文档库 最新最全的文档下载
当前位置:文档库 › 3一种快速3维无人机航迹规划方法_李时东

3一种快速3维无人机航迹规划方法_李时东

3一种快速3维无人机航迹规划方法_李时东
3一种快速3维无人机航迹规划方法_李时东

无人机任务规划的基本概念

主要内容 ?无人机任务规划的基本概念三 ?无人机任务规划方法三 ?无人机任务规划的数字地图技术三 ?无人机地面控制站的基本概念三 ?无人机地面控制站的分类二配置和转移运输三 5.1 无人机任务规划的基本概念 由于无人机是无人驾驶的飞行器,所以在飞行前需要事先规划和设定好它的飞行任务和航线三在飞行过程中,地面操纵人员还要随时了解无人机的飞行状态,根据需要操控无人机调整姿态和航线,及时处理飞行中遇到的特殊情况,以保证飞行安全和飞行任务的完成三这就需要配备能够提供任务规划与指挥控制方面相应功能支持的设备或系统,这就是无人机的任务规划与指挥控制系统三 5.1.1一任务规划的定义和特点一 1.任务规划的定义 一一规划是一个综合性的计划,它包括目标二政策二程序二规则二任务分配二要采取的步骤二要使用的资源以及为完成既定行动方针所需的其他因素三 任务规划(M i s s i o nP l a n n i n g,M P)是对工作实施过程二方法的组织和计划三在军事领域,任务规划已逐渐变为一个专有名词,尤其是现代无人化装备的出现,使得任务规划越来越重要三装备作战规划的结果是装备作战行动的实施依据三对有人化装备而言,规划结果 主要作为任务承担人员决策的参考;但对无人化装备而言,规划即控制,是装备运行过程中

137 一 唯一的执行依据,因此,任务规划的输出信息必须满足准确性二完整性和一致性的要求三 2.任务规划的特点 任务规划具有以下几个特点: (1)制作任务规划时需要具有整体性二全局性的思考和考量三 (2)制作任务规划须以准确的数据为基础,运用科学方法进行从整体到细节的设计三 (3)任务规划须在实际行动实施之前进行,其结果要作为实际行动的具体指导三5.1.2一 任务规划系统的定义和功能一 1.任务规划系统的定义一一任务规划系统( M i s s i o nP l a n n i n g S y s t e m ,M P S )是指利用先进的计算机技术采集二存储各种情报信息,进行大规模分析计算,从而辅助制定任务计划的信息系统三任务规划系统的出现和广泛使用是现代意义的任务规划区别于过去所说的作战计划二作战筹划的根本标志三 2.任务规划系统的功能 作为整个信息化作战系统的一个重要节点,任务规划系统不是一个孤立的封闭系统,它一端与作战指挥系统的任务对接,另一端与作战装备直接交联,如图 5-1所示,主要包括信 息采集与处理模块二规划作业模块二任务预演评估模块和任务输出模块 三图5-1一任务规划系统基本组成结构 (1)信息采集与处理模块三任务规划系统需要采集的信息主要包括上级下达的任务信息二指挥控制信息二情报信息(如目标信息二敌作战意图等)和战场环境信息(敌情二我情二地形二气象二电磁)等三对采集的信息要进行加工处理,包括地形和气象信息显示,禁飞区二威胁区及战场态势标绘等三 (2)规划作业模块三该模块用于制定装备作战过程的时间二空间和行为准则,通常包括航线规划和机载设备使用规划,以及与其他作战实体的协同和交互规划等三根据任务规划系统所具有的自主化能力大小,通常还包括冲突检测二安全评估二自动的威胁规避和航线生成等分析计算模块,用于辅助人工决策操作三 (3)任务预演评估模块三规划效果预演主要包括飞行仿真二载荷作战效果仿真等,评估包括装备本身的效能评估和任务规划的作战行动效能评估两个方面三预演评估的主要作用是对装备作战的效果进行预估和判断,并反馈以指导决策,形成优化规划方案,同时便于指挥员和操作员熟悉作战过程,了解和把握作战关键环节三 (4)任务输出模块三任务输出是将规划结果以数据的形式输出给作战装备和其他作战节点三输出的任务规划信息应该是完备二一致和可理解的,能够被其他信息系统正确读取和

最新2019年无人机理论测试版题库500题(含答案)

2019年最新无人机考试题库500题[含答案] 一、单选题 1.无人机任务规划是实现______的有效途径,它在很大程度上决定了无人机执行任务的效率。 A.自主导航与飞行控制 B.飞行任务与载荷匹配 C.航迹规划与自主导航 答案:A. 2.某多轴螺旋桨长381毫米,螺距127毫米,那么他的型号可表述为 A.3812 B.15×5 C.38×12 答案:B. 3.校准地图时选取的校准点______。 A.不能在同一直线上 B.不能在同一纬度上 C.不能在同一经度上 答案:A. 4.由于加载的电子地图与实际操作时的地理位置信息有偏差,需要在使用前对地图进行______。 A.标注 B.更新 C.校准 答案:C. 5.______无人机侦察监测区域应预先标注,主要包括任务区域范围、侦察监测对象等。 A.场地标注 B.任务区域标注 C.警示标注 答案:B. 6.______主要包括起飞场地标注、着陆场地标注、应急场地标注,为操作员提供发射

