文档库 最新最全的文档下载
当前位置:文档库 › 物理选修3-3知识点(全)

物理选修3-3知识点(全)

物理选修3-3知识点(全)
物理选修3-3知识点(全)

物理选修3—3知识点总结

一、分子动理论

1、物质是由大量分子组成的 (1)单分子油膜法测量分子直径:V=Sd V 是滴入水盆中油酸的体积,等于油酸溶液的体积乘以浓度。S 是单分子油膜在水面上形成的面积。

(2)1m o l 任何物质含有的微粒数相同231

6.0210A

N m o l -=? (3)对微观量的估算

①分子的两种模型:

球形模型:固体、液体通常看成球形,分子体积等于小球体积。

立方体模型:空气分子占据的空间看成立方体,立方体的边长为空气分子的平均间距。注意:立方体模型表述的是空气分子占据的空间,不是空气分子的形状。 ②利用阿伏伽德罗常数联系宏观量与微观量 a.分子质量:m o l A

M m N =

b.分子体积:m o l A

V

v N

=

c.分子数量:A A A A

m o l m o l m o l m o l

M v M v

n N N N N M M V V ρρ=

=== 2、分子永不停息的做无规则的热运动(布朗运动 扩散现象)

(1)扩散现象:不同物质能够彼此进入对方的现象,说明了物质分子在不停地运动,同时还说明分子

间有间隙,温度越高扩散越快。是分子热运动的直接证据。

(2)布朗运动:它是悬浮在液体中的固体微粒的无规则运动,是在显微镜下观察到的。

①布朗运动的三个主要特点:永不停息地无规则运动;颗粒越小,布朗运动越明显;温度越高,布朗运动越明显。

②产生布朗运动的原因:它是由于液体分子无规则运动对固体微小颗粒各个方向撞击的不均匀性造成的。

③布朗运动间接地反映了液体分子的无规则运动,布朗运动、扩散现象都有力地说明物体内大量的分子都在永不停息地做无规则运动。

(3)热运动:分子的无规则运动与温度有关,简称热运动,温度越高,运动越剧烈

3、分子间的相互作用力:

分子之间的引力和斥力都随分子间距离减小而增大。

但是分子间斥力随分子间距离减小而增大的得更快 些;分子之间的引力和斥力都随分子间距离增大而 减小。但是分子间斥力随分子间距离加大而减小得 更快些。分子力是引力和斥力的合力。 在r 0位置,斥力等于引力,分子力等于0.

4、温度

宏观上的温度表示物体的冷热程度,微观上的温度是物体大量分子热运动平均动能的标志。热力学温度与摄氏温度的关系:273.15

T t K

=+

5、内能

①分子势能

分子间存在着相互作用力,因此分子间具有由它们的相对位置决定的势能,这就是分子势能。分子势能的大小与分子间距离有关,分子势能的大小变化可通过宏观量体积来反映。

当时,分子力为引力,当r增大时,分子力做负功,分子势能增加

当时,分子力为斥力,当r减少时,分子力做负功,分子是能增加

②物体的内能

物体中所有分子热运动的动能和分子势能的总和,叫做物体的内能。一切物体都是由不停地做无规则热运动并且相互作用着的分子组成,因此任何物体都是有内能的。(理想气体的内能只取决于温度)③改变内能的方式

做功与热传递在使物体内能改变

二、气体

6、气体实验定律

①玻意耳定律:pV C

=(C为常量)→等温变化

微观解释:一定质量的理想气体,温度保持不变时,分子的平均动能是一定的,在这种情况下,体积减少时,分子的密集程度增大,气体的压强就增大。

适用条件:压强不太大,温度不太低

图象表达:

1 p

V -

②查理定律:p

C

T

=(C为常量)→等容变化

微观解释:一定质量的气体,体积保持不变时,分子的密集程度保持不变,在这种情况下,温度升高时,分子的平均动能增大,气体的压强就增大。

适用条件:温度不太低,压强不太大

图象表达:p V

-

③盖吕萨克定律:V

C

T

=(C为常量)→等压变化

p

1

V

p

V

o

o

微观解释:一定质量的气体,温度升高时,分子的平均动能增大,只有气体的体积同时增大,使分子的密集程度减少,才能保持压强不变 适用条件:压强不太大,温度不太低

图象表达:V T - 7、理想气体

宏观上:严格遵守三个实验定律的气体,在常温常压下实验 气体可以看成理想气体

微观上:分子间的作用力可以忽略不计,故一定质量的理想 气体的内能只与温度有关,与体积无关 理想气体的方程:

p V C T

=

8、气体压强的微观解释

大量分子频繁的撞击器壁的结果

影响气体压强的因素:①气体的平均分子动能(温度)②分子的密集程度即单位体积内的分子数(体积)

三、物态和物态变化

9、晶体:外观上有规则的几何外形,有确定的熔点,一些物理性质表现为各向异性 非晶体:外观没有规则的几何外形,无确定的熔点,一些物理性质表现为各向同性 ①判断物质是晶体还是非晶体的主要依据是有无固定的熔点

②晶体与非晶体并不是绝对的,有些晶体在一定的条件下可以转化为非晶体(石英→玻璃) 10、单晶体 多晶体

如果一个物体就是一个完整的晶体,如食盐小颗粒,这样的晶体就是单晶体(单晶硅、单晶锗) 如果整个物体是由许多杂乱无章的小晶体排列而成,这样的物体叫做多晶体,多晶体没有规则的几何外形,但同单晶体一样,仍有确定的熔点。 11、表面张力

当表面层的分子比液体内部稀疏时,分子间距比内部大,表面层的分子表现为引力。如露珠 12、液晶

分子排列有序,各向异性,可自由移动,位置无序,具有流动性

各向异性:分子的排列从某个方向上看液晶分子排列是整齐的,从另一方向看去则是杂乱无章的 13、改变系统内能的两种方式:做功和热传递

①热传递有三种不同的方式:热传导、热对流和热辐射 ②这两种方式改变系统的内能是等效的 ③区别:做功是系统内能和其他形式能之间发生转化;热传递是不同物体(或物体的不同部分)之间内能的转移 14、热力学第一定律

①表达式u W Q ?=+ ②

注意:当气体向真空中膨胀时,W=0

符号 W

Q

u ?

+

外界对系统做功 系统从外界吸热 系统内能增加 - 系统对外界做功

系统向外界放热

系统内能减少

V

T

o

15、能量守恒定律

能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为另一种形式,或者从一个物体转

移到另一物体,在转化和转移的过程中其总量不变

第一类永动机不可制成是因为其违背了热力学第一定律

第二类永动机不可制成是因为其违背了热力学第二定律(一切自然过程总是沿着分子热运动的无序

性增大的方向进行)

熵是分子热运动无序程度的定量量度,在绝热过程或孤立系统中,熵是增加的。

16、能量耗散

系统的内能流散到周围的环境中,没有办法把这些内能收集起来加以利用。

()1.“用油膜法估测分子的大小”实验中油酸分子直径等于一滴混合溶液中纯油酸的体积除以相应油酸膜的面积()2.一绝热容器内盛有液体,不停地搅动它,使它温度升高该过程是可逆的;在一绝热容器内,不同温度的液体进行混合该过程不可逆。

()3.气体分子的平均动能越大,气体的压强就越大。

()4.物理性质各向同性的一定是非晶体。

()5.液体的表面张力是由于液体分子间的相互作用引起的。

()6.控制液面上方饱和汽的体积不变,升高温度,则达到动态平衡后该饱和汽的质量增大,密度增大,压强也增大()7.气体的温度升高时,分子的热运动变得剧烈,分子的平均动能增大,撞击器壁时对器壁的作用力增大,从而气体的压强一定增大。

()8.气体体积变小时,单位体积的分子数增多,单位时间内打到器壁单位面积上的分子数增多,从而气体的压强一定增大。

()9.压缩一定量的气体,气体的内能一定增加。

()10.有一分子a从无穷远处趋近固定不动的分子b,当a到达受b的分子力为零处时,a具有的动能一定最大。()11.气体吸收热量,其分子的平均动能就增大。

()12.尽管技术不断进步,热机的效率仍不能达到100%,制冷机却可以使温度降到-283℃。

()13.在完全失重的情况下,熔化的金属能够收缩成标准的球形。

()14.温度、压力、电磁作用等可以改变液晶的光学性质。

()15.扩散现象和布朗运动的剧烈程度都与温度有关,所以扩散现象和布朗运动也叫做热运动。

()16.两个分子甲和乙相距较远(此时它们之间的作用力可以忽略),设甲固定不动,乙逐渐向甲靠近,直到不能再靠近,在整个移动过程中前阶段分子力做正功,后阶段外力克服分子力做功。

