文档库 最新最全的文档下载
当前位置:文档库 › 压力管道强度校核计算表

压力管道强度校核计算表

压力管道强度校核计算表
压力管道强度校核计算表

魂度计算哲DATA SHEET OF STRENGTH 工程名称:

项目号:

版次:

设计单位:

项目负责:

设计:

校核:

审核:

工业及热力管道壁厚计算书

1直管壁厚校核

1.1计算公式:

根据《工业金属管道设计规范》(GB50316-2000

) 6.2中规定,

当直管计算厚度t s 小于管子外径D o 的1/6时,承受内压直管的计算 厚度不应小于式(1 )计算的值。设计厚度t sd 应按式(2)计算

式中t s —直管计算厚度(mm );

P —设计压力(MPa );

D o —管子外径(mm );

一在设计温度下材料的许用应力(MPa );

E j —焊接接头系数; t sd —直管设计厚度(mm );

C —厚度附加量之和(mm );

C 1 —厚度减薄附加量(mm ) C 2 —腐蚀或腐蚀附加量(mm )

丫 一计算系数

t s

PD o 2 t

E j PY

t sd t s C

C

1

C

2

(1) (2) (3)

设计压力P:

P=2 dd (D-2tY )

Y二0.4--0Cr18Ni9

式中设计温度为常温,一般取50 C, t根据《工业金属管道设计规范》(GB50316-2000 )附录A金属管道材料的许用应力表 A.0.1 进行选取,故20# 为130MPa,0Cr18Ni9 为128.375 MPa。

E j取值是根据《压力管道规范-工业管道第2部分:材料》

(GB/T20801.2-2006 )表 A.3,故20# 和0Cr18Ni9 的取值都为1。

丫根据《工业金属管道设计规范》(GB50316-2000 )表6.2.1

进行选取,故20#和0Cr18Ni9 的取值都为0.4。

1.2常用低压管道计算厚度

1.3常用高压管道计算厚度

1.4厚度附加量

(1).C i厚度减薄附加量(mm ),取钢管允许厚度负偏差。根据

《流体输送用不锈钢无缝钢管》(GB/T14976-2002 )规

疋:

热轧(挤、扩)钢管壁厚v 15mm 时,普通级允许厚度负偏差

(12.5% 5)

高级允许厚度负偏差(12.5% 5)

热轧(挤、扩)钢管壁厚》15mm时,普通级允许厚度负偏差(15% 5)

高级允许厚度负偏差(12.5% 5;冷拔(轧)钢管壁厚w 3mm时,普通级允许厚度负偏差(14% 5)高级允许厚度负偏差(10% 5); 冷拔(轧)钢管壁厚〉3mm时,普通级允许厚度负偏差(10% 5)高级允许厚度负偏差(10% 5> 根据《输送流体用无缝钢管》(GB/T8163-2008 )规定:

热轧(挤压、扩)钢管外径w 102mm 时,允许厚度负偏差(12.5% 5 或0.40 中较大值);

热轧(挤压)钢管外径〉102mm时,当壁厚和外径的比值

< 0.05时,允许厚度负偏差(15% 3或0.40中较大值)

>0.05?0.10时,允许厚度负偏差(12.5% 3或0.40中较大值)

>0.10 时,允许厚度负偏差(10% 3);

冷拔(轧)钢管壁厚w 3mm时,允许厚度负偏差(10% 3或0.15 中较大值);

冷拔(轧)钢管壁厚> 3mm 时,允许厚度负偏差(10%3)。

综上所述,考虑到CNG 站用钢管基本上为冷拔(轧)钢管,故厚度负偏差应按照上面规定根据钢管材质选择。

(2).C2腐蚀附加量(mm ), 20#钢管的腐蚀裕量参照《钢制对焊管

件规范》(SY/T0510-1998 )取1.5mm , 0Cr18Ni9 钢管的腐蚀附加量一般为0mm 。

1.5常用管道的设计厚度

设计压力 钢管外径

钢管规格

公称壁厚

管道材质 许用应力

(50 C 情况

下)

焊接接 头系数 计算 系数 计算厚 度 厚度负 偏差

腐蚀裕

量 设计厚 度

P(MPa) D o (mm)

8 (mm)

[刃 t (MPa)

E j Y t s (mm) G(mm) C 2(mm) t sd (mm) 1.6 57 57X4 4 20# 130 1 0.4 0.35 0.40 1.50 2.25 1.6 57 57X5 5 20# 130 1 0.4 0.35 0.50 1.50 2.35 1.6 89 89X5 5 20# 130 1 0.4 0.55 0.50 1.50 2.55 1.6 108 108X4.5 4.5 20# 130 1 0.4 0.66 0.45 1.50 2.61 1.6 108 108X5 5 20# 130 1 0.4 0.66 0.50 1.50 2.66 1.6 159 159X5 5 20# 130 1 0.4 0.97 0.50 1.50 2.97 1.6 159 159X6 6 20# 130 1 0.4 0.97 0.60 1.50 3.07 27.5 10 10X2 2 0Cr18Ni9 128.375 1 0.4 0.99 0.28 0.00 1.27 27.5 12 12X2 2 0Cr18Ni9 128.375 1 0.4 1.18 0.28 0.00 1.46 27.5 22 22X3.5 3.5 0Cr18Ni9 128.375 1 0.4 2.17 0.35 0.00 2.52 27.5 22 22X4 4 0Cr18Ni9 128.375 1 0.4 2.17 0.40 0.00 2.57 27.5 25 25X4 4 0Cr18Ni9

128.375 1 0.4 2.47 0.40 0.00 2.87 27.5

32

32X5

5

「0Cr18Ni9

128.375

1

0.4

3.16

0.50

0.00

3.66

钢管的公称壁厚大于设计壁厚,故所选钢管的壁厚符合要求

2弯管壁厚校核

2.1计算公式

(GB/T20801.3-2006 )6.2 规定:

内压弯管的计算厚度(位于 2处,最危险处)应按式(4 )计

算:

当计算弯管的内侧厚度时:

4 R D o 1 I —

4 R D o 2

当计算弯管的外侧厚度时:

4 R D o 1

根据《压力管道规范 -工业管道 第3部分:设计和计算

(5)

