频率响应特性,必须在所测信号频率范围内,保持_______条件。 9.热电偶电动势由_______电动势和接触电动势两部分组成。 10.SnO2型半导体气敏器件非常适宜检测浓度较_______的微量气体。 11.有源滤波器由集成运放和_______组成。 12.采用_______电源供电的电桥称为交流电桥。 13.多路模拟开关由_______和多路双向模拟开关组成。 14.为了提高检测系统的分辨率,需要对磁栅、容栅等大位移测量传感器输出信号进行_______。 15.若随机信号x(t)、y(t)的均值都为零,当τ→∞时,它们的互相关函数Rxy(τ)=_______。 二、单项选择题(在每小题的四个备选答案中,选出一个正确答案,并将正确答案的序号填在题 干的括号内。每小题1分,共15 分) 1.对压电式加速度传感器,希望其固有频率( ) A.接近零 B.尽量低些 C.尽量高些 D.任意 2.( )传感器可用于医疗上-50℃~150℃之间的温度测量。

车辆检测技术的介绍

车辆检测技术的介绍 摘要:车辆检测是智能交通的组成部分,是实现智能化监测、控制、分析、决策、调度和疏导的依据。本文分析了智能交通中常用的车辆检测方式、环境适应性和优缺点及线圈检测和视频检测的应用。 1.引言 智能交通系统(Intelligent Transportation Systems,ITS)在我国得到了广泛应用。车辆检测是智能交通系统的组成部分,通过车辆检测方式采集有效的道路交通信息,获得交通流量、车速、道路占有率、车间距、车辆类型等基础数据,有目的地实现监测、控制、分析、决策、调度和疏导。目前,车辆检测器的种类很多,如有线圈检测、视频检测、微波检测、激光检测、声波检测、超声波检测、磁力检测、红外线检测等。本文列举了几种国内智能交通中常用的车辆检测方式、环境适应性以及优缺点。 2.车辆检测方式特点比较 2.1线圈检测方式 通过一个电感器件即环形线圈与车辆检测器构成一个调谐电子系统,当车辆通过或停在线圈上会改变线圈的电感量,激发电路产生一个输出,从而检测到通过或停在线圈上的车辆。线圈检测技术成熟、易于掌握、计数非常精确、性能稳定。缺点是交通流数据单一、安装过程对可靠性和寿命影响很大、修理或安装需中断交通、影响路面寿命、易被重型车辆、路面修理等损坏。另外高纬度开冻期和低纬度夏季路面以及路面质量不好的地方对线圈的维护工作量比较大的。 2.2视频检测方式 视频检测方式是一种基于视频图像分析和计算机视觉技术对路面运动目标物体进行检测分析的视频处理技术。它能实时分析输入的交通图像,通过判断图像中划定的一个或者多个检测区域内的运动目标物体,获得所需的交通数据。该系统的优点是无需破坏路面,安装和维护比较方便,可为事故管理提供可视图像、可提供大量交通管理信息、单台摄像机和处理器可检测多车道。它的缺点是精度不高,容易受环境、天气、照度、干扰物等影响,对高速移动车辆的检测和捕获有一定困难。因为,拍摄高速移动车辆需要有足够快的快门(至少是1/3000S )、

汽车传感器与测试技术实验指导书(2个实验)

实验一位移传感器性能实验 一、实验目的: 1、、了解电涡流传感器原理; 2、掌握电涡流传感器的应用方法; 二、基本原理: 电涡流传感器的基本原理 通以高频电流的线圈产生磁场,当有导电体接近时,因导电体涡流效应产生涡流损耗,而涡流损耗与导电体离线圈的距离有关,因此可以进行位移测量。三、需用器件与单元: 电涡流传感器、电涡流传感器实验模块、测微头、直流电源、数显单元(主控台电压表)、测微头、铁圆片。 四、实验步骤: 测微头的组成与使用测微头组成和读数如图8-2测微头读数图 图8-2 测位头组成与读数 测微头组成:测微头由不可动部分安装套、轴套和可动部分测杆、微分筒、微调钮组成。 测微头读数与使用:测微头的安装套便于在支架座上固定安装,轴套上的主尺有两排刻度线,标有数字的是整毫米刻线(1mm/格),另一排是半毫米刻线(0.5mm/格);微分筒前部圆周表面上刻有50等分的刻线(0.01mm/格)。 用手旋转微分筒或微调钮时,测杆就沿轴线方向进退。微分筒每转过1格,