与回收以及应急迫降区域参考。 A.场地标注 B.任务区域标注 C.警示标注 答案:A. 7.图元标注主要包括以下三方面信息______: A.坐标标注、航向标注、载荷任务标注 B.场地标注、警示标注、任务区域标注 C.航程标注、航时标注、任务类型标注 答案:B. 8.地面站电子地图显示的信息分为三个方面:一是______二是______三是其他辅助信息,如图元标注。 A.无人机位置和飞行航迹,无人机航迹规划信息 B.无人机地理坐标信息,无人机飞行姿态信息 C.无人机飞行姿态信息,无人机航迹规划信息 答案:A. 9.航迹规划需要充分考虑______的选取、标绘,航线预先规划以及在线调整时机。 A.飞行航迹 B.地理位置 C.电子地图 答案:C. 10.航迹优化是指航迹规划完成后,系统根据无人机飞行的__________对航迹进行优化处理,制定出适合无人机飞行的航迹。 A.最大转弯半径和最小俯仰角 B.最小转弯半径和最大俯仰角 C.最大转弯半径和最大俯仰角 答案:B. 11.任务分配提供可用的无人机资源和着陆点的显示,辅助操作人员进行______。 A.载荷规划、通信规划和目标分配 B.链路规划、返航规划和载荷分配 C.任务规划、返航规划和载荷分配 答案:A.

一种基于蚁群算法的无人机协同任务规划优化算法

龙源期刊网 https://www.wendangku.net/doc/cb13190443.html, 一种基于蚁群算法的无人机协同任务规划优化算法 作者:黄伟民王亚刚 来源:《软件导刊》2017年第07期 摘要:随着无人机在军事领域的广泛应用,越来越多的无人机将应用在未来战场,因此 无人机协同规划变得越来越重要。建立了多无人机协同任务分配模型,并研究了模型求解的有效算法。在蚁群算法的基础上提出针对密度较大目标区域的多无人机协同任务规划的优化方法,优化蚁群算法的搜索条件,降低了蚁群算法的时间和空间复杂度。 关键词:无人机;协同规划;蚁群算法;目标群密度 DOIDOI:10.11907/rjdk.171261 中图分类号:TP319 文献标识码:A 文章编号:1672-7800(2017)007-0131-03 0 引言 多基地多无人机协同侦查模型可以描述为:利用多种不同性能的无人机对多个空间分散的目标进行侦查,这些无人飞机分散在多个地理位置不同的基地上,需要快速制定无人侦查飞机的侦查任务计划以满足侦查要求和实际约束条件。在无人机迅速发展的同时,雷达技术也快速发展,因此一旦有侦察无人机进入防御方某一目标群配属雷达探测范围,防御方目标群的配属雷达均开机对空警戒和搜索目标,并会采取相应对策,包括发射导弹对无人机进行摧毁等,因此侦察无人机滞留防御方雷达探测范围内时间越长,被其摧毁的可能性就越大[1-2]。本文以侦察、监视任务为中心,以协同探测多基地目标为背景,在蚁群算法规划路线的基础上进一步优化线路,以此尽可能缩短无人机任务飞行时间和被雷达探测到的时间。 2 无人机侦察目标群聚类 为了最大程度上利用各无人机基地资源,首先要对目标群进行聚类。常用的聚类方法有 K-means聚类算法、层次聚类算法、SOM聚类算法和FCM聚类算法[3]。本文采用层次分析法对目标群进行聚类,通过聚类,可以规划出各无人机基地派出的无人机的探测目标群,在无 人机数量和飞行参数限制条件下,这样做能最大限度地提高效率。 层次分析法的算法流程如图1所示。 3 基于改进蚁群算法的目标群路线规划

AOPA最新理论题库第7章任务规划

G001、无人机是指根据无人机需要完成的任务、无人机的数量以及携带任务载荷的类型,对无人机制定飞行路线并进行任务分配。 A.航迹规划 B.任务规划 C.飞行规划 正确答案: B(解析:P174) G002、任务规划的主要目标是依据地形信息和执行任务环境条件信息,综合考虑无人机的性能,到达时间、耗能、威胁以及飞行区域等约束条件。为无人机规划出一条或多条自 的,保证无人机高效,圆满的完成飞行任务,并安全返回基地。 A.起飞到终点,最短路径 B.起飞点到着陆点,最佳路径 C.出发点到目标点,最优或次优航迹 正确答案: C(解析:P174) G003、无人机任务规划是实现的有效途径,他在很大程度上决定了无人机执行任务的效率 A.自主导航与飞行控制 B.飞行任务与载荷导航 C.航迹规划与自主导航 正确答案: A(解析:P174) G004、无人机任务规划需要实现的功能包括 A.自主导航功能,应急处理功能,航迹规划功能 B.任务分配功能,航迹规划功能,仿真演示功能 C.自主导航功能,自主起降功能,航迹规划功能 正确答案: B(解析:P174) G005、无人机任务规划需要考虑的因素有、,无人机物理限制,实时性要求 A.飞行环境限制,飞行任务要求 B.飞行赶任务范围,飞行安全限制 C.飞行安全限制,飞行任务要求 正确答案: A(解析:P175) G006、无人机物理限制对飞行航迹有以下限制:,最小航迹段较长度,最低安全飞行高度 A.最大转弯半径,最小俯仰角 B.最小转弯半径,最小俯仰角 C.最小转弯半径,最大俯仰角 正确答案: C(解析:P175) G007、动力系统工作恒定的情况下,限制了航迹在垂直平面内上升和下滑的最大角度 A.最小转弯半径 B.最大俯仰角