(6)

t

w

压力管道的强度计算教案

压力管道的强度计算 1.承受内压管子的强度分析按照应力分类,管道承受压力载荷产生的应力,属于一次薄膜应力。该应力超过某一限度,将使管道整体变形直至破坏。 承受内压的管子,管壁上任一点的应力状态可以用3个互相垂直的主应力来表示,它们是:沿管壁圆周切线方向的环向应力σθ,平行于管道轴线方向的轴向应力σz,沿管壁直径方向的径向应力σr,如图2.1,设P为管内介质压力,D n为管子内径,S为管子壁厚。则3个主应力的平均应力表达式为 管壁上的3个主应力服从下列关系式: σθ>σz>σr 根据最大剪应力强度理论,材料的破坏由最大剪应力引起,当量应力为最大主应力与最小主应力之差,故强度条件为 σe=σθ-σr≤[σ] 将管壁的应力表达式代入上式,可得理论壁厚公式 图2.1 承受内压管壁的应力状态 工程上,管子尺寸多由外径D w表示,因此又得昂一个理论壁厚公式 2.管子壁厚计算

承受内压管子理论壁厚公式,按管子外径确定时为 按管子内径确定时为 式中: S l——管子理论壁厚,mm; P——管子的设计压力,MPa; D w——管子外径,mm; D n——管子内径,mm; φ——焊缝系数; [σ]t——管子材料在设计温度下的基本许用应力,MPa。 管子理论壁厚,仅是按照强度条件确定的承受内压所需的最小管子壁厚。它只考虑了内压这个基本载荷,而没有考虑管子由于制造工艺等方面造成其强度削弱的因素,因此它只反映管道正常部位强度没有削弱时的情况。作为工程上使用的管道壁厚计算公式,还需考虑强度削弱因素。因此,工程上采用的管子壁厚计算公式为 S j=S l+C (2-3) 式中:S j——管子计算壁厚,mm; C——管子壁厚附加值,mm。 (1)焊缝系数(φ) 焊缝系数φ,是考虑了确定基本许用应力安全系数时未能考虑到的因素。焊缝系数与管子的结构、焊接工艺、焊缝的检验方法等有关。 根据我国管子制造的现实情况,焊缝系数按下列规定选取:[1] 对无缝钢管,φ=1.0;对单面焊接的螺旋线钢管,φ=0.6;对于纵缝焊接钢管,参照《钢制压力容器》的有关标准选取: ①双面焊的全焊透对接焊缝: 100%无损检测φ=1.0; 局部无损检测φ=0.S5。 ②单面焊的对接焊缝,沿焊缝根部全长具有垫板: 100%无损检测φ=0.9; 局部无损检测φ=0.8; (2)壁厚附加量(C)

轴的强度校核方法

第二章 轴的强度校核方法 2.2常用的轴的强度校核计算方法 进行轴的强度校核计算时,应根据轴的具体受载及应力情况,采取相应的计算方法,并恰当地选取其许用应力。 对于传动轴应按扭转强度条件计算。 对于心轴应按弯曲强度条件计算。 对于转轴应按弯扭合成强度条件计算。 2.2.1按扭转强度条件计算: 这种方法是根据轴所受的扭矩来计算轴的强度,对于轴上还作用较小的弯矩时,通常采用降低许用扭转切应力的办法予以考虑。通常在做轴的结构设计时,常采用这种方法估算轴径。 实心轴的扭转强度条件为: 由上式可得轴的直径为 为扭转切应力,MPa 式中: T 为轴多受的扭矩,N ·mm T W 为轴的抗扭截面系数,3mm n 为轴的转速,r/min P 为轴传递的功率,KW d 为计算截面处轴的直径,mm 为许用扭转切应力,Mpa ,][r τ值按轴的不同材料选取,常用轴的材料及][r τ值见下表: T τn P A d 0 ≥[]T T T d n P W T ττ≤2.09550000≈3 =[]T τ

空心轴扭转强度条件为: d d 1 = β其中β即空心轴的径1d 与外径d 之比,通常取β=0.5-0.6 这样求出的直径只能作为承受扭矩作用的轴段的最小直径。例如,在设计一级圆柱齿轮减速器时,假设高速轴输入功率P1=2.475kw ,输入转速n1=960r/min ,则可根据上式进行最小直径估算,若最小直径轴段开有键槽,还要考虑键槽对轴的强度影响。 根据工作条件,选择45#钢,正火,硬度HB170-217,作为轴的材料,A0值查表取A0=112,则 mm n P A d 36.15960 475 .2112110 min =?== 因为高速轴最小直径处安装联轴器,并通过联轴器与电动机相连接,设有一个键槽,则: mm d d 43.16%)71(36.15%)71(min ' min =+?=+= 另外,实际中,由于减速器输入轴通过联轴器与电动机轴相联结,则外伸段轴径与电动机轴径不能相差太大,否则难以选择合适的联轴器,取电动机轴d d 8.0'min =,查表,取mm d 38=电动机轴,则: mm d d 4.3038*8.08.0' min ===电动机轴 综合考虑,可取mm d 32'min = 通过上面的例子,可以看出,在实际运用中,需要考虑多方面实际因素选择轴的直径大小。 2.2.2按弯曲强度条件计算: 由于考虑启动、停车等影响,弯矩在轴截面上锁引起的应力可视为脉动循环变应力。 则 其中: M 为轴所受的弯矩,N ·mm ][7.1][≤1-0σσσ== W M ca

压力管道强度校计算表

DATA SHEET OF STRENGTH 工程名称: 项目号: 版次: 设计单位: 项目负责: 设计: 校核: 审核:

工业及热力管道壁厚计算书 1直管壁厚校核 1.1计算公式: 根据《工业金属管道设计规范》(GB50316-2000)6.2中规定,当直管计算厚度t s 小于管子外径D o 的1/6时,承受内压直管的计算厚度不应小于式(1)计算的值。设计厚度t sd 应按式(2)计算。 []( ) PY E PD t j t o s += σ2 (1) C t t s sd += (2) 21C C C += (3) 式中 s t —直管计算厚度(mm ); P —设计压力(MPa ) ; o D —管子外径(mm ); []t σ—在设计温度下材料的许用应力(MPa ); j E —焊接接头系数; sd t —直管设计厚度(mm ); C —厚度附加量之和(mm ) ; 1C —厚度减薄附加量(mm ) 2C —腐蚀或腐蚀附加量(mm ) Y —计算系数