测杆沿轴方向移动微小位移0.01毫米,这也叫测微头的分度值。 测微头的读数方法是先读轴套主尺上露出的刻度数值,注意半毫米刻线;再读与主尺横线对准微分筒上的数值、可以估读1/10分度,如图8-2甲读数为3.678mm,不是 3.178mm;遇到微分筒边缘前端与主尺上某条刻线重合时,应看微分筒的示值是否过零,如图6-2乙已过零则读2.514mm;如图8-2丙未过零,则不应读为2mm,读数应为1.980mm。 测微头使用:测微头在实验中是用来产生位移并指示出位移量的工具。一般测微头在使用前,首先转动微分筒到10mm处(为了保留测杆轴向前、后位移的余量),再将测微头轴套上的主尺横线面向自己安装到专用支架座上,移动测微头的安装套(测微头整体移动)使测杆与被测体连接并使被测体处于合适位置(视具体实验而定)时再拧紧支架座上的紧固螺钉。当转动测微头的微分筒时,被测体就会随测杆而位移。 电涡流传感器测位移 1)电涡流传感器和测微头的安装、使用参阅图8-5。按图8-6示意图接线。 2)观察传感器结构,这是一个扁平绕线圈。 3)将电涡流传感器输出线接入实验模块上标有Ti的插孔中,作为振荡器的一个元件。 4)在测微头端部装上铁质金属圆片,作为电涡流传感器的被测体。 5)将实验模块输出端V o 与数显单元输入端V i 相接。数显表量程切换开关选 择电压20V档。 6)用连接导线从主控台接入+15V直流电源到模块上标有+15V的插孔中,同时主控台的“地”与实验模块的“地”相连。

传感器与检测技术名词解释

传感器复习资料 第一章 1、传感器的定义:能够检测特定的物理量并将其转换为相应的电量的装置(或者 是一种以一定的精确度把被测量转换为与之有确定对应关系的、便于应用的某种物理量的测量装置)。 2、传感器的组成:由敏感元件、转换元件、信号调理转换电路三部分组成。 3、传感器的作用:信息的收集、信息数据的转换和控制信息的采集,处于被测对象和检测系统的接口位置。 4、传感器的静态特性:是指传感器被测输入量各个值为不随时间变化的恒定信号 时,系统的输入和输出之间的关系,包括线性度、灵敏度、重复性、迟滞、漂移; 动态特性是指传感器的输入为随时间变化的信号时,系统的输入与输出之间的关系。 5、提高传感器性能的技术途径:采用线性化技术、采用闭环技术、采用补偿和校正技术、采用差动技术、 第二章 6、测量基本概念:测量就是借助专用的手段和技术工具,通过实验的方法,把被 测量与同种性质的标定进行比较,求出两者的比值,从而获得被测量大小的过程。 7、测量的方法:直接测量、间接测量、组合测量。 8、真值的概念:是指在一定的时间以及空间条件下,被测量所体现的真实数值。 9、绝对误差:绝对误差是指测量结果的测量值与被测量的真值之间的差值。 10、相对误差:绝对误差与真值之比。引用误差:绝对误差与测量仪表的满量程A 的百分比。 11、测量误差的分类:系统误差、随机误差、粗大误差。测量精度包括准确度、精密度、精确度。 12、测量数据的表述方法:表格法、图示法、经验公式法。 13、测量不准确度的定义:与测量结果相关联的一个参数,用以表征合理的赋予被测量之值的分散性。 第三章 14、电阻应变片的类型:按材料分主要有金属应变片和半导体应变片两大类。 15、电阻应变片的特性:灵敏系数K、横向效应、初始电阻、绝缘电阻、最大工作 电流、应变极限、机械滞后、蠕变和零漂、疲劳寿命 16、温度误差及补偿措施:自补偿法、桥路补偿法。压阻效应:半导体材料受到应 力作用时,其电阻率会发生变化,这种现象就称为压阻效应。 17、应变片的核心是敏感栅,敏感栅的作用是实现应变—电阻转换,其电阻值一般 为120欧姆。 18、测量电桥一般分为直流电桥和交流电桥。产生温度误差的原因有两个:意识敏 感栅金属丝电阻本身随温度发生变化;而是试件材料与应变丝材料的线膨胀系数不一致使应变丝产生附加变形而造成的电阻变化。 第四章 19、电感式传感器种类一般分为自感式和互感式。自感式电感传感器分为变气隙式、

