文档库 最新最全的文档下载
当前位置:文档库 › 汽车氧传感器检测故障分析与修理

汽车氧传感器检测故障分析与修理

汽车氧传感器检测故障分析与修理
汽车氧传感器检测故障分析与修理

汽车氧传感器检测故障分析与修理

随着汽车工业的发展和汽车保有量的急剧增加,汽车排放对大气的污染已经构成了公害。它恶化了人类的生存环境,影响了人们的身体健康,已发展成为严重的社会问题。在有些大城市,汽车废气排放已经接近或超过环境容量。为了保护日益恶化的地球环境,世界各国先后出台了便为严格的汽车污染物排放标准。汽车生产商在汽车的生产设计过程中,加设了减少对空气污染的辅助装置,如在电控燃油喷射技术的基础上,采用三元催化器,就可以获得更高净化率的排放控制,但是为了能最有效地使用三元催化器,必须精确地控制空燃比,使它始终接接理论空燃比。因此在排气管上增加了一个氧传感器,经常地检测排气的质量,并将其变换成电信号传给ECU。发动机控制单元ECU根据氧传感器提供的信号,不断地检测和调整发动机喷油器的喷油量,使发动机在多数情况下都工作在理论空燃比附近,实现了喷油的闭环控制,也有效地的提高发动机性能及整车的经济性,因此氧传感器就起着至关重要的作用。

1 氧传感器的工作原理

氧传感器是排气氧传感器EGO(Exhaust Oxygen Sensor)的简称,其功用是通过监测排气中氧离子的含量来获得混合气的空燃比信号,并将该信号转变为电信号输入ECU。ECU根据(λ)控制在~之间的范围内。使发动机得到最佳浓度的混合气,从而达到降低有害气体的排放量和节约燃油之目的。自1976年德国博世公司率先在瑞典沃尔沃(VOLVO)轿车上装用氧传感器之后,通用、福特、丰田、日产等汽车公司相继完成了氧传感器的开发与应用工作。汽车发动机燃油喷射系统采用的氧传感器分为氧化锆(ZrO2)式和氧化钛(TiO2)式两种类型,氧化锆式氧传感器又分为加热型和非加热型两种,氧化钛式一般都为加热型传感器。在实际的维修做业中通常将氧传感器分为1线、2线、3线及4线四种类型,主要有钢质壳体、锆管(或二氧化钛传感器元件)、加热元件、电极引线、防水护套和线束插头等组成。其中1线和2线没有加热元件,只有3线4线才有。加热元件是受电控单元ECU控制的,它的作用是当空气进气量小(排气温度低)的时候,ECU控制加热元件通电加热氧传感器,使其工作在正常的工作温度,从而能够精确地检测排气中氧离子浓度变化。

氧传感器安装在汽车的排气管上,头部装进排气管内,尾部暴露在空气中,空气可以从

尾部流入传感器内部(氧化锆式),传感器外部跟废气直接接触,这样当氧离子在锆管中扩散时,锆管内外表面之间的电位差将随可燃混合气浓度变化而变化,即锆管相当于一个氧浓差电池,传感器的信号源相当于一个可变电源。当可燃混合气稀时,废气中氧离子含量多,因此传感器内、外氧离子浓度没有多大差别,两个铂电极间的电位差较低,约为。相反,如果可燃混合气很浓,排气中的氧离子含量很少,传感器内、外氧离子浓度差别很大,两个铂电极间的电位差也大,约为。发动机ECU根据来自氧传感器的电动势信号判别可燃混合气的浓与稀,并相应地修正喷油时间,控制喷油量使混合气浓度接近理论空燃比。通过闭环控制,再利用三元催化器,从而可以最大限度降低尾气排放,此外发动机性能也可以处于最佳状态,并提高燃烧效率,使汽车更节能,更环保。

2 氧传感器的失效原因

氧传感器失效的主要原因是传感元件老化和中毒。氧传感器老化的主要原因是传感元件局部表面温度过高。氧传感器的传感元件受到污染而失效的现象称为中毒。氧传感器中毒主要是指铅中毒、硅中毒、和磷中毒。

氧传感器老化

在发动机利用氧传感器进行闭环控制的过程中,混合气的空燃比总是控制在理论空燃比附近,排气中几乎没有过剩的燃油,但是发动机刚刚起动(特别是冷车起动)之后(或大负荷状态工作时),为了快速预热发动机(或增大发动机输出功率),需要供给足够的燃油,排气中过剩的燃油就会在氧传感器的表面产生燃烧反应,一方面是形成碳粒而造成氧传感器表面的保护剥落,另一方面是使传感元件局部表面温度过高(超过1000oC)而加速传感器老化。

铅中毒

燃油或润滑油添加剂中的铅离子与氧传感器的铂电极发生化学反应,导致催化剂铂的催化性能降低的现象,称为铅中毒。虽然现在都使用无铅汽油,大大减少了氧传感器铅中毒的机率。但是,由于燃油或润滑油的添加剂中含有多种铅化合物,氧传感器的铅中毒也是不可避免的。

硅中毒

发动机上的硅密封胶、硅树脂成型部件、铸件内的硅添加剂等都有硅离子,这些硅离子

会污染氧传感器的外侧电极,氧传感器内部端子处密封用的硅橡胶会污染内侧电极。硅离子与氧传感器的铂电极发生化学反应而导致催化剂铂的催化性能降低的现象,称为硅中毒。

磷中毒

在传感器表面,磷很少以纯磷状态析出,而是以某种化合物状态析出,这些磷化物污染氧传感器的现象,称为磷中毒。磷化物的应用很广,可以用作润滑剂、防锈剂和清洗剂。在发动机磨合期间或活塞环磨损之后,发动机润滑油添加剂中的磷化物就会窜入气缸中燃烧并随排气排出。在低温状态下,磷化物是以微粒子状态析出并沉淀在传感器保护层的表面将气孔堵塞而导致传感器中毒;在高温状态下,磷化物会附着在氧传感器以及三元催化器表面使其受到污染。

由于,氧传感器的老化和中毒是不可避免的。因此当汽车行驶一定里程(一般为80000Km)后,应当更换氧传感器。

3 氧传感器故障实例分析。

在实践修理中,会经常遇到关于氧传感器的故障例子,下面就结合自己在工作中遇到的一个案例,介绍氧传感器故障的检测与维修方法。

故障现象

一辆丰田LEXUS LS400轿车,已经跑了10万多公里,车主反映车子加速没有以前顺畅,松油门时怠速有轻微的振动,发动机故障灯时亮时不亮,油耗也明显增加。于是来到我厂进行检测、维修。

故障检测与诊断

我接到车后根据车主反映的情况,先对车进行了初步的检查。进行自诊断,读取故障码。故障代码显示为混合气过浓或过稀,从而得到大概的故障部位在进气系统、燃油供给系统、点火系统。可能的主要故障部件为空气流量计、水温传感器、节气门位置传感器、油压调节器、点线圈、高压线、火花塞及氧传感器。本着先易后难的原则逐一进行检测,推断故障所在。

因为空气流量计、水温传感器、节气门位置传感器都有一个确定的故障码,如有问题,都会被控制单元记录下来,会有故障码读出,根据故障自诊断情况,这些部件都没有故障代码,基本可以确定上诉部件没有故障。而氧传感器是受其它因素影响较多的元件,应该先检