式中设计温度为常温,一般取50℃,[]tσ根据《工业金属管道设 计规范》(GB50316-2000)附录A金属管道材料的许用应力表A.0.1 进行选取,故20#为130MPa,0Cr18Ni9为128.375 MPa。 E取值是根据《压力管道规范-工业管道第2部分:材料》j (GB/T20801.2-2006)表A.3,故20#和0Cr18Ni9的取值都为1。 Y根据《工业金属管道设计规范》(GB50316-2000)表6.2.1进行选取,故20#和0Cr18Ni9的取值都为0.4。 1.2常用低压管道计算厚度 1.3常用高压管道计算厚度

传动轴设计及校核作业指导书

传动轴设计及校核作业指导书 编制:日期: 审核:日期: 批准:日期: 发布日期:年 月 日 实施日期:年 月 日

前言 为使本中心传动轴设计及校核规范化,参考国内外汽车设计的技术规范,结合公司标准和已开发车型的经验,编制本作业指导书。意在对本公司设计人员在设计过程中起到指导操作的作用,提高设计的效率和成效。本作业指导书将在本中心所有车型开发设计中贯彻,并在实践中进一步提高完善。 本标准于2011年XX月XX日起实施。 本标准由上海同捷科技股份有限公司第五研发中心底盘总布置分院提出。 本标准由上海同捷科技股份有限公司第五研发中心底盘总布置分院负责归口管理。 本标准主要起草人:张士华

一、传动系概述 (3) 1.1传动系功能 (3) 1.2传动系布置形式 (3) 1.3传动系的构成 (7) 1.4传动轴的主要结构形式 (8) 1.5驱动半轴的紧固方式 (12) 二、传动轴的设计流程 (15) 2.1传动轴的主要设计流程 (15) 2.2传动轴的设计过程及要求 (17) 三.传动轴的校核过程 (22) 3.1设计校核输入 (22) 3.2传动轴校核 (24) 3.3结论及分析 (25) 3.4传动轴跳动校核 (26) 3.5技术文件的编制 (26) 3.6传动轴图纸确认 (26) 四.试制装车及生产中经常出现的问题 (28) 五.参考文献 (28)

一、传动系概述 1.1 传动系功能 A、保证汽车在各种行驶条件下所必需的牵引力与车速,使它们之间能协调变化 并有足够的变化范围。 B、使汽车具有良好的动力性和燃油经济性。 C、保证汽车能倒车及左右车轮能适应差速要求。 D、使动力传递能根据需要而顺利接合与分离 1.2 传动系的布置形式 ? 前置后驱动 ? 前置前驱动 ? 后置后驱动 ? 四轮驱动 ? 中置发动机后轮驱动 部分高级轿车也采用前置后驱布置 前置后驱整体桥

轴的强度校核方法

第二章 轴的强度校核方法 常用的轴的强度校核计算方法 进行轴的强度校核计算时,应根据轴的具体受载及应力情况,采取相应的计算方法,并恰当地选取其许用应力。 对于传动轴应按扭转强度条件计算。 对于心轴应按弯曲强度条件计算。 对于转轴应按弯扭合成强度条件计算。 2.2.1按扭转强度条件计算: 这种方法是根据轴所受的扭矩来计算轴的强度,对于轴上还作用较小的弯矩时,通常采用降低许用扭转切应力的办法予以考虑。通常在做轴的结构设计时,常采用这种方法估算轴径。 实心轴的扭转强度条件为: 由上式可得轴的直径为 为扭转切应力,MPa 式中: T 为轴多受的扭矩,N ·mm T W 为轴的抗扭截面系数,3mm n 为轴的转速,r/min P 为轴传递的功率,KW d 为计算截面处轴的直径,mm 为许用扭转切应力,Mpa ,][r τ值按轴的不同材料选取,常用轴的材料及] [r τ值见下表: 表1 轴的材料和许用扭转切应力 空心轴扭转强度条件为: d d 1 = β其中β即空心轴的内径1d 与外径d 之比,通常取β=这样求出的直径只能作为承受扭矩作用的轴段的最小直径。例如,在设计一级圆柱齿轮减速器时,假设高速轴输入功率P1=,输入转速n1=960r/min ,则可根据上式进行最小直径估算,若最小直径轴段开有键槽,还要考虑键槽对轴的强度影响。 T τ[]T τ

根据工作条件,选择45#钢,正火,硬度HB170-217,作为轴的材料,A0值查表取A0=112,则 因为高速轴最小直径处安装联轴器,并通过联轴器与电动机相连接,设有一个键槽,则: 另外,实际中,由于减速器输入轴通过联轴器与电动机轴相联结,则外伸段轴径与电动机轴径不能相差太大,否则难以选择合适的联轴器,取电动机轴d d 8.0'min =,查表,取mm d 38=电动机轴,则: 综合考虑,可取mm d 32'min = 通过上面的例子,可以看出,在实际运用中,需要考虑多方面实际因素选择轴的直径大小。 2.2.2按弯曲强度条件计算: 由于考虑启动、停车等影响,弯矩在轴截面上锁引起的应力可视为脉动循环变应力。 则 其中: M 为轴所受的弯矩,N ·mm W 为危险截面抗扭截面系数(3mm )具体数值查机械设计手册~17. ][1σ为脉动循环应力时许用弯曲应力(MPa)具体数值查机械设计手册 2.2.3按弯扭合成强度条件计算 由于前期轴的设计过程中,轴的主要结构尺寸轴上零件位置及外载荷和支反力的作用位置均已经确定,则轴上载荷可以求得,因而可按弯扭合成强度条件对轴进行强度校核计算。 一般计算步骤如下: (1)做出轴的计算简图:即力学模型 通常把轴当做置于铰链支座上的梁,支反力的作用点与轴承的类型及布置方式有关,现在例举如下几种情况: 图1 轴承的布置方式 当L e d L 5.0,1≤/=,d e d L 5.0,1/=>但不小于(~)L ,对于调心轴承e=0.5L 在此没有列出的轴承可以查阅机械设计手册得到。通过轴的主要结构尺寸轴上零件位置及外载荷和支反力的作用位置,计算出轴上各处的载荷。通过力的分解求出各个分力,完成轴的受力分析。 ][7.1][≤1-0σσσ== W M ca