复杂环境下多目标多无人机协同任务规划

复杂环境下多目标多无人机协同任务规划 摘要:在当今更加复杂的战争环境中,无人机通常以协调的舰队执行特殊任务。因此,本文构建了无人机联合任务计划系统的模型,并对无人机联合任务计划控 制系统,多目标任务分配架构,无人机目标融合体系结构和弹道计划模型进行了 设计研究。通过结合层次聚类算法和数值模拟实验,我们旨在确认设计的有效性,进一步提高无人机在复杂和动态环境中的飞行适应性,并为在最短时间内开发合 理的无人机协作任务分配提供合理的计划,理论上的帮助。 关键字:复杂环境,无人机,协作任务,模型规划 简介:随着近几年无人机技术的飞速发展,基于无人机联合任务计划的实现 多个战略目标的合作已成为许多领域特别是军事领域的重要发展成就之一。其中,所谓的多无人机协作系统,是指由多个无人机组成一个整体来实现一个综合战略 目标的任务机制,可以利用多个无人机的信息共享功能来实现无人机的任务效率。发挥最大作用。在这方面,有必要考虑到多目标状态的不确定性和目标的多样性,合理地控制无人机的资源分配,并依靠无人机轨迹规划模型来确保无人机到目标 的全范围。通过覆盖并减少无人机定位错误,您可以灵活地应对定位目标的意外 情况。 1多无人机协作任务计划和控制体系结构 如果是一架无人驾驶飞机,它会构建一个层次结构和一个包容性架构。分层 结构是指人类思维行为的模型,并建立了依赖于老板的“感知-思考-执行”的组 织系统。它使用实时通信来确保系统的执行能力,因此其实用性相对较差。相反,包容性体系结构采用“感知执行”单元的独立操作模式,尽管不需要依靠组织的通 信来执行任务,但是缺乏全局控制使创建局部最佳情况变得容易。在这方面,基 于多个系统的优缺点构造了如图1所示的分层和分层的分布式工作计划控制系统 结构。 图一:分层递阶分布式任务规划控制体系结构 基于此,我们基于任务结构构建任务执行模型框架。其中,无人机根据指定 的信息在任务区域内找到目标,然后准确确定任务目标的位置并进行系统分析, 以确保对目标状态信息的连续监视。因此,传感器通常用于跟踪目标,并且由于 传感器本身的观察范围有限,因此有必要基于多架无人机的协同目标跟踪来实现 对目标信息的实时监控,以形成多UAV协作,如图2所示,跟踪多目标系统架构。 图二:多无人机协同跟踪多目标系统架构 2多无人机多目标分配控制体系结构 由于在无人机执行任务时任务目标分散,因此必须对无人机进行合理地分组 和分配以满足多个目标的跟踪要求。其中,特定无人机的数量和目标的分散特性 无法预先预测,任务目标可能会意外发生,因此必须考虑疏散区域的情况来选择 分配算法。在这方面,我们使用分层聚类算法来分析问题,但是由于分层聚类算 法不适用于地面静止或速度较慢的目标,因此我们需要在目标初始化状态下完成 所有对象的聚类。类,并通过层次聚类算法的变换来完成多个对象的合理分组。 基于此,仿真实验是基于多目标分层聚类算法的,该算法基于对五个无人机 系统进行跟踪六个目标(包括目标分离,目标组合和进入被遮挡区域的目标)的 数值模拟的结果。已经完成了。分层聚类算法具有一定的适用性,可以平滑解决

AOPA无人机任务规划练习测试题

精心整理 1. 无人机______是指根据无人机需要完成的任务、无人机的数量以及携带任务载荷的类型,对无人机制定飞行路线并进行任务分配。 A. 航迹规划 B. 任务规划 C. 飞行规划 答案:B. 2. 任务规划的主要目标是依据地形信息和执行任务环境条件信息,综合考虑无人机的性能、到达时间、耗能、威胁以及飞行区域等约束条件,为无人机规划出一条或多条自______的______,A. B. C. 答案 3. A. B. C. 答案4. A. B. C. 答案5. A. B. C. 答案6. A. B. C. 答案:C. 7. 动力系统工作恒定的情况下______限制了航迹在垂直平面内上升和下滑的最大角度。 A. 最小转弯半径 B. 最大俯仰角 C. 最大转弯半径 答案:B. 8. 无人机具体执行的飞行任务主要包括到达时间和进入目标方向等,需满足如下要求:______。 A. 航迹距离约束,固定的目标进入方向 B. 执行任务时间,进入目标位置 C. 返航时间,接近目标的飞行姿态