()17.晶体熔化过程中,当温度达到熔点时,吸收的热量全部用来破坏空间点阵,增加分子势能,而分子平均动能却保持不变,所以晶体有固定的熔点。非晶体没有空间点阵,熔化时不需要去破坏空间点阵,吸收的热量主要转化为分子的动能,不断吸热,温度就不断上升。

()18.根据热力学第二定律可知,凡与热现象有关的宏观过程都具有方向性,在热传导中,热量只能自发地从高温物体传递给低温物体,而不能自发地从低温物体传递给高温物体。

()19.气体分子间的距离较大,除了相互碰撞或者跟器壁碰撞外,气体分子几乎不受力的作用而做匀速直线运动。分子的运动杂乱无章,在某一时刻,向各个方向运动的气体分子数目不均等。

()20.一由不导热的器壁做成的容器,被不导热的隔板分成甲、乙两室。甲室

中装有一定质量的温度为T的气体,乙室为真空,如图所示。提起隔板,让甲室中的

气体进入乙室,若甲室中气体的内能只与温度有关,则提起隔板后当气体重新达到平

衡时,其温度仍为T。

()21.液晶显示屏是应用液晶的光学各项异性制成的。

()22.熵增加原理说明一切自然过程总是沿着分子热运动的无序性增大的方向进行。

()23.饱和气压随温度的升高而增大。

()24.物体的温度升高,表示物体中所有分子的动能都增大。

()25.1mol任何物质所含有的粒子数都相等。

()26.液体表面层中分子间距小于内部分子间距。

()27.相同质量和温度的氢气和氧气、氢气的内能大,氧气分子的平均动能大,氢气分子的平均速率大。

()28.只要知道气体的体积和阿伏加德罗常数,就可以算出分子的体积。

()29.悬浮在液体中的固体微粒越小,布朗运动越明显。

()30.一定质量的理想气体保持压强不变,温度越高,体积越大。

()31.气体膨胀的过程,就是气体对外做功的过程,气体的内能一定减少。

()32.一定温度下,饱和汽压是一定的。

()33.第二类永动机是不可能制成的,因为它违背了能量守恒定律。

()34.由于液体表面的分子间距大于液体内部的分子间距,所以在液体表面只有引力没有斥力,所以液体表面具有收缩的趋势。

()35.“破镜难圆”的原因是两片碎玻璃之间,绝大多数玻璃分子间距离太大,分子引力和斥力都可忽略,总的分子引力为零。

()36.在宇宙间温度—1K是不能够达到的。

()37.在阳光照射下的教室里,眼睛直接看到的空气中尘粒的运动属于布朗运动。

()38.两个分子从远处逐渐靠近,直到不能再靠近为止的过程中,分子间相互作用的合力先变大、后变小,再变大。()39.布朗运动是指液体分子的无规则热运动。

()40.一定质量的气体能充满整个容器,这说明在一般情况下气体分子间的作用力很微弱。

()41.如果两个系统分别与第三个系统达到平衡,那么这两个系统彼此之间也可能处于平衡。

()42.物体的温度越高,物体的内能一定越大。

()43.气体分子的平均动能增大,气体的压强一定增大。

()44.若液体对某种固体是浸润的,当液体装在由这种固体物质做成的细管时,液面跟固体接触的面积有扩大的趋势。()45.汽车驾驶员用水和酒精混合物装入冷却系统,这是因为该混合物具有较低的沸点。

()46.克劳修斯表述指出了热传导的不可逆性。

()47.布朗运动和扩散现象都能在气体、液体、固体中发生。

()48.1kg的任何物质含有的微粒数相同,都是6.02×1023个,这个数叫阿伏加德罗常数。

()49.布朗运动是在显微镜中看到的液体分子的无规则运动。

()50.关于液体的表面张力,表面层里分子距离比液体内部小些,分子力表现为引力。

()51.理想气体在等温变化时,内能不改变,因而与外界不发生热交换。

()52.液体很难被压缩,说明压缩时液体分子间的斥力大于引力。

()53.分子力随分子间的距离的变化而变化,当r>r0时,随着距离的增大,分子间的引力和斥力都增大,但引力比斥力增大的快,故分子力表现为引力。

()54.一定质量的理想气体,体积变大的同时,温度也升高了,气体分子平均动能增大,气体内能增大,气体的压强可能变大。

()55.电冰箱内的食品温度比室内温度低,说明在一定条件下热传导可以由低温物体向高温物体进行

()56.新能源:指目前尚未被人类大规模利用而有待进一步研究、开发和利用的能源,如核能、太阳能、风能、地热能、海洋能、氢能等。

()57.物质处于固态、液态和气态时均能发生扩散现象,只是气态物质的扩散现象最显著,处于固态时扩散现象非常不明显。

()58.因为布朗运动的激烈程度跟温度有关,所以布朗运动也可以叫做热运动。

()59.室内尘埃的运动是空气分子碰撞尘埃造成的现象。

()60.一定质量的气体能充满整个容器,这说明在一般情况下,气体分子间的作用力很微弱。

()61.电焊能把二块金属连接成一整块是分子间的引力起作用。

()62.因为空气分子之间存在着斥力,所以打气筒给自行车打气时,要用力才能将空气压缩。

()63.把碳素墨水滴入清水中,观察到布朗运动,是水分子对碳微粒有斥力的结果。

()64.一切达到热平衡的系统都具有相同的温度。

()65.两个物体放在一起彼此接触,它们若不发生热传递,其原因是它们的内能相同。

()66.温度升高,分子的平均动能增大,但不是每一个分子的动能都增大,可能有个别的分子动能反而减小。

()67.只要处于同一温度下,任何物质分子做热运动的平均动能都相同。

()68.分子势能最小并不一定是分子势能为零。

()69.分子的动能与分子的势能的和叫做这个分子的内能。

()70.物体的机械能可以为零,而内能不可能为零。

()71.光滑水平面上加速运行的物体,由于速度增大,每个分子速度也增大了,所以分子的平均动能增大,内能和机械能都增大。

()72.能量在利用过程中,总是由高品质的能量最终转化为低品质的内能。

()73.温度高的物体中的每一个分子的动能,一定大于温度低的物体中的每一个分子的动能。

()74.温度高的物体中的每一个分子运动的速率,一定比温度低的物体中的每一个分子的运动的速率大。

()75.气体分子沿各个方向运动的机会(几乎)相等。

()76.大量气体分子的速率分布呈现中间多(具有中间速率的分子数多)两头少(速率大或小的分子数目少)的规律。()77.对一定质量的理想气体,当分子热运动变剧烈时,压强可以不变。

()78.压强增大,体积增大,分子的平均动能一定增大。

()79.作用在任何一部分液面上的表面张力,总是跟这部分液面的分界线垂直。

()80.做功和热传递是等效的,这里指的是它们能使物体改变相同的内能。

()81. 在布朗运动中花粉的无规则运动不可能是地球的微弱震动引起的。

()82. 物体的热胀冷缩现象正是由于物体分子间的空隙增大或缩小而造成的,这是气体、液体和固体所共有的现象。()83.细绳不易被拉断说明分子间存在着引力。

()84.温度是表示物体冷热程度的物理量,反映了组成物体的大量分子的无规则运动的激烈程度。

()85.分子势能的大小由分子间的相互位置决定。

()86.由于物体分子距离变化的宏观表现为物体的体积变化,所以微观的分子势能变化对应于宏观的物体体积变化。()87.一定质量的气体等温线的p-V图是双曲线的一支。