测其它的元件,最后检查氧传感器。

(1)进气系统的检修

进气系统中最常见的故障是空气滤清器堵塞,这会引起进气量不足,使可燃混合气过浓而引起发动机加速无力,油耗增加等等故障现象。拆开检查后,发现有点脏,但不太严重,把它吹干净后装回,起动发动机,测量怠速进气歧管真空度,测得为62kPa。符合要求。说明进气系统密封良好,发动机密封性正常。排除了发动机机械故障的可能性。

(2)燃油供给系统检修

如果燃油压力过高或过低,喷油器工作不良,都会引起上述故障。用汽油压力表测量燃油压力怠速为225kPa。停车后短接电动汽油泵两检查端子Fp和+B6,测得的静态油压为304kPa,5分钟后燃油系统的保持压力为196kPa。说明电动汽油泵工作良好,喷油器无泄漏。拆下喷油器台试,喷油量和喷油状况都没问题,故障也不在此。

(3)点火系统检修

点火系统工作不正常会引起燃烧不充分,发动机动力下降,油耗增加。拆下火花、分缸线、分火头、高压线圈进行检查,发现除了铂金火花塞有点黑和电极烧蚀外,其它的都在技术要求的范围之内。车辆行驶了10多万Km,火花塞烧蚀不足为奇,但发黑则为燃烧不充分或混合气过浓引起。再进一步检查发现,8个火花塞都是一样,很均匀,这就可能是发动机喷油量控制不好而引起的问题了。

(4)氧传感器的检修

根据电路图,断开发动机ECU与氧传感器的联接,对氧传感器进行检测,测量左右两边的主氧传感器加热元件的电阻,都在~Ω之间,没有问题,接着测量ECU端子HTL和HTR 对搭铁的电压在9~14V之间,也没有问题。只有检查氧传感器的工作情况了。按要求装好拆下的拆下的部件,起动发动机,并热车到正常的工作温度,连接诊断插座上的E1和TE1端子,用万用表的正极表棒连接到插座的VF1和VF2端子,负极表棒连接到E1,高怠速(2500r/min)运转2分钟以加热氧传感器,然后将发动机速保持在2500r/min。分别计算电表在0~5V之间的波动次数(正常应在每10秒内波动8次左右),测得的波动次数为零。始终保持在0V,问题可能是氧传感器信号问题。再测量端子OX1、OX2端子跟E1之间的电压在以下,只有~(正常应在以上),这就说明氧传感器不工作,问题终于找到了。由于氧

传感器不能正常地把信号反馈给发动机ECU,不能对喷油器的喷油肪宽进行控制和修正,产生混合气过稀、过浓现象,导致出现了前诉问题。最后更换2个氧传感器和火花塞后,试车故障再也没有出现。

4 总结

氧传感器出现故障后,对发动机的工作、汽车的燃油经济性及对环境的影响很大,当发现问题时要及早修理。在平时的工作之余要加强新知识新技术的学习,跟上汽车技术发展的步伐。

1-88 富康爱丽舍氧传感器故障诊断

快 讯 INFO ’RAPID ZX (1) N0 88 东风雪铁龙服务备件部 DCAD/DPS 氧传感器故障诊断 2008年12月17日 该资料应分类留存在:富康、爱丽舍快讯夹子中 CE DOCUMENT EST A CLASSER DANS:LE CLASSEUR NOTE TECHNIQUE ET INFO RAPIDE ZX、Elysee 一、涉及车型: 装备 TU5JP4发动机的东风雪铁龙所有车型。 二、故障现象: 发动机故障灯亮,PROXIA 诊断为氧传感器故障,故障码为P0134、P0135等。 三、检查更换工艺: 氧传感器工作电路原理图 ,如下图 1、(拆下氧传感器插头)将数字万用表打到欧姆档,测量传感器加热(+)与加热(-)两端针脚。常 温下其阻值为2.5~4.5Ω;若电阻为无穷大(断路)则更换氧传感器。 2、(拆下氧传感器插头)测量与加热1#脚连接的线束电压是否为12V;如供电电压不是12V,按车辆 电路图检查相关的供电电路。 3、启动发动机,怠速运行几分钟后通过PROXIA 读取氧传感器电压,检查电压是否在0.1V—0.9V 间 波动,若电压值无波动或波动异常(持续偏稀或偏浓)则进行下面的4、5项检查。 4、拆下氧传感器贴近耳朵轻轻摇动,如有异响说明内部的陶瓷探针可能破裂,需更换氧传感器。 5、 氧传感器柄部套下有通气孔,外界空气由此进入氧传感器的内腔,一旦油污或者其他沉积物进入氧 传感器内腔,或者堵塞了该通气孔,会使氧传感器的输出信号失真。检查头部通气孔是否堵塞,清理积碳堵塞物,然后装车。按 第3项重新检测,电压的波动值不正常则更换氧传感器。 注:实际测量以车辆电路图上信号脚为准。

称重传感器故障检测及原因分析

称重传感器故障检测及原因分析 一、概述 动态、静态电子秤大量使用的称重传感器为电阻应变式称重传感器。称重传感器由弹性体、应变计、检测电路三部分组成。 二、称重传感器的故障现象 因传感器故障造成称量系统故障的现象归纳起来主要表现为: 1.空载或称重过程中,显示数据不稳定、跳变。 2.零位漂移。 3.加载后无显示。 4.空载时显示数据过大,称重误差大。 5.称重后称无法回零。 6.重复性变差、线性、灵敏度差。 三、称重传感器故障常用检测方法 当计量系统出现故障现象后,我们可通过观察和仪表测量等方法,确定仪表无故障和秤体处于完好状态后,可做偏载测试以初步判断哪只传感器存在故障。 对传感器好坏的检测,我主要可以借助万用表其性能、技术参数进行测量,与生产厂家使用说明书提供及平时检修总结出来的技术数据进行对比,从而找出发生故障的传感器,具体的检测方法有: 1、阻抗判断法:切断工作电源,逐个将传感器的输出、输入线拆开,若用万用表测量输出、输入阻抗和信号电缆各芯与屏蔽层的绝缘性能(测量电阻值)下降,即可判断出该只传感器有故障。 1端和4端:激励工作电压输入端 2端和3端:重量毫伏电压信号输出端

测量方法:不加电的情况下, 1. 测量1、4端的电阻380Ω±5Ω 2. 测量2、3端的电阻为350Ω±3Ω 3. 测量1、2端,测量1、3端电阻应该相等,大约300Ω±3Ω 4.测量4、2端,测量4、3端电阻应该相等,大约300Ω±3Ω 注:电阻值根据具体的传感器大小可能不同;如果根据以上的测量方法得出的电阻大小不等,传感器多半损坏,应更换。 2、输出信号判断法: 有时传感器损坏,但阻抗并没有很大变化,果采用阻抗法无法检测出传感器的好坏,可采用此法作进一步地检测。给仪表送电后,逐个将传感器的输出线拆掉,需要注意的是在拆线过程中要特别小心操作以防触电,且不可将输出线与输入激励线短路,在空载情况下,用万用表直流mV档测其输出线的mV值。 假定额定激励电压为U(V),传感器的灵敏度为M(mV/V),传感器载荷重量为K(kg),传感器的额定容量为F(kg),则每只传感器输出电压应为:U×M×K/F (mV) 同一衡器同型号的传感器在无载荷情况下其输出mv值基本一致。若超出计算值或传感器的额定输出且输出不稳定,即可判断该只传感器有故障。