答案:A. 9.从实施时间上划分,任务规划可以分为______。 A.航迹规划和任务分配规划 B.航迹规划和数据链路规划 C.预先规划和实时规划 答案:C. 10.就任务规划系统具备的功能而言,任务规划可包含航迹规划、任务分配规划、数据链路规划和 系统保障与应急预案规划等,其中______是任务规划的主体和核心。 A.航迹规划 B.任务分配规划 C.数据链路规划 答案:A. 11. A. B. C. 答案 12. A. B. C. 答案 13. A. B. C. 答案 14. A. B. C.任务规划、返航规划和载荷分配 答案:A. 15.______包括携带的传感器类型、摄像机类型和专用任务设备类型等,规划设备工作时间及工作 模式,同时需要考虑气象情况对设备的影响程度。 A.任务规划 B.载荷规划 C.任务分配 答案:B. 16.______包括在执行任务的过程中,需要根据环境情况的变化制定一些通信任务,调整与任务控 制站之间的通信方式等。 A.链路规划 B.目标分配

无人机雁行仿生群飞路径规划

·88· 兵工自动化 Ordnance Industry Automation 2019-04 38(4) doi: 10.7690/bgzdh.2019.04.021 无人机雁行仿生群飞路径规划 周良,王茂森,戴劲松 (南京理工大学机械工程学院,南京 210094) 摘要:为解决单架无人机因互相之间没有通信机制而无法独立进行路径规划的问题,提出一种仿生雁群路径航路选择的无人机群飞路径规划。介绍算法原理,将无人机初始化为粒子后,在无人机群中确定主机、僚机。依据遗传算法基础原理,将仿生学引入到无人机群协同编队飞行航点规划当中,使用遗传算法对组群飞行的主机航路进行路径规划,产生需要的解或最优解;通过模仿雁群跟随的策略,设计僚机跟随主机的算法,从而实现组群飞行,并进行了实验验证。实验结果表明,该研究对无人机群飞行控制有一定的参考价值。 关键词:无人机群;雁行;仿生;路径规划 中图分类号:TP302 文献标志码:A Bionic Route Planning of UAV Based on Stimulating Wild Goose Flyiing Zhou Liang, Wang Maosen, Dai Jinsong (School of Mechanical Engineering, Nanjing University of Science & Technology, Nanjing 210094, China) Abstract: In order to solve the problem that single UAV cannot plan route independently since there is no communication mechanism between each other, an UAV route planning of bionic goose group path selection is proposed. Introduce the algorithm principle. After the UAV is initialized into particles, the host and the wing aircraft are identified in the UAV group. According to the basic principle of genetic algorithm, bionics is introduced into the planning of UAV group cooperative flying point plane. The genetic algorithm is used to plan the path of the host flight path of group flying, and the solution or optimal solution is generated. By simulating the strategy followed by the geese group, the algorithm of the downtime following the host was designed to realize the group flight. The flight test was carried out. The experimental results show that the research has certain reference value for UAV group flight control. Keywords: UAV group; goose group flying; bionics; path planning 0 引言 近年来,无人机日益成为人工智能领域中最活跃、研发进度最快、应用最广泛的研究课题,尤其是在军事方面的运用[1]。单架无人机由于缺乏冗余设计,一旦发生故障、路况突变,只能放弃任务并返航[2]。无人机群协同编队飞行不仅能统筹协调规划任务,而且通过多机系统通信可以掌握更全面的路况信息,显著地提高了无人机的飞行性能指标[3]。目前,国内外无人机编队飞行控制方法主要有:1)长僚机控制法;2) 人工势场法;3) 图论法等[4]。这些方法主要局限于单架无人机的航点规划,对多架次无人机的组群飞行路径规划问题的研究文献还比较少[5]。 笔者模拟分析雁群跟随头雁的列队方式以及个雁用眼睛近距离观测并躲避障碍物的方法,基于无人机群主僚机协同编队飞行与生物系统雁群编队飞行的相似性,将仿生学引入到无人机群协同编队飞行航点规划当中。在遗传算法基础上改进,对长机进行航点规划,僚机跟随长机,并辅以防碰撞算法,使无人机群能够模仿雁群进行自主规划路径。 1 经纬度与东北天坐标系换算 笔者以四旋翼无人机为基础,携带GPS导航系统,通过GPS模块获取位置信息,即经纬度坐标。无人机接收到的航点信息需要转换成便于任务分配的东北天坐标系下的航点坐标[6]。 基于经度和纬度概念,可以导出东北天坐标系和经纬度坐标系下的坐标转化关系。假设当前的经纬度坐标为(lon1,lat1),目标航点的经纬度坐标为(lon2,lat2),它们之间的经度差值的计算公式可表示为dlon=lon1-lon2,在东北天坐标系下经度差dLon 计算如下式: dlon dLon400757km 360 . =? ? 。 (1)其中40 075.7 km是赤道周长。由于地球不同纬度 1 收稿日期:2018-11-25;修回日期:2019-01-06 作者简介:周良(1993—),男,江苏人,硕士,从事人工智能研究。

