文档库 最新最全的文档下载
当前位置:文档库 › 基于视频传感器网络和交通信号的路口前景检测

基于视频传感器网络和交通信号的路口前景检测

基于视频传感器网络和交通信号的路口前景检测
基于视频传感器网络和交通信号的路口前景检测

优先出版 计 算 机 应 用 研 究 第32卷

--------------------------------

基金项目:宿迁学院重点科研基金项目(No 2013KY15)

作者简介:戈军(1977-),男,江苏宿迁人,硕士,副教授.研究方向为计算机网络安全,物联网,交通控制;周莲英(1964-),女,山东泰州人,博士,教授.研究方向为网络安全性能,物联网.

基于视频传感器网络和交通信号的路口前景检测

戈 军1,周莲英2

(1.宿迁学院 计算机科学系,江苏 宿迁223800 2.江苏大学 计算机科学与通信工程学院,江苏 镇江212013) 摘 要:针对传统背景减法并不完全适合路口前景检测需要,提出一种利用交通信号增强背景减法性能的前景检测新方法。该方法将交通信号和视频传感器网络相结合,通过传感器网络感知环境变化,从而获取实时准确的交通视频信号,并为各像素分配自适应学习率。新旧方法的对比测试实验结果表明,新方法提高了检测精度,具有广阔应用前景。 关键词:高斯混合模型;视频传感器网络;前景检测;背景减法 中图分类号:TP391

Intersection foreground detection based on video sensor networks and traffic signal

GE Jun1, ZHOU Lian-ying2

(1. Dept. of Computer Science, Suqian College, Jiangsu Suqian 223800 2. college of computer science & communication

engineering, Jiangsu University Jiangsu Zhenjiang 212013 )

Abstract: In view of the traditional background subtraction is not completely suitable for intersection foreground detection needs, this paper proposes a new foreground detection method to enhance the performance of background subtraction using traffic signal. The method combines the traffic signals & video sensor networks, through the sensor networks to sense environmental changes so as to obtain accurate real-time traffic video signal, & a adaptive learning rate is assigned to each pixel. The new & old method contrast test results show that the new method improves the detection accuracy, & the method has broad application prospect.

Key Words: gaussian mixture model (GMM); video sensor networks; foreground detection; background subtraction

0 引言

智能视频监控目的在于使交通更智能和减少交通事故数,它是已有应用系统和研发新方法的一个研究领域。路口监控区域的检测对象是典型智能交通系统(ITS) 应用中最受关注的焦点之一。单一摄像头无法监控整个路口。而视频传感器网络提供了一种大规模、冗余路口视频流观测手段。因为基于视频的交通监控系统能够连续跟踪目标,这对高级处理而言具有极其重要意义。背景减法是一种广泛使用的前景检测方法,该方法可用于比较观测图像和估计非兴趣对象的背景图像。但使用该方法之前,还必须确定若干参数。其中,学习率参数对性能而言至关重要。如果学习率设置过大,则会导致缓慢行驶或停止车辆很快融入背景;如果学习率太小,则背景得不到及时更新。尤其交通路口红灯时,车辆总是遇到拥堵,走走停停。此时,一个合理的学习率就显得尤为重要。通常,现有大多数方法的学习速率调整仅依赖于视频序列变化,这会频繁导致无法立即适应自身及外部变化。当红灯时,主要会导致车辆跟踪中断。一旦绿灯亮起,车辆再次移动,将需再次构建新的车辆跟踪。

总之,这都将对前景对象的连续跟踪造成不良影响,而且进一步降低了一些高级理解方法的精度[1]。本文不同于与以往方法,其重点研究如何根据其它传感器实时准确信号来调整学习率。这种方法保证了交通路口的车辆连续追踪。

本文选取较常见的交通灯信号作为外部信号以提高前景检测结果。与此同时,将输入图像划分成若干合理区域,并使用车道检测结果。由于相机静态部署,整个监测期间相机只检测车道一次。如果系统接收到红灯信号,则表明车辆必须减速并随后停止。为了避免相关车辆融入背景以及丢失现有跟踪,本文降低了红灯期间的像素学习率,而其它像素学习率保持不变。当系统接收到绿灯信号时,车辆将选择正常速度和正常学习率驶过路口。实验结果表明,这种环境信息可大大提高背景减法和前景检测的效果。

本文通过视频序列和实际信息相结合,详细分析了所提出的方法,并设置了更多对比实验,增加了实验结果的定量评价。本文其余部分组织如下。第一节综述背景减法及前景检测的重大进展和已有改进。第二节提出本文架构,概述了三种经典方法,并阐述如何使用本文方法使效率更高。第三节进一步论述

文章预览已结束

获取全文请访问

https://www.wendangku.net/doc/cd13517029.html,/article/02-2015-08-065.html

温度传感器的选用

温度传感器的选用 摘要:在各种各样的测量技术中,温度的测量可能是最为常见的一种,因为许多的应用领域,掌握温度的确切数值,了解温度与实际状态之间的差异等,都具有极为重要的意义。就以测量为例,在力的测量,压力,流量,位置及电平高低等测量的过程中,为了提高测量精度,通常都会要求对温度进行监视。可以说,各种的物理量都是温度的函数,要得到精确的测定结果,必须针对温度的变化,作出精确的校正。 关键字:温度传感器热电偶热电阻集成电路 引言: 工业上常用的温度传感器有四类:即热电偶、热电阻RTD、热敏电阻及集成电路温 度传感器;每一类温度传感器有自己独特的温度测量围,有自己适用的温度环境;没有一种温度传感器可以通用于所有的用途:热电偶的可测温度围最宽,而热电阻的测量线性度最优,热敏电阻的测量精度最高。 1、热电偶 热电偶由二根不同的金属线材,将它们一端焊接在一起构成;参考端温度(也称冷补偿端)用来消除铁-铜相联及康铜-铜联接端所贡献的误差;而两种不同金属的焊接端放置于需 要测量温度的目标上。 两种材料这样联接后会在未焊接的一端产生一个电压,电压数值是所有联接端温度的函数,热电偶无需电压或电流激励。实际应用时,如果试图提供电压或电流激励反而会将误差 引进系统。 鉴于热电偶的电压产生于两种不同线材的开路端,其与外界的接口似乎可通过直接测量两导线之间的电压实现;如果热电偶的的两端头不是联接至另外金属,通常是铜,那末事情 真会简单至此。 但热电偶需与另外一种金属联接这一事实,实际上又建立了新的一对热电偶,在系统中引入了极大的误差,消除此误差的唯一办法是检测参考端的温度,以硬件或硬件-软件相结 合的方式将这一联接所贡献的误差减掉,纯硬件消除技术由于线性化校正的因素,比软件-硬件相结合技术受限制更大。一般情况下,参考端温度的精确检测用热电阻RTD,热敏电 阻或是集成电路温度传感器进行。原则上说,热电偶可由任意的两种不同金属构建而成,但在实践中,构成热电偶的两种金属组合已经标准化,因为标准组合的线性度及所产生的电压与温度的关系更趋理想。 表3与图2是常用的热电偶E,J,T,K,N,S,B R的特性。

