文档库 最新最全的文档下载
当前位置:文档库 › 控制系统的阶跃响应

控制系统的阶跃响应

控制系统的阶跃响应
控制系统的阶跃响应

盛年不重来,一日难再晨。及时宜自勉,岁月不待人。

盛年不重来,一日难再晨。及时宜自勉,岁月不待人。

盛年不重来,一日难再晨。及时宜自勉,岁月不待人。

控制系统的阶跃响应

一、实验目的:

1、观察学习控制系统的单位阶跃响应;

2、纪录单位阶跃响应曲线;

3、掌握时间响应分析的一般方法。

二、实验内容:

1、二阶系统为:

(a)键入程序,观察、记录阶跃响应曲线。

(b)键入

damp(den)

计算系统的闭环根、阻尼比、无阻尼振荡频率,并作记录。

实验结果:

键入[y,x,t]=step(num,den); 返回变量输出y与时间t(变量x为状态变量矩阵)[y,t’] 显示输出向量y与时间向量t(t为自动向量)

ans =

0 0

0.0147 0.0552

0.0562 0.1104

. .

. .

. .

0.9027 2.3190

0.9147 2.3742

0.9280 2.4294

0.9419 2.4847 测得过渡时间ts=2.4847(±5%)

0.9561 2.5399

0.9701 2.5951

0.9834 2.6503

. .

. .

. .

1.0251 3.4785

1.0202 3.5337

1.0152 3.5889 测得过渡时间ts=3.5889(±2%)

1.0103 3.6442

1.0057 3.6994

1.0013 3.7546

. .

. .

. .

1.0001 5.8527

0.9996 5.9080

0.9992 5.9632

记录实际测取的峰值大小、峰值时间、过渡时间,并与理论计算值相比较。理论计算:

实际值理论值峰值 1.35 1.35 峰值时间 1.03 1.03

过渡时间±5% 2.4847 3.004 ±2% 3.5889 4.005

结论:理论值与实际值比较接近

2、修改参数,分别实现、的响应曲线,并作记录;结果如下:

蓝色为n0曲线;绿色为n1曲线;红色为n2曲线

修改参数,分别实现、的响应曲线,并作记录;

蓝色为ωn0曲线,绿色为ωn1曲线,红色为ωn2曲线

3、试作出以下系统的阶跃响应,并比较与原系统响应曲线的差别与特点,作出相应的实验分析结果;

(a)有系统零点情况:s=-5;

(b)分子、分母多项式阶数相等:n=m=2;

(c)分子多项式零次项系数为零;

(d)原响应的微分,微分比例为1/10;

实验程序:

num=[10];den=[1 2 10];step(num,den);

hold on

num=[2 10];den=[1 2 10];step(num,den);

hold on

num=[1 0.5 10];den=[1 2 10];step(num,den);

hold on

num=[1 0.5 0];den=[1 2 10];step(num,den);

hold on

num=[1 0];den=[1 2 10];step(num,den);

hold on

运行结果:

4、实验报告要求:

(1)分析系统的阻尼比和无阻尼振荡频率对系统阶跃响应的影响;

ζ>1时,过阻尼系统的阶跃响应时间ts最长,进入稳态很慢,不会出现超调量,且ζ越大,曲线上升的越缓慢。

0<ζ<1,欠阻尼系统上升时间比较快,调节时间也比较短,会出现超调量。

ωn对超调量没有影响,但是ωn越大,tp、tr、ts越短。

(2)分析响应曲线的零初值、非零初值与系统模型的关系;

系统函数分子多项式阶数大于等于2时,初值为1;阶数为1或0时,初值为0

(3)分析响应曲线的稳态值与系统模型的关系;

系统函数分子多项式中如果没有常数项,则稳态值为0;否则为分子多项式与分母多项式常数之比。

(4)分析系统零点对阶跃响应的影响;