轴的强度校核方法

第二章 轴的强度校核方法 常用的轴的强度校核计算方法 进行轴的强度校核计算时,应根据轴的具体受载及应力情况,采取相应的计算方法,并恰当地选取其许用应力。 对于传动轴应按扭转强度条件计算。 对于心轴应按弯曲强度条件计算。 对于转轴应按弯扭合成强度条件计算。 2.2.1按扭转强度条件计算: 这种方法是根据轴所受的扭矩来计算轴的强度,对于轴上还作用较小的弯矩时,通常采用降低许用扭转切应力的办法予以考虑。通常在做轴的结构设计时,常采用这种方法估算轴径。 实心轴的扭转强度条件为: 由上式可得轴的直径为 为扭转切应力,MPa 式中: T 为轴多受的扭矩,N ·mm T W 为轴的抗扭截面系数,3mm n 为轴的转速,r/min P 为轴传递的功率,KW d 为计算截面处轴的直径,mm 为许用扭转切应力,Mpa ,][r τ值按轴的不同材料选取,常用轴的材料及][r τ值见下表: T τn P A d 0≥[]T T T d n P W T ττ≤2.09550000≈3=[]T τ

空心轴扭转强度条件为: d d 1=β其中β即空心轴的内径1d 与外径d 之比,通常取β=这样求出的直径只能作为承受扭矩作用的轴段的最小直径。例如,在设计一级圆柱齿轮减速器时,假设高速轴输入功率P1=,输入转速n1=960r/min ,则可根据上式进行最小直径估算,若最小直径轴段开有键槽,还要考虑键槽对轴的强度影响。 根据工作条件,选择45#钢,正火,硬度HB170-217,作为轴的材料,A0值查表取A0=112,则 mm n P A d 36.15960 475.2112110min =?== 因为高速轴最小直径处安装联轴器,并通过联轴器与电动机相连接,设有一个键槽,则: mm d d 43.16%)71(36.15%)71(min ' min =+?=+= 另外,实际中,由于减速器输入轴通过联轴器与电动机轴相联结,则外伸段轴径与电动机轴径不能相差太大,否则难以选择合适的联轴器,取电动机轴d d 8.0'min =,查表,取mm d 38=电动机轴,则: mm d d 4.3038*8.08.0' min ===电动机轴 综合考虑,可取mm d 32'min = 通过上面的例子,可以看出,在实际运用中,需要考虑多方面实际因素选择轴的直径大小。 2.2.2按弯曲强度条件计算: 由于考虑启动、停车等影响,弯矩在轴截面上锁引起的应力可视为脉动循环变应力。 则 其中: M 为轴所受的弯矩,N ·mm W 为危险截面抗扭截面系数(3mm )具体数值查机械设计手册][7.1][≤1-0σσσ==W M ca

轴的强度校核方法

第二章 轴的强度校核方法 2.2常用的轴的强度校核计算方法 进行轴的强度校核计算时,应根据轴的具体受载及应力情况,采取相应的计算方法,并恰当地选取其许用应力。 对于传动轴应按扭转强度条件计算。 对于心轴应按弯曲强度条件计算。 对于转轴应按弯扭合成强度条件计算。 2.2.1按扭转强度条件计算: 这种方法是根据轴所受的扭矩来计算轴的强度,对于轴上还作用较小的弯矩时,通常采用降低许用扭转切应力的办法予以考虑。通常在做轴的结构设计时,常采用这种方法估算轴径。 实心轴的扭转强度条件为: 由上式可得轴的直径为 为扭转切应力,MPa 式中: T 为轴多受的扭矩,N ·mm T W 为轴的抗扭截面系数,3m m n 为轴的转速,r/min P 为轴传递的功率,KW d 为计算截面处轴的直径,mm 为许用扭转切应力,Mpa ,][r τ值按轴的不同材料选取,常用轴的材料及][r τ值见下表: T τn P A d 0 ≥[]T T T d n P W T ττ≤2.09550000≈3=[]T τ

空心轴扭转强度条件为: d d 1 = β其中β即空心轴的内径1d 与外径d 之比,通常取β=0.5-0.6 这样求出的直径只能作为承受扭矩作用的轴段的最小直径。例如,在设计一级圆柱齿轮减速器时,假设高速轴输入功率P1=2.475kw ,输入转速n1=960r/min ,则可根据上式进行最小直径估算,若最小直径轴段开有键槽,还要考虑键槽对轴的强度影响。 根据工作条件,选择45#钢,正火,硬度HB170-217,作为轴的材料,A0值查表取A0=112,则 mm n P A d 36.15960 475 .2112110 min =?== 因为高速轴最小直径处安装联轴器,并通过联轴器与电动机相连接,设有一个键槽,则: mm d d 43.16%)71(36.15%)71(min ' min =+?=+= 另外,实际中,由于减速器输入轴通过联轴器与电动机轴相联结,则外伸段轴径与电动机轴径不能相差太大,否则难以选择合适的联轴器,取电动机轴d d 8.0'min =,查表,取mm d 38=电动机轴,则: mm d d 4.3038*8.08.0' min ===电动机轴 综合考虑,可取mm d 32'min = 通过上面的例子,可以看出,在实际运用中,需要考虑多方面实际因素选择轴的直径大小。 2.2.2按弯曲强度条件计算: 由于考虑启动、停车等影响,弯矩在轴截面上锁引起的应力可视为脉动循环变应力。 则 其中: M 为轴所受的弯矩,N ·mm ][7.1][≤1-0σσσ== W M ca

2021年压力管道强度校核计算表

DATA SHEET OFSTRENGTH 欧阳光明(2021.03.07) 工程名称: 项目号: 版次: 设计单位: 项目负责: 设计: 校核: 审核:

工业及热力管道壁厚计算书 1直管壁厚校核 1.1计算公式: 根据《工业金属管道设计规范》(GB50316-2000)6.2中规定,当直管计算厚度t s 小于管子外径D o 的1/6时,承受内压直管的计算厚度不应小于式(1)计算的值。设计厚度t sd 应按式(2)计算。 []( )PY E PD t j t o s += σ2 (1) C t t s sd += (2) 21C C C += (3) 式中 s t —直管计算厚度(mm ); P —设计压力(MPa ); o D —管子外径(mm ); []t σ—在设计温度下材料的许用应力(MPa ); j E —焊接接头系数; sd t —直管设计厚度(mm ); C —厚度附加量之和(mm ); 1C —厚度减薄附加量(mm ) 2C —腐蚀或腐蚀附加量(mm ) Y —计算系数 设计压力P : P=2σt/(D-2tY )