汽车传感器类型及其工作原理

汽车传感器类型及其工作原理 汽车技术的发展,使得越来越多的元器件用到整个汽车系统的控制上面。 最常用的就是使用传感器来检测各种需要检测或者对汽车行驶、控制需要参考 的重要参数,并将这些信号转化成电信号等待再次处理。下面,小编来和大家 分享一些汽车传感器类型,并针对这些不同性能的传感器它的工作原理,来告 诉大家它在汽车中是用在什么地方,具体是怎么操作的,并且它在整个系统中 有什么样的作用。常用的汽车传感器类型、工作原理和使用方式(1) 里程表传感器在差速器或者半轴上面的传感器,来感觉转动的圈数,一般 用霍尔,光电两个方式来检测信号,其目的利用里程表记数可有效的分析判断 汽车的行驶速度和里程,因为半轴和车轮的角速度相等,已知轮胎的半径,直 接通过历程参数来计算。在传动轴上设计两个轴承,大大减轻了运行中的力距,减少了摩擦力,增强了使用寿命;由原来的动态检测信号改为齿轮运转式检测信号;由原来直插式垂直变速箱改为倒角式接口变速箱。里程表传感器插头一般是在变速箱上,有的打开发动机盖可以看到,有的要在地沟操作。 (2) 机油压力传感器是指集微型传感器、执行器以及信号处理和控制电路、接口电路、通信和电源于一体的微型机电系统。常用的有硅压阻式和硅电 容式,两者都是在硅片上生成的微机械电子传感器。一般情况上,我们通过机 油压力传感器来检测汽车的机油向内的汽油还有多少,并将检测到的信号转换 成我们可以理解的信号,提醒我们还有多少汽油,或者还可以走多远,甚至是 提醒汽车需要加汽油了。(3) 水温传感器它的内部是一个半导体热敏电阻,温度愈低,电阻愈大;反之电阻愈小,安装在发动机缸体或缸盖的水套上,与冷却水直接接触。从而侧得发动机冷却水的温度。电控单元根据这一变化测 得发动机冷却水的温度,温度愈低,电阻愈大;反之电阻愈小。电控单元根据这

汽车维修技师论文

汽车维修技师论文: 标题:汽车氧传感器波形信号分析 ---氧传感器原理分析与故障判断 关键词:氧传感器、原理、波形、发动机故障 概述: 随着汽车排放法规的逐渐严格和对汽车排气污染控制的重视,“电喷”加三元催化器的发动机正成为普遍配臵。这种发动机采用了混合气成分的闭环控制和三元催化反应装臵的联合使用技术,是汽油机有效的排气净化方法。在这一系统中,氧传感器是进行闭环反馈控制的主要元件之一,必不可少。正常工作时,氧传感器随时测定发动机排气管中的氧含量(浓度),以检测发动机燃烧状况。因此.当发动机出现燃烧故障时,必然引起氧传感器电压信号的变化,这就为通过观察氧传感器的信号波形判断发动机某些故障提供可能。 1.氧传感器的一般作用 要使三元催化转化器全面净化CO、HC和NOx这三种有害气体,必须保证混合气浓度始终保持在理论空燃比(14.7)附近的狭小范围内。一旦混合气浓度偏离了这个狭小范围,则三元催化转化器净化能力便急剧下降。保证混合气浓度在理论空燃比附近,“电喷”系统和氧传感器的配合是很好的解

决方案。 氧传感器检测排气中的氧浓度,并随时向微机控制装臵反馈信号。微机则根据反馈来的信号及时调整喷油量(喷油脉宽),如信号反映混合气较浓,则减少喷油时间;反之.如信号反映混合气较稀,则延长喷油时间。这样使混合气的空燃比始终保持在理论空燃比附近。这就是燃料闭环控制或称燃料反馈控制。 2.氧传感器的正常波形 常用的汽车氧传感器有氧化锆式和氧化钛式两种。以氧化锆式为例,正常情况下当闭环控制时,氧传感器的电压信号大约在0至1V之间波动,平均值约450mv。当混合气浓度稍浓于理论空燃比时。氧传感器产生约800mV的高电压信号;当混合气浓度稍稀于理论空燃比时,氧传感器产生接近100mY的低电压信号。当然,不同类型的氧传感器其实际波形并不完全相同。朱军老师曾总结说:“一般亚洲和欧洲车

宽带氧传感器的工作原理和常见故障的检查方法

宽带氧传感器的工作原理和常见故障的检查方法 发布时间: 2010-4-29 15:52 | 编辑: 汽车乐https://www.wendangku.net/doc/cb2954489.html, | 查看: 1067次来源: 网络 随着汽车尾气排放限值要求的不断提高,传统的开关型氧传感器已不能满足需要,取而代之的是控制精度更高的线性宽带氧传感器(Universal Exhaust Gas Oxygen Sensor,简称UEGO)。氧传感器闭环控制调节发动机燃烧室内的混合汽,以实现最佳的三元催化转换器运行,从而满足排放限值的要求。为此,氧传感器闭环控制的任务是确保废气空燃比始终处于催化转换器的最佳工作点。氧传感器闭环控制只改变所要喷射的燃油质量、燃烧室内的空气质量,也就是说汽缸充气和点火正时均不受影响,因此氧传感器是用来帮助确定废气中氧含量而反映实际工况中的空燃比。控制单元内的氧传感器闭环控制必须通过所提供的信号来对混合汽的成分做出相应调整,控制过程很大程度上取决于氧传感器的属性。 宽带氧传感器能够提供准确的空燃比反馈信号给ECU,从而ECU精确地控制喷油时间,使汽缸内混合汽浓度始终保持理论空燃比值。宽带氧传感器的使用提高了ECU的控制精度,最大限度地发挥了三元催化器的作用,优化了发动机的性能,并可节省大约15%的燃油消耗,更加有效地降低了有害气体的排放。 宽带氧传感器通过检测发动机尾气排放中的氧含量,并向电子控制单元(ECU)输送相应的电压信号,反映空气燃油混合比的稀浓。ECU根据氧传感器传送的实际混合汽浓稀反馈信号而相应调节喷油脉宽,使发动机运行在最佳空燃比(λ=1)状态,从而为催化转换器的尾气处理创造理想的条件。如果混合汽太浓(λ<1),必须减少喷油量,如果混合汽太稀(λ>1),则要增加喷油量。 现代汽车发动机管理系统中,安装在催化转换器前的宽带氧传感器,称作控制氧传感器,安装在三元催化器的上游位置,监测尾气中氧的浓度,并将信息反馈给控制单元,用于调节喷油量,从而实现发动机的闭环控制,改善发动机的燃烧性能并减少有害气体的排放。根据OBD-Ⅱ规定,现代汽车必须对三元催化转换器效率进行持续监控,为此配有诊断氧传感器,安装在催化转换器的下游端。通过比较催化转换器上游和下游的传感器信号,可以确定催化转换器的效率。主要原因是由于控制氧传感器因老化,其向ECU输送的电压信号曲线会发生偏移,诊断氧传感器会检测控制氧传感器是否仍然处于最佳工作状态,然后ECU 就可计算出矫正偏移所需的补偿量。 由于老化而造成工作性能变差的氧传感器,也会影响燃油经济性的指标。老化的氧传感器提供给DME的混合汽浓度信号存在误差,将使DME控制单元在可燃混合汽形成的控制产生偏差,而造成燃油消耗的增加。表1是博世公司所做的氧传感器对燃油经济性影响的明细表。 一、宽带型氧传感器的分类及基本构造 根据氧传感器的制造材料不同,宽带型氧传感器可分为以ZrO2为基体的固化电解质型和利用氧化物半导体电阻变化型两大类;根据传感器的结构不同,宽带型氧传感又可分为电池型、临界电流型及泵电池型。 宽带型氧传感器的基本控制原理就是以普通氧化锆型氧传感器为基础扩展而来。氧化锆型氧传感器有一特性,即当氧离子移动时会产生电动势。反之,若将电动势加在氧化锆组件上,即会造成氧离子的移动。根据此原理即可由发动机控制单元控制所想要的比例值。 构成宽带型氧传感器的组件有两个部分:一部分为感应室,另一部分是泵氧元。 感应室的一面与大气接触,而另一面是测试腔,通过扩散孔与排气接触,与普通氧化锆传感器一样,由于感应室两侧的氧含量不同而产生一个电动势。一般的氧化锆传感器将