交通信号灯控制系统

交通信号控制系统 1. 设计任务 设计一个十字路口交通控制系统,要求: (1)东西(用A表示)、南北(用B表示)方向均有绿灯、黄灯、红灯指示,其持续时间分别是30秒、3秒和30秒,交通灯运行的切换示意图如图1-1 所示。 (2)系统设有时钟,以倒计时方式显示每一路允许通行的时间。 (3)当东西或南北两路中任意一路出现特殊情况时,系统可由交警手动控制立即进入特殊运行状态,即红灯全亮,时钟停止记时,东西、南北两路所有车辆停止通行;当特殊运行状态结束后,系统恢复工作,继续正常运行。 2.总体框图 本系统主要由分频计、计数器和控制器等电路组成,总体框图如1-2所示。分频计将晶振送来的信号变为1Hz时钟信号;当紧急制动信号无效时,选择开关将1Hz脉冲信号送至计数器进行倒计时计数,并使控制器同步控制两路红、黄、绿指示灯时序切换;当紧急制动信号有效时,选择开关将紧急制动信号送至计数器使其停止计数,同时控制器控制两路红灯全亮,所有车辆停止运行。 2-1 交通灯总体结构框图 3 模块设计 (1)分频器 设晶振产生的信号为2MHz,要求输出1Hz时钟信号,则分频系数为2M,需要21位计数器。用VHDL设计的2M分频器文本文件如下:

LIBRARY IEEE; USE IEEE.STD_LOGIC_1164.ALL; USE IEEE.STD_LOGIC_ARITH.ALL; USE IEEE.STD_LOGIC_UNSIGNED.ALL; ENTITY fenpin2m IS PORT(clk:IN STD_LOGIC; reset:IN STD_LOGIC; --时钟输入 clk_out:out STD_LOGIC); END ENTITY fenpin2m; ARCHITECTURE one OF fenpin2m IS signal count:integer range 0 to 1999999; BEGIN PROCESS(clk) BEGIN if reset='1' then count<=0; clk_out<='0'; else if clk'EVENT and clk='1'THEN IF count<999999 THEN count<=count+1; clk_out<='0'; ELSif count<1999999 then count<=count+1; clk_out<='1'; else count<=0; END IF; END IF; END IF; END PROCESS ; END one; (2) 模30倒计时计数器 采用原理图输入法,用两片74168实现。74168为十进制可逆计数器,当U/DN=0时实现9~0减法计数,记到0时TCN=0;当U/DN=1时实现0~9加法计数,计到9时TCN=0;ENTN+ENPN=0时执行计数,否则计数器保持。该电路执行减法计数,当两片计数器计到0时同步置数,因此该计数器的计数范围是29~0,当系统检测到紧急制动信号有效时,CP=0计数器停止计数。

温度传感器报告

温度传感器是指能感受温度并能转换成可用输出信号的传感器。温度是和人类生活环境有着密切关系的一个物理量,是工业过程三大参量(流量、压力、温度)之一,也是国际单位制(SI)中七个基本物理量之一。温度测量是一个经典而又古老的话题,很久以来,这方面己有多种测温元件和传感器得到普及,但是直到今天,为了适应各工业部门、科学研究、医疗、家用电器等方面的广泛要求,仍在不断研发新型测温元件和传感器、新的测温方法、新的测温材料、新的市场应用。要准确地测量温度也非易事,如测温元件选择不当、测量方法不宜,均不能得到满意结果。 据有关部门统计,2009年我国传感器的销售额为327亿元人民币,其中温度传感器占整个传感器市场的14%,主要应用于通信电子产品、家用电器、楼宇自动化、医疗设备、仪器仪表、汽车电子等领域。 温度传感器的特点 作为一个理想的温度传感器,应该具备以下要求:测量围广、精度高、可靠性好、时漂小、重量轻、响应快、价格低、能批量生产等。但同时满足上述条件的温度传感器是不存在的,应根据应用现场灵活使用各种温度传感器。这是因为不同的温度传感器具有不同的特点。 ● 不同的温度传感器测量围和特点是不同的。 几种重要类型的温度传感器的温度测量围和特点,如表1所示。 ● 测温的准确度与测量方法有关。 根据温度传感器的使用方法,通常分为接触测量和非接触测量两类,两种测量方法的特点如 ● 不同的测温元件应采用不同的测量电路。 通常采用的测量电路有三种。“电阻式测温元件测量电路”,该测量电路要考虑消除非线性误差和热电阻导线对测量准确度的影响。“电势型测温元件测量电路”,该电路需考虑线性化和冷端补偿,信号处理电路较热电阻的复杂。“电流型测温元件测量电路”,半导体集成温度传感器是最典型的电流型温度测量元件,当电源电压变化、外接导线变化时,该电路输出电流基本不受影响,非常适合远距离测温。 温度测量的最新进展 ● 研制适应各种工业应用的测温元件和温度传感器。 铂薄膜温度传感器膜厚1μm,可置于极小的测量空间,作温度场分布测量,响应时间不超过1ms,偶丝最小直径25μm,热偶体积小于1×10-4mm3,质量小于1μg。 多色比色温度传感器能实时求出被测物体发射率的近似值,提高辐射测温的精