Y=0.4--0Cr18Ni9 式中设计温度为常温,一般取50℃,[]tσ根据《工业金属管道设计规范》(GB50316-2000)附录A金属管道材料的许用应力表A.0.1进行选取,故20#为130MPa,0Cr18Ni9为128.375 MPa。 E取值是根据《压力管道规范-工业管道第2部分:材料》j (GB/T20801.2-2006)表A.3,故20#和0Cr18Ni9的取值都为1。 Y根据《工业金属管道设计规范》(GB50316-2000)表6.2.1进行选取,故20#和0Cr18Ni9的取值都为0.4。 1.2常用低压管道计算厚度 1.3常用高压管道计算厚度

压力管道的强度试验压力计算

压力管道的强度试验压力计算 摘要:在当今的工业生产过程中,压力管道是非常重要的生产设备,对工业生产的安全性、生产质量以及生产效率均有非常深远的影响。在本文中,以工业生产压力管道的选用实例作为分析基础,对压力管道的强度通过试验压力的方式进行了计算,了解了在选择压力管道的时候应该注意的要点,通过量化的手段,让我国工业生产中的压力管道在选择上更为合适,提高压力管道的工作质量。 关键字:压力管道强度试验压力计算 受到压力管道在工业生产过程中具有关键性地位的影响,在当今进行压力管道的安装是,通常会进行管道强度的试验,来对压力管道是否合格进行较为准确的量化判断。特别是在一些大型工业的压力管道施工过程中,基本上设计单位并不会直接给出强度试验中的压力大小,而需要施工单位进行自主计算。通过对强度试验的准确计算,才能够更好地保证压力管道的质量。本文为了更为直观地进行压力管道的强度试验压力计算,选取了我国某石化企业中压力管道施工过程中的强度试验进行分析,展开了相关的计算方法以及压力管道在选用与安装过程中的注意要点。 一、工程概况 该项压力管道工程位于我国东北某石油化工企业,压力管道系统是整个企业生产设备施工中非常重要的一部分,可维持整个石化生产过程的进行。而在施工之前,为了确保压力管道的施工质量,需要在对强度试验的压力进行计算,以便于最终确定合适的压力管道施工方案。压力计算所得到的结果,将提交该石化企业、施工监理方以及当地的相关技术质量监督部门进行审核确认,之后再开始正式的施工工作。由于对管道的压力计算过程较为繁琐,因此需要将其列出来作为管道施工的一部分,进行单独的考虑,提高压力管道的结构稳定性。已知的数据包括了化工生产的一些常规设计指标,比如说管道系统的设计温度为300℃左右,设计管道工作压力大小为9.5MPa左右,压力管道所提供的材料为20G的材质,管道的公称压力为16MPa。通过这几项基本条件,可以开始压力管道强度试验的压力计算。 二、压力管道强度试验压力计算内容 在得到了压力管道工程的施工背景以及施工目标之后,为了提高施工效率以及保证施工质量,在施工之前即需进行强度试验。在强度试验中,对压力的计算成为了非常重要的一项工作,直接关系到管道的正常工作运行。为了保证管道的强度试验压力计算的准确性,需要根据实际情况,考虑到多方面的因素。 1.压力计算中可能使用到的设计参数 3.计算结果

轴的强度校核例题及方法

1.2 轴类零件的分类 根据承受载荷的不同分为: 1)转轴:定义:既能承受弯矩又承受扭矩的轴 2)心轴:定义:只承受弯矩而不承受扭矩的轴 3)传送轴:定义:只承受扭矩而不承受弯矩的轴 4)根据轴的外形,可以将直轴分为光轴和阶梯轴; 5)根据轴内部状况,又可以将直轴分为实心轴和空。 1.3轴类零件的设计要求 ⑴轴的工作能力设计。 主要进行轴的强度设计、刚度设计,对于转速较高的轴还要进行振动稳定性的计算。 ⑵轴的结构设计。 根据轴的功能,轴必须保证轴上零件的安装固定和保证轴系在机器中的支撑要求,同时应具有良好的工艺性。 一般的设计步骤为:选择材料,初估轴径,结构设计,强度校核,必要时要进行刚度校核和稳定性计算。 轴是主要的支承件,常采用机械性能较好的材料。常用材料包括: 碳素钢:该类材料对应力集中的敏感性较小,价格较低,是轴类零件最常用的材料。 常用牌号有:30、35、40、45、50。采用优质碳素钢时应进行热处理以改善其性能。受力较小或不重要的轴,也可以选用Q235、Q255等普通碳钢。 45钢价格相对比较便宜,经过调质(或正火)后,可得到较好的切削性能,而且能获得较高的强度和韧性等综合机械性能,淬火后表面硬度可达45-52HRC,是轴类零件的常用材料。 合金钢具有更好的机械性能和热处理性能,可以适用于要求重载、高温、结构尺寸小、重量轻等使用场合的轴,但对应力集中较敏感,价格也较高。设计中尤其要注意从结构上减小应力集中,并提高其表面质量。40Cr等合金结构钢适用于中等精度而转速较高的轴类零件,这类钢经调质和淬火后,具有较好的综合机械性能。 轴承钢GCr15和弹簧钢65Mn,经调质和表面高频淬火后,表面硬度可达50-58HRC,并具有较高的耐疲劳性能和较好的耐磨性能,可制造较高精度的轴。 精密机床的主轴(例如磨床砂轮轴、坐标镗床主轴)可选用38CrMoAIA氮化

压力管道强度校核计算表

魂度计算的DATA SHEET OF STRENGTH 工程名称: 项目号: 版次: 设计单位: 项目负责: 设计: 校核: 审核:

工业及热力管道壁厚计算书 1直管壁厚校核 1.1计算公式: 根据《工业金属管道设计规范》(GB50316-2000) 6.2中规定, 当直管计算厚度t s 小于管子外径D o 的1/6时,承受内压直管的计算 厚度不应小于式(1)计算的值。设计厚度t sd 应按式(2)计算。 C =6 - C 2 (3 ) 式中t s —直管计算厚度(mm ); P —设计压力(MPa ); D o —管子外径(mm ); 在设计温度下材料的许用应力(MPa ); E j —焊接接头系数; t sd —直管设计厚度(mm ); C —厚度附加量之和(mm ); 6—厚度减薄附加量(mm ) sd PD o 2 I j E j - PY (1) (2)

C2 —腐蚀或腐蚀附加量(mm) Y—计算系数 设计压力P: P=2° t/ (D-2tY ) Y二0.4--0Cr18Ni9 式中设计温度为常温,一般取50C, 4 I根据《工业金属管道设计规范》(GB50316-2000)附录A金属管道材料的许用应力表 A.0.1 进行选取,故20#为130MPa, 0Cr18Ni9 为128.375 MPa。 E j取值是根据《压力管道规范-工业管道第2部分:材料》 (GB/T20801.2-2006)表 A.3,故20#和0Cr18Ni9 的取值都为1。 Y根据《工业金属管道设计规范》(GB50316-2000)表6.2.1进行选取,故20#和0Cr18Ni9的取值都为0.4。 1.2常用低压管道计算厚度