()88.一定质量的气体在等压变化时,升高(或降低)相同的温度增加(或减小)的体积是相同的。

()89.对一定质量的理想气体,可以做到升高温度时,压强、体积都减小。

()90.大量偶生事件整体表现出来的规律叫统计规律。

()91.理想气体的内能仅由温度和气体质量决定,与体积无关。

()92.对一定质量的理想气体,当分子热运动变剧烈时,压强可以不变。

()93.机械能可以转化为内能,但内能不能全部转化为机械能,同时不引起其他变化。

()94.一切自然过程总是沿着分子热运动的无序性增大的方向进行。

()95.一个物体在粗糙的平面上滑动,最后停止,则系统的熵增加。

()96.一定质量的气体被压缩,从而放出热量,其熵减少。

()97.在一个非孤立的、有能量输入的系统中,熵是完全可以减小的。

()98伴随着熵增加的同时,一切不可逆过程总会使自然界的能量品质不断退化,逐渐丧失做功的本领,所以人类必须节约能源。

()99.晶体在熔化过程中所吸收的热量,将主要用于既增加分子的动能,也增加分子的势能。

()100、物体吸收热量,同时外界对物体做功,物体的温度可能不变。

答案

1 2 3 4 5 6 7 8 9 10 √×××√××××√11 12 13 14 15 16 17 18 19 20 ××√√×√√√×√21 22 23 24 25 26 27 28 29 30 √√√×√×××√√31 32 33 34 35 36 37 38 39 40 ×√××√√×√×√41 42 43 44 45 46 47 48 49 50 √××√√√××××51 52 53 54 55 56 57 58 59 60 ×√×√√√√××√61 62 63 64 65 66 67 68 69 70 √××√×√√√×√71 72 73 74 75 76 77 78 79 80 ×√××√√√√√√81 882 83 84 85 86 87 88 89 90 √√√√√√√√×√91 92 93 94 95 96 97 98 99 100 ×√√√√√√√×√

高中物理重要知识点详细全总结(史上最全)

完整的知识网络构建,让复习备考变得轻松简单! (注意:全篇带★需要牢记!) 物 理 重 要 知 识 点 总 结 (史上最全) 高中物理知识点总结 (注意:全篇带★需要牢记!) 一、力物体的平衡

1.力是物体对物体的作用,是物体发生形变和改变物体的运动状态(即产生加速度)的原因. 力是矢量。 2.重力(1)重力是因为地球对物体的吸引而产生的. [注意]重力是因为地球的吸引而产生,但不能说重力就是地球的吸引力,重力是万有引力的一个分力. 但在地球表面附近,能够认为重力近似等于万有引力 (2)重力的大小:地球表面G=mg,离地面高h处G/=mg/,其中g/=[R/(R+h)]2g (3)重力的方向:竖直向下(不一定指向地心)。 (4)重心:物体的各部分所受重力合力的作用点,物体的重心不一定在物体上. 3.弹力(1)产生原因:因为发生弹性形变的物体有恢复形变的趋势而产生的. (2)产生条件:①直接接触;②有弹性形变. (3)弹力的方向:与物体形变的方向相反,弹力的受力物体是引起形变的物体,施力物体是发生形变的物体.在点面接触的情况下,垂直于面; 在两个曲面接触(相当于点接触)的情况下,垂直于过接触点的公切面. ①绳的拉力方向总是沿着绳且指向绳收缩的方向,且一根轻绳上的张力大小处处相等. ②轻杆既可产生压力,又可产生拉力,且方向不一定沿杆. (4)弹力的大小:一般情况下应根据物体的运动状态,利用平衡条件或牛顿定律来求解.弹簧弹力可由胡克定律来求解. ★胡克定律:在弹性限度内,弹簧弹力的大小和弹簧的形变量成正比,即F=kx.k为弹簧的劲度系数,它只与弹簧本身因素相关,单位是N/m. 4.摩擦力 (1)产生的条件:①相互接触的物体间存有压力;③接触面不光滑;③接触的物体之间有相对运动(滑动摩擦力)或相对运动的趋势(静摩擦力),这三点缺一不可. (2)摩擦力的方向:沿接触面切线方向,与物体相对运动或相对运动趋势的方向相反,与物体运动的方向能够相同也能够相反. (3)判断静摩擦力方向的方法: ①假设法:首先假设两物体接触面光滑,这时若两物体不发生相对运动,则说明它们原来没有相对运动趋势,也没有静摩擦力;若两物体发生相对运动,则说明它们原来有相对运动趋势,并且原来相对运动趋势的方向跟假设接触面光滑时相对运动的方向相同.然后根据静摩擦力的方向跟物体相对运动趋势的方向相反确定静摩擦力方向. ②平衡法:根据二力平衡条件能够判断静摩擦力的方向. (4)大小:先判明是何种摩擦力,然后再根据各自的规律去分析求解. ①滑动摩擦力大小:利用公式f=μF N实行计算,其中F N是物体的正压力,不一

高中物理选修3-3知识点整理

选修3—3考点汇编 1、物质是由大量分子组成的 (1)单分子油膜法测量分子直径 (2)1mol 任何物质含有的微粒数相同2316.0210A N mol -=? (3)对微观量的估算 ①分子的两种模型:球形和立方体(固体液体通常看成球形,空气分子占据的空间看成立方体) ②利用阿伏伽德罗常数联系宏观量与微观量 a.分子质量:mol A M m N = b.分子体积:mol A V v N = c.分子数量:A A A A mol mol mol mol M v M v n N N N N M M V V ρρ= === 2、分子永不停息的做无规则的热运动(布朗运动 扩散现象) (1)扩散现象:不同物质能够彼此进入对方的现象,说明了物质分子在不停地运动,同时还说明分子 间有间隙,温度越高扩散越快 (2)布朗运动:它是悬浮在液体中的固体微粒的无规则运动,是在显微镜下观察到的。 ①布朗运动的三个主要特点: 永不停息地无规则运动;颗粒越小,布朗运动越明显;温度越高,布朗运动越明显。 ②产生布朗运动的原因:它是由于液体分子无规则运动对 固体微小颗粒各个方向撞击的不均匀性造成的。 ③布朗运动间接地反映了液体分子的无规则运动,布朗运 动、扩散现象都有力地说明物体内大量的分子都在永不停息地

做无规则运动。 (3)热运动:分子的无规则运动与温度有关,简称热运动,温度越高,运动越剧烈 3、分子间的相互作用力 分子之间的引力和斥力都随分子间距离增大而减小。但是分子间斥力随分子间距离加大而减小得更快些,如图1中两条虚线所示。分子间同时存在引力和斥力,两种力的合力又叫做分子力。在图1图象中实线曲线表示引力和斥力的合力(即分子力)随距离变化的情况。当两个分子间距在图象横坐标0r 距离时,分子间的引力与斥力平衡,分子间作用力为零,0r 的数量级为1010 -m ,相当于0r 位置叫做平衡位置。当分子距离的数量级大于 m 时,分子间的作用力变得十分微弱,可以忽略不 计了 4、温度 宏观上的温度表示物体的冷热程度,微观上的温度是物体大量分子热运动平均动能的标志。热力学温度与摄氏温度的关系:273.15T t K =+ 5、内能 ①分子势能 分子间存在着相互作用力,因此分子间具有由它们的相对位置决定的势能,这就是分子势能。分子势能的大小与分子间距离有关,分子势能的大小变化可通过宏观量体积来反映。(0r r =时分子势能最小) 当0r r >时,分子力为引力,当r 增大时,分子力做负功,分子势能增加 当0r r <时,分子力为斥力,当r 减少时,分子力做负功,分子是能增加 ②物体的内能 物体中所有分子热运动的动能和分子势能的总和,叫做物体的内能。一切物体都是由不停地做无规则热运动并且相互作用着的分子组成,因此任何物体都是有内能的。(理想气体的内能只取决于温度) ③改变内能的方式