氧传感器故障分析

一、氧传感器的故障分析与诊断 1、氧传感器在电控发动机排放控制中的重要性 在使用三元催化转换器以减少排气污染的发动机上,氧传感器是必不可少的元件。由于混合气的空燃比一旦偏离理论空燃比,三元催化器对CO、HC和NOX的净化能力将急剧下降,故在排气管中安装氧传感器,用以检测排气中氧的浓度,并向ECU发出反馈信号,再由ECU控制喷油器喷油量的增减,从而将混合气的空燃比控制在理论值附近。 2、氧传感器的种类及氧传感器在汽车上安装的重要性 目前,实际应用的氧传感器有氧化锆式氧传感器和氧化钛式氧传感器两种。而常见的氧传感器又有单引线、双引线、三引线及四引线之分,;单引线的为氧化锆式氧传感器;双引线的为氧化钛式氧传感器;三引线和四引线的为加热型氧化锆式氧传感器,原则上四种引线方式的氧传感器是不能替代使用的。 氧传感器一旦出现故障,将使电子燃油喷射系统的电脑不能得到排气管中氧浓度的信息,因而不能对空燃比进行反馈控制,会使发动机油耗和排气污染增加,发动机出现怠速不稳、缺火、喘振等故障现象。因此,必须及时的排除故障或更换。空燃比对排气中碳氢化合物(HC)和一氧化碳(CO)的含量有很大影响,在空燃比低于14.7:1时,HC及CO含量降低;如果空燃比高于14.7:1时,HC及CO 含量迅速上升。但是,降低空燃比会导致燃烧温度升高,排气中的氮氧化合物(NOX)升高。所以,理想的空燃比应在接近14.7:1的很小范围内。另外三元催化转化器的转化效率只有在空气系数为1的很小范围内最高。如图1所示 三元催化转化器对发动机的排放控制具有极其重要的意义。没有三元催化转化器就不可能满足欧洲排放法规。第二代车载故障诊断系统(OBD-Ⅱ) 具1有对三元催化转化器进行故障诊断的功能。 图1 三元催化转换效率图 而为了对三元催化转化器进行故障诊断,必须在它的前和后各装一个氧传感器(图2)。

汽车传感器论文浅谈传感器技术在汽车领域的应用

浅谈传感器技术在汽车领域的应 用 院系信息工程系 专业 年级 学生姓名 指导教师

目录 1 摘要 1.1 汽车传感器举足轻重 1.2 国内传感器生产水平低 1.3 汽车上的主要传感器 1.4 汽车传感器的发展趋势 2 传感器类型 2.1里程表传感器 2.2安全气囊传感器 2.3 速度传感器 3 基本原理和发展 致谢 参考文献

1 摘要汽车传感器发展综述 在20世纪60年代,汽车上仅有机油压力传感器、油量传感器和水温传感器,它们与仪表或指示灯连接。 进入70年代后,为了治理排放,又增加了一些传感器来帮助控制汽车的动力系统,因为同期出现的催化转换器、电子点火和燃油喷射装置需要这些传感器来维持一定的空燃比以控制排放。80年代,防抱死制动装置和气囊提高了汽车安全性。 今天,传感器有用来测定各种流体温度和压力(如进气温度、气道压力、冷却水温和燃油喷射压力等)的传感器;有用来确定各部分速度和位置的传感器(如车速、节气门开度、凸轮轴、曲轴、变速器的角度和速度、排气再循环阀(EGR)的位置等);还有用于测量发动机负荷、爆震、断火及废气中含氧量的传感器;确定座椅位置的传感器;在防抱死制动系统和悬架控制装置中测定车轮转速、路面高差和轮胎气压的传感器;保护前排乘员的气囊,不仅需要较多的碰撞传感器和加速度传感器。面对制造商提供的侧量、顶置式气囊以及更精巧的侧置头部气囊,还要增加传感器。随着研究人员用防撞传感器(测距雷达或其他测距传感器)来判断和控制汽车的侧向加速度、每个车轮的瞬时速度及所需的转矩,使制动系统成为汽车稳定性控制系统的一个组成部分。 老式的油压传感器和水温传感器是彼此独立的,由于有着明确的最大值或最小值的限定,其中一些传感器的实际作用就相当于开关。随着传感器向电子化和数字化方向发展,它们的输出值

浅谈氧传感器的故障分析与诊断

浅谈氧传感器的故障分析与诊断 默认分类 2008-03-29 10:42 阅读464 评论4 字号:大中小 作者:王和平 时间:2007年6月2日 [摘要] 本文首先阐述了氧传感器在电控发动机排放控制中的重要性,然后介绍了氧传感器的种类及影响氧传感器的因素。接着结合氧传感器的波形对氧传感器的技术状况进行了分析,并列举出了故障实例。 主题词:氧传感器、空燃比、氧传感器的故障诊断 论文主题: 1、氧传感器在电控发动机排放控制中的重要性 在使用三元催化转换器以减少排气污染的发动机上,氧传感器是必不可少的元件。由于混合气的空燃比一旦偏离理论空燃比,三元催化器对CO、HC和NOX的净化能力将急剧下降,故在排气管中安装氧传感器,用以检测排气中氧的浓度,并向ECU发出反馈信号,再由ECU控制喷油器喷油量的增减,从而 将混合气的空燃比控制在理论值附近。 2、氧传感器的种类及氧传感器在汽车上安装的重要性 目前,实际应用的氧传感器有氧化锆式氧传感器和氧化钛式氧传感器两种。而常见的氧传感器又有单引线、双引线、三引线及四引线之分,;单引线的为氧化锆式氧传感器;双引线的为氧化钛式氧传感器; 三引线和四引线的为加热型氧化锆式氧传感器,原则上四种引线方式的氧传感器是不能替代使用的。 氧传感器一旦出现故障,将使电子燃油喷射系统的电脑不能得到排气管中氧浓度的信息,因而不能对空燃比进行反馈控制,会使发动机油耗和排气污染增加,发动机出现怠速不稳、缺火、喘振等故障现象。 因此,必须及时的排除故障或更换。 空燃比对排气中碳氢化合物(HC)和一氧化碳(CO)的含量有很大影响,在空燃比低于14.7:1时,HC及CO含量降低;如果空燃比高于14.7:1时,HC及CO含量迅速上升。但是,降低空燃比会导致燃烧温度升高,排气中的氮氧化合物(NOX)升高。所以,理想的空燃比应在接近14.7:1的很小范围内。另外三元催化转化器的转化效率只有在空气系数为1的很小范围内最高。如图1所示 三元催化转化器对发动机的排放控制具有极其重要的意义。没有三元催化转化器就不可能满足欧洲排放法规。第二代车载故障诊断系统(OBD-Ⅱ) 具1有对三元催化转化器进行故障诊断的功能。