当系统存在不稳定零点(即右半平面零点)时,系统的阶跃响应可能有向下的峰值。

(5)二阶系统的阶跃响应分别如下图所示,试叙述系统模型有什么特点。

控制系统时间响应分析”实验报告

控制系统时间响应分析”实验报告

实验一、“控制系统时间响应分析”实验报告 一、实验类型 验证性实验 二、实验目的 1、 求系统在时间常数τ不同取值时的单位脉冲、单位阶跃响应和任意输入响应,熟悉系统时间响应的定义和图形曲线 2、 求系统的上升时间、峰值时间、最大超调量和调整时间等性能指标,熟悉系统瞬态性能指标的定义。 三、实验仪器与设备(或工具软件) 计算机,MATLAB 软件 四、实验内容、实验方法与步骤 已知系统传递函数 50 )1(05.050)(2+++=s s s G τ 1、求系统在时间常数τ不同取值时的单位脉冲、单位阶跃响应和任意输入 响应。 应用impulse 函数,可以得到τ=0,τ=0.0125、τ=0.025时系统单位脉冲响 应;应用step 函数,同样可以得到τ=0,τ=0.0125、τ=0.025时系统单位阶跃响应。 2、求系统的瞬态性能指标 五、实验结果 1、系统在时间常数τ不同取值时的单位脉冲、单位阶跃响应和任意输入响 t=[0:0.01:0.8];%仿真时间区段 nG=[50]; tao=0; dG=[0.05 1+50*tao 50]; G1=tf(nG,dG); tao=0.0125; dG=[0.05 1+50*tao 50]; G2=tf(nG,dG); tao=0.025; dG=[0.05 1+50*tao 50]; G3=tf(nG,dG);%三种τ值下,系统的传递函数模型 [y1,T]=impulse(G1,t);[y1a,T]=step(G1,t); [y2,T]=impulse(G2,t);[y2a,T]=step(G2,t);

实验3 典型闭环系统的阶跃响应的仿真

实验3 典型闭环系统的阶跃响应的仿真 一、实验目的 1. 了解MATLAB 在仿真中的具体应用 2. 熟悉MATLAB 语言环境 3. 掌握M 文件的应用 二、实验步骤 1. 对控制系统的典型结构形式二次模型化,经一定方式把数学模型转化为便于在计算 机上运行的表达形式。 2. 讨论采用数值积分法求解系统响应的仿真程序实现,绘制仿真框图。 x 0t f t j k 1 1,++k k y x f t t =图3-1 典型闭环系统的仿真程序框图

3.编写MATLAB程序语句,实现对典型闭环系统的阶跃响应的仿真 Filename:sa.m 1)输入数据 a=[a0,a1,…,an]; %% n+1维分母系数向量 b=[b0,b1,…,bm]; %% m+1维分子系数向量 X0=[x0,x1,…,xn]; %% 状态向量初值 V=V0; %% 反馈系数 n=n0; %% 系统阶次 T0=t0; %% 起始时间 Tf=tf; %% 终止时间 h=h0; %% 计算步长 R=r; %% 阶跃输入函数的幅值 2)形成开、闭环系数阵 b=b/a(1); a=a/a(1); A=a(2:n+1); %% 首一化处理 A=[rot90(rot90(eye(n-1,n)));-fliplr(A)]; %%形成能控标准型A阵 B=[zeros(1,n-1),1]'; %%形成输入阵B m1=length(b); %%分子向量维数M+1 C=[fliplr(b),zeros(1,n-m1)]; %%形成输出阵C Ab=A-B*C*V; %%形成闭环系数阵 X=X0'; y=0; t=T0; %%设初值,准备开始递推运算 3)运算求解 N=round(Tf-T0)/h; %%确定输出点数 for i=1:N %%四阶龙格-库塔法 K1=Ab*X+B*R; K2=Ab*(X+h*K1/2)+B*R; K3=Ab*(X+h*K2/2)+B*R; K4=Ab*(X+h*K3)+B*R; %%求各次斜率K X=X+h*(K1+2*K2+2*K3+K4)/6; %%求状态 y=[y,C*X]; %%求输出并以向量形式保存 t=[t,t(i)+h]; end