轴的强度计算与设计A

§11—4-1 轴的强度计算 一、按扭转强度条件计算 适用:①用于只受扭矩或主要承受扭矩的传动轴的强度计算; ②结构设计前按扭矩初估轴的直径d min 强度条 : Mpa (11-1) 件 设计公式:mm (11-2) 轴上有键槽需要按一定比例修正:一个键槽轴径加大3~5%;二个键槽轴径加大7~11%。 ——许用扭转剪应力(N/mm2) C——轴的材料系数,与轴的材料和载荷情况有关。 对于空心轴:(mm)(11-3) ,d1—空心轴的内径(mm) 二、按弯扭合成强度条件计算: 条件:已知支点、扭距,弯距可求时 步骤: 1、作轴的空间受力简图(将分布力看成集中力,)轴的支承看成简支梁,支点作用于轴承中点,将力分解为水平分力和垂直分力; 2、求水平面支反力R H1、R H2作水平内弯矩图; 3、求垂直平面内支反力R V1、R V2,作垂直平面内的弯矩图; 4、作合成弯矩图;

5、作扭矩图; 6、作当量弯矩图; ——为将扭矩折算为等效弯矩的折算系数。 ∵弯矩引起的弯曲应力为对称循环的变应力,而扭矩所产生的扭转剪应力往往为非对称循环变应力 ∴与扭矩变化情况有关: ——扭矩对称循环变化 ——扭矩脉动循环变化 ——不变的扭矩 ,,分别为对称循环、脉动循环及静应力状态下的许用弯曲应力。 7、校核轴的强度——M emax处;M e较大,轴径d较小处。 Mpa (11-4) W——抗弯截面模量mm3,见附表11不同截面的W。 设计公式:(mm)(11-5) 如果计算所得d大于轴的结构设计d结构,则应重新设计轴的结构。 对于心轴:T=0,Me=M:转动心轴,许用应力用; 固定心轴,许用应力用——弯曲应力为脉动循环。 三、轴的安全系数校核计算 1、疲劳强度校核——精确计算(比较重要的轴) 要考虑载荷性质、应力集中、尺寸因素和表面质量及强化等因素的影响。根据结构设计选择Me较大,并有应力集中的几个截面,计算疲劳强度安全系数

轿车传动轴的设计与校核

潍坊科技学院学士学位论文 毕业设计 轿车传动轴的设计与校核 2012年5月

摘要 传动轴是组成机器零件的主要零件之,一切做回转运动的传动零件(例如:齿轮,蜗轮等)都必须安装在传动轴上才能进行运动及动力的传动,传动轴常用于变速箱与驱动桥之间的连接。这种轴一般较长,且转速高,只能承受扭矩而不承受弯矩。应该使传动轴具有足够的刚度和高临界转速,在强度计算中,由于所取的安全系数较大,从而使轴的尺寸过大,本文讨论的传动轴工艺设计方法,并根据现行规范增添了些表面处理的方式比如表面发兰。 提出一种三点接触沟道截面形式的球笼式等速万向节,其钟形壳外沟道的沟道截面形式为圆弧沟道,星形套内沟道的沟道截面形式为椭圆沟道或双心弧沟道。对其内、外沟道结构进行设计,并利用 H e r t z 接触理论进行接触应力的计算。结果表明,三点接触沟道能减小内、外沟道接触应力,改善其内部接触状况。 关键词:球笼式等速万向节;三点接触沟道;接触应力;计算

ABSTRACT Drive shaft is composed of the main parts of the machine parts, all do rotary movement of the transmission parts (such as: gear, worm gear, etc.) must be installed on the shaft to movement and power transmission, driving shaft is often used in the connection between the transmission and drive axle. The shaft is longer than the general, and high speed, can withstand the torque under bending moment. Should make the shaft has enough stiffness and high critical speed, the strength calculation, due to take the safety coefficient is larger, so that the size of the shaft is too big, this article discusses the transmission process design method, and according to the current specification adds some surface treatment way, such as hair surface. Put forward a three-point contact channel cross section form of ball cage patterned constant speed universal joint, the bell-shaped shell outside the channel cross section form of the channel is a circular arc channel, stars form within the set of channel of the channel or dual channel cross section form of ellipse arc channel. Was carried out on the inside and outside channel structure design, and using the theory of t H e r z contact for the calculation of contact stress. Results show that three contact channel can reduce the contact stress, the internal and external channel to improve the internal contact condition. Key words:Birfield ball-joint; 3 contact channel; Contact stress; Calculation

压力管道强度校核计算表

魂度计算哲 DATA SHEET OF STRENGTH 工程名称: 项目号: 版次: 设计单位: 项目负责: 设计: 校核: 审核:

工业及热力管道壁厚计算书 1直管壁厚校核 1.1计算公式: 根据《工业金属管道设计规范》(GB5O316-2OO0 6.2中规定, 当直管计算厚度t s 小于管子外径D o 的1/6时,承受内压直管的计算 厚度不应小于式(1)计算的值。设计厚度t sd 应按式(2)计算。 式中t s —直管计算厚度(mm ; P —设计压力(MPa ; D o —管子外径(mm ; 七 一在设计温度下材料的许用应力(MPa ; E j —焊接接头系数; t sd —直管设计厚度(mm ; C —厚度附加量之和(mm ; C 1 —厚度减薄附加量(mm C 2 —腐蚀或腐蚀附加量(mr ) 丫 一计算系数 t s PD 。 2 t E j PY t sd t s C C 1 C 2 (1) (2) (3)

设计压力P: P=2a t/ ( D-2tY) Y二 0.4--0Cr18Ni9 式中设计温度为常温,一般取50C, t根据《工业金属管道设计规范》(GB5O316-2OO0附录A金属管道材料的许用应力表 A.0.1 进行选取,故20#为130MPa 0Cr18Ni9 为128.375 MPa。 E j取值是根据《压力管道规范-工业管道第2部分:材料》(GB/T20801.2-2006)表 A.3,故20#和0Cr18Ni9 的取值都为1。 丫根据《工业金属管道设计规范》(GB50316-2000表6.2.1进行选取,故20#和0Cr18Ni9的取值都为0.4。 1.2常用低压管道计算厚度

传动轴的强度、变形及疲劳强度计算7-6-1(d)拿A的课程设计哦.