无人机自主飞行航迹规划问题

摘要: 对于问题1也就是在二维平面上规划无人机最优航迹,我们首先用VORONI粗略作出可选航线,然后对每一段路径进行代价估测,问题1考虑的因素较少主要考虑了雷达威胁度和燃油两个因素。其中雷达威胁大小的度量主要考虑飞机距离雷达的长度,距离越近其危险值也就越大,由于飞机的燃油也是有限的,过长的航行路径会导致飞机燃油耗尽。因此在这两个因素中,我们引入加权系数,使得这危险度和航程因素影响的比重可视具体情况调节。得出路段代价后,再用改进的Dijkstra 算法求出3条较优参考路径。然后对这三条路径进行对比从而找出最佳路径。 问题2是在三维空间情况下规划无人机航迹,我们对选取的二维路径进行如下优化:首先,用三次样条插值法对折线路径进行平滑处理;其次,考察无人机的操作性能(主要考虑拐弯),对曲线做进一步平滑处理;然后,考虑无人机飞行高度对其安全性及操作性的影响,一方面是在威胁度计算时加入高度因素,重新进行权值计算;另一方面是对飞机飞行高度变化进行讨论,如无人机的最大仰角和过度地带飞机至少飞行的高度。由于数字地图的复杂型,二维处理中产生的最佳路径,在三维中并不一定是最优的,我们经过计算,发现二维平面次优的航道才是三维最优的航道路径。 在问题3仿真过程中,我们使用MATLAB 7.0进行计算和最后的飞机飞行航道图形绘制,包括三次样条曲线拟合,数字地图与预处理等,使用了VC++ 6.0编写了Dijkstra 算法计算最优路径。 关键字:Voronoi图Dijkstra算法三次样条插值最小曲率半径

目录 一、问题的重述 (1) 二、模型的假设 (1) 三、模型的符号说明 (2) 四、对问题的分析 (3) 五、模型的建立与求解 (3) 5.1 问题1模型的建立 (3) 5.1.1 引入问题 (3) 5.1.2约束条件 (4) 5.1.3基于VORONOI图的航路代价计算 (4) 5.1.3.1 VORONOI图的基本思想 (4) 5.1.3.2 VORONOI图的生成原理 (4) 5.1.4 Dijkstra算法 (5) 5.1.4.1 Dijkstra算法的基本思想 (5) 5.1.4.2 实现Dijkstra算法的步骤 (5) 5.1.4.3 对Dijkstra算法的改进 (6) 5.1.5 雷达威胁代价的计算 (6) 5.1.6 燃油代价的计算 (7) 5.1.7 航路总代价的计算 (7) 5.2 问题2模型的建立 (7) 5.2.1约束条件 (7) 5.2.2 航路代价的计算 (8) 5.2.2折线型航线平滑化 (8) 5.2.3三次样条函数定义 (8) 5.2.4三次样条函数原理 (9) 5.2.5无人机最大转角问题 (11) 5.2.6 无人机爬坡优化 (13) 5.2.6.1.地形平滑 (13) 5.2.6.2曲率限制法 (14) 5.2.6.3最小离地间隙限制 (15) 5.3 问题的求解 (16) 5.3.1问题1模型的求解 (16) 5.3.1.1 雷达的分布情况 (16) 5.3.2问题2模型的求解 (17) 六、仿真求解 (17) 6.1 问题1 模型进行仿真 (18) 6.1.1 VORONOI图 (18)

多无人机协同任务规划(A题)

2016年全国研究生数学建模竞赛A题 多无人机协同任务规划 无人机(Unmanned Aerial Vehicle,UAV)是一种具备自主飞行和独立执行任务能力的新型作战平台,不仅能够执行军事侦察、监视、搜索、目标指向等非攻击性任务,而且还能够执行对地攻击和目标轰炸等作战任务。随着无人机技术的快速发展,越来越多的无人机将应用在未来战场。 某无人机作战部队现配属有P01~P07等7个无人机基地,各基地均配备一定数量的FY系列无人机(各基地具体坐标、配备的无人机类型及数量见附件1,位置示意图见附件2)。其中FY-1型无人机主要担任目标侦察和目标指示,FY-2型无人机主要担任通信中继,FY-3型无人机用于对地攻击。FY-1型无人机的巡航飞行速度为200km/h,最长巡航时间为10h,巡航飞行高度为1500m;FY-2型、FY-3型无人机的巡航飞行速度为300km/h,最长巡航时间为8h,巡航飞行高度为5000m。受燃料限制,无人机在飞行过程中尽可能减少转弯、爬升、俯冲等机动动作,一般来说,机动时消耗的燃料是巡航的2~4倍。最小转弯半径70m。 FY-1型无人机可加载S-1、S-2、S-3三种载荷。其中载荷S-1系成像传感器,采用广域搜索模式对目标进行成像,传感器的成像带宽为2km(附件3对成像传感器工作原理提供了一个非常简洁的说明,对性能参数进行了一些限定,若干简化亦有助于本赛题的讨论);载荷S-2系光学传感器,为达到一定的目标识别精度,对地面目标拍照时要求距目标的距离不超过7.5km,可瞬时完成拍照任务;载荷S-3系目标指示器,为制导炸弹提供目标指示时要求距被攻击目标的距离不超过15km。由于各种技术条件的限制,该系列无人机每次只能加载S-1、S-2、S-3三种载荷中的一种。为保证侦察效果,对每一个目标需安排S-1、S-2两种不同载荷各自至少侦察一次,两种不同载荷对同一目标的侦察间隔时间不超过4小时。 为保证执行侦察任务的无人机与地面控制中心的联系,需安排专门的FY-2型无人机担任通信中继任务,通信中继无人机与执行侦察任务的无人机的通信距离限定在50km范围内。通信中继无人机正常工作状态下可随时保持与地面控制中心的通信。 FY-3型无人机可携带6枚D-1或D-2两种型号的炸弹。其中D-1炸弹系某种类型的“灵巧”炸弹,采用抛投方式对地攻击,即投放后炸弹以飞机投弹时的速