交通灯控制器的设计

交通灯控制器的设计 LG GROUP system office room 【LGA16H-LGYY-LGUA8Q8-LGA162】

电子设计自动化实训说明书 题目:交通灯控制器的设计 系部:信息与控制工程学院 专业:电子信息工程 班级: 06级1班 学生姓名: 朱清美学号: 015 指导教师:张建军 2009年12月21日 目录 1摘要............................................................... 2设计任务与要求..................................................... 3设计原理及框图..................................................... 4单元电路设计及仿真调试............................................. 状态控制器的设计................................................ 状态译码器设计及仿真调试........................................ 定时系统设计及仿真调试.......................................... 秒脉冲发生器设计................................................ 5个人总结 (14) 6参考文献........................................................... 1摘要: 分析了现代城市交通控制与管理问题的现状,结合城乡交通的实际情况阐述了交通灯控制系统的工作原理,给出了一种简单实用的城市交通灯控制系统的硬件电路设计方案。关键词:交通控制交通灯时间发生器定时器1 引言随着社会经济的发展,城市交通问题越来越引起人们的关注。人、车、路三者关系的协调,已成为交通管理部门需要解决的重要问题之一。城市交通控制系统是用于城市交通数据监测、交通信号灯控制与交通疏导的计算机综合管理系统,它是现代城市交通监控指挥系统中最重要的组成部分。随着城市机动车量的不断增加,许多大城市如北京、上海、南京等出现了交通超负荷运行的情况,因此,自80年代后期,这些城市纷纷修建城市高速道路,在高速道

温度传感器的连接与信号获取

情景五 温度传感器的连接与信号获取 任务1:炉温检测 5.1.1任务目标 使学生了解炉温检测器件、测温范围和测温电路。 5.1.2任务内容 针对炉温检测要求,确定温度传感器。分析制定安装位置、实施效果检测方案,成本分析。学生现场安装、连接和调测传感器电路。 5.1.3知识点 热电偶传感器是一种自发电式传感器,测量时不需要外加电源,直接将被测量转换成电势输出。使用十分方便,常被用作测量炉子、管道内的气体或液体的温度及固体的表面温度。它的测温范围很广,常用的热电偶测温范围为-50℃~+1600℃,某些特殊热电偶最低可测-270℃,最高可达+2800℃。 它具有结构简单、制造方便、测量范围广、精度高、惯性小和输出信号便于远传等许多优点。 一、热电偶的外形结构、种类和特性 (一)常用热电偶的外形 各种普通装配型热电偶的外形如下图所示。 各种普通装配型热电偶 接线盒 引出线套管 不锈钢保护套管 热电偶工作端 固定螺纹

各种铠装型热电偶的外形如下图所示。 各种防爆型热电偶的外形如图所示。 (二)热电偶的结构 接线盒固定装置 B -B 金属导管绝缘材料 A 放大 A B B 各种防爆型热电偶 (a ) (b ) 热电偶的结构 (a )普通热电偶;(b )铠装热电偶 各种铠装型热电偶

(三)热电偶的分类 1.热电偶的结构分类: (1)普通热电偶: 普通热电偶一般由热电极、绝缘套管、保护套管和接线盒等几部分组成。常用于测量气体、蒸气和各种液体等介质的温度。 (2)铠装热电偶: 铠装热电偶又称缆式热电偶,此种热电偶是将热电极、绝缘材料连同保护管一起拉制成型,经焊接密封和装配等工艺制成的坚实的组合体。可做得很细、很长,可弯曲,外径小到1~3mm。主要特点是测量端热容量小、动态响应快、绕性好、强度高。 2.热电偶的种类: (1)标准型热电偶: 标准型热电偶是指国家标准规定了其热电势与温度的关系、允许误差、并有统一的标准分度表的热电偶。标准热电偶有配套显示仪表可供选用。 国际电工委员会(IEC)向世界各国推荐了8种热电偶作为标准型热电偶。表2-1是它们的基本特性。热电偶名称的含义如下: 标准型热电偶及基本特性

常用传感器信号测量汇总.

常用传感器信号测量汇总 关键词:传感器;特性;传感器;SCC调理模块;SCXI调理模块;cDAQ 传感器是一种物理装置或生物器官,能够探测、感受外界的信号、物理条件(如光、热、湿度)或化学组成(如烟雾),并将探知的信息传递给其他装置或器官。人的五官就是天然的传感器,具有视、听、嗅、味、触觉,大脑就是通过五官来感知外界的信息(图1)。 工程科学与技术领域的传感器既是对人体五官的工程模拟物,是能将特定的被测量信息(包括物理量、生物量、生物量)按一定的规律转换成某种可用信号输出的器件或装置。可用信号既是便于处理和传输的信号,目前由于电信号最符合这一要求,传感器也可狭义定义为把外界非电信息转换成电信号输出的器件(图2)。

传感器的构成 传感器的具体构成根据被测对象、转换原理,使用环境和性能要求的情况有很大差异。自源型是仅含有转换元件的传感器构成形式,它不需要外能源,可直接从外部被测对象吸收能量转换为电效应,但输出的能量较弱。常见的有热电偶、压电器件等。 带激励源型是在转换器件外加了辅助能源的构成形式,辅助能源起到激励的作用,可以是电源或磁源,这样不需要变换电路也有较大电量输出。常见的有霍尔传感器等。 外源型是由利用被测量实现阻抗变换的转换元件构成,必须通过带外电源的变换电路才能获得电量输出。常见的有电桥等。 相同传感器补偿型(图3-a)是使用两个完全相同的转换元件置于同样环境下的构成形式。实际使用其中一个元件进行工作,另一个用于抵消其受到的环境干扰影响。常见的有应变式,固态压阻式传感器等。 差动结构补偿型(图3-b)和相同传感器补偿型类似,但其两个转换元件都进行工作,除了可以抵消环境干扰,还使有用的输出值增加。 不同传感器补偿型(图3-c)是两个原理和性质不同的转换元件置于同样环境下的构成形式,也是通过一个转换元件给工作的转换元件提供补偿。常见的有热敏电阻的温度补偿,加速度的干扰补偿等。 目前随着计算机技术的发展,传感器和微处理器结合在一起,形成了智能化传感器的概念,这种构成具有了信息处理的功能,前景十分广阔。 传感器的分类 传感器的种类繁多,分类方式多种多样。对于被测量,可以用不同的传感器来测量;而对于同一原理的传感器,通常又可以测量多种非电量。 具体分类可按转换的基本效应、构成原理等分多种,其中又以按照工作原理分类最为详细(表1)。

各种温度传感器分类及其原理.