自动站雨量传感器常见故障现象分析与处理

自动站雨量传感器常见故障现象分析与处理 摘要:通过分析自动气象站常见故障产生的原因,提出在工作中的正确处理方法。 关键词:雨量传感器故障分析处理 1、引言 目前,克拉玛依市自动站大部分都分布在沙漠腹地,自动站雨量传感器长期在野外使用,因其特殊结构而使其更容易受环境污染造成各种故障,轻者使降水记录比实际滞后,严重的造成降水记录缺测。依据克拉玛依市自动气象站多年来的运行情况,发现降水记录的准确性和完整性,很大程度上取决于雨量传感器的运行状态。本文以SL3-1型雨量传感器为例,就雨量传感器常见故障进行分析与探讨一些常用处理方法。 2、工作原理 SL3-1型雨量传感器由集水器、漏斗、过滤网、计数翻斗、调节螺丝、磁钢、电路板、传输电缆等组成。测量过程中,降水由集水器汇集,通过过滤网过滤,经小漏斗流入计数翻斗内,当翻斗承积的水量达到一定数量时翻斗翻动,另一半翻斗开始装水,通过翻斗翻动带动磁钢移动,磁钢经过电路板上的干簧管时,使干簧管接点因磁化而闭合,送出一个电路导通脉冲,相当于0.1mm降雨量,离开时干簧管又断开。这样周而复始对降水进行计数。 3、故障现象分析与处理 3.1 有降水时降水无记录 这种现象常见故障主要有集水器堵塞水流下不去、小漏斗堵塞、磁钢失效、干簧管损坏、翻斗不翻、通讯线路接触不良或中断。 处理方法:首先检查集水器中有无积水,如有则先取下过滤网进行清洗,用细铁丝疏通漏水孔;无积水,则应检查传感器的数据线有没有因清洗仪器时没接上或是没有连接到位;如果正常,则取下集水器,检查小斗有无积水,如有则同上取下过滤网清洗,用铁丝疏通漏水孔;无则检查漏斗内是否有水,如有水则用手轻轻翻动翻斗,检查翻斗是否翻动灵活,看是否有记录,如有记录且翻动次数与记录一次,则说明正常。如翻斗翻动不灵活,则取下漏斗,检查刀口是否变形,如有变形则更换,再检查V形槽是否有异物,如有则用清水清洗干净并擦干。检查V形槽是否变形,如变形则更换。 以上检查无问题则继续检查。先检查电缆是否接插牢固,再检查电缆是否断路。具体方法是用万用表量取干簧管两脚是否有5伏特电压,如无电压,则检查电缆插头是否接触良好,再检查雨量传感器端电缆电压,如无再检查采集器降水通信口是否有电压,正常则说明电缆有问题,先检查接头是否接好,排除后检查电缆是否破损或断路。如有则说明正常。再检查磁钢与干簧管是否正常,先拔下电缆插头,用手捏住磁钢,使磁钢与干簧管对其,用万用表电阻档量取干簧管两脚,如接通说明是好的,再翻动翻斗看接通次数与翻动次数一致,如有漏接通,则调整磁钢位置反复测试直到正常。如仍无效,则更换磁钢也可以用一磁铁试一下,检查干簧管是否正常,即把磁铁在干簧管前来回移动,看干簧管接通是否正常,如不正常则更换。 3.2 降水记录滞后 这种现象主要由于集水器或小漏斗被堵塞,造成降水流入翻斗较慢,雨较大

汽车常见传感器工作原理及检测

汽车常见传感器工作原理及检测 各种汽车传感器的作用 目录 1、进气压力传感器:..................................................................... ............................................2 2、空气流量传感器:..................................................................... ............................................2 3、节气门位置传感器:..................................................................... ........................................2 4、曲轴角度传感器:..................................................................... ............................................3 5、凸轮轴位置传感器(又称气缸识别传感器)..................................................................... 3 6、氧传感器:..................................................................... ........................................................3 7、发动机转速传感器...................................................................... ...........................................4 8、进气温度传感器:..................................................................... ............................................5 9、水温传感

氧传感器的检测

氧传感器的检测 1、结构和工作原理 在使用三效催化转化器降低排放污染的发动机上,氧传感器是必不可少的。三效催化转化器安装在排气管的中段,它能净化排气中CO、HC和NOx三种主要的有害成分,但只在混合气的空燃比处于接近理论空燃比的一个窄小范围内,三效催化转化器才能有效地起到净化作用。故在排气管中插入氧传感器,借检测废气中的氧浓度测定空燃比。并将其转换成电压信号或电阻信号,反馈给ECU。ECU控制空燃比收敛于理论值。 目前使用的氧传感器有氧化锆式和氧化钛式两种,其中应用最多的是氧化锆式氧传感器。 (1)氧化锆式氧传感器 氧化锆式氧传感器的基 本元件是氧化锆陶瓷管(固体电解 质),亦称锆管(图 1)。锆管固定 在带有安装螺纹的固定套中,内外表 面均覆盖着一层多孔性的铅膜,其内 表面与大气接触,外表面与废气接触。 氧传感器的接线端有一个金属护套, 其上开有一个用于锆管内腔与大气相 通的孔;电线将锆管内表面铂极经绝 缘套从此接线端引出。 氧化锆在温度超过300℃后,才能进行 正常工作。早期使用的氧传感器靠排 气加热,这种传感器必须在发动机起 动运转数分钟后才能开始工作,它只 有一根接线与ECU相连(图 2(a))。 现在,大部分汽车使用带加热器的氧 传感器(图 2(b)),这种传感器内 有一个电加热元件,可在发动机起动 后的20-30s内迅速将氧传感器加热至 工作温度。它有三根接线,一根接ECU, 另外两根分别接地和电源。 锆管的陶瓷体是多孔的,渗入其中的氧 气,在温度较高时发生电离。由于锆管内、外侧氧 含量不一致,存在浓差,因而氧离子从大气侧向排 气一侧扩散,从而使锆管成为一个微电池,在两铂 极间产生电压(图 3)。当混合气的实际空燃比小 于理论空燃比,即发动机以较浓的混合气运转时, 排气中氧含量少,但CO、HC、H2等较多。这些气 体在锆管外表面的铅催化作用下与氧发生反应,将 耗尽排气中残余的氧,使锆管外表面氧气浓度变为 零,这就使得锆管内、外侧氧浓差加大,两铅极间