无人机航迹规划优化模型

2007高教社杯全国大学生数学建模竞赛 承诺书 我们仔细阅读了中国大学生数学建模竞赛的竞赛规则. 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。 我们参赛选择的题号是(从A/B/C/D中选择一项填写): A 我们的参赛报名号为(如果赛区设置报名号的话): 20004005 所属学校(请填写完整的全名):中南大学 参赛队员 (打印并签名) :1. 张腾 2. 王雄 3. 王泽 指导教师或指导教师组负责人 (打印并签名): 日期: 2008 年 8 月 11 日赛区评阅编号(由赛区组委会评阅前进行编号):

无人机自主飞行航迹规划 摘要 本文对无人机自主飞行航迹的二维规划和三维规划问题根据所给要求分别建立了动态规划模型,并对模型进行了可行性分析和仿真分析,最终求得最优的规划路线(见附录表1,表2)。 首先,对于问题1,无人机自主飞行航迹的平面规划问题,我们采用传统的图论方法,使用Voronoi图【1】对雷达威胁网络进行划分;并以雷达威胁度和路程代价为主要考虑因素对Voronoi图的每条边赋予权值,得到一个权矩阵,通过Dijsktra算法求得出发点到目标点的最优路径。但是我们考虑到这种算法实现较难,而且Voronoi图不可推广到三维航迹的规划问题上,因此我们通过假设条件消除其后效性,建立了动态规划模型,并且为了增加模型精确度,将地图以100米为单位网格化。 其次,对于问题2,将问题推广到三维空间,增加了地形因素以及飞机飞行的性能,即考虑到飞机飞行时转弯和地形影响的因素。我们使用matlab对该三维空间进行了模拟【2】,并由平面的动态规划模型通过对每点增加高程z,对飞机的转弯性能最小转弯角进行简化,增加地形约束条件,建立了以无人机飞行路线广义代价为目标函数的动态规划模型。 再次,我们对所建立的动态规划模型做了可行性分析和仿真分析,通过对比在广义代价方程中各个因素的权重系数的不同取值,得出不同的规划路线,最终得出最优的规划路线,并肯定了模型的正确性。 最后,我们对于此动态规划模型进行综合评价,并提出了此模型在实际条件中应用所欠考虑的部分,并在模型的推广中对其他实际因素进行了具体的分析并加以改进和完善。 关键字Voronoi图动态规划模型广义代价代价方程仿真分析 一、问题的重述 1.1 问题背景 无人机的发展至今已有70多年的历史,其军事应用主要是遂行各种侦察任务。随着无人机平台技术和机载遥感技术的不断发展,它的军事应用范围已经并将继续扩展,如通信中继、军事测绘、电子对抗、信息攻击等。特别是精确制导武器技术的发展,又使它成为这种武器的理想平台。

无人机航迹规划算法选择

遗传算法(GA ): 主要流程: (1)编码:遗传算法在进行搜索之前首先要对无人机位置以及航迹可行性编码。2)初始群体生成:随机产生x 个初始串结构数据,每个串结构数据代表一个个体, 个个体构成一个群体。初始群体表示无人机所有可能的航迹位置。(3)选取适应度函数:适应度函数的选取是遗传算法最为关键的部分,它是进化过程的驱动力。(4)遗传算子:群体通过选择、交叉、变异 3种基本的遗传操作得到下一代群体,进化后期可以提高变异概率以提高算法的局部搜索能力。(5)最优航迹生成:通过不断循环进化,最后生成具有最大适应度值的个体即为最优航迹。 N Y 遗传算法流程图 优点:算法灵活且实现简单、自身不受搜索空间限制、具有较强鲁棒性,是一种高效、并行、全局搜索的方法。 缺点:规划时间长,最优解精度不高,不适用于实时航迹规划 适用范围:离线规划 人工神经网络(ANN )算法: 实现步骤: 编码成位串 种群1 无人机位置和航迹可行性编码 计算适应度 1、位串解释得到参数 2、计算目标函数 3、函数值像适应值映射 4、适应值调整 遗传算子 3种基本遗传算子: 选择算子、交叉算子、变异算子 统计结果 种群2 是否满足终 止条件? 解码输出最优解 结束 开始