高中物理知识点归纳分享

高中物理知识点归纳分享 高中物理知识点归纳分享 1.光本性学说的发展简史 (1)牛顿的微粒说:认为光是高速粒子流.它能解释光的直进现象,光的反射现象. (2)惠更斯的波动说:认为光是某种振动,以波的形式向周围传播.它能解释光的干涉和衍射现象. 2、光的干涉 光的干涉的条件是:有两个振动情况总是相同的波源,即相干波源。(相干波源的频率必须相同)。形成相干波源的.方法有两种:⑴利用激光(因为激光发出的是单色性极好的光)。⑵设法将同一束光 分为两束(这样两束光都来源于同一个光源,因此频率必然相等)。 下面4个图分别是利用双缝、利用楔形薄膜、利用空气膜、利用平 面镜形成相干光源的示意图。 2.干涉区域内产生的亮、暗纹 ⑴亮纹:屏上某点到双缝的光程差等于波长的整数倍,即 δ=nλ(n=0,1,2,……) ⑵暗纹:屏上某点到双缝的光程差等于半波长的奇数倍,即 δ=(n=0,1,2,……) 相邻亮纹(暗纹)间的距离。用此公式可以测定单色光的波长。用白光作双缝干涉实验时,由于白光内各种色光的波长不同,干涉条 纹间距不同,所以屏的中央是白色亮纹,两边出现彩色条纹。 3.衍射----光通过很小的孔、缝或障碍物时,会在屏上出现明暗相间的条纹,且中央条纹很亮,越向边缘越暗。

⑴各种不同形状的障碍物都能使光发生衍射。 ⑵发生明显衍射的条件是:障碍物(或孔)的尺寸可以跟波长相比,甚至比波长还小。(当障碍物或孔的尺寸小于0.5mm时,有明显衍射 现象。) ⑶在发生明显衍射的条件下当窄缝变窄时亮斑的范围变大条纹间距离变大,而亮度变暗。 4、光的偏振现象:通过偏振片的光波,在垂直于传播方向的平 面上,只沿着一个特定的方向振动,称为偏振光。光的偏振说明光 是横波。 5.光的电磁说 ⑴光是电磁波(麦克斯韦预言、赫兹用实验证明了正确性。) ⑵电磁波谱。波长从大到小排列顺序为:无线电波、红外线、可见光、紫外线、X射线、γ射线。各种电磁波中,除可见光以外, 相邻两个波段间都有重叠。 各种电磁波的产生机理分别是:无线电波是振荡电路中自由电子的周期性运动产生的;红外线、可见光、紫外线是原子的外层电子受 到激发后产生的;伦琴射线是原子的内层电子受到激发后产生的;γ 射线是原子核受到激发后产生的。 ⑶红外线、紫外线、X射线的主要性质及其应用举例。 种类产生主要性质应用举例 红外线一切物体都能发出热效应遥感、遥控、加热 紫外线一切高温物体能发出化学效应荧光、杀菌、合成VD2 X射线阴极射线射到固体表面穿透能力强人体透视、金属探伤 以上就是新编高中物理知识点归纳之光的波动性和微粒性的全部内容,希望能够对大家有所帮助!

高中物理选修3-4全部知识点归纳

高中物理选修3-4全部知识点归纳主题内容 要 求 说明 机械振动与机械波1.简谐运动Ⅰ ①简谐运动只 限于单摆和弹 簧振子;②简 谐运动公式只 限于回复力公 式;③简谐运 动图像只限于 位移-时间图 像。 2.简谐运动的公式和图像Ⅱ 3.单摆、周期公式Ⅰ 4.受迫振动和共振Ⅰ 5.机械波Ⅰ 6.横波和纵波Ⅰ 7.横波的图像Ⅱ 8.波速、波长和频率(周期) 的关系 Ⅱ 9.波的干涉和衍射现象Ⅰ 10.多普勒效应Ⅰ 电磁振荡与电磁波11.变化的磁场产生电场、变 化的电场产生磁场、电磁波及 其传播 Ⅰ 12.电磁波的产生、发射和接 收 Ⅰ 13.电磁波谱Ⅰ 光 14.光的折射定律Ⅱ①相对折射率 不做考试要 15.折射率Ⅰ

16.全反射、光导纤维 Ⅰ 求;②光的干涉限于双缝干 涉、薄膜干涉。 17.光的干涉、衍射和偏振现象 Ⅰ 相对论 18.狭义相对论的基本假设 Ⅰ 19.质速关系、质能关系 Ⅰ 20.相对论质能关系式 Ⅰ 一、简谐运动、简谐运动的表达式和图象 1、机械振动: 物体(或物体的一部分)在某一中心位置两侧来回做往复运动,叫做机械振动。机械振动产生的条件是:①回复力不为零;②阻力很小。使振动物体回到平衡位置的力叫做回复力,回复力属于效果力,在具体问题中要注意分析什么力提供了回复力。 2、简谐振动: 在机械振动中最简单的一种理想化的振动。对简谐振动可以从两个方面进行定义或理解: ①物体在跟位移大小成正比,并且总是指向平衡位置的回复力作用下的振动,叫做简谐振动。 ②物体的振动参量,随时间按正弦或余弦规律变化的振动,叫做简谐振动, 3、描述振动的物理量 研究振动除了要用到位移、速度、加速度、动能、势能等物理量以外,为适应振动特点还要引入一些新的物理量。

物理选修3-4知识点(全)

选修3—4考点汇编 一、机械振动(*振动图象是历年考查的重点:同一质点在不同时刻的位移) 1、只要回复力满足F kx =-或位移满足sin()x A t ω?=+的运动即为简谐运动。 说明:①做简谐运动的物体,加速度、速度方向可能一致,也可能相反。 ②做简谐运动的物体,在平衡位置速度达到最大值,而加速度为零。 ③做简谐运动的物体,在最大位移处加速度达到最大值,而速度为零。 2、质点做简谐运动时,在T/4内通过的路程可能大于或等于或小于A (振幅),在3T/4内通过的路程可能大于或等于或小于3A 。 3、质点做简谐运动时,在1T 内通过的路程一定是4A ,在T/2内通过的路程一定是2A 。 4、简谐运动方程sin()x A t ω?=+中t ω?+叫简谐运动的相位,用来表示做简谐运动的质点此时正处于一个运动周期中的哪个状态。 5、单摆的回复力是重力沿振动方向(垂直于摆线方向)的分力,而不是摆球所受的合外力(除两个极端位置外)。 6、单摆的回复力sin /F mg mgx L θ=≈-,其中x 指摆球偏离平衡位置的位移,x 前面的是常数mg/L ,故可以认为小角度下摆球的摆动是简谐运动。 7、摆的等时性是意大利科学家伽利略发现的,而单摆的周期公式是由荷兰科学家惠更斯发现的,把调准的摆钟,由北京移至赤道,这个钟变慢了,要使它变准应该增加摆长。(附单摆的周期公式:2L T g π=) 8、阻尼振动是指振幅逐渐减小的振动,无阻尼振动是指振幅不变的振动。 9、物体做受迫振动时,频率由驱动力频率决定与固有频率无关。 10、如果驱动力频率等于振动系统的固有频率,受迫振动的振幅最大,这种现象叫共振,共振现象的应用有转速计和共振筛等,军队过桥要便步走,火车过桥要慢行,厂房建筑物的固有频率要远离机器运转的频率范围之内都是为了减小共振。 11、轮船航行时,如果左右摆动有倾覆危险,可采用改变航向和速度,使波浪冲击力的频率远离轮船摇摆的固有频率。这是共振防止的一种方法。 12、简谐波中,其他质点的振动都将重复振源质点的振动,既是振源带动下的振动,故应为受迫振动。 13、一切复杂的振动虽不是简谐振动,但它们都可以看作是由若干个振幅和频率不同的简谐运动合成的。 二、机械波(*波形图为历年来考查的重点:一列质点在同一时刻的位移) 14、有机械波必有机械振动,有机械振动不一定有机械波。 15、当波动的振源停止振动时,已形成的波动将仍能往前传播,直至能量衰减至零为止。 16、发生地震时,从地震源传出的地震波,既有横波,也有纵波。 17、机械波传播的只是振动形式,质点本身并不随波一起传播,在波的传播过程中,任一质点的起振方向都与波源的起振方向相同。 18、机械波的传播需要介质,当介质中本来静止的质点,随着波的传来而发生振动,表示质点获得能量。波不但传递着能量,而且可以传递信息。 19、在波动中振动相位总是相同两个相邻质点间的距离叫做波长,在波动中振动相位总是相反两个质点间的距离为半个波长的奇数倍。 20、任何振动状态相同的点组成的圆叫波面,与之垂直的线叫波线,表示了波的传播方向。 21、惠更斯原理是指介质中任一波面上的点都可以看作发射子波的波源,其后任意时刻,这些子波在波德