传感器与检测技术课程教学大纲

《传感器与检测技术》课程教学大纲 一、课程的性质、课程设置的目的及开课对象 本课程是机械设计制造及其自动化专业(机械电子工程方向)学生的重要专业课程。本课程设置的目的是通过对传感器的一般特性与分析方法,传感器的工作原理、特性及应用,检测系统的基本概念的学习,通过本课程的学习,使学生掌握检测系统的设计和分析方法,能够根据工程需要选用合适的传感器,并能够对检测系统的性能进行分析、对测得的数据进行处理。 开课对象:机械设计制造及其自动化专业(机械电子工程方向)本科生。 二、先修课程:高等数学、工程数学、电子技术、数字电子技术等。 三、教学方法与考核方式 1.教学方法:理论教学与实验教学相结合。 2.考核方式:闭卷考试。 四、学时分配 总学时48学时。其中:理论38学时,实验10学时 五、课程教学内容与学时 (一)传感器与检测技术概念 传感器的组成、分类及发展动向,技术的定义及应用。 重点:传感器与检测技术的目的和意义。 教学方法:课堂教学和现场认识教学相结合。 (二)传感器的特性 1.传感器的静态特性 2.传感器的动态特性及其响; 重点:传感器的静态特性与动态特性的性质。 难点:工艺计算与平面布置;微机联网控制系统。 广度:本章主要讲述传感器特性的基础知识。 深度:主要讲述传感器的特性,不涉及复杂的内容。 教学方法、手段:课堂教学、多媒体教学,强化实际操作。 (三)电阻式传感器 1.电位器式传感器的主要特性及其应用 2.应变片的工作原理 3.应变片式电阻传感器的主要特性及应用 重点:理解电位器式传感器、应变片式传感器的工作原理,掌握它们的性能特点,了解其常用结构形式及应用。 难点:线性与非线性电位器的测量原理,应变片式传感器的测量原理、温度误差及其补偿。

汽车测速传感器检测系统设计

汽车车速传感器检测系统设计 目前,随着人们生活水平的逐渐提高,人们对于生活质量的要求也日益增加,尤其是对生活质量舒适度的要求。汽车在中国普遍作为代步工具。而在国外,汽车却是一项十分受欢迎的交通方式。因此爱好汽车人十分学要一款能测速的装置,以知道自己的运行情况。并根据外界条件,如温度,风速等进行适当的调节,已达到最佳的运行效果。因此需要寻找一种装置与方法进行对训练中各种参数的测定记录。 本文讲详细的具体的讨论这些方法在汽车上的应用。 汽车要实现测速必须满足以下这些要求: ⒈对汽车进行实时速度的测量。显示出速度值。 ⒉能针对不同的车型进行选择。从而采用不同的模块进行测量。 ⒊能测量出当前的环境,以供使用者决定是否适宜出行。 ⒋显示当前日期时间,可以任意设定当前工作时间。 ⒌显示行车里程,运动时间。 ⒍可以自行设定采样频率 ⒎记录一段时间内的定时采样速度,存入制定单元。通过与PC机进行通讯,将数据传送到PC机中用如见进行处理,分析。得出运动或训练的情况。 8. 可以进入系统休眠方式以节省电能,并随时激活唤醒系统重新进行工作。可以调节液晶对比度,可以打开背景灯显示。

系统框图 通过传感器对外部物理量进行测量,再将物理信号转换为电信号,输入单 片机,单片机对所输入的电信号进行处理,最后输出显示,并可以通过与上位机通讯将数据采集到电脑中。 其中传感器元件用霍尔传感器,霍尔传感器外形图和与磁场的作用关系如右图所示。磁场由磁钢提供,所以霍尔传感器和磁钢需要配对使用。 霍尔传感器检测转速示意图如下。在非磁材料的圆盘边上粘贴一块磁钢,霍尔传感器固定在圆盘外缘附近。圆盘每转动一圈,霍尔传感器便输出一个脉冲。通过单片机测量产生脉冲的频率就可以得出圆盘的转速。 提醒:当没有信号产生时,可以改变一下磁钢的方向,霍尔对磁钢方向有要求。没有磁钢时输出高电平,有磁钢时输出低电平。 被测量对象 传感器 单片机系统 数据处理并显示 PC 机通信处理