各种温度传感器分类及其原理

各种温度传感器分类及其原理 温度传感器是检测温度的器件,其种类最多,应用最广,发展最快。众所周知,日常使用的材料及电子元件大部分特性都随温度而变化,在此我们暂时介绍最常用的热电阻和热电偶两类产品。 1.热电偶的工作原理 当有两种不同的导体和半导体A和B 组成一个回路,其两端相互连接时,只要两结点处的温度不同,一端温度为T,称为工作端或热端,另一端温度为TO,称为自由端(也称参考端或冷端,则回路中就有电流产生,如图2-1(a所示,即回路中存在的电动势称为热电动势。这种由于温度不同而产生电动势的现象称为塞贝克效应。 与塞贝克有关的效应有两个:其一,当有电流流过两个不同导体的连接处时,此处便吸收或放出热量(取决于电流的方向, 称为珀尔帖效应;其二,当有电流流过存在温度梯度的导体时,导体吸收或放出热量(取决 于电流相对于温度梯度的方向,称为汤姆逊效应。两种不同导体或半导体的组合称为热电偶。热电偶的热电势EAB(T,T0 是由接触电势和温差电势合成的。接触电势是指两种不同 的导体或半导体在接触处产生的电势,此电势与两种导体或半导体的性质及在接触点的温度有关。 温差电势是指同一导体或半导体在温度不同的两端产生的电势, 此电势只与导体或半导体的性质和两端的温度有关,而与导体的长度、截面大小、沿其长度方向的温度分布无关。 无论接触电势或温差电势都是由于集中于接触处端点的电子数不同而产生的电势:热电偶测量的热电势是二者的合成。当回路断开时,在断开处a,b 之间便有一电动势差△ V,其极性和大小与回路中的热电势一致,如图 2-1(b所示。并规定在冷端,当电流由A流向B时,称A为正极,B 为负极。实验表明,当△ V很小时,△ V与厶T成正比关系。定义△ V对厶T 的微分热电势为热电势率,又称塞贝克系数。

汽车温度传感器的检测方法

汽车温度传感器的检测方法 常用的温度传感器有热电阻式、热电偶式、热敏铁氧体式、晶体管型、集成型等 5 种。随着汽车电子控制技术的发展,温度传感器的应用也越来越广,例如,冷却液温度传感器、空气温度传感器、变速器油温度传感器、排气温度传感器( 催化剂温度传感器) 、EGR 监测温度传感器、车外温度传感器、车内温度传感器、日照温度传感器、蒸发器出口温度传感器、热敏开关等。如何在实际维修中,对温度传感器进行快速检测? 一般有用万用表测电压、测电阻等方法,现述如下。 一、冷却液温度传感器 当出现因汽车负载过大、缺水、点火时间不对、风扇不转等故障,造成冷却液温度过高时。会使发动机机体温度上升,从而使发动机不能工作,所以在仪表系统内设计了冷却液温度表。利用冷却液温度传感器检测发动机冷却液温度,让驾驶员能够直观地看出,发动机冷却液在任何工况时的温度,并及时作出相应的处理。在电控系统中也安有冷却液温度传感器,用 于喷油量修正信号。冷却液温度传感器安装在发动机缸体或缸盖的水套上,与冷却液直接接触,用于测量发动机的冷却液温度。冷却液温度表使用的温度传感器是一个负温度系数热敏电阻(NTC) ,其阻值随温度升高而降低,有一根导线与电控单元ECU 相连。另一根为搭铁线.如图l 所示。 1 .用万用表检测冷却液温度传感器 (1) 在车检查。将点火开关关闭,拆下传感器的连接器,用汽车专用万用表的Rx1 挡,测试传感器两端子的阻值。以皇冠 3 .O 的THW 和E2 端子为例,在温度为0 ℃时,电阻为4 —7k Ω;在温度为20 ℃时,电阻为 2 ~3k Ω;在温度为40 ℃时间,电阻为O .9 一1 .3k Ω;在60 ℃时为O.4 ~0 .7k Ω,在80 ℃时,为0 .2 ~O .4k Ω。冷却液温度传感器的电阻值与温度的高低成反比。 (2) 单件检查。拆下冷却液温度传感器导线连接器,然后从发动机上拆下传感器。将传感器置于烧杯内的水中,加热杯中的水。随着温度逐渐升高。用万用表电阻挡测量传感器的电阻值,将测得的值与标准值相比较,若不符合,应更换冷却液温度传感器。 2 .冷却液温度传感嚣输出信号电压的检查 安装好冷却液温度传感器,将传感器的连接器插好。当点火开关置于ON 位置时,测量图 1 中连接器“ THW ”端子( 丰田车) 或ECU 连接器“THW ”端子与E2 间输出电压。所测得的电压应与冷却液温度成反比变化。 拆下冷却液温度传感器线束插头,打开点火开关,测量冷却温度传感器的电源电压应为5V 。 3 .冷却液温度传感器与ECU 连接线柬阻值的检查 用高阻抗万用表电阻挡,测量冷却液温度传感器与ECU 两连接线束的电阻值( 传感器信号端、地线端分别与对应ECU 的两端子间的电阻值) ,其线路应导通。若线路不导通或电阻值大于规定值,则说明传感器线束断路或连接器接头接触不良,应进一步检查或更换。