高中物理必修2知识点归纳重点

新课标高中物理必修Ⅱ知识点总结 在学习物理的过程中,希望你能养成解题的好习惯,这一点很重要。 1、看题目的时候,很容易会看着头晕转向,这是心理问题,是自己逃避的 表现。因此再看题目的过程中,要手拿笔,画出重要的解题关键点。比 如:物体的开始与结束的状态、平衡状态等等;(这是一个积累过程,习 惯了就会事半功倍,不要不要在乎纸的清洁。); 2、画图;物理解题应该是想象思维、图形结合,再到推理的过程。画图真 的是必不可少的,不能懒而省了这一步。一定要画图,而且要整洁,不 可马虎; 3、辅导书是第二个老师;你若自学辅导书的每一章节前面的是总结梳理, 认真的记忆梳理,你课都可以不听了(不骗人,前提是你真的用功了)。 自习的时候,不要直接做辅导书的题那么快,认真看前面的知识点和例 题,消化好了,绝对受益匪浅。(任何一门理科都可以这么学的) 第一模块:曲线运动、运动的合成和分解 <一> 曲线运动 1、定义:运动轨迹为曲线的运动。 2、物体做曲线运动的方向:做曲线运动的物体,速度方向始终在轨迹的切线方向上。 3、曲线运动的性质:曲线运动一定是变速运动。(选择题) 由于曲线运动速度一定是变化的,至少其方向总是不断变化的,所以,做曲线运动的物体的加速度必不为零,所受到的合外力必不为零。(选择题) 4、物体做曲线运动的条件 物体所受合外力(加速度)的方向与物体的速度方向不在一条直线上。 总之,做曲线运动的物体所受的合外力一定指向曲线的凹侧。(选择题) 5、分类 ⑴匀变速曲线运动:物体在恒力作用下所做的曲线运动,如平抛运动。 ⑵非匀变速曲线运动:物体在变力(大小变、方向变或两者均变)作用下所做的曲线运动,如圆周运动。 <二> 运动的合成与分解(小船渡河是重点) 1、运动的合成:从已知的分运动来求合运动,叫做运动的合成,包括位移、速度和加速度的合成,由于它们都是矢量,所以遵循平行四边形定则。运动合成重点是判断合运动和分运动,一般地,物体的实际运动就是合运动。(做题依据) 2、运动的分解:求一个已知运动的分运动,叫运动的分解,解题时应按实际“效果”分解,或正交分解。 3、合运动与分运动的关系: ⑴运动的等效性⑵等时性⑶独立性⑷运动的矢量性 4、运动的性质和轨迹

物理选修1-1+知识点小结

知识点小结 一、物理学史及物理学家 1、电闪雷鸣是自然界常见的现象,古人认为那是“天神之火”,是天神对罪恶的惩罚,直到1752年,伟大的科学家富兰克林冒着生命危险在美国费城进行了著名的风筝实验,把天电引了下来,发现天电和摩擦产生的电是一样的,才使人类摆脱了对雷电现象的迷信。 2、伏打于1800年春发明了能够提供持续电流的“电堆”——最早的直流电源。他的发明为科学家们由静电转入电流的研究创造了条件,揭开了电力应用的新篇章。 3、以美国发明家爱迪生和英国化学家斯旺为代表的一批发明家,发明和改进了电灯,改变了人类日出而作、日没而息的生活习惯。 4、1820年,丹麦物理学家奥斯特用实验展示了电与磁的联系,说明了电与磁之间存在着相互作用,这对电与磁研究的深入发展具有划时代的意义,也预示了电力应用的可能性。 5、英国物理学家法拉第经过10年的艰苦探索,终于在1831年发现了电磁感应现象,进一步揭示了电现象与磁现象之间的密切联系,奏响了电气化时代的序曲。 6、英国物理学家麦克斯韦建立完整的电磁场理论并预言电磁波的存在,他的理论,足以与牛顿力学理论相媲美,是物理学发展史上的一个里程碑式的贡献。 7、德国物理学家赫兹用实验证实了电磁波的存在,为无线电技术的发展开拓了道路,被誉为无线电通信的先驱。后人为了纪念他,用他的名字命名了频率的单位。 二、基本原理及实际应用 1、避雷针利用_尖端放电_原理来避雷:带电云层靠近建筑物时,避雷针上产生的感应电荷会通过针尖放电,逐渐中和云中的电荷,使建筑物免遭雷击。 2、各种各样的电热器如电饭锅、电热水器、电熨斗、电热毯等都是利用电流的热效应_来工作的。 3、在磁场中,通电导线要受到安培力的作用,我们使用的电动机就是利用这个原理来工作的。

【人教版】版高中物理选修35知识点清单

精品“正版”资料系列,由本公司独创。旨在将“人教 版”、”苏教版“、”北师大版“、”华师大版“等涵盖几 乎所有版本的教材教案、课件、 导学案及同步练习和检测题分 享给需要的朋友。 本资源创作于2020年12月, 是当前最新版本的教材资源。 包含本课对应内容,是您备课、 上课、课后练习以及寒暑假预 习的最佳选择。 通过我们的努力,能 够为您解决问题,这是我们的 宗旨,欢迎您下载使用! 一、动量 动量守恒定律 高中物理选修 3-5 知识点 第十六章 动量守恒定律 1、动量:可以从两个侧面对动量进行定义或解释:①物体的质量跟其速度的乘积, 叫做物体的动量。②动量是物体机械运动的一种量度。 动量的表达式 P = mv 。单位是kg m s .动量是矢量, 其方向就是瞬时速度的方向。 因为速度是相对的, 所以动量也是相对的。 2、动量守恒定律:当系统不受外力作用或所受合外力为零, 则系统的总动量守恒。动量守恒定律根据实际情况有多种表达式, 一般常用等号左右分别表示系统作用前后的总动量。 运用动量守恒定律要注意以下几个问题: ①动量守恒定律一般是针对物体系的, 对单个物体谈动量守恒没有意义。 ②对于某些特定的问题, 例如碰撞、爆炸等, 系统在一个非常短的时间内, 系统内部各物体相互作用力, 远比它们所受到外界作用力大, 就可以把这些物体看作一个所受合外力为零的系统处理, 在这一短暂时间内遵循动量守恒定律。

③计算动量时要涉及速度, 这时一个物体系内各物体的速度必须是相对于同一惯性参照系的, 一般取地面为参照物。 ④动量是矢量, 因此“系统总动量”是指系统中所有物体动量的矢量和, 而不是代数和。 ⑤动量守恒定律也可以应用于分动量守恒的情况。有时虽然系统所受合外力不等于零, 但只要在某一方面上的合外力分量为零, 那么在这个方向上系统总动量的分量是守恒的。 ⑥动量守恒定律有广泛的应用范围。只要系统不受外力或所受的合外力为零, 那么系统内部各物体的相互作用, 不论是万有引力、弹力、摩擦力, 还是电力、磁力, 动量守恒定律都适用。系统内部各物体相互作用时, 不论具有相同或相反的运动方向;在相互作用时不论是否直接接触;在相互作用后不论是粘在一起,

人教版高中物理选修3-5知识点总结

选修3-5知识梳理 一.量子论的建立黑体和黑体辐射Ⅰ (一)量子论 1.创立标志:1900年普朗克在德国的《物理年刊》上发表《论正常光谱能量分布定律》的论文,标志着量子论的诞生。 2.量子论的主要内容: ①普朗克认为物质的辐射能量并不是无限可分的,其最小的、不可分的能量单元即“能量子”或称“量子”,也就是说组成能量的单元是量子。 ②物质的辐射能量不是连续的,而是以量子的整数倍跳跃式变化的。 3.量子论的发展 ①1905年,爱因斯坦奖量子概念推广到光的传播中,提出了光量子论。 ②1913年,英国物理学家玻尔把量子概念推广到原子内部的能量状态,提出了一种量子化的原子结构模型,丰富了量子论。 ③到1925年左右,量子力学最终建立。 4.量子论的意义 ①与量子论等一起,引起物理学的一场重大革命,并促进了现代科学技术的突破性发展。 ②量子论的革命性观念揭开了微观世界的奥秘,深刻改变了人们对整个物质世界的认识。 ③量子论成功的揭示了诸多物质现象,如光量子论揭示了光电效应 ④量子概念是一个重要基石,现代物理学中的许多领域都是从量子概念基础上衍生出来的。 量子论的形成标志着人类对客观规律的认识,开始从宏观世界深入到微观世界;同时,在量子论的基础上发展起来的量子论学,极大地促进了原子物理、固体物理和原子核物理等科学的发展。 (二)黑体和黑体辐射