智能交通数据采集--地磁检测器技术资料

地磁检测器技术资料1.1地磁车辆检测器(型号:FDC-003) 1.1.1产品尺寸示意图 1-1产品尺寸示意图 1.1.2产品外观

图1-2 地磁检测器图 1.1.3产品特性 1. 通信频率,470MHz,符合无线通信标准,无需申请; 2. 通信距离最大100米,大部分路口不需要加装中继器; 3. 聚丙烯(PPR)材料外壳,提高使用寿命,防止出现裂纹、老化等现象; 4. 检测器小巧(φ50mm×H100mm),对路面破坏小; 5. 电量实时监测; 6. 强度实时检测; 7. 磁场感应强度可分为5级可调; 8. 自适应,自学习能力; 9. 检测灵敏度高;

10. 安装简单方便:无线传输,无电源线,无数据线,用水钻(通用工具)在路面钻一圆洞埋入即可; 11. 环境适应性强,能够全天候,全时段运行; 12. 自主研发,算法独特,抗干扰能力强; 13. 设置便捷,维护简便。 1.1.4地磁设备特色 1、安装施工方便 路面施工极其方便,不封闭车道,不挖开路面,不布线,不用电源,只需钻小孔(直径50毫米,高度130毫米)植入即可,对路面破坏小。 2、全天候检测,使用寿命长,维护简单 不受天气的影响,环境温度-20℃至70℃,24小时不间断工作。 外形小巧,实现隐蔽安装,无需承载车辆压力,检测点不易遭到破坏,内置电池可使用5年。几乎不需要平时的维护。 3、多维数据收集为实施监控提供依据 可以获取地点时间、通过时间、时距、占有率、车流量、平均车速、车型、状态(通过、刹车、起步)、刹车时间、起步时间、停车时间等数据。 4、网络负荷最小化 车流信息已在地磁检测器计算完成,上传结果数据,对网络负荷极小,与其它交通系统轻松对接。即使是用GPRS也可以轻松

汽车传感器与检测技术课程整体设计

《汽车传感器与检测技术》 课程整体设计 黔东南民族职业技术学院汽车专业 2011.8

课程代码: 4134032 课程名称:汽车传感器与检测技术 课程类型: 专业必修课 总学时:36 讲课学时:18 实验学时:18 学分:2 适用对象: 高等职业院校汽车检测与维修技术专业 1.学习情境设计思想 汽车传感器与检测技术采用以行动为导向、基于工作过程的课程开发方法进行设计,整个学习领域由4个学习情境组成。学习情境的设计要考虑以下因素: 1)学习情境的设计要符合基于工作过程的教学设计思想的要求。学习情境是在职业学校实验场地对真实工作过程的教学化加工,以完成具体的工作任务为目标。 2)学习情境的前后排序要符合学生认知规律,可以考虑从简单到复杂、从单一到综合的排序方法。 通过对维修企业维修汽车传感器检测的典型工作任务进行分析,结合学生的认知规律,共为汽车传感器与检测技术学习领域设计了4个学习情境,如表1所示。学习情境按照从简单到复杂,从单一到综合的规律进行排序。由于汽车传感器检测是多个控制系统的高度耦合系统,一个故障现实可能是由多个系统的故障引起,因此,在学习时先从各系统故障入手,最后再学习发动机综合故障的诊断与修复。 表1 汽车传感器与检测技术学习情境 2.学习情境描述 学习情境的描述包括:学习情境的名称、学时、学习目标及学习内容、教学方法和建议、工具教学载体、学生已有基础和教师所需执教能力。学习目标主

要描述通过该学习情境的学习学生应获得的能力;学习内容主要描述在该学习情境中所需学习的知识点。各学习情境的描述见下表: 3.《汽车传感器检测检修》学习情境设计 学习情境设计1 专业领域:汽车检测与维修专业 学习领域:汽车传感器检测 教师姓名日期