交通信号灯控制器

太原理工大学现代科技学院数字电子技术基础课程设计 设计名称交通信号灯控制器 专业班级自动化12-1 学号 姓名 指导教师张文爱

交通信号灯控制器 一、设计要求: 通过采用数字电路对交通灯控制电路的设计,提出使交通灯控制电路用数字信号自动控制十字路口两组红、黄、绿交通灯的状态转换的方法,指挥各种车辆和行人安全通行,实现十字路口交通管理的自动化。因此,在本次课程设计里,将以传统的设计方法为基础来实现设计交通控制信号灯。 1.设计一个交通信号灯控制器,由一条主干道和一条支干道汇合成十字路口,在每个入口处设置红、绿、黄三色信号灯,红灯亮禁止通行,绿灯亮允许通行,黄灯亮则给行驶中的车辆有时间停在禁行线外。 2.用红、绿、黄发光二极管作信号灯,用传感器或逻辑开关作检测车辆是否到来的信号。 3.主干道处于常允许通行的状态,支干道有车来时才允许通行。主干道亮绿灯时,支干道亮红灯;支干道亮绿灯时,主干道亮红灯。 4.主、支干道均有车时,两者交替允许通行,主干道每次放行45秒,支干道每次放行25秒,设立45秒、25秒计时、显示电路。 5.在每次由绿灯亮到红灯亮的转换过程中,要亮5秒黄灯作为过渡,使行驶中的车辆有时间停到禁行线外,设立5秒计时、显示电路。 二.设计方案: 1,设计思想及方案论证: 本设计要求设计一个主干道绿灯45秒、支干道绿灯25秒的交通灯控制系统,每次由绿灯变为红灯时应有5秒黄灯亮作为过渡,分别用红、黄、绿三色发光二极管表示信号灯,并用数码管显示倒计时。因此,本设计需

要一个脉冲产生模块、信号灯模块、倒计时模块、数码显示模块和主控模块。脉冲产生电路用以驱动倒计时电路,置数电路将交通灯亮时间预置到计数电路和寄存器中,信号灯模块对信号灯的各种状态进行循环控制,倒计时模块以基准时间秒为单位做倒计时,数码显示模块显示倒计时的时间,主控模块对电路种的各个模块进行级联控制。 交通信号灯控制电路,交通灯采用发光二极管,显示时间则采用自带译码器的数码管显示。系统需要每秒减数,所以可以采用数字电路箱产生秒脉冲(数字电路实验箱中已给出),经由一个脉冲驱动电路后产生信号灯需要的三种脉冲,即45s,25s,5s,传递给控制器,由控制器发出状态。译码器接受状态后译码,输出控制信号灯和数码管显示的状态。 2,设计方案的工作原理: 1.倒计时电路(定时电路) 倒计时器由两位4位十进制可逆同步计数器(双时钟)74LS192、一个非门和一或门构成。其组成如图所示,其中74LS192是上升沿触发,CPU

手机信号检测传感器

手机信号检测传感器 简要说明: 一、长尺寸:32mm X宽11mm X高20mm 二、主要芯片:LM393、测波传感器 三、工作电压:直流5伏~12伏 四、特点: 1、具有信号输出指示。 2、单路信号输出。 3、输出有效信号为低电平。 4、可用于检测手机来电信号。 5、无需驱动。 6、电路板输出TTL高低电平!(可直接接单片机) 7、经测试5V 可以检测10厘米左右,12V 可以检测20厘米内 适用场合:单片机学习、电子竞赛、产品开发、毕业设计。。。

【图片展示】 【与单片机连接测试程序】 /******************************************************************** 汇诚科技 实现功能:此版配套测试程序 使用芯片:AT89S52 晶振:11.0592MHZ 波特率:9600 编译环境:Keil 作者:zhangxinchun 淘宝店:汇诚科技 【声明】此程序仅用于学习与参考,引用请注明版权和作者信息! *********************************************************************/

/******************************************************************** 说明:1、当测量浓度大于设定浓度时,单片机IO口输出低电平 *********************************************************************/ #include //库文件 #define uchar unsigned char//宏定义无符号字符型 #define uint unsigned int //宏定义无符号整型 /******************************************************************** I/O定义 *********************************************************************/ sbit LED=P1^0; //定义单片机P1口的第1位(即P1.0)为指示端 sbit DOUT=P2^0; //定义单片机P2口的第1位(即P2.0)为传感器的输入端/******************************************************************** 延时函数 *********************************************************************/ void delay()//延时程序 { uchar m,n,s; for(m=20;m>0;m--) for(n=20;n>0;n--) for(s=248;s>0;s--); } /******************************************************************** 主函数 *********************************************************************/ void main() { while(1) //无限循环 { LED=1; //熄灭P1.0口灯 if(DOUT==0)//当浓度高于设定值时,执行条件函数 { delay();//延时抗干扰 if(DOUT==0)//确定浓度高于设定值时,执行条件函数 { LED=0; //点亮P1.0口灯 } } } } /******************************************************************** 结束 *********************************************************************/

基于单片机的交通灯信号控制器设计(含源程序与电路图)

图3-5 交通灯硬件电路原理图 选用MCS51系列AT89S51单片机作为微控制器,选择两个四联的共阴极数码管组成8位显示模块,由于AT89S51单片机驱动能力有限,采用两片74HC244实现总线的驱动,一个74HC244完成共阴极数码管位控线的控制和驱动,另一个74HC244完成数码管的7段码输出,在7段码输出口上各串联一个100欧姆的电阻对7段数码管限流。用P3 口的P3.0-P3.5完成发光二极管的控制,实现交通灯信号的显示,每个发光二极管串联500欧姆电阻起限流作用。硬件电路原理图如图3-5所示。 (3)程序设计思路,单片机资源分配以及程序流程 ①单片机资源分配 单片机P3口的P3.0-P3.1引脚用作输出,控制发光二极管的显示。在计时模块中,需要定义两个数组变量(init_sn[3],init_ew[3])来存储东西、南北两个方向在不同状态中倒计时的初始值,题目中每个方向的交通灯共有3种显示状态,因此数组元素个数为3。还需要定义两个变量( cnt_ sn, cnt_ ew)暂存东西、南北两个方向的倒计时剩余时间。 在状态的切换中,为了明确当前处于哪种状态,东西、南北方向各设置一个状态变量(state_val_sn, state_val_ew),当倒计时的剩余时间到零时,状态变量增1,表示启动下一个状态,当该变量增到3时变为0,回到序号为1的状态。 ②程序设计思路 在设计中,由于没有键盘功能,因此只涉及定时计数和动态扫描功能。主程序将变量初始化之 后,设置单片机定时器和中断特殊功能寄存器的初始值,将定时器T1的工作方式设置为8位自动 装载模式,定时器每隔250us产生一次溢出。 在初始化变量与寄存器后,主程序进入一个循环结构,在循环中只做动态扫描的工作,根据东西、南北两向的剩余时时间进行动态扫描显示。 计时以及状态的切换通过定时器的中断服务程序来实现,在中断服务程序中,每计时到一秒时,则各方向当前状态的剩余时间减1,一直减到0时触发下一个状态的开始,改

各种温度传感器分类及其原理.