轮速传感器的原理与检修

轮速传感器的原理与检修 现代汽车的ABS系统中都设置有电磁感应式的轮速传感器,它可以安装在主减速器或变速器中,轮速传感器的组成和工作原理如图所示。它是由永久磁铁、磁极、线圈和齿圈组成。齿圈5在磁场中旋转时,齿圈齿顶和电极之间的间隙就以一定的速度变化,则使磁路中的磁阻发生变化。其结果是使磁通量周期地增减,在线圈1的两端产生正比于磁通量增减速度的感应电压,并将该交流电压信号输送给电子控制器。 轮速传感器的种类及其检测: 1.电磁感应式车速传感器: 电磁感应式车速传感器安装在自动变速器输出轴附近的壳体上,用于检测自动变速器输出轴的转速。电控单元ECU根据车速传感器的信号计算车速,作为换挡控制的依据。车速传感器由永久磁铁和电磁感应线圈组成,它被固定安装在白动变速器输出轴附近的壳体上,输出轴上的停车锁定齿轮为感应转子,当输出轴转动时,停车锁定齿轮的凸齿,不断地靠近或离开车速传感器,使线圈内的磁通量发生变化,从而产生交流电,车速越高,输出轴转速也越高,感应电压脉冲频率也越高,电控组件根据感应电压脉冲的大小计算汽车行驶的速度。用万用表测导通,阻值还有有没有电压信号。 2.霍尔式轮速传感器; 在汽车应用中是十分特殊的,这主要是由于变速器周围空间位置冲突霍尔效应传感器是固体传感器,它们主要应用在曲轴转角和凸轮轴位置上,用于开关点火和燃油喷射电路触发,它还应用在其它需要控制转动部件的位置和速度控制电脑电路中。霍尔效应传感器或开关,由一个几乎完全闭合的包含永久磁铁和磁极部分的磁路组成,一个软磁铁叶片转子穿过磁铁和磁极间的气隙,在叶片转子上的窗口允许磁场不受影响的穿过并到达霍尔效应传感器,而没有窗口的部分则中断磁场,因此,叶片转子窗口的作用是开关磁场,使霍尔效应象开关一样地打开或关闭,这就是一些汽车厂商将霍尔效应传感器和其它类似电子设备称为霍尔开关的原因,该组件实际上是一个开关设备,而它的关键功能部件是霍尔效应传感器。测试步骤将驱动轮顶起模拟行使状态,也可以将汽车示波测试线加长进行行驶的测试。波形结果当车轮开始转动时,霍尔效应传感器开始产生一连串的信号,脉冲的个数将随着车速增加而增加,与图例相像,这是大约30英里/小时时记录的,车速传感器的脉冲信号频率将随车速的增加而增加,但位置的占空比在任何速度下保持恒定不变。车速传感器越高,在示波器上的波形脉冲也就越多。确认从一个脉冲到另一个脉冲的幅度,频率和形状是一致的,这就是说幅度够大通常等于传感器的供电电压,两脉冲间隔一致,形状一致,且与预期的相同。确定波形的频率与车速同步,并且占空比决无变化,还要观察如下内容:观察波形的一致性,检查波形顶部和底部尖角。观察幅度的一致性:波形高度应相等,因为给传感器的供电电压是不变的。有些实例表明波形底部或顶部有缺口或不规则。这里关键是波形的稳定性不变,若波形对地电位过高,则说明电阻过大或传感器接地不良。观察由行驶性能问题的产生和故障码出现而诱发的波形异常,这样可以确定与顾客反映的故障或行驶性能故障产生的根本原因直接有关信号问题。虽然霍尔效应传感器一般设计能在高至150℃温度下运行,但它们的工作仍然会受到温度的影响,许多霍尔效应传感器在一定的温度下(冷或热)会失效。如果示波器显示波形不正常,检查被干扰的线或连接不良

汽车用传感器试题库

精品文档)5个×6一、名词解释(、逆压电效应:指当在某些电介质的极化方向施加电场时,电介质就会在一定方向上产生机械变形或机应压力,电场撤去时,1电介质变形随之消失的现象。内部极化,同时在它的两个表面上会产生极性相反的电荷,外力正压电效应:某些电介质在沿着一定方向受到外力而变形时,去掉后,又恢复到不带电状态,外力方向改变,电荷极性随之改变的现象。2、传感器的迟滞:指传感器在输入量增大和输入量减小行程间,输入-输出特性曲线不一致的程度。3、传感器灵敏度:指传感器在稳态下,输出量变化值与输入量变化值的比值,K=dy/dx。分辨力:指传感器能检测到输入量最小变化量的能力。线性度:指传感器输入量与输出量之间的静态特性曲线偏离直线的程度。传感器量程:传感器能够测量的上限值与下限值的差称为量程。传感器的准确度:准确度常用最大引用误差来定义。4、内光电效应:指在光线的作用下使物体的电阻率发生改变的光电效应。外光电效应:指在光线的作用下使电子逸出物体表面的光电效应。5、压阻效应:在一块半导体的某一轴向施加一定的应力时,其电阻率产生变化的现象。流过霍尔元件时,在垂直于电流I6、霍耳效应:把霍尔元件至于磁感应强度为B的磁场中,磁场方向垂直于霍尔元件,当有电流和磁场的方向上产生感应电动势的现象。、差动电桥:菱形的四条边各接一个测量温度或应变力的电阻传感器,相邻桥臂传感器应变方向应相反,相对桥臂传感器应变7 方向应相同,组成一个电桥电路,用以消除电桥的相对非线性误差。称对称电桥:由四个测量温度或应变力的电阻传感器组成互相对称的电桥电路,四个电阻达到某一关系时,电桥的输出为零,电桥平衡,否则就有电压或电流输出。组成这种物体的材料吸收了光子能E的光子轰击,、光电效应:当用光照射在某一物体上时,可以看做是物体受到一连串能量为8 量而发生相应电效应的现象。、热电效应:闭合回路中存在电动势并且有电流产生,电流的强弱与两个结点的温度有关。9、压电效应:某些电介质,沿着一定方向对其施加外力而使它变形时,内部极化,相应地会在它的表面产生符号相反的电荷,10外力去掉后,又重新恢复不带电状态的现象。11、应变效应:导体或半导体材料在外力作用下产生机械形变,其电阻发生变化的现象。12、电涡流效应:电涡流的产生必然要消耗一部分能量,从而使产生磁场的线圈阻抗发生变化。、磁阻效应:由载流子在磁场中受到洛伦兹力而产生的致使某些金属或半导体的电阻值变化的现象。13 塞贝克效应:回路中产生的电势使热能转变为电能的一种现象。两种不同导电材料构成的闭合回路中,当两个接点温度不同,14、、莫尔条纹:两条线或两个物体之间以恒定的角度和频率发生干涉的视觉结果,当人眼无法分辨这两条线或两个物体时,只能15 看到干涉的花纹,这种光学现象就是莫尔条纹。16、感应同步器:利用电磁原理将线位移和角位移转换成电信号的一种装置。17爆震:混合气处在压缩过程中,火花塞还没有跳火时,高压混合气就达到了自燃温度,并开始猛烈燃烧的不正常燃烧现象。、点火提前角:从点火时刻起到活塞到达压缩上止点,这段时间内曲轴转过的角度。18 、占空比:高电平在一个周期之内所占的时间比率。19 、传感器:能感受规定的被测量件并按照一定的规律转换成可用信号的器件或装置。20 21、转换元件 、敏感元件:指传感器中能直接感受被测量的变化,并转换为易于转换的非电量的元件。2223、热敏电阻:用半导体材料制成的敏感元件,大多为负温度系数,即阻值随温度增加而降低。 24、测量:是以确定被测量值为目的的一系列操作。 直接测量:指在使用仪表或传感器进行测量时,不需要经过任何运算就能直接从仪表或传感器上得出测量结果的方法。间接测量:指用直接测量法测得与被测量有确切函数关系的一些物理量,然后通过计算求得被测量的方法。 25、检测:是利用传感器,将生产科研需要的电量和非电量信息转化成为易于测量、传输、显示和处理的电信号的过程。 26、测量方法:指针对不同测量任务进行具体分析以找出切实可行的办法。 27、测量误差:被测量的测量值与真值之间的差异。 绝对误差:指被测量的测量值与被测量的真值之间的差值。 精品文档. 精品文档 满度相对误差:绝对误差与仪器满量程的百分比。 标称相对误差:绝对误差与被测量的测量值的百分比。 系统误差:在形同条件下,多次重复测量同一被测量时,其测量误差的大小和符号保持不变,或在条件改变时,误差按某一确定的规律变化。