材料力学课程设计 题目:传动轴的强度、变形及疲劳强度计算 数据:第26组 学号: 44100708 姓名:刘延庆 指导教师:李锋

目录 材料力学课程设计 (1) 设计说明 (2) 传动轴的受力简图 (5) 做弯矩图和扭矩图 (6) 等直传动轴直径的设计 (7) 计算轮处的挠度 (9) 传动轴的疲劳强度的计算 (10) 疲劳强度计算的C语言程序 (18) 本设计所用公式以及参数来自《材料力学》第二版.材料力学课程设计的目的: 本课程设计的目的是在于系统学完材料力学之后,能结合工程中的实际问题,运用材料力学的基本理论和计算方法,独立地计算工程中的典型零部件,以达到综合运用材料力学的知识解决工程实际问题之目的。同时,可以使学生将材料力学的理论和现代计算方法及手段融为一体。既从整体上掌握了基本理论和现代的计算方法,又提高了分析问题,解决问题的能力;既把以前所学的知识(高等数学、工程图学、理论力学、算法语言、计算机和材料力学等)综合运用,又为后继课程(机械设计、专业课等)打下基础,并初步掌握工程中的设计思想和设计方法,对实际工作能力有所提高。具体的有以下六项: 1.使学生的材料力学知识系统化、完整化;

2.在系统全面复习的基础上,运用材料力学知识解决工程中的实际问题; 3.由于选题力求结合专业实际,因而课程设计可以把材料力学知识和专业需要结 合起来; 4.综合运用了以前所学的个门课程的知识(高数、制图、理力、算法语言、计算机等等)使相关学科的知识有机地联系起来; 5.初步了解和掌握工程实践中的设计思想和设计方法; 6.为后继课程的教学打下基础。 2.材料力学课程设计的任务和要求 要求参加设计者,要系统地复习材料力学的全部基本理论和方法,独立分析、判断、设计题目的已知条件和所求问题。画出受力分析计算简图和内力图,列出理论依据和导出计算公式,独立编制计算程序,通过计算机给出计算结果,并完成设计计算说明书。 3.材料力学课程设计的题目 传动轴的强度、变形及疲劳强度计算 7-6-1设计题目: 传动轴的材料为优质碳素结构钢(牌号45),许用应力[σ]=80MPa,经高频淬火处理,其σb=650MPa,σ-1=300MPa,τ-1=155MPa,磨削轴的表面,键槽均为端铣加工,阶梯轴过渡圆弧r均为2,疲劳安全系数n=2. 要求: 1)绘出传动轴的受力简图; 2)作扭矩图及弯矩图; 3)根据强度条件设计等直轴的直径; 4)计算齿轮处轴的挠度;(按直径Φ1的等直杆计算) 5)对阶梯传动轴进行疲劳强度计算;(若不满足,采取改进措施使其满足疲劳强度); 6)对所取数据的理论根据作必要的说明。 说明: a) 坐标的选取均按下图6—1所示; b) 齿轮上的力F与节圆相切; c) 数据表中P为直径D的皮带轮传递的功率, P为直径为D1的皮带轮传递的功率。 1 6—2传动轴的零件图 Φ1 为静强度条件所确定的轴径,尺寸最后一位数准确到mm,并取偶数。

轴强度校核Word版

一、横截面上的切应力 实心圆截面杆和非薄壁的空心圆截面杆受扭转时,我们没有理由认为它们在横截面上的切应力象薄壁圆筒中那样沿半径均匀分布 导出这类杆件横截面上切应力计算公式,关键就在于确定切应力在横截面上的变化规律。即横截面上距圆心τp任意一点处的切应力p与p的关系 为了解决这个问题,首先观察圆截面杆受扭时表面的变形情况,据此做出内部变形假设,推断出杆件内任意半径p处圆柱表面上的切应变γp,即γp与p的几何关系利用切应力与切应变之间的物理关系,再利用静力学关系求出横截面上任一点处切应力τp的计算公式 实验表明:等直圆杆受扭时原来画在表面上的圆周线只是绕杆的轴线转动,其大小和形状均不变,而且在小变形情况下,圆周线之间的纵向距离也不变 图8-56 扭转时的平面假设:等直圆杆受扭时它的横截面如同刚性圆盘那样绕杆轴线转动显然这就意味着:等直圆杆受扭时,其截面上任一根沿半径的直线仍保持为直线,只是绕圆心旋转了一个角度φ 图8-57 现从等直圆杆中取出长为dx的一个微段,从几何、物理、静力学三个方面来具体分析圆杆受扭时的横截面上的应力

图8-58 1.几何方面 小变形条件下 dφ为dx长度内半径的转角,γ为单元体的角应变 图8-59 或 因为dφ和dx是一定的,故越靠近截面中心即半径R越小,角应变γ也越小且γ与R成正比例(或线性关系) 由平面假设:对同一截面上各点 θ表示扭转角沿轴长的变化率,称为单位扭转角,在同一截面上其为常数

所以截面上任一点的切应力与该点到轴心的距离p成正比

p为圆截面上任一点到轴心距离,R为圆轴半径 图8-60 上式为切应力的变化规律 2.物理方面(材料在线性弹性范围内工作)由剪切胡克定律 由于G和为常数,所以 上式表明受扭等直圆杆在线性弹性范围内工作时,横截面上的切应力在同一半径p 的圆周上各点处大小相同,但它们随p做线性变化 同一横截面上的最大切应力在横截面的边缘处。这些切应力的方向均垂直于各自所对应的半径,指向与扭矩对应 3.静力学方面 前面已找出了受扭等直圆杆横截面上的切应力τp随p变化的规律,但还没有把与扭矩T联系起来。所以一般情况下还不能计算τp的大小 现利用静力学关系求T

管道的水力计算及强度计算.