二阶系统的阶跃响应及频率特性

实验二二阶系统的阶跃响应及频率特性 实验简介:通过本实验学生能够学习二阶系统的频率响应和幅频特性的测试方法,对实验装置和仪器的调试操作,具备对实验数据、结果的 处理及其与理论计算分析比较的能力。 适用课程:控制工程基础 实验目的:A 学习运算放大器在控制工程中的应用及传递函数的求取。 B 学习二阶系统阶跃响应曲线的实验测试方法。 C 研究二阶系统的两个重要参数ζ、ω n 对阶跃瞬态响应 指标的影响。 D 学习频率特性的实验测试方法。 E 掌握根据频率响应实验结果绘制Bode图的方法。 F 根据实验结果所绘制的Bode图,分析二阶系统的主要 动态特性(M P ,t s )。 面向专业:机械类 实验性质:综合性/必做 知 识 点:A《模拟电子技术》课程中运算放大器的相关知识; B《数字电子技术》课程中采样及采样定理的相关知识; C《机械工程控制基础》课程中,传递函数,时域响应, 频率响应三章的内容。 学 时 数:2 设备仪器:XMN-2自动控制原理学习机,CAE-98型微机接口卡,计算机辅助实验系统2.0软件,万用表。 材料消耗:运算放大器,电阻,电容,插接线。 要 求:实验前认真预习实验指导书的实验内容,完成下述项目, 做实验时交于指导教师检查并与实验报告一起记入实验成绩。 B推导图2所示积分放大器的输出输入时域关系和传递函数。

C 推导图3所示加法和积分放大器的输出输入时域关系(两输入单输出) 和S <1>.写出op1,op2,op9,0p6对应的微分方程组(4个方程)。 <2>.画出系统方框图。 <3>.用方框图化简或方程组联立消元的方法求取实验电路所示系统的 传递函数,写出求解过程。 和ζ。 <4>.求取该系统的ω n 实验地点:教一楼327室 实验照片:实验装置及仪器

控制系统时间响应分析”实验报告

实验一、“控制系统时间响应分析”实验报告 一、实验类型 验证性实验 二、实验目的 1、 求系统在时间常数τ不同取值时的单位脉冲、单位阶跃响应和任意输入响应,熟悉系统时间响应的定义和图形曲线 2、 求系统的上升时间、峰值时间、最大超调量和调整时间等性能指标,熟悉系统瞬态性能指标的定义。 三、实验仪器与设备(或工具软件) 计算机,MATLAB 软件 四、实验内容、实验方法与步骤 已知系统传递函数 50 )1(05.050)(2+++=s s s G τ 1、求系统在时间常数τ不同取值时的单位脉冲、单位阶跃响应和任意输入响应。 应用impulse 函数,可以得到τ=0,τ=0.0125、τ=0.025时系统单位脉冲响应;应用step 函数,同样可以得到τ=0,τ=0.0125、τ=0.025时系统单位阶跃响应。 2、求系统的瞬态性能指标 五、实验结果 1、系统在时间常数τ不同取值时的单位脉冲、单位阶跃响应和任意输入响 t=[0:0.01:0.8];%仿真时间区段 nG=[50]; tao=0; dG=[0.05 1+50*tao 50]; G1=tf(nG ,dG); tao=0.0125; dG=[0.05 1+50*tao 50]; G2=tf(nG ,dG); tao=0.025; dG=[0.05 1+50*tao 50]; G3=tf(nG,dG);%三种τ值下,系统的传递函数模型 [y1,T]=impulse(G1,t);[y1a,T]=step(G1,t); [y2,T]=impulse(G2,t);[y2a,T]=step(G2,t); [y3,T]=impulse(G3,t);[y3a,T]=step(G3,t);%系统响应 subplot(131),plot(T,y1,'--',T,y2,'-.',T,y3,'-') legend('tao=0','tao=0.0125','tao=0.025') xlabel('t(sec)'),ylabel('x(t)');grid on; subplot(132),plot(T,y1a,'--',T,y2a,'-.',T,y3a,'-') legend('tao=0','tao=0.0125','tao=0.025') grid on;xlabel('t(sec)'),ylabel('x(t)');%产生图形 t=[0:0.01:1];u=sin(2*pi*t);% 仿真时间区段和输入 Tao=0.025;