地磁车辆检装置实验报告

一、测试目的 1. 熟悉无线地磁车辆检测装置的操作。 2. 测试无线地磁检测器能否检测车辆的存在。 二、测试工具 软件工具:Flash Program 硬件工具:CC2530仿真器、含铁量较高的物体 三、测试步骤 1.烧写地磁检测器和接收单元的hex文件 a.在PC上安装CC2530仿真器驱动及烧写工具Flash Program。(详见《地磁车辆检测装置软件开发环境搭建》文档) b.用CC2530仿真器将板子和PC机相连,在PC端打开Flash Program, 然后分别烧写地磁检测器和接收单元的hex文件。 2.地磁检测器系统功耗测试 检测器在完成一次采集之后进入PM3模式,在PM3模式中CC2530能量消耗的最少。检测器的唤醒是通过HMC5883L的中断引脚周期唤醒CPU,两 次中断的间隔时间约为33.3ms。具体操作步骤如下: a.先将外接5V电源稳压成3.3V给检测器供电,然后串联一个阻值较小的 电阻(约2欧),用示波器测试并记录电阻两端的波形。 b.通过波形数据,分别计算出一个周期内检地磁检测器工作模式时的 电流(mA)和时间(Ms)、PM3模式时的电流(mA)和时间(Ms)。 c.确定检测器持续工作一年的电池电量。假如计算公式如下: 平均电流=(工作模式时间x工作模式电流)+(PM3模式时间xPM3模式电流 ))/33.3ms 所以检测单元工作一年所需电量约为: Energy = 平均电流 x 24(小时) x 365(天) 3.设置模块ID

a.将接收单元8位拨码开关拨到相应的数值。拨码开关前4位(二进制)表 示接收单元ID,后四位(二进制)表示地磁检测器ID。例如拨码开关的 值为10101110,则接受单元ID为1010 = 0x0A,检测单元ID为1110=0x0E。接收单元和检测器ID范围均为0x00~0 x0F。 b.设置好接收单元拨码开关的数值后,连续按3下KEY2,同时RUN指示灯 闪烁,系统将进入设置模式。 c.将含有铁的物体距离一定高度从地磁检测器上方经过,若地磁检测 器指 示灯闪烁一下(约500MS),则表明设置ID成功。 4.检测器的磁场校准及使用 检测器上电后,首先会对环境磁场进行采样并以当前环境磁场建立基准,此时LED灯会快速的连续闪烁,当基准磁场建立后进入检测状态, LED灯熄灭。如果环境磁场不稳定或者自身的位置在不断变化,产品将 无法确定基准磁场而一直处于基准磁场采样及判断状态。产品在启动 前要首先固定好,并确认没有交流磁场的干扰。当传感器位置变化,或 者有固定磁场干扰而无法正常工作时,需要重新启动传感器,建立新的 磁环境基准。 5.检测车辆的存在性 a.用串口助手模拟信号机发送查询指令,指令格式如下:0xFD+0xC2+接 受单元ID+0x01+校验和。 b.将含铁的物体距离一定高度从地磁检测器上方经过,若对应的某一个L ED灯闪烁,则表明有车经过。 c.读取串口助手收到的指令,其格式为0xFB+0xC2+接收单元ID+0x01+红 灯和车辆信息(1字节,高4位表示红灯信息,低4位表示车辆信息)。 根据红绿灯状态(如0x23,2表示INR3为红灯,3表示第四车道有车) ,如此可推断出车辆是否是在红灯状态下经过;红绿灯状态可以模 拟,将接收单元的INR1~INR8接入220V电压即可。

汽车检测与维修教案(DOC)

汽车检测与维修教案(DOC)

《汽车检测与维修》 教案 教师:

一、汽车检测概论 一、汽车综合性能概况 汽车从发明到今天已经一个多世纪了,一方面要不断研制性能优良的汽车;另一方面要借助维护和修理,恢复其技术状况。我国从60年代开始研究汽车检测技术,70年代,我国大力发展了汽车检测技术,进入80年代,汽车检测及诊断技术也随之得到快速发展,80年代初,交通部在大连市建立了国内第一个汽车检测站。到1997年,全国已建立汽车综合性能检测站近千家,其中A级站140多家。工业发达国家的汽车检测在管理上已实现了“制度化”;在检测基础技术方面已实现了“标准