氧传感器故障诊断案例分析

氧传感器故障诊断案例分析 引论 本人在泰成集团泉州辖区凯迪拉克车间做机电实习生,我们岗位的主要任务是汽车的故障诊断,包括机修跟电路。我在这里现在的主要任务是做汽车保养,其余的正在学习中,比如我也开始更换火花塞,跟师傅一起拆装后桥洗油箱,跟换轮心总成,开始学习基本的故障诊断等等。我觉得我们要进步应该脚踏实地地做,不能自己会的东西就不想去做了,更不能不求上进,有些东西是靠自己去看去争取的。 氧传感器故障的排除对于我们维修人员来说也是非常重要的,前一阶段我们凯迪拉克轿车CTS就是因为氧传感器的故障导致汽车不能正常运转。但是,我们本着认真负责的态度,最终把故障解决了。 报告主体 一、氧传感器介绍 1.类型及工作原理 现在汽车上常用的 氧传感器主要有二氧化锆与二氧化钛氧传感器,不过随着技术的发展,比较好的车型也用到了新型的氧传感器,新型氧传感器有平面型氧传感器和宽频带型氧传感器。 ⑴.氧化锆氧传感器是具有传导性的固体电解质,在氧分子浓度差的作用下产生电动势。(如图) ⑵.氧化钛型氧传感器是高电阻半导体,当表面缺氧时,电阻变小与发动机冷却液温度传感器(ECT)相似,氧化钛氧传感器的电阻值则随其周围氧含量的变化而变化。 (如下图)

⑶.新型氧传感器平面型传感器(线性) ①.核心为陶瓷材料,两边有涂层。 ②.涂层的优点是:对尾气中的氧浓度更敏感。 ③.两边涂层的氧浓度不同,产生电压信号。 ④.外形没有改变。(如下图) ⑤.插脚为4个 ⑷.新型氧传感器宽频带型 Wide band O2 sensor ①.Nernst cell 感应室 ②.Reference cell 参考室 ③.Heater 加热组件 ④.Diffusion gap 扩散孔 1V/5V 搭 大 O 2 O O 2 2 O 2 O 2 H C C O NO X 尾 O2

传感器工作原理及故障判断方法

传感器工作原理及故障判断方法 概述 综合录井技术是在钻井过程中应用电子技术、计算机技术及分析技术,借助分析仪器进行各种石油地质、钻井工程及其它随钻信息的采集(收集)、分析处理,进而达到发现油气层、评价油气层和实时钻井监控目的的一项随钻石油勘探技术。应用综合录井技术可以为石油天然气勘探开发提供齐全、准确的第一性资料,是油气勘探开发技术系列的重要组成部分。 综合录井技术主要作用为随钻录井、实时钻井监控、随钻地质评价及随钻录井信息的处理和应用。 综合录井技术的特点有:录取参数多、采集精度高、资料连续性强、资料处理速度快、应用灵活、服务范围广等。 目前国际国内先进的综合录井仪参数的检测精度上有了大幅度的提高,也扩展了计算机系统功能,形成了随钻计算机实时监控和数据综合处理网络,部分综合录井仪还配套了随钻随测(MWD)系统,增加了远程传输等功能,实现了数据资源的共享。其原理框图见图1。 图1:综合录井仪基本结构图

1、传感器 亦称一次仪表,是将一种物理量转换为另一种物理量的设备。其输入信号为待测物理量,如温度、密度、压力、电阻率、距离等,输出信号为可以被二次仪表或计算机接收的物理量,如电流、电压、电阻等。传感器是综合录井仪的最基础部分,其工作性能的好坏直接影响着录井质量。 2、气体检测仪 气体检测仪主要包括烃类检测仪、非烃组分检测仪(或二氧化碳检测仪)等气体检测设备,以及脱气器、氢气发生器、空气压缩机等辅助设备。烃类检测仪主要是利用FID技术测量钻井液中的烃类气体含量;非烃组分检测仪是利用热导池鉴定器测量钻井液中CO2、H2等其它气体的含量。 3、计算机系统 随着计算机技术的发展及应用,目前综合录井仪的计算机系统不仅担负着参数的采集、处理、存储和输出的任务。其存储的资料还可以按照用户的要求,应用其它专用软件进行进一步处理,以完成地质勘探、钻井监控及其它录井目的。同时其联机系统已形成多用户的网络化计算机系统,实现多用户、网络化数据管理,具有携带近程或远程工作站的功能,以便于大型应用软件的使用和数据资源的共享。 4、输出设备 综合录井仪输出设备主要有显示器、记录仪、打印机、绘图仪等等。其用途是将计算机采集、处理的信息通过直观的方式呈现给用户以进行进一步的应用。

几种重要的汽车传感器原理

几种重要的汽车传感器原理 一、传感器概述 传感器的概念:指能感受规定的物理量,并按照一定规律转换成可用输信号的器件或装置。简单的说,传感器即使把非电量转换成电量的装置。 汽车传感器的工作条件极为恶劣,因此,传感器能否精确可靠地工作至关重要。在该领域中,理论研究及材料应用发展迅速,半导体和金属膜技术研究及材料应用技术发展迅速,半导体和金属膜技术、陶瓷烧结技术等得到迅猛发展。智能化、集成化和数字化将是传感器的未来发展趋势。 传感器通常由敏感元件、转换元件及测量电路组成。敏感元件是指能直接感受被测量的部分。转换元件是指能将非电量转换成电量的部分。有些敏感元件可以直接输入电量。测量电路是指将转换元件输入的电量经过处理,以便进行显示、记录和控制的部分。测量电路中较多的使用电桥电路。比如后面要讲到的热线式空气流量计。 传感器的种类比较多,像我们一般碰到的传感器一般有: 温度传感器(冷却水温度传感器THW,进气温度传感器THA); 流量传感器(空气流量传感器,燃油流量传感器); 进气压力传感器MAP 节气门位置传感器TPS 发动机转速传感器 车速传感器SPD 曲轴位置传感器(点火正时传感器) 氧传感器 爆震传感器(KNK) 二、空气流量传感器 为了形成符合要求的混合气,使空燃比达到最佳值,我们就必须对发动机进气空气流量进行精确控制。下面我们来介绍一下几种常用的空气流量传感器。 1、卡门旋涡式空气流量计