过程控制系统仿真实验指导

过程控制系统Matlab/Simulink 仿真实验 实验一 过程控制系统建模 ............................................................................................................. 1 实验二 PID 控制 ............................................................................................................................. 2 实验三 串级控制 ............................................................................................................................. 6 实验四 比值控制 ........................................................................................................................... 13 实验五 解耦控制系统 . (19) 实验一 过程控制系统建模 指导内容:(略) 作业题目一: 常见的工业过程动态特性的类型有哪几种?通常的模型都有哪些?在Simulink 中建立相应模型,并求单位阶跃响应曲线。 作业题目二: 某二阶系统的模型为2 () 22 2n G s s s n n ?ζ??= ++,二阶系统的性能主要取决于ζ,n ?两个参数。试利用Simulink 仿真两个参数的变化对二阶系统输出响应的影响,加深对二阶 系统的理解,分别进行下列仿真: (1)2n ?=不变时,ζ分别为0.1, 0.8, 1.0, 2.0时的单位阶跃响应曲线; (2)0.8ζ=不变时,n ?分别为2, 5, 8, 10时的单位阶跃响应曲线。

二阶系统阶跃响应实验报告

实验一 二阶系统阶跃响应 一、实验目的 (1)研究二阶系统的两个重要参数:阻尼比ξ和无阻尼自振角频率ωn 对系统动 态性能的影响。 (2)学会根据模拟电路,确定系统传递函数。 二、实验内容 二阶系统模拟电路图如图2-1 所示。 系统特征方程为T 2s 2+KTs+1=0,其中T=RC ,K=R0/R1。根据二阶系统的标准 形式可知,ξ=K/2,通过调整K 可使ξ获得期望值。 三、预习要求 (1) 分别计算出T=0.5,ξ= 0.25,0.5,0.75 时,系统阶跃响应的超调量σP 和过渡过 程时间tS 。 ) 1( p 2 e ζζπσ--=, ζ T 3t s ≈

代入公式得: T=0.5,ξ= 0.25,σp=44.43% ,t s=6s; T=0.5,ξ= 0.5,σp=16.3% ,t s=3s; T=0.5,ξ= 0.75,σp=2.84% ,t s=2s; (2)分别计算出ξ= 0.25,T=0.2,0.5,1.0 时,系统阶跃响应的超调量σP 和过渡过程时间tS。 ξ= 0.25,T=0.2,σp=44.43% ,t s=2.4s; ξ= 0.25,T=0.5,σp=44.43% ,t s=6s; ξ= 0.25,T=1.0,σp=44.43% ,t s=12s; 四、实验步骤 (1)通过改变K,使ξ获得0,0.25,0.5,0.75,1.0 等值,在输入端加同样幅值的阶跃信号,观察过渡过程曲线,记下超调量σP 和过渡过程时间tS,将实验值和理论值进行比较。 (2)当ξ=0.25 时,令T=0.2 秒,0.5 秒,1.0 秒(T=RC,改变两个C),分别测出超调量σP 和过渡过程tS,比较三条阶跃响应曲线的异同。 五、实验数据记录与处理: 阶跃响应曲线图见后面附图。 原始数据记录: (1)T=0.5,通过改变R0的大小改变K值