各种温度传感器分类及其原理 温度传感器是检测温度的器件,其种类最多,应用最广,发展最快。众所周知,日常使用的材料及电子元件大部分特性都随温度而变化, 在此我们暂时介绍最常用的热电阻和热电偶两类产品。 1. 热电偶的工作原理 当有两种不同的导体和半导体 A 和 B 组成一个回路,其两端相互连接时,只要两结点处的温度不同,一端温度为 T ,称为工作端或热端,另一端温度为 TO ,称为自由端 (也称参考端或冷端,则回路中就有电流产生,如图 2-1(a所示,即回路中存在的电动势称为热电动势。这种由于温度不同而产生电动势的现象称为塞贝克效应。与塞贝克有关的效应有两个:其一, 当有电流流过两个不同导体的连接处时, 此处便吸收或放出热量 (取决于电流的方向 , 称为珀尔帖效应;其二,当有电流流过存在温度梯度的导体时,导体吸收或放出热量 (取决于电流相对于温度梯度的方向 ,称为汤姆逊效应。两种不同导体或半导体的组合称为热电偶。热电偶的热电势 EAB(T, T0 是由接触电势和温差电势合成的。接触电势是指两种不同的导体或半导体在接触处产生的电势, 此电势与两种导体或半导体的性质及在接触点的温度有关。温差电势是指同一导体或半导体在温度不同的两端产生的电势, 此电势只与导体或半导体的性质和两端的温度有关, 而与导体的长度、截面大小、沿其长度方向的温度分布无关。无论接触电势或温差电势都是由于集中于接触处端点的电子数不同而产生的电势, 热电偶测量的热电势是二者的合成。当回路断开时,在断开处 a , b 之间便有一电动势差△ V ,其极性和大小与回路中的热电势一致,如图 2-1(b所示。并规定在冷端,当电流由 A 流向 B 时, 称 A 为正极, B 为负极。实验表明,当△ V 很小时,△ V 与△ T 成正比关系。定义△ V 对△ T 的微分热电势为热电势率, 又称塞贝克系数。塞贝克系数的符号和大小取决于组成热电偶的两种导体的热电特性和结点的温度差。 2. 热电偶的种类

传感器与检测技术重点知识点总结

传感器与检测技术知识总结 1:传感器就是能感受规定的被检测量并按照一定规律转换成可输出信号的器件或装置。 一、传感器的组成 2:传感器一般由敏感元件,转换元件及基本转换电路三部分组成。①敏感元件就是直接感受被测物理量,并以确定关系输出另一物理量的元件(如弹性敏感元件将力,力矩转换为位移或应变输出)。②转换元件就是将敏感元件输出的非电量转换成电路参数(电阻,电感,电容)及电流或电压等电信号。③基本转换电路就是将该电信号转换成便于传输,处理的电量。 二、传感器的分类 1、按被测量对象分类 (1)内部信息传感器主要检测系统内部的位置,速度,力,力矩,温度以及异常变化。(2)外部信息传感器主要检测系统的外部环境状态,它有相对应的接触式(触觉传感器、滑动觉传感器、压觉传感器)与非接触式(视觉传感器、超声测距、激光测距)。 2、传感器按工作机理 (1)物性型传感器就是利用某种性质随被测参数的变化而 变化的原理制成的(主要有:光电式传感器、压电式传感 器)。 (2)结构型传感器就是利用物理学中场的定律与运动定律 等构成的(主要有①电感式传感器;②电容式传感器;③光栅式传感器)。 3、按被测物理量分类 如位移传感器用于测量位移,温度传感器用于测量温度。 4、按工作原理分类主要就是有利于传感器的设计与应用。 5、按传感器能量源分类 (1)无源型:不需外加电源。而就是将被测量的相关能量转换成电量输出(主要有:压电式、磁电感应式、热电式、光电式)又称能量转化型; (2)有原型:需要外加电源才能输出电量,又称能量控制型(主要有:电阻式、电容式、电感式、霍尔式)。 6、按输出信号的性质分类 (1)开关型(二值型):就是“1”与“0”或开(ON)与关(OFF); (2)模拟型:输出就是与输入物理量变换相对应的连续变化的电量,其输入/输出可线性,也可非线性; (3)数字型:①计数型:又称脉冲数字型,它可以就是任何一种脉冲发生器所发出的脉冲数与输入量成正比;②代码型(又称编码型):输出的信号就是数字代码,各码道的状态随输入量变化。其代码“1”为高电平,“0”为低电平。 三、传感器的特性及主要性能指标 1、传感器的特性主要就是指输出与输入之间的关系,有静态特性与动态特性。 2、传感器的静态特性就是当传感器的输入量为常量或随时间作缓慢变化时,传感器的输出与输入之间的关系,叫静态特性,简称静特性。 表征传感器静态特性的指标有线性度,敏感度,重复性等。 3、传感器的动态特性就是指传感器的输出量对于随时间变化的输入量的响应特性称为动态特性,简称动特性。传感器的动态特性取决于传感器的本身及输入信号的形式。传感器按其传递,转换信息的形式可分为①接触式环节;②模拟环节;③数字环节。评定其动态特性:正弦周期信号、阶跃信号。 4、传感器的主要性能要求就是:1)高精度、低成本。2)高灵敏度。3)工作可靠。4)稳定性好,应长期工作稳定,抗腐蚀性好;5)抗干扰能力强;6)动态性能良好。7)结构简单、小巧,使用维护方便等; 四、传感检测技术的地位与作用 1、地位:传感检测技术就是一种随着现代科学技术的发展而迅猛发展的技术,就是机电一体化系统不可缺少的关键技术之一。 2、作用:能够进行信息获取、信息转换、信息传递及信息处理等功能。应用:计算机集成制造系统(CIMS)、柔性制造系统(FMS)、加工中心(MC)、计算机辅助制造系统(CAM)。 五、基本特性的评价 1、测量范围:就是指传感器在允许误差限内,其被测量值的范围; 量程:则就是指传感器在测量范围内上限值与下限值之差。 2、过载能力:一般情况下,在不引起传感器的规定性能指标永久改变条件下,传感器允许超过其测量范围的能力。过载能力通常用允许超过测量上限或下限的被测量值与量程的百分比表示。 3、灵敏度:就是指传感器输出量Y与引起此变化的输入量的变化X之比。 4、灵敏度表示传感器或传感检测系统对被测物理量变化的反应能力。灵敏度越高越好,因为灵敏度越高,传感器所能感知的变化量越小,即被测量稍有微小变化,传感器就有较大输出。K 值越大,对外界反应越强。 5、反映非线性误差的程度就是线性度。线性度就是以一定的拟合直线作基准与校准曲线作比较,用其不一致的最大偏差△Lmax与理论量程输出值Y(=ymax—ymin)的百分比进行计算。 6、稳定性在相同条件,相当长时间内,其输入/输出特性不发生变化的能力,影响传感器稳定性的因素就是时间与环境。 7、温度影响其零漂,零漂就是指还没输入时,输出值随时间变化而变化。长期使用会产生蠕变现象。 8、重复性:就是衡量在同一工作条件下,对同一被测量进行多次连续测量所得结果之间的不一致程度的指标;(分散范围小,重复性越好)