第三章管道的水力计算及强度计算 第一节管道的流速和流量 流体最基本的特征就是它受外力或重力的作用便产生流动。如图3—1所示装置,如把管道中的阀门打开,水箱内的水受重力作用,以一定的流速通过管道流出。如果水箱内的水位始终保持不变,那么管道中的流速也自始至终保持不变。管道中的水流速度有多大?每小时通过管道的流量是多少?这些都是实际工作中经常遇到的问题。 图3—1水在管道内的流动 为了研究流体在管道内流动的速度和流量,这里先引出过流断面的概念。图3—2为水通过管道流动的两个断面1—1及2—2,过流断面指的是垂直于流体流动方向上流体所通过的管道断面,其断面面积用符号A来表示,它的单位为m2或cm2。 图32管流的过流断面 a)满流b)不满流 流量是指单位时间内,通过过流断面的流体体积。以符号q v表示,其单位为m3/h,cm3/h或m3/s,cm3/s。 流速是指单位时间内,流体流动所通过的距离。以符号。表示,其单位为m/s或cm /s。 图3—3管流中流速、流量、过流断面关系示意图

流量、流速与过流断面之间的关系如下: 以水在管道中流动为例,如图3—3所示,在管段上取过流断面1—1,如果在单位时间内水从断面1—1流到断面2—2,那么断面1—1和断面2—2所包围的管段的体积即为单位时间内通过过流断面1—1时水的流量q v,而断面1—1和断面2—2之间的距离就是单位时间内水流所通过的路程,即流速。 由上可知,流量、流速和过流断面之间的关系式为 q v=vA (3—1) 式(3—1)叫做流量公式,它说明流体在管道中流动时,流速、流量和过流断面三者之间的相互关系,即流量等于流速与过流断面面积的乘积。如果在一段输水管道中,各过流断面的面积及所输送的水量一定,即在管道中途没有支管与其连接,既没有水流出,也没有水流入,那么管道内各过流断面的水流速度也不会变化;若管段的管径是变化的(即过流断面的面积A是变化的),那么管段中各过流断面处的流速也随着管径的变化而变化。当管径减小时,流速增大;而当管径增大时,流速即减小。然而,当流速一定时,流量的变化随管径成几何倍数变化,而不是按算术倍数变化。因为在管流中,管道的过流断面面积与管径的平方成正比。也就是说,管径扩大到原来的2倍、3倍、4倍时,面积增加到原来的4倍、9倍、16倍。如DN50mm的管子过流断面面积是DN25mm的管子的4倍,那么在流速相等的条件下,DN50mm管子中所通过的流量即是DN25mm管子的4倍;同理,DNlOOmm的管道内所通过的流量应是DN25mm管子的16倍。在日常施工中,常有人认为在流速一定时,管径之比就是所输送的流量之比,这无疑是错误的。 以上提到的以m3/h和cm3/s等为单位的流量又称为体积流量。如果指的是在单位时间内通过过流断面的流体质量时,该流量则称为质量流量,以符号qm表示,常采用的单位为kg/h或kg/s。质量流量与体积流量之间的关系为 qm=ρq v 而由式(3—1)知 q v=vA 则 q m=ρvA (3—2) 式中q m——质量流量(kg/s); ρ——流体的密度,即单位体积流体的质量(ks/m3); V——流体通过过流断面的平均流速(m/s); A——过流断面面积(m2)。 例管径为DNlOOmm的管子,输送介质的流速为lm/s时,其小时流量为多少? 解DNlOOmm管子的过流断面面积为 A=πD3/4=3.14×0.12/4=0.00785m2 则q v=1×0.00785×3600=28.3m3/h 答:该管道的小时流量为28.3m3/h。 第二节管道的阻力损失 流体在管渠中流动时,过流断面上各点的流速并不是相同的。例如在河沟中,靠近岸边的水,流动较慢;而河沟中心的水,流速就较大。管道内流动的流体也是如此,靠近管内壁面的流体流速较小,处在管中心的流体流速最大。产生这一现象的原因在于,流体流动时与管内壁面发生摩擦产生阻力,同时管内流体各流层之间由于流速的变化而引起相对运动所产生的内摩擦阻力,也阻挠流体的运动。流体在流动中,为了克服阻力就要消耗自身所具有的机械能,我们称这部分被消耗掉的能量为阻力损失。流体的性质不同,流动状态相同,流动时所产生的阻力损失大小也不同。流动是产生阻力损失的外部条件,流速越高,流体与管壁及流体自身之间的摩擦就越剧烈,阻力也就越大。相反,流速越小,摩擦减弱,阻力也就越

传动轴的设计及校核

第一章轻型货车原始数据及设计要求 发动机的输出扭矩:最大扭矩285.0N·m/2000r/min;轴距:3300mm;变速器传动比: ?五挡1 ,一挡7.31,轮距:前轮1440毫米,后轮1395毫米,载重量2500千克 设计要求: 第二章万向传动轴的结构特点及基本要求 万向传动轴一般是由万向节、传动轴和中间支承组成。主要用于在工作过程中相对位置不节组成。伸缩套能自动调节变速器与驱动桥之间距离的变化。万向节是保证变速器输出轴与驱动桥输入轴两轴线夹角的变化,并实现两轴的等角速传动。一般万向节由十字轴、十字轴承和凸缘叉等组成。 传动轴是一个高转速、少支承的旋转体,因断改变的两根轴间传递转矩和旋转运动。重型载货汽车根据驱动形式的不同选择不同型式的传动轴。一般来讲4×2驱动形式的汽车仅有一根主传动轴。6×4驱动形式的汽车有中间传动轴、主传动轴和中、后桥传动轴。6×6驱动形式的汽车不仅有中间传动轴、主传动轴和中、后桥传动轴,而且还有前桥驱动传动轴。在长轴距车辆的中间传动轴一般设有传动轴中间支承.它是由支承架、轴承和橡胶支承组成。 传动轴是由轴管、伸缩套和万向此它的动平衡是至关重要的。一般传动轴在出厂前都要进行动平衡试验,并在平衡机上进行了调整。因此,一组传动轴是配套出厂的,在使用中就应特别注意。 图 2-1 万向传动装置的工作原理及功用 图 2-2 变速器与驱动桥之间的万向传动装置 基本要求: 1.保证所连接的两根轴相对位置在预计范围内变动时,能可靠地传递动力。 2.保证所连接两轴尽可能等速运转。 3.由于万向节夹角而产生的附加载荷、振动和噪声应在允许范围内。 4.传动效率高,使用寿命长,结构简单,制造方便,维修容易等 第三章轻型货车万向传动轴结构分析及选型 由于货车轴距不算太长,且载重量2.5吨属轻型货车,所以不选中间支承,只选用一根主传动轴,货车发动机一般为前置后驱,由于悬架不断变形,变速器或分动器输出轴轴线之间的相对位置经常变化,根据货车的总体布置要求,将离合器与变速器、变速器与

相关文档
相关文档 最新文档