第三章 系的时间响应分析

第三章 系统的时间响应 3-1 什么是时间响应? 答:时间响应是指系统的 响应(输出)在时域上的表现形式或系统的动力学方程在一定初始条件下的解。 3.2 时间响应由哪两部分组成?各部分的定义是什么? 答:按分类的原则不同,时间响应有初始状态为零时,由系统的输入引起的响应;零输入响应,即系统的 输入为零时,由初始状态引起的响应。 按响应的性质分为强迫响应和自由响应。 对于稳定的系统,其时间响应又可分为瞬态响应和稳态响应。 3.3时间响应的瞬态响应反映哪方面的性能?而稳态响应反映哪方面的性能? 答:瞬态响应反映了系统的稳定性和响应的快速性两方面的性能;稳态响应反映了系统响应的准确性。 3.4 设系统的单位脉冲响应函数如下,试求这些系统的传递函数. 1.25(1)()0.0125;t w t e -= (2)()510sin(44 w t t t =++); );t -3(3)w(t)=0.1(1-e (4)()0.01w t t = 解:(1) 11()()()()()00 w t x t L X s L G s X s i --????===???? ()1X s i = (),()()G s G s L w t =???????? -1w(t)=L 所以,0.01251.251)()()0.0125 1.25 t G s L w t L e s -??===???? ??+??( (2)()()G s L w t =???? 5510sin(4)sin 4cos422L t t t s s = ++=++???????? 5452()2222161616 s s s s s s = ++=++++

基于MATLAB的控制系统单位阶跃响应分析

电子科技大学学院学生实验报告 学院:机电工程学院专业:17自动化课程名称:自动控制原理实验与仿真

JET 性能指标 Pole Dampi ng (rad/sec on ds) Freque ncy (sec on ds) Time Con sta nt 1.50e+00 + 9.89e+00i 1.50e-01 1.00e+01 6.67e-01 ?1.50e+00 - 9.89e+00i 1.50e-01 1.00e+01 6.67e-01 2当=0, 0.25 , 0.5 , 0.75 , 1 , 1.25时,对应系统的闭环极点和自然振荡频率n见表,编程求取对应系统的阶跃响应曲线, 并分析n—定时,变化对系统性能的影响。。 曲线:

.w 结论:可见当n/(rad/s) —定时,系统随着阻尼比E增大,闭环极点的实部在S左半平面的位置更加远离原点,虚部减小到0,超调量减小,调节时间缩短,稳定性更好。 3. 0.25, n 10,30,50时,对应点的单位阶跃响应曲线并分析不变,n对系统性能的影响 曲线: 结论:可见当E—定时,随着n/(rad/s)增大,系统响应加速,振荡频率增大,系统调整时间缩短,但是超

调量没有变化。 3.试做出以下系统的单位阶跃响应'并与原系统G(s)= s2—2s—I。的阶跃响应曲线比较,做出实验结果分析? 1)系统分别增加零点z -5z -2, G(s) 22(S 5)G(s) 25(S 2) s2 2s 10 s2 2s 10 代码及曲线: 代码: sys=tf(10,[1 2 10]); step(sys) hold on sysc=tf([2,10],[1 2 10]); step(sysc) hold on sysx=tf([5,10],[1 2 10]); step(sysx) hold off title('单位阶跃系统增加零点比较’); lab仁'增加零点-2';text(1,1.8,lab1) Iab2='增加零点-5';text(0.25,1.1,lab2) lab3='原系统:text(1.5,1.3,lab3) 曲线:

自动控制原理实验一控制系统的阶跃响应.

实验一 控制系统的阶跃响应 一、实验目的 1. 掌握控制系统多项式模型和零极点模型的建立方法及它们之间的相互转换。 2.观察学习控制系统的单位阶跃响应。 3.记录单位阶跃响应曲线。 4.掌握时间响应分析的一般方法。 5.分析系统阶跃响应曲线与传递函数参数的对应关系。 二、实验设备 PC 机,MATLAB 仿真软件。 三、实验内容 1.作以下二阶系统的单位阶跃响应曲线 10 210)(2++=s s s G 2.分别改变该系统的ζ和n ω,观察阶跃响应曲线的变化。 3.作该系统的脉冲响应曲线。 四、实验原理 1. 建立系统模型 在MATLAB 下,系统数学模型有三种描述方式,在本实验中只用到多项式模型和零极点模型。 (1)多项式模型 num 表示分子多项式的系数,den 表示分母多项式的系数,以行向量的方式 输入。例如,程序为 num=[0 1 3]; %分子多项式系数 den=[1 2 2 1]; %分母多项式系数 printsys (num, den) %构造传递函数并显示 (2)零极点模型 z 表示零点,p 表示极点,以行向量的方式输入,k 表示增益。例如,程序为 k=2; %赋增益值,标量 z=[1]; %赋零点值,向量 p=[-1 2 -3]; %赋极点值,向量 [num, den]=zp2tf(z, p, k); %零极点模型转换成多项式模型 printsys(num, den) %构造传递函数并显示 (3)相关MATLAB 函数 函数tf(num, den) 用来建立控制系统的多项式模型; 函数zpk(z, p, k)用来建立控制系统的零极点模型; [num, den]=zp2tf (z, p, k) %零极点模型转换成多项式模型 [z, p, k]=tf2zp (num, den) %多项式模型转换成零极点模型 [num, den]=ord2(ωn , ξ) %用来建立二阶系统标准模型