交通灯信号控制器仿真设计

交通灯信号控制器仿真设计 08机电2班 张丽云 0811116041 1.前言 城市十字交叉路口为确保车辆、行人安全有序地通过,都设有指挥信号灯。交通信号灯的出现,使交通得以有效地管制,对于疏导交通、减少交通事故有明显的效果。现有2条主干道汇合点形成十字交叉口,为确保车辆安全、迅速的通行,在交叉路口的每条道上设置一组交通灯,交通灯由红、黄、绿3色组成。红灯亮表示此通道禁止车辆通过路口;黄灯亮表示此通道未过停车线的车辆禁止通行,已过停车线的车辆继续通行;绿灯亮表示该通道车辆可以通行。要求设计一交通灯控制电路以控制十字路口两组交通灯的状态转换,指挥车 由表1可以得出信号灯状态的逻辑表达式: A G =n Q 1n Q 0 A Y =n Q 1n Q 0 A R =n Q 1

B G =n Q 1n Q 0 B Y =n Q 1n Q 0 B R =n Q 1 由特性方程: 10+n Q = n Q 1n Q 0+n Q 1n Q 0 11+n Q = n Q 1n Q 0+n Q 1n Q 0 1+n Q = J n Q +K n Q 可得 0J =n Q 1,0K =n Q 1;1J =n Q 0,1K =n Q 0 要实现45s 的倒计时,需选用两个74190芯片级联成一个从99到00的计数器,其中作为个位数的74190芯片的CLK 接秒脉冲发生器,再把个位数74190芯片输出端A Q 、D Q 用一个与门连起来,再接在十位数74190芯片的CLK 端。当个位数减到0时,再减1就会变成9,0(0000)和9(1001)之间的A Q 、D Q 同时由0变为1,把A Q 、D Q 与起来接在十

传感器和检测技术课后答案解析

第一章习题答案 1.什么是传感器?它由哪几个部分组成?分别起到什么作用? 解:传感器是一种以一定的精确度把被测量转换为与之有确定对应关系的、便于应用的某种物理量的测量装置,能完成检测任务;传感器由敏感元件,转换元件,转换电路组成。敏感元件是直接感受被测量,并输出与被测量成确定关系的物理量;转换元件把敏感元件的输出作为它的输入,转换成电路参量;上述电路参数接入基本转换电路,便可转换成电量输出。2.传感器技术的发展动向表现在哪几个方面? 解:(1)开发新的敏感、传感材料:在发现力、热、光、磁、气体等物理量都会使半导体硅材料的性能改变,从而制成力敏、热敏、光敏、磁敏和气敏等敏感元件后,寻找发现具有新原理、新效应的敏感元件和传感元件。 (2)开发研制新型传感器及组成新型测试系统 ① MEMS技术要求研制微型传感器。如用于微型侦察机的CCD传感器、用于管道爬壁机器人的力敏、视觉传感器。 ②研制仿生传感器 ③研制海洋探测用传感器 ④研制成分分析用传感器 ⑤研制微弱信号检测传感器 (3)研究新一代的智能化传感器及测试系统:如电子血压计,智能水、电、煤气、热量表。它们的特点是传感器与微型计算机有机结合,构成智能传感器。系统功能最大程度地用软件实现。 (4)传感器发展集成化:固体功能材料的进一步开发和集成技术的不断发展,为传感器集成化开辟了广阔的前景。 (5)多功能与多参数传感器的研究:如同时检测压力、温度和液位的传感器已逐步走向市场。 3.传感器的性能参数反映了传感器的什么关系?静态参数有哪些?各种参数代表什么意义?动态参数有那些?应如何选择? 解:在生产过程和科学实验中,要对各种各样的参数进行检测和控制,就要求传感器能感受被测非电量的变化并将其不失真地变换成相应的电量,这取决于传感器的基本特性,即输出—输入特性。衡量静态特性的重要指标是线性度、灵敏度,迟滞和重复性等。 1)传感器的线性度是指传感器的输出与输入之间数量关系的线性程度; 2)传感器的灵敏度S是指传感器的输出量增量Δy与引起输出量增量Δy的输入量增量Δx 的比值; 3)传感器的迟滞是指传感器在正(输入量增大)反(输入量减小)行程期间其输出-输入特性曲线不重合的现象;

交通灯信号控制器仿真设计

交通灯信号控制器仿真设计 一、设计目的 1、巩固和加强《数字电子技术》课程的理论知识。 2、掌握电子电路的一般设计方法,了解电子产品研制开发过程。 3、掌握电子电路安装和调试的方法及其故障排除方法,学会用Multisim软 件仿真。 4、通过查阅手册和文献资料,培养学生独立分析问题、解决问题以及团队协作能力。巩固所学知识,加强综合能力,提高实验技能,启发创新能力的效果 5、培养学生创新能力和创新思维。让学生通过动手动脑解决实际问题,巩固课程中所学的理论知识和实验技能。 二、设计要求 1、设计一个十字路口的交通灯控制电路,要求东西方向和南北方向车道两条交叉道路上的车辆交替运行,每次通行时间都设为45s。时间可设置修改。 2、在绿灯转为红灯时,要求黄灯先亮5s,才能变换运行车道。 3、黄灯亮时,要求每秒闪亮一次。 4、东西方向、南北方向车道除了有红、黄、绿灯指示外,每一种灯亮的时间都用显示器进行显示。 5、假定+5V电源给定。 三、总体概要设计 设计一个十字路口的交通灯控制电路,要求东西方向和南北方向车道两条交叉道路上的车辆交替运行,每次通行时间都为45s,每次绿灯变红时黄灯先亮5秒。该交通灯控制系统的总体设计方案如下图所示所示。90进制加法计数器作为该系统的主控制电路,控制东西方向和南北方向交通的及LED显示,秒信号发生器产生整个定时系统的时间脉冲,通过加法计数器对秒脉冲加计数,当到达固定时刻,控制LED显示的减法计数器进行数制转换,交通灯做出相应的变化。 交通灯控制系统的总体设计方案 电