化”;在检测技术上向“智能化、自动化检测”方向发展。 二、基本术语 1、汽车故障:指汽车部分或 完全丧失工作能力的现象,其实质 是汽车零件本身或零件之间的配 合状态发生了异常变化。 2、汽车故障诊断:指在不解 体(或仅拆下个别小件)的情况下, 确定汽车的技术状况,查明故障部 位及故障原因的汽车应用技术。 3、汽车技术状况:指定量测 得的表征某一时刻汽车外观和性 能参数值的总和。 4、汽车检测:是指为确定汽

车技术状况或工作能力所进行的 检查和测量。按汽车检测的目的可 分为安全环保检测和综合性能检 测两大类。 5、汽车诊断参数:指供诊断 用的,表征汽车、总成及机构技术 状况的量,它包括工作过程参数、 伴随过程参数和几何尺寸参数。 6、诊断标准:是表征汽车、 总成或机构工作能力状态的一系 列诊断参数的界限值。 三、诊断方法 汽车技术状况的诊断是通过检查、 测量、分析、判断等一系列活动完 成的,其基本方法主要分为两种:

传感器与智能检测技术课后习题答案.doc

西安理工研究生考试 传 感 器 与 智 能 检 测 技 术 课 后 习 题

1、对于实际的测量数据,应该如何选取判别准则去除粗大误差? 答:首先,粗大误差是指明显超出规定条件下的预期值的误差。去除粗大误差的准则主要有拉依达准则、格拉布准则、t检验准则三种方法。准则选取的判别主要看测量数据的多少。 对于拉依达准则,测量次数n尽可能多时,常选用此准则。当n过小时,会把正常值当成异常值,这是此准则的缺陷。 格拉布准则,观测次数在30—50时常选取此准则。 t检验准则,适用于观察次数较少的情况下。 2、系统误差有哪些类型?如何判别和修正? 答:系统误差是在相同的条件下,对同一物理量进行多次测量,如果误差按照一定规律出现的误革。 系统误差可分为:定值系统误差和变值系统误差。 变值系统误差乂可以分为:线性系统误差、周期性系统误差、复杂规律变化的系统误差。判定与修正: 对于系统误差的判定方法主要有: 1、对于定值系统误差一?般用实验对比检验法。改变产生系统误差的条件,在不同条件下进行测量,对结果进行比较找出恒定系统误差。 2、对于变值系统误差:a、观察法:通过观察测量数据的各个残差大小和符号的变化规律来判断有无变值系统误差。这些判断准则实质上是检验误差的分布是否偏离正态分布。 b、残差统计法:常用的有马利科夫准则(和检验),阿贝-赫梅特准则(序差检验法)等。 c、组间数据检验正态检验法 修正方法: 1.消除系统误差产生的根源 2.引入更正值法 3.采用特殊测量方法消除系统误差。主要的测量方法有:1)标准量替代法2)交换法3)对称测量法4)半周期偶数测量法 4.实时反馈修正 5.在测量结果中进行修正 3、从理论上讲随机误差是永远存在的,当测量次数越多时,测量值的算术平均值越接近真值。因此,我们在设计自动检测系统时,计算机可以尽可能大量采集数据,例如每次采样数万个数据计算其平均值,这样做的结果合理否? 答:这种做法不合理。随机误差的数字特征符合正态分布。当次数n增大时,测量精度相应提高。但测量次数达到一定数Id后,算术平均值的标准差下降很慢。对于提高精度基本可忽略影响了。因此要提高测量结果的精度,不能单靠无限的增加测量次数,而需要采用适当的测量方法、选择仪器的精度及确定适当的次数等几方面共同考虑来使测量结果尽可能的接近真值。 4、以热电阻温度传感器为例,分析传感器时间常数对动态误差的影响。并说明热电阻传感器的哪些参数对有影响? 答:1、对于热电阻温度传感器来说,传感器常数对于温度动态影响如式子t2=t x-T (dtJdt)所示,7■决定了动态误差的波动幅度。了的大小决定了随着时间变化

相关文档
相关文档 最新文档