一阶系统的单位阶跃响应

图3-5所示系统。其输入-输出关系为 1 1 111)()(+= +=Ts s K s R s C (3-3) 式中K T 1 = ,因为方程(3-3)对应的微分方程的最高阶次是1,故称一阶系统。 实际上,这个系统是一个非周期环节,T 为系统的时间常数。 一、一阶系统的单位阶跃响应 因为单位阶跃函数的拉氏变换为s 1,将s s R 1)(=代入方程(3-3),得 s Ts s C 1 11)(+= 将)(s C 展开成部分分式,有 11()1C s s s T =- + (3-4) 对方程(3-4)进行拉氏反变换,并用)(t h 表示阶跃响应)(t C ,有 t T e t h 1 1)(--= 0t ≥ (3-5) 由方程(3-5)可以看出,输出量)(t h 的初始值等于零,而最终将趋于1。常数项“1”是由s 1反变换得到的,显然,该分量随时间变化的规律和外作用相似(本例为相同),由于它在稳态过程中仍起作用,故称为稳态分量 (稳态响应)。方程(3-5)中第二项由1 1/()s T +反变换得到, 它随时间变化的规律取决于传递函数1/(1)Ts +的极点,即系统特 征方程()10D s Ts =+=的根(1/)T -在复平 面中的位置,若根处在复平面的左半平面 如图3-6(a)所示,则随着时间 t 的增加, 它将逐渐衰减, 最后趋于零 (如图3-6(b) 所示),称为瞬态响应。可见,阶跃响应曲线具有非振荡特性,故也称为非周期响应。 显然,这是一条指数响应曲线,其初始斜率等于1/T ,即 T e T dt dh t t T t 1 |1|01 0===-= (3-6) 这就是说,假如系统始终保持初始响应速度不变,那么当T t =时, 输出量就能达到稳态值。

汽车运动控制系统仿真

一、摘要 2 二、课程设计任务 3 1.问题描述 3 2.设计要求 3 三、课程设计内容 4 1、系统的模型表示 4 2、利用Matlab进行仿真设计 4 3、利用Simulink进行仿真设计 9 总结与体会 10 参考文献 10

本课题以汽车运动控制系统的设计为应用背景,利用MATLAB语言对其进行设计与仿真.首先对汽车的运动原理进行分析,建立控制系统模型,确定期望的静态指标稳态误差和动态指标搬调量和上升时间,最终应用MATLAB环境下的.m文件来实现汽车运动控制系统的设计。其中.m文件用step函数语句来绘制阶跃响应曲线,根据曲线中指标的变化进行P、PI、PID校正;同时对其控制系统建立Simulink进行仿真且进行PID参数整定。仿真结果表明,参数PID控制能使系统达到满意的控制效果,对进一步应用研究具有参考价值,是汽车运动控制系统设计的优秀手段之一。 关键词:运动控制系统 PID仿真稳态误差最大超调量