1.热辐射现象 任何物体在任何温度下都要发射各种波长的电磁波,并且其辐射能量的大小及辐射能量按波长的分布都与温度有关。 这种由于物质中的分子、原子受到热激发而发射电磁波的现象称为热辐射。 ①.物体在任何温度下都会辐射能量。 ②.物体既会辐射能量,也会吸收能量。物体在某个频率范围内发射电磁波能力越大,则它吸收该频率范围内电磁波能力也越大。 辐射和吸收的能量恰相等时称为热平衡。此时温度恒定不变。 实验表明:物体辐射能多少决定于物体的温度(T)、辐射的波长、时间的长短和发射的面积。 2.黑体 物体具有向四周辐射能量的本领,又有吸收外界辐射 来的能量的本领。 黑体是指在任何温度下,全部吸收任何波长的辐射的 物体。 3.实验规律: 1)随着温度的升高,黑体的辐射强度都有增加; 2)随着温度的升高,辐射强度的极大值向波长较短方向移动。 二.光电效应光子说光电效应方程Ⅰ 1、光电效应

高一物理知识点归纳大全

高一物理知识点归纳大全 从初中进入高中以后,就会慢慢觉得物理公式比以前更难学习了,其实学透物理公式并不是难的事情,以下是我整理的物理公式内容,希望可以给大家提供作为参考借鉴。 基本符号 Δ代表'变化的 t代表'时间等,依情况定,你应该知道' T代表'时间' a代表'加速度' v。代表'初速度' v代表'末速度' x代表'位移' k代表'进度系数' 注意,写在字母前面的数字代表几倍的量,写在字母后面的数字代表几次方. 运动学公式 v=v。+at无需x时 v2=2ax+v。2无需t时 x=v。+0.5at2无需v时 x=((v。+v)/2)t无需a时 x=vt-0.5at2无需v。时 一段时间的中间时刻速度(匀加速)=(v。+v)/2

一段时间的中间位移速度(匀加速)=根号下((v。2+v2)/2) 重力加速度的相关公式,只要把v。当成0就可以了.g一般取10 相互作用力公式 F=kx 两个弹簧串联,进度系数为两个弹簧进度系数的倒数相加的倒数 两个弹簧并联,进度系数连个弹簧进度系数的和 运动学: 匀变速直线运动 ①v=v(初速度)+at ②x=v(初速度)t+?at平方=v+v(初速度)/2×t ③v的平方-v(初速度)的平方=2ax ④x(末位置)-x(初位置)=a×t的平方 自由落体运动(初速度为0)套前面的公式,初速度为0 重力:G=mg(重力加速度)弹力:F=kx摩擦力:F=μF(正压力)引申:物体的滑动摩擦力小于等于物体的最大静摩擦 匀变速直线运动 1.平均速度V平=s/t(定义式) 2.有用推论Vt2-Vo2=2as 3.中间时刻速度Vt/2=V平=(Vt+Vo)/2 4.末速度Vt=Vo+at 5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/2 6.位移s=V平t=Vot+at2/2=Vt/2t 7.加速度a=(Vt-Vo)/t{以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0} 8.实验用推论Δs=aT2{Δs为连续相邻相等时间(T)内位移之差} 9.主要物理量及单位:初速度(Vo):m/s;加速度(a):m/s2;末速度(Vt):m/s;

最新物理选修1-1知识点汇总

1、两种电荷:用毛皮摩擦过的橡胶棒带负电荷, 用丝绸摩擦过的玻璃棒带正电荷。 同种电荷相互排斥,异种电荷相互吸引。 2、元电荷:一个元电荷的电量为1.6×10-19C,是一个电子所带的电量。 说明:任何带电体的带电量皆为元电荷电量的整数倍。 3、电荷量(Q):电荷的多少。单位:库仑(C) 4、起电:使物体带电叫起电,使物体带电的方式有三种①摩擦起电,②接触起电,③感应起电。 5、电荷守恒定律:电荷既不能创造,也不能被消灭,它们只能从一个物体转移到另一个物体,或者从物体的一部分转移到另一部分,系统的电荷总数是不变的.注意:电荷的变化是电子的转移引起的;完全相同的带电金属球相接触,同种电荷总电荷量平均分配,异种电荷先中和后再平分。 二、库仑定律 1、内容:真空中两个点电荷之间相互作用的电力,跟它们的电荷量的乘积成正比,跟 2k=9.0×109N·m2/C2 3)真空中;(2)点电荷. 点电荷是一个理想化的模型,在实际中,当带电体的形状和大小对相互作用力的影响可以忽略不计时,就可以把带电体视为点电荷.(这一点与万有引力很相似,但又有不同:对质量均匀分布的球,无论两球相距多近,r都等于球心距;而对带电导体球,距离近了以后, 。点电荷很相似于我们力学中的质点. (一)电场 1.存在于带电体周围的传递电荷之间相互作用的特殊媒介物质.电荷间的作用总是通过电场进行的。 2.电场的基本性质是对放入其中的电荷有力的作用。 3.电场可以由存在的电荷产生,也可以由变化的磁场产生。 (二)电场强度 1.定义:放入电场中某一点的电荷受到的电场力F跟它的电量q的比值叫做该点的电场强度,表示该处电场的强弱 2单位是:N/C或V/m; Q是产生该电场的电荷) d是沿电场线方向上的距离)3.电场强度是矢量,方向:与该点正电荷受力方向相同,与负电荷的受力方向相反;电场线的切线方向是该点场强的方向;场强的方向与该处等势面的方向垂直.4.在电场中某一点确定了,则该点场强的大小与方向就是一个定值,与放入的检验电荷无关,即使不放入检验电荷,该处的场强大小方向仍不变, 5.电场强度和电场力是两个概念,电场强度的大小与方向跟放入的检验电荷无关,而电场力的大小与方向则跟放入的检验电荷有关,

江苏省高考物理选修35知识点梳理.pdf

选修3-5 动量 动量守恒定律Ⅱ 1、冲量 冲量可以从两个侧面的定义或解释。①作用在物体上的力和力的作用时间的乘积, 叫做该力对这物体的冲量。②冲量是力对时间的累积效应。力对物体的冲量, 使物体的动量发生变化; 而且冲量等于物体动量的变化。 冲量的表达式 I = F ·t 。单位是牛顿·秒 冲量是矢量, 其大小为力和作用时间的乘积, 其方向沿力的作用方向。如果物体在时间t 内受到几个恒力的作用, 则合力的冲量等于各力冲量的矢量和, 其合成规律遵守平行四边形法则。 2、动量 可以从两个侧面对动量进行定义或解释。①物体的质量跟其速度的乘积, 叫做物体的动量。②动量是物体机械运动的一种量度。动量的表达式P = mv 。单位是千克米 / 秒。动量是矢量, 其方向就是瞬时速度的方向。因为速度是相对的, 所以动量也是相对的, 我们啊 3、动量定理 物体动量的增量, 等于相应时间间隔力, 物体所受合外力的冲量。表达式为I = ?P 或12mv mv Ft ?=。 运用动量定理要注意①动量定理是矢量式。合外力的冲量与动量变化方向一致, 合外力的冲量方向与初末动量方向无直接联系。②合外力可以是恒力, 也可以是变力。在合外力为变力时, F 可以视为在时间间隔t 内的平均作用力。③动量定理不仅适用于单个物体, 而且可以推广到物体系。 4、动量守恒定律 当系统不受外力作用或所受合外力为零, 则系统的总动量守恒。动量守恒定律根据实际情况有多种表达式, 一般常用P P P P A B A B +='+'等号左右分别表示系统作用前后的总动量。 运用动量守恒定律要注意以下几个问题: ①动量守恒定律一般是针对物体系的, 对单个物体谈动量守恒没有意义。 ②对于某些特定的问题, 例如碰撞、爆炸等, 系统在一个非常短的时间内, 系统内部各物体相互作用力, 远比它们所受到外界作用力大, 就可以把这些物体看作一个所受合外力为零的系统处理, 在这一短暂时间内遵循动量守恒定律。 ③计算动量时要涉及速度, 这时一个物体系内各物体的速度必须是相对于同一惯性参照系的, 一般取地面为参照物。 ④动量是矢量, 因此“系统总动量”是指系统中所有物体动量的矢量和, 而不是代数和。 ⑤动量守恒定律也可以应用于分动量守恒的情况。有时虽然系统所受合外力不等于零, 但只要在某一方面上的合外力分量为零, 那么在这个方向上系统总动量的分量是守恒的。 ⑥动量守恒定律有广泛的应用范围。只要系统不受外力或所受的合外力为零, 那么系统内部各物体的相互作用, 不论是万有引力、弹力、摩擦力, 还是电力、磁力, 动量守恒定律都适用。系统内部各物体相互作用时, 不论具有相同或相反的运动方向; 在相互作用时不论是否直接接触; 在相互作用后不论是粘在一起, 还是分裂成碎块, 动量守恒定律也都适用。 5、动量与动能、冲量与功、动量定理与动能定理、动量守恒定律与机械能守恒定律的比较。动量与动能的比较: ①动量是矢量, 动能是标量。 ②动量是用来描述机械运动互相转移的物理量而动能往往用来描述机械运动与其他运动(比如热、光、电等)相互转化的物理量。比如完全非弹性碰撞过程研究机械运动转移——速度的变化可以用动量守恒, 若要研究碰撞过程改变成内能的机械能则要用动能为损失去