(1)对规划空间进行离散化处理,构建与无人机相适应的Hopfield神经网络模型。(2)结合数字地形信息以及约束条件构造一个能量函数,其中连接权可以反映地形信息,若无人机靠近障碍物时,连接权迅速减小,这样可以实现无人机的安全飞行。(3)由于所创建的Hopfield 神经网络是并行处理问题,而当前计算机处理器一般是串行工作的,因此需要对所建立的神经网络模型进行串行模拟。(4)当串行模拟达到预期的要求时,在规划空间则会建立起单峰梯度的数值势场。(5)结合势场梯度数值以及无人机飞行约束条件在规划空间内搜索最优航迹。 优点:具有高度的并行结构和并行实现能力,具有快速找到优化解的能力。 缺点:容易陷入局部最优解,计算量大,收敛速度慢。 适用范围:TF/TA等规划空间大的航迹规划。 蚁群算法: 实现步骤: (1)根据已知威胁源分布情况构造V oronoi图,给V oronoi每条边赋予一定的权值(初始信息素值)。(2)将所有人工蚂蚁置于距离起始点最近的V oronoi图节点位置,根据蚂蚁状态转换规则(一般由两点间的可见度以及两点间边的信息素值的强度决定)选择下一节点,直至所有蚂蚁到达终点完成搜索过程(3)循环完成后分别计算出每条可行路径的代价,更新所找到的最优路径。(4)参照生物信息激素修改规则更新所有边的权值,对没有经过的各节点进行信息素蒸发(即去除权值)。 优点:采用正反馈机制,具有良好的并行性、协作性和鲁棒性,寻优性好,具备较强的动态特性。 缺点:容易陷入局部最优解,搜索时间过长,容易出现停滞现象。 适用范围:并行分布式规划。 粒子群优化算法: 实现步骤: 1、航迹规划建模(威胁模型、地形模型、威胁等效地形模拟和航迹代价函数) 2、分析原理 3、进行试验和仿真 4、结果分析与实验改进 优点:有效减小搜索空间,提高搜索效率,快速完成航迹规划任务通过调整参数的设置.可以使得航迹在地形跟随和地形回避之间有所偏重.得到较为满意的三维航迹 缺点:高度的升高使得无人机的航迹更加趋向于地形跟随.地形遮蔽作用将大大削弱,容易被地方探测设备发现.势必会带来敌方威胁的增大。 适用范围:适合于敌方威胁较弱、地形环境恶劣且时效性要求较高的作战区域

多无人机协同任务规划方法

收稿日期:2017-03-29 修回日期:2017-05-19 作者简介:王钦钊(1973-),男,山东文登人,博士生导师。研究方向:火控系统、系统仿真。 摘 要:针对多UCAV 协同作战的复杂问题,建立了多无人机任务分配模型,模型在任务规划前进行路径预规 划,增强规划过程的准确性,提出一种基于整数编码的多种群混合遗传算法对问题求解并进行仿真实验。实验结果表明,该算法增强了搜索的有效性,极大地避免了遗传算法容易陷入未成熟收敛的缺陷,保证了寻优过程的收敛性和任务规划效果的最优化。 关键词:无人作战飞机,任务规划,多种群混合遗传算法,路径规划中图分类号:TP391 文献标识码:A DOI :10.3969/j.issn.1002-0640.2018.03.019 多无人机协同任务规划方法 王钦钊,程金勇,李小龙(陆军装甲兵学院,北京100072) Method Research on Cooperative Task Planning for Multiple UCAVs WANG Qin-zhao ,CHENG Jin-yong ,LI Xiao-long (Army Academy of Armored Force ,Beijing 100072,China ) Abstract :To solve the complicated problem of multiple UCAVs cooperative combat ,multiple Unmanned Aerial Vehicles task allocation model is established ,route planning should be done before mission planning in order to enhance the accuracy of the planning process.A method based on multi-population hybrid genetic algorithm with integer coding for multiple UCAVs ’cooperation task allocation is designed and the simulation experiment is carried out.The results show that this algorithm has strong effectiveness to solve the problem ,greatly avoids the defect that the genetic algorithm is easy to fall into premature convergence ,which ensures the convergence of the optimization process and the optimization of the task planning effect. Key words : UCAV ,task allocation ,multi-population hybrid genetic algorithm ,route planning 0引言 无人作战飞机(Unmanned Combat Aerial Vehi-cle ,简称UCAV )是一种能完成压制防空、实施对地轰炸与攻击、执行对空作战任务的空中无人作战系 统[1]。与单无人机相比,多无人机协同系统在时间、空间、功能、信息和资源上的分布特性,使其具有更强的工作能力和鲁棒性。任务规划作为多无人机协同的基本问题之一,具有十分重要的地位。作战环境下,由于受到各种因素的约束,多无人机协同任务规划问题是一个约束众多而复杂的NP 问题,在算法的求解上比较困难,尤其是在规模较大时,获得最优解的代价较大,制约了实际战场应用[2],因 此,合理而有效的任务规划方案对于提高多无人机 的作战效能具有至关重要的作用。 目前采用较多的问题模型有多旅行商问题[3-4] (Multiple Traveling Salesman Problem ,MTSP )、车辆调度和路径规划问题模型(Vehicle Routing Problem ,VRP )、混合整数线性规划问题模型(Mixed Integer Linear Programming ,MILP )等。任务分配求解的算法主要有蚁群算法、memetic 算法、基于合同网拍卖算法、差分进化算法等,大部分算法主要针对传统的多旅行商问题进行求解,无法对具有多约束条件的实际问题进行有效的求解。 本文基于多无人机协同作战问题,构建任务分配模型,针对遗传算法容易陷入局部最优和早熟的 文章编号:1002-0640(2018) 03-0086-04Vol.43,No.3Mar ,2018 火力与指挥控制 Fire Control &Command Control 第43卷第3期2018年3月 86··