一、课程设计任务 1. 问题描述 如下图所示的汽车运动控制系统,设该系统中汽车车轮的转动惯量可以忽略不计,并且假定汽车受到的摩擦阻力大小与汽车的运动速度成正比,摩擦阻力的方向与汽车运动的方向相反,这样,该汽车运动控制系统可简化为一个简单的质量阻尼系统。 根据牛顿运动定律,质量阻尼系统的动态数学模型可表示为: ???==+v y u bv v m 系统的参数设定为:汽车质量m =1000kg , 比例系数b =50 N ·s/m , 汽车的驱动力u =500 N 。 根据控制系统的设计要求,当汽车的驱动力为500N 时,汽车将在5秒内达到10m/s 的最大速度。由于该系统为简单的运动控制系统,因此将系统设计成10%的最大超调量和2%的稳态误差。这样,该汽车运动控制系统的性能指标可以设定为: 上升时间:t r <5s ; 最大超调量:σ%<10%; 稳态误差:e ssp <2%。 2.设计要求 1.写出控制系统的数学模型。 2.求系统的开环阶跃响应。 3.PID 控制器的设计 (1)比例(P )控制器的设计 (2)比例积分(PI )控制器的设计 (3)比例积分微分(PID )控制器的设计 利用Simulink 进行仿真设计。 二、课程设计内容 1.系统的模型表示

控制系统仿真实验报告

哈尔滨理工大学实验报告 控制系统仿真 专业:自动化12-1 学号:1230130101 姓名:

一.分析系统性能 课程名称控制系统仿真实验名称分析系统性能时间8.29 地点3# 姓名蔡庆刚学号1230130101 班级自动化12-1 一.实验目的及内容: 1. 熟悉MATLAB软件的操作过程; 2. 熟悉闭环系统稳定性的判断方法; 3. 熟悉闭环系统阶跃响应性能指标的求取。 二.实验用设备仪器及材料: PC, Matlab 软件平台 三、实验步骤 1. 编写MATLAB程序代码; 2. 在MATLAT中输入程序代码,运行程序; 3.分析结果。 四.实验结果分析: 1.程序截图

得到阶跃响应曲线 得到响应指标截图如下

2.求取零极点程序截图 得到零极点分布图 3.分析系统稳定性 根据稳定的充分必要条件判别线性系统的稳定性最简单的方法是求出系统所有极点,并观察是否含有实部大于0的极点,如果有系统不稳定。有零极点分布图可知系统稳定。

二.单容过程的阶跃响应 一、实验目的 1. 熟悉MATLAB软件的操作过程 2. 了解自衡单容过程的阶跃响应过程 3. 得出自衡单容过程的单位阶跃响应曲线 二、实验内容 已知两个单容过程的模型分别为 1 () 0.5 G s s =和5 1 () 51 s G s e s - = + ,试在 Simulink中建立模型,并求单位阶跃响应曲线。 三、实验步骤 1. 在Simulink中建立模型,得出实验原理图。 2. 运行模型后,双击Scope,得到的单位阶跃响应曲线。 四、实验结果 1.建立系统Simulink仿真模型图,其仿真模型为

MATLAB下二阶系统的单位阶跃响应

二阶系统在不同参数下对单位阶跃信号的响应 一、二阶系统 所谓二阶系统就是其输入信号、输出信号的关系可用二阶微分方程来表征的系统。比如常见的RLC电路(图a)、单自由度振动系统等。 图a 图b 二阶系统传递函数的标准形式为 2 22 () 2 n n n H s s s ω ξωω = ++ 二、二阶系统的Bode图(nω=1) MATLAB程序为 >> clear >> num=[1]; >> den=[1 0.2 1]; >> bode(num,den); grid on hold on den=[1 0.4 1]; bode(num,den); >> den=[1 0.6 1]; >> bode(num,den); >> den=[1 0.8 1]; >> bode(num,den); >> den=[1 1.4 1]; >> bode(num,den); >> den=[1 2 1]; >> bode(num,den); >> legend('0.1','0.2','0.3','0.4','0.7','1.0')