高中物理选修34知识点

电磁波 电磁波的发现:麦克斯韦电磁场理论:变化的磁场产生电场,变化的电场 产生磁场→预言电磁波的存在 赫兹证实电磁波的存在 电磁振荡:周期性变化的电场能与磁场能周期性变化,周期和频率 电磁波的发射和接收 电磁波与信息化社会:电视、雷达等 电磁波谱:无线电波、红外线、可见光、紫外线、x 射线、ν射线 选 修3—4 一、知识网络 周期:g L T π2= 机械振动 简谐运动 物理量:振幅、周期、频率 运动规律 简谐运动图象 阻尼振动 受力特点 回复力:F= - kx 弹簧振子:F= - kx 单摆:x L mg F - = 受迫振动 共振 波的叠加 干涉 衍射 多普勒效应 特性 实例 声波,超声波及其应用 机械波 形成和传播特点 类型 横波 纵波 描述方法 波的图象 波的公式:vT =λ x=vt

二、考点解析 考点80 简谐运动 简谐运动的表达式和图象 要求:I 1)如果质点所受的力与它偏离平衡位置位移的大小成正比,并且总是指向平衡位置,质点的运动就是简谐运动。 简谐运动的回复力:即F = – kx 注意:其中x 都是相对平衡位置的位移。 区分:某一位置的位移(相对平衡位置)和某一过程的位移(相对起点) ⑴回复力始终指向平衡位置,始终与位移方向相反 ⑵“k ”对一般的简谐运动,k 只是一个比例系数,而不能理解为劲度系数 ⑶F 回=-kx 是证明物体是否做简谐运动的依据 2)简谐运动的表达式: “x = A sin (ωt +φ)” 3)简谐运动的图象:描述振子离开平衡位置的位移随时间遵从正弦(余弦)函数的规律变化的,要求能将图象与恰当的模型对应分析。可根据简谐运动的图象的斜率判别速度的方向,注意在振幅处速度无方向。 A 、简谐运动(关于平衡位置)对称、相等 ①同一位置:速度大小相等、方向可同可不同,位移、回复力、加速度大小相等、方向相同. ②对称点:速度大小相等、方向可同可不同,位移、回复力、加速度大小相等、方向相反. ③对称段:经历时间相同 ④一个周期内,振子的路程一定为4A (A 为振幅); 半个周期内,振子的路程一定为2A ; 四分之一周期内,振子的路程不一定为A 相对论简介 相对论的诞生:伽利略相对性原理 狭义相对论的两个基本假设:狭义相对性原理;光速不变原理 时间和空间的相对性:“同时”的相对性 长度的相对性: 2 0)(1c v l l -= 时间间隔的相对性:2 )(1c v t -?= ?τ 相对论的时空观 狭义相对论的其他结论:相对论速度变换公式:2 1c v u v u u '+'= 相对论质量: 2 0)(1c v m m -= 质能方程2mc E = 广义相对论简介:广义相对性原理;等效原理 广义相对论的几个结论:物质的引力使光线弯曲 引力场的存在使得空间不同位置的时间进程出现差别

高中物理知识点总结大全

高考总复习知识网络一览表物理

高中物理知识点总结大全 一、质点的运动(1)------直线运动 1)匀变速直线运动 1.平均速度V平=s/t(定义式) 2.有用推论Vt2-Vo2=2as 3.中间时刻速度Vt/2=V平=(Vt+Vo)/2 4.末速度Vt=Vo+at 5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/2 6.位移s=V平t=Vot+at2/2=Vt/2t 7.加速度a=(Vt-Vo)/t {以Vo为正方向,a与Vo同向(加速)a>0;反向则aF2) 2.互成角度力的合成: F=(F12+F22+2F1F2cosα)1/2(余弦定理)F1⊥F2时:F=(F12+F22)1/2 3.合力大小范围:|F1-F2|≤F≤|F1+F2| 4.力的正交分Fx=Fcosβ,Fy=Fsinβ(β为合力与x轴之间的夹角tgβ=Fy/Fx) 注: (1)力(矢量)的合成与分解遵循平行四边形定则; (2)合力与分力的关系是等效替代关系,可用合力替代分力的共同作用,反之也成立; (3)除公式法外,也可用作图法求解,此时要选择标度,严格作图; (4)F1与F2的值一定时,F1与F2的夹角(α角)越大,合力越小; (5)同一直线上力的合成,可沿直线取正方向,用正负号表示力的方向,化简为代数运算. 四、动力学(运动和力) 1.牛顿第一运动定律(惯性定律):物体具有惯性,总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止 2.牛顿第二运动定律:F合=ma或a=F合/ma{由合外力决定,与合外力方向一致} 3.牛顿第三运动定律:F=-F′{负号表示方向相反,F、F′各自作用在对方,平衡力与作用力反作用力区别,实际应用:反冲运动} 4.共点力的平衡F合=0,推广{正交分解法、三力汇交原理} 5.超重:FN>G,失重:FNr} 3.受迫振动频率特点:f=f驱动力 4.发生共振条件:f驱动力=f固,A=max,共振的防止和应用〔见第一册P175〕 5.机械波、横波、纵波〔见第二册P2〕 6.波速v=s/t=λf=λ/T{波传播过程中,一个周期向前传播一个波长;波速大小由介质本身所决定} 7.声波的波速(在空气中)0℃:332m/s;20℃:344m/s;30℃:349m/s;(声波是纵波) 8.波发生明显衍射(波绕过障碍物或孔继续传播)条件:障碍物或孔的尺寸比波长小,或者相差不大 9.波的干涉条件:两列波频率相同(相差恒定、振幅相近、振动方向相同) 10.多普勒效应:由于波源与观测者间的相互运动,导致波源发射频率与接收频率不同{相互接近,接收频率增大,反之,减小〔见第二册P21〕} 注: (1)物体的固有频率与振幅、驱动力频率无关,取决于振动系统本身;