电路流程图 四、局部细节设计 一、秒脉冲电路部分

二、主控电路(89进制加法计数器)部分 三、东西方向减法计数器及LED显示部分

温度传感器怎么测好坏_温度传感器的测量方法

温度传感器怎么测好坏_温度传感器的测量方法 温度传感器在电路中我们经常可以见到,那么当温度传感器坏了,你知道怎么检测吗?检测方法又有哪些呢?鉴于此,本文主要介绍关于温度传感器好坏的检测,以及检测的方法。 温度传感器温度传感器(temperature transducer)是指能感受温度并转换成可用输出信号的传感器。温度传感器是温度测量仪表的核心部分,品种繁多。按测量方式可分为接触式和非接触式两大类,按照传感器材料及电子元件特性分为热电阻和热电偶两类。 温度传感器通过利用物质各种物理性质随温度变化的规律把温度转换为可用输出信号。温度传感器是温度测量仪表的核心部分,品种繁多。按测量方式可分为接触式和非接触式两大类,按照传感器材料及电子元件特性分为热电阻和热电偶两类。现代的温度传感器外形非常得小,这样更加让它广泛应用在生产实践的各个领域中,也为我们的生活提供了无数的便利和功能。 温度传感器怎么测好坏1、若是有表的话,可以将传感器接到表上,将传感器放到冰水混合物种,看表的显示时不是0摄氏度,读数是否变化。 2、若是没有表的话,考虑传感器的测温范围,可以看看铂电阻三线制的测温。 3、将传感器放到冰水混合物中,用万用表测量电阻,铂电阻就这么几个典型值,PT100,PT1000,PT200,在冰水混合物种的读值为100欧姆,1000欧姆,200欧姆。 4,手握传感器,读数随之变化,变化幅度一致。 温度传感器的测量方法温度传感器的测量方法按照感温元件是否与被测介质接触,可以分为接触式与非接触式两大类。 1.接触时温度测量 接触式测温的方法就是使温度敏感元件与被测温度对象相接触,使其进行充分的热交换,当热交换平衡时,温度敏感元件与被测温度对象的温度相等,测温传感器的输出大小即反映了被测温度的高低。常用的接触式测温的温度传感器主要有热膨胀式温度传感器、热电偶、热电阻、热敏电阻和温敏晶体管等。这类传感器的优点是结构简单、工作可靠、测量

具有四种信号灯的交通灯控制器设计

目 录 1 引言 (1) 1.1设计背景 (1) 1.2VHDL简介 (1) 1.3Q UARTUSⅡ简介 (3) 2 交通信号灯控制器的设计 (3) 2.1设计目的 (3) 2.2系统计要求 (4) 2.3设计思路 (4) 2.4交通信号灯控制器系统工作流程 (5) 3 交通灯控制器的实现 (5) 3.1交通灯控制器的设计原型图 (5) 3.2系统各功能模块的实现 (6) 3.2.1 模块shuomaguan (6) 3.2.2 模块traffic (6) 3.3原理图 (7) 4 交通信号灯控制器系统仿真及分析 (7) 4.1SHUMAGUAN模块仿真波形图 (7) 4.2顶层实体的仿真波形 (8) 4.3TAFFIC模块的仿真波形图 (8) 4.4管脚锁定 (8) 5 完成调试后所显示结果的八种情况 (10) 6 结论 (13) 7 总结与体会 (13) 附录 (15) S HUMAGUAN的VHDL程序 (15) T RAFFIC的VHDL程序 (16) 参考文献 (21)

1 引言 1.1 设计背景 随着城市机动车量的不断增加,许多大城市如北京、上海、南京等出现了交通超负荷运行的情况,因此,自80年代后期,这些城市纷纷修建城市高速道路,在高速道路建设完成的初期,它们也曾有效地改善了交通状况。然而,随着交通量的快速增长和缺乏对高速道路的系统研究和控制,高速道路没有充分发挥出预期的作用。而城市高速道路在构造上的特点,也决定了城市高速道路的交通状况必然受高速道路与普通道路耦合处交通状况的制约。因此,开发一套能够社会服务的交通灯控制器将是非常必要的,也是十分及时的。 1.2 VHDL简介 语言硬件描述已经有几十年的发展历史,并且在系统的仿真、验证和设计、综合等方面得到成功的应用。目前常用的硬件描述语言有VHDL、 Verilog HDL 、ABEL等。VHDL则起源于20世纪70年代末和80年代初,美国国防部提出的VHSIC 计划,目标是为下一代集成电路的生产、实践阶段性的工艺极限和完成10万门级以上的电路设计而建立一种新的描述方法。VHDL的英文全称为Very-High-Speed Integrated Circuit Hardware Description Language,是IEEE 标准化的硬件描述语言,并且已经成为系统描述的国际公认标准,得到众多EDA 公司的支持。自IEEE-1076(简称87版)之后,各EDA公司相继推出自己的VHDL 设计环境,或宣布自己的设计工具可以和VHDL接口。1993年,IEEE对VHDL进行了修订,从更高的抽象层次和系统描述能力上扩展VHDL的内容,公布了新版本的VHDL,即IEEE标准的1076-1993版本,简称93版。VHDL和Verilog作为IEEE的工业标准硬件描述语言,得到众多EDA公司支持,在电子工程领域,已成为事实上的通用硬件描述语言。 VHDL具有很多的优点使它能够被大多数人认可,被广泛应用在逻辑电路的设计方面,并且成为了标准化的硬件描述语言,其优点如下:

相关文档
相关文档 最新文档