使用Dubins路径和回旋曲线进行多个无人机的路径规划

使用Dubins路径和回旋曲线进行多个无人机的路径规划 摘要: 本文讲述了对一群无人机进行路径规划的方法。进行这样研究要解决如何使一批无人机同时到达目标的问题。制定可以路径(适航、安全的路径)称为路径规划,它分为三个阶段。第一阶段使规划适航路径,第二阶段通过添加额外的约束规划安全的路径,使无人机不与其他无人机或者已知的障碍碰撞,第三阶段对路径进行规划是无人机同时到达目标。在第一阶段,每个无人机都使用Dubins路径和回旋曲线进行路径规划,这些路径是通过微分几何原理完成的。第二阶段为这些路径添加安全约束:(一)无人机间保持最小间距,(二)规划相同长度的非交叉路径,(三)飞过中间的航线点/形状,使这些路径更安全。第三阶段,所有路径长度相等使无人机可以同时到达目标。一些模拟仿真结果证实了这一技术。 1、介绍 在许多应用程序中自动控制取代了人类操作,像军事系统中存在危害人类因素的地方、处理有害物质、灾难管理、监视侦察等单调的操作。需要开发自动控制系统来更换这些系统中的人类操作员,这样的自动控制系统在水陆空各种环境中都有。在无人机的研究中,水陆空等因素是作为一个集体进行研究的。无人机在军事和民用领域都有广阔的应用前景,因此有许多关于无人机的学术或商业性质的研究。廉价电子产品的飞速发展使得无人机更加实用。大自然中成群的鸟和鱼给了人们灵感,联合控制是自动控制中的一个活跃的研究方向。雇佣一批无人机可以产生成本效益和容错系统。 从一个地方飞到另一个地方并作为一个移动传感平台进行监视或跟踪是无人机的一个功能,实现这个功能需要为无人机提供一个合适的安全路径。路径规划是任务规划的一个分支,图1是任务规划的典型功能体系结构。图1有三个分支,分支的数量和功能会根据应用程序和任务目标的不同而改变。第一层分支的任务是跟踪目标,基于这些目标,这层为无人机分配任务和资源并且充当决策者。第二层为无人机规划路径和轨迹,这一层用路径规划和相关的算法(如避免碰撞)规划可行的轨迹/路径。第三层进行指导和控制,保证无人机在第二层规划的轨迹上飞行。本文着重于第二层的研究,在第二层,路径规划产生的轨迹使一群无人机同时到达指定位置。 在自动控制系统领域,路径规划仍然是一个公开的问题。路径规划是在两个或多个点之间规划出一条或多条路径,通常这些点是在存储地图上指定的。路径

无人机任务分配综述

无人机任务分配综述 (沈阳航空航天大学自动化学院,沈阳110136)本文摘自《沈阳航空航天大学学报》摘要:任务分配是无人机完成军事任务的重要保证,是任务规划的重要组成部分,一直是无人机作战系统的重要研究课题。首先介绍了无人机任务分配的基本概念,然后分别从集中式分配、分布式分配和分层次分布式分配等研究方法对无人机任务分配进行了综述,最后分析了无人机任务分配的关键技术以及未来的发展趋势,分别从异构多类型无人机的协同任务分配、不确定条件下的任务分配、静态博弈、动态博弈、动态实时任务分配、多要素综合任务分配等方面说明了还需要进一步研究与解决的 关键问题。关键词:任务分配;集中式;分布式;分层次分布式无人机即由自己控制或者地面操作人员操控的无人驾 驶飞机[1-2]。随着科学技术的不断发展,战场形势的日趋严峻,无人机在现代战争中的作战优势越发明显,所以得到越来越多国家军事高层的青睐。任务分配是根据既定的目标把需要完成的任务合理地分派给系统中的组员,达到高效率执行任务、优化无人机系统的目的[3]。目前,学者们的研究重点是多架同构、异构无人机组成的无人机编队协同执行任务[4-12]。在编队中,每架无人机的性质、作用、有效载荷、作战能力等各方面都有差异,满足各种约束的条件下,最大

效率地将全部作战任务合理分配给无人机编队,使系统的各种性能指标尽可能达到极值,发挥无人机编队协同工作效能,这是无人机编队作战系统的重要研究课题。文献[5]探索了对不同种类的目标进行侦察、打击和评估任务时异构无人机的协同任务分配问题。对于侦察与评估任务中所得到的信息量,运用信息论中熵的变化量对其进行度量,把无人机对不同类型目标的打击能力简化为对目标的毁伤概率,同时把每个任务之间的关联性考虑在内,建立了异构多无人机协同任务分配模型。文献[6]归纳和总结了多无人机协同任务规划的国内外研究现状,重点总结了任务分配方法的常见模型和算法,对各种算法的优缺点进行了讨论,得出多智能体的市场机制类算法在空战中将有广泛的应用价值。文献[7]建立了以合同网协议和多智能体系统理论为基础的有人机/无人机编队 MAS(Multi-agent System,MAS)结构和基于投标过程的无人机任务分配模型。文献[8]在无人机协同多任务分配的研究中,运用了基于分工机制的蚁群算法进行求解,并给出了基于作战任务能力评估的问题解构造策略和基于作战任务代价的 状态转移规则,大幅度提升了算法的性能。文献[9]以异构类型多目标多无人机任务分配问题为原型,设计了一种基于时间窗的多无人机联盟组任务分配方法,此算法使用冲突消解机制来防止无人机实时任务分配过程中出现多机资源死锁,其次通过无人机两阶段任务联盟构成算法,组成了任务联盟,

相关文档