物理选修3-5物理知识点

3-5物理相关图片知识整理 第十六章:动量守恒定律 一、动量、动量守恒定律(I) 1、动量 (1)表达式:p=mv,状态量.(2)与动能的联系:p2=2mE k (3)动量是矢量,动能是标量,因此物体的动量变化时动能未必变化,物体的动能变化时动量 必定变化. (4)系统的总动量为系统内各物体动量的矢量和. 2.动量守恒定律 (1)表达式 ①p=p′(相互作用前系统总动量p等于相互作用后总动量p′); ②Δp=0(系统总动量的增量等于零); ③Δp1=-Δp2(两个物体组成的系统中,各自动量的增量大小相等、方向相反). 提醒:①动量守恒定方程是一个矢量方程,应选取统一的正方向,与正方向相同的动量 取正号,相反的方向取负号. ②动量守恒定律具有相对性,表达式中的速度应对同一参考系的速度. (2)动量守恒条件 ①系统不受外力或所受外力的矢量和为零. (大人和小孩水平方向不受外力,系统动量守恒;小 孩、大锤、小车水平方向动量守恒) ②相互作用的时间极短,相互作用的内力远大于外力, 如碰撞或爆炸瞬间,外力可忽略不计,可以看作系统 动量守恒.(如右图火箭爆炸在水平方向动量守恒) ③系统所受合力不为零,总动量不守恒,但某一方向 上合力为零,或内力远大于外力.则在该方向上动量守恒.此种情形要特别 注意两点:一是整个系统动量不守恒,特别是在概念考查上;二是动量守恒 式中要把速度投影到合力为零的方向上. 二、验证动量守恒定律(实验、探究)(I) 1、原理:m1V1+m2V2=m1V1+m2V2 2、【典型例题】 用如图所示的装置进行“验证动量守恒定律”的实验: (1)先测出可视为质点的两滑块A、B的质量分别为m、M及滑块与桌面间 的动摩擦因数μ. (2)用细线将滑块A、B连接,使A、B间的轻弹簧处于压缩状态,滑块B 恰好紧靠桌边. (3)剪断细线,测出滑块B做平拋运动的水平位移x1,滑块A沿水平桌面滑行距离为x2(未滑出桌面).为验证动量守恒定律,写出还需测量的物理量及表示它们的字母:桌面离地高度h; 如果动量守恒,需要满足的关系式为:Mx1 1 2h =m2μx2 三、弹性碰撞和非弹性碰撞(I)(只限于一维碰撞的问题) (1)完全非弹性碰撞:获得共同速度,动能损失最多动量守恒; (2)弹性碰撞:动量守恒,碰撞前后动能相等;动量守恒; 特例:对于一维弹性碰撞,若两个物体质量相等,则碰撞后两个物体互换速度(即碰后A 的速度等于碰前B的速度,碰后B的速度等于碰前A的速度) (3)一般碰撞:有完整的压缩阶段,只有部分恢复阶段,动量守恒,动能减小。 第十七章:波粒二象性 一、普朗克能量子假说、黑体和黑体辐射(I) 1、黑体:如果某种物体能够完全吸收入射的各种波长的电磁波而不发生反射,这种物体就是绝对黑体,简称黑体.

物理选修35知识点总结

知识点梳理高中物理选修3-5动量守恒定律一、动量 kg ms mvP.。单位是1、动量:动量是矢量,其方向就是瞬时速度的方向。因为速度是相对的,所以动量也是相对的。= I Ft 冲量:冲量是矢量,在作用时间内力的方向不变时,冲量的方向与力的方向相同;如果力的方向是变化的,则冲量的方向与相应时间内物体动量变化量的方向相同。若力为同一方向均 匀变化的力,该力的冲量可以用平均力计算;若力为一般变力,则不能直接计算冲量。同一方向 上动量的变化量=这一方向上各力的冲量和。 1mv mv P P动量定理:otot 动量与力的关系:物体动量的变化率等于它所受的力。 2、动量守恒定律:当系统不受外力作用或所受合外力为零,则系统的总动量守恒。(适用于目前 物理学研究的一切领域。)_____ _ __ _____ _ _________ _____ __________ 动量守恒定律成立的条件:①系统不受外力作用。②系统虽受到了外力的作用,但所受合外 力为零。③系统所受的外力远远小于系统内各物体间的内力时,系统的总动量近似守恒(碰撞,击打,爆炸,反冲)。④系统所受的合外力不为零,但在某一方向上合外力为零,则系统在该方向上动量守恒。⑤系统受外力,但在某一方向上内力远大于外力,也可认为在这一方向上系统的 动量守恒。 常见类型:①由弹簧组成的系统,在物体间发生相互作用的过程中,当弹簧被压缩到最短或拉伸到最长时,弹簧两端的两个物体的速度必然相等。②在物体滑上斜面(斜面放在光滑水平面 上)的过程中,由于物体间弹力的作用,斜面在水平方向上将做加速运动,物体滑到斜面上最高点的临界条件是物体与斜面沿水平方向具有共同的速度,物体到达斜面顶端时,在竖直方向上的 分速度等于零。③子弹刚好击穿木块的临界条件为子弹穿出时的速度与木块的速度相同,子弹位 移为木块位移与木块厚度之和。 二、验证动量守恒定律(实验、探究)I 【注意事项】 1?“水平”和“正碰”是操作中应尽量予以满足的前提条件. 2.入射球的质量应大于被碰球的质量. 3?入射球每次都必须从斜槽上同一位置由静止开始滚下?方法是在斜槽上的适当高度处固定一档板,小球靠着档板后放手释放小球. 4.若利用气垫导轨进行实验,调整气垫导轨时注意利用水平仪器确保导轨水平。 【误差分析】 误差来源于实验操作中,两个小球没有达到水平正碰,一是斜槽不够水平,二是两球球心不在同 一水平面上,给实验带来误差.每次静止释放入射小球的释放点越高,两球相碰时作用力就越大, 动量守恒的误差就越小?应进行多次碰撞,落点取平均位置来确定,以减小偶然误差. 三、碰撞与爆炸 1.碰撞的特点:①相互作用的时间极短,可忽略不计。②系统的内力远大于外力,外力可忽略③速度发生突变,物体发生的位移极小,可认为碰撞前后物体处于同一位置。 2.爆炸的特点:作用时间短,内力非常大,机械能增加,动能会增加。 3.碰撞中遵循的规律:动量守恒,动能不增加。 4.一维碰撞:两个物体碰撞前后斗艳同一直线运动,这种碰撞叫做一维碰撞。

高中物理选修3-4知识点总结及讲义

高中物理选修3-4知识及讲义目录: 一、简谐运动 二、机械波 三、电磁波电磁波的传播 四、电磁振荡电磁波的发射和接收 五、振动和波(机械振动与机械振动的传播) 一.简谐运动 1、机械振动: 物体(或物体的一部分)在某一中心位置两侧来回做往复运动,叫做机械振动。机械振动产生的条件是:(1)回复力不为零。(2)阻力很小。使振动物体回到平衡位置的力叫做回复力,回复力属于效果力,在具体问题中要注意分析什么力提供了回复力。 2、简谐振动: 在机械振动中最简单的一种理想化的振动。对简谐振动可以从两个方面进行定义或理解: (1)物体在跟位移大小成正比,并且总是指向平衡位置的回复力作用下的振动,叫做简谐振动。 (2)物体的振动参量,随时间按正弦或余弦规律变化的振动,叫做简谐振动,在高中物理教材中是以弹簧振子和单摆这两个特例来认识和掌握简谐振动规律的。 3、描述振动的物理量 描述振动的物理量,研究振动除了要用到位移、速度、加速度、动能、势能等物理量以外,为适应振动特点还要引入一些新的物理量。 (1)位移x:由平衡位置指向振动质点所在位置的有向线段叫做位移。位移是矢量,其最大值等于振幅。 (2)振幅A:做机械振动的物体离开平衡位置的最大距离叫做振幅,振幅是标量,表示振动的强弱。振幅越大表示振动的机械能越大,做简揩振动物体的振幅大小不影响简揩振动的周期和频率。 (3)周期T:振动物体完成一次余振动所经历的时间叫做周期。所谓全振动是指物体从某一位置开始计时,物体第一次以相同的速度方向回到初始位置,叫做完成了一次全振动。 (4)频率f:振动物体单位时间内完成全振动的次数。 (5)角频率:角频率也叫角速度,即圆周运动物体单位时间转过的弧度数。引入这个参量来描述振动的原因是人们在研究质点做匀速圆周运动的射影的运动规律时,发现质点射影做的是简谐振动。因此处理复杂的简谐振动问题时,可以将其转化为匀速圆周运动的射影进行处理,这种方法高考大纲不要求掌握。 周期、频率、角频率的关系是:。 (6)相位:表示振动步调的物理量。现行中学教材中只要求知道同相和反相两种情况。 4、研究简谐振动规律的几个思路:

相关文档
相关文档 最新文档