涡流式空气流量传感器是利用超声波或光电信号,通过检测旋涡频率来测量空气流量的一种传感器。 众所周知,当野外架空的电线被风吹时,就会发出“嗡、嗡”的声音,且风速越高声音频率越高,这是气体流过电线后形成旋涡(即涡流)所致。液体、气体等流体均会产生这种现象。 同样,如果我们在进气道中放置一个涡流发生器,比如说一个柱状物,在空气流过时,在涡流发生器后部将会不断产生如图所示的两列旋转方向相反,并交替出现的旋涡。这个旋涡就称为卡门旋涡。 卡门旋涡式空气流量计就是利用这种这种旋涡形成的原理,测量气体流速,并通过流速的测量直接反映空气流量。 对于一台具体的卡门旋涡式空气流量计,有如下关系式:qv=kf , qv为体积流量,f为单列旋涡产生的频率,k为比例常数,它与管道直径,柱状物直径等有关。由这个关系式可知,体积流量与卡门涡流传感器的输出频率成正比。利用这个原理,我们只要检测卡门旋涡的频率f,就可以求出空气流量。 根据旋涡频率的检测方式的不同,汽车用涡流式空气流量传感器分为超声波检测式和光学式检测式两种。例如,中国大陆进口的丰田凌志LS400型轿车和台湾进口的皇冠3.0型轿车采用了光电检测涡流式空气流量器;日本三菱吉普车、中国长风猎豹吉普车和韩国现代轿车采用了超声波检测涡流式空气流量传感器。 (1)光学式卡门旋涡空气流量计 现代物理学光的粒子说认为,光是一种具有能量的粒子流,当物体受到光照射时,由于吸收了光子能量而产生的效应,称为光电效应。光敏晶体管是一种半 导体器件,它的特点就是受到光的照射时,它们都会产生内光电效应的光生伏特现象,从而产生电流。 工作原理:在产生卡门旋涡的过程中,旋涡发生器两侧的空气压力会发生变化,通过导孔作用在金属箔上,从而使其振动,发光二极管的光照在振动的金属箔上时,光敏晶体管接收到的金属箔上的反射光是被旋涡调制的光,再由光敏晶体管输出调制过的频率信号,这种频率信号就代表了空气的流量信号。 (2)超声波式卡门旋涡式空气流量计 超声波是指频率高于20HZ,人耳听不到的机械波。它的特性就是方向性好,穿透力强,遇到杂质或物体分界面会产生显著的反射,譬如自然界里的蝙蝠,鲸鱼等动物都是通过超声波来进行方位定向的。利用这种物理特性,我们可以把一些非电量转换成声学参数,通过压电元件转换成电量。

汽车传感器故障检修及其维修技术研究分析

龙源期刊网 https://www.wendangku.net/doc/cb2954489.html, 汽车传感器故障检修及其维修技术研究分析作者:朱培勇 来源:《科学与财富》2017年第12期 摘要:汽车传感器大多处于汽车的暴露部位,容易受到恶劣环境的影响,而在汽车正常 使用过程中也必然会出现磨损现象,所以汽车传感器系统发生故障的几率比较大,因此如何发现汽车传感器隐藏的问题并解决问题就显得尤为重要。本研究分析了汽车传感器发生故障的原因,有可能是信号传输故障,有可能是电路故障,还有可能是炭的积累过多,针对这几点问题,也重点介绍了几种检测和维修方法。 关键词:传感器;故障;积炭现象 前言:传感器是一类能够感受外界变化的物理量并按照一定规律转换成可用信号输出的器件或装置,在汽车的应用上十分广泛。汽车传感器的类型多种多样,它们能够实时检测和采集汽车各个部位的工作情况,并把所得到的信息数据反馈给计算机,计算机根据参数做出最恰当的选择来帮助人类更安全地驾驶汽车。汽车传感器大多处于汽车的暴露部位,容易受到恶劣环境的影响,所以出现的问题也较多,而本研究将重点分析汽车传感器发生故障的原因和检测方法。 1.简析传感器发生故障的原因 1.1信号传输故障 出现信号传输故障,可能是汽车传感器本身被损坏,所以感应不到外界情况,无法传输信息。汽车传感器大多处于汽车的暴露部位,容易受到恶劣环境的影响,例如:极端天气、碰撞、电磁干扰等。也有可能是传感器的感应装置失灵,传输错误信息,还有可能是在转换成电信号的过程中出了问题,物理量与电信号之间的转换规律错误,导致计算机识别电信号时呈现错误信息。 1.2电路故障 汽车的传感器有很多种,其中涉及到的方面也更广泛,因此当汽车计算机不呈现信息或呈现错误信息时,我们不应该只考虑传感器本身的问题,还应该将与之有关联的电路考虑在内。出现电路故障,有可能是电路本身被损坏,或因外力受损,或长时间未更换而老化,无法起到传输电流的作用,也有可能是电路某段被短路,电流未能经过,所以信息传递停滞。 1.3出现积炭现象 汽油是一种混合烃类物质,因其特殊的化学成分,在储存、运输的过程中,容易与空气发生氧化反应,生成胶状物质,或是汽油本身的质量不好,其中胶状物质含量高。这些胶状物质

数字传感器常见故障与解决方法

数字传感器常见故障与解决方法《柯力》 1.故障现象:仪表通电无显示及峰鸣声。 可能原因:可能为保险丝烧断,或无220V交流电无输入,瑞有可能是仪表变压器已被高压击穿。 解决办法:更换保险丝,检查无有220V交流输入,检查变压器有无烧坏痕迹,更换专用变压器。 2.故障现象:仪表上电有显示及蜂鸣声,但不正常。 可能原因:可能由于交流220V电源电压不稳引起,或者是仪表CPU程序损坏。 解决办法:待220V交流电源稳定后,重新开机仍不正常,可能为CPU损坏需更换。 3.故障现象:仪表显示有角差。 可能原因:可能由于秤体基础不实,长期使用后使传感器基座高度不一致。 解决办法:重新调整角差分数或调整基座调试, 调整时可通过查看传感器内码(参看说明书第四章),一般来说6只传感器的内码值的和即为秤台重量,其中1436号传感器内码值应基本一致,最大差值不能超过400kg,25号为14号的两倍。 4.故障现象:仪表显示有漂移现象。 可能原因:可能由于数字传感器长期浸水受潮,绝缘性能减弱。 解决办法:防止传感器长期浸水,更换相同规格和地址传感器,检查办法按说明书第四章,检查每一只传感器的内码值,可确定哪一只传感器存在漂移现象。 5.故障现象:在安装或使用过程中,显示Err 01. 可能原因:可能是01号数字传感器有故障或者是其线路连接有问题,或接触不良。 解决办法:仔细检查传感器、接线盒、仪表连接是否完好,然后查找01号传感器,若无01号传感器,表明传感器地址被更改,用仪表的修改地址功能(见第七章)将传感器的地址编号改回原来的地址编号(原来的地址编号在每个传感器的合格证上有注明)。如果找到01号传感器,测量其红、黑连线间是否有9-12V电压,若有电压,则可判断为传感器已损坏,需更换相同规格和地址的传感器,若无电压,测量仪表与接线盒连线的DB9插头上的红黑连线有否9-12V电压,若有则为仪表与接线盒的连线已断路,若无电压,则仪表内部供电已损坏,需更换仪表。 6.如何判断某个传感器有故障。 仪表关机,插头修改地址插头,然后仪表接上待判定那个传感器(只能接一个传感器),开机自检后显示所接传感器的编号,按输入键后,仪表显示此传感器的所受载荷,根据仪表显示值可直观判断此传感器是否有故障,详见第七章。 7.如何判断仪表故障。 可用一只备用的传感器直接连接到仪表,插上仪表标定头,在仪表开机自检按“标定”键,可直接进入标定状态,参照说明书第六章,把传感器数设置为1,退出后若仪表显示正常,则仪表没有故障,否则仪表就不正常了。 8.故障现象:大屏显示从开机一直不显示正常称重数据。 可能原因:仪表接口与大屏幕接口的连线方式未统一。 解决方法:查找本仪表说明书及大屏幕说明中有关连接接口的部分内容,正确连接接口即可正常 9.故障现象:仪表开机后自检,然后显示“……”死机。 可能原因:接线盒中的绿白数据线接反。 解决办法:应先立即断开电源,用仪表检测所有传感器电缆线与总线的相应色线是否正确,好红对红、黑对黑、白对白、绿对绿,并测试相互之间有无碰线,重新连线后即可。

相关文档