运行结果为 三、二阶系统对单位阶跃信号的响应( =1) n MATLAB程序为 >> clear >> num=[1]; >> den=[1 0 1]; >> t=0:0.01:25; >> step(num,den,t) >> grid on >> hold on >> den=[1 0.2 1]; >> step(num,den,t) >> den=[1 0.4 1]; >> step(num,den,t) >> den=[1 0.6 1]; >> step(num,den,t) >> den=[1 0.8 1]; >> step(num,den,t) >> den=[1 1.0 1]; >> step(num,den,t)

2. 实验二 二阶系统阶跃响应

实验二二阶系统阶跃响应 一、实验目的 1. 研究二阶系统的特征参数,阻尼比ζ和无阻尼自然频率ωn对系统动态性能的影响,定量分析ζ和ωn与最大超调量σp和调节时间ts之间的关系。 2. 进一步学习实验系统的使用。 3. 学会根据系统的阶跃响应曲线确定传递函数。 4. 学习用MATLAB仿真软件对实验内容中的电路进行仿真。 二、实验原理 典型二阶闭环系统的单位阶跃响应分为四种情况: 1)欠阻尼二阶系统 如图1所示,由稳态和瞬态两部分组成:稳态部分等于1,瞬态部分是振荡衰减的过程,振荡角频率为阻尼振荡角频率,其值由阻尼比ζ和自然振荡角频率ωn决定。 (1)性能指标: : 单位阶跃响应C(t)进人±5%(有时也取±2%)误差带,并且不再超出该误差带的调节时间t S 最小时间。 超调量σ% ;单位阶跃响应中最大超出量与稳态值之比。 单位阶跃响应C(t)超过稳态值达到第一个峰值所需要的时间。 峰值时间t P : 结构参数ξ:直接影响单位阶跃响应性能。 (2)平稳性:阻尼比ξ越小,平稳性越差 长,ξ过大时,系统响应迟钝,(3)快速性:ξ过小时因振荡强烈,衰减缓慢,调节时间t S 也长,快速性差。ξ=0.7调节时间最短,快速性最好。ξ=0.7时超调量σ%<5%,调节时间t S 平稳性也好,故称ξ=0.7为最佳阻尼比。 2)临界阻尼二阶系统(即ξ=1) 系统有两个相同的负实根,临界阻尼二阶系统单位阶跃响应是无超调的,无振荡单调上升的,不存在稳态误差。

3)无阻尼二阶系统(ξ=0时)此时系统有两个纯虚根。 4)过阻尼二阶系统(ξ>1)时 此时系统有两个不相等的负实根,过阻尼二阶系统的单位阶跃响应无振荡无超调无稳态误差,上升速度由小加大有一拐点。 三、实验内容 1. 搭建模拟电路 典型二阶系统的闭环传递函数为: 其中,ζ 和ωn对系统的动态品质有决定的影响。 搭建典型二阶系统的模拟电路,并测量其阶跃响应: 二阶系统模拟电路图其结构图为: 系统闭环传递函数为: 式中, T=RC,K=R2/R1。 比较上面二式,可得:ωn=1/T=1/RC ζ=K/2=R2/2R1。 2 2 2 2 ) ( ) ( ) ( n n n w s w s w s R s C S + + = = ξ φ

基于MATLAB的控制系统单位阶跃响应分析

电子科技大学中山学院学生实验报告 学院: 机电工程学院 专业: 17自动化 课程名称:自动控制原理实验与仿真 班级: 姓名: 学号: 组别: 实验名称:基于MATLAB 的控制系统单位阶跃响应分析 实验时间: 成 绩: 批改时间: 一、 实验目的 (1)学会使用MATLAB 编程绘制控制系统的单位阶跃响应曲线。 (2)研究二阶控制系统中ζ ,ωn 对系统阶跃响应的影响。 (3)掌握准确读取动态特性指标的方法。 (4)分析二阶系统闭环极点与闭环零点对系统动态性能的影响。 二、 实验条件 实验设备:每人一台计算机奔腾系列以上计算机,配置硬盘≥2G,内存≥64M 。 实验软件:WINDOWS 操作系统(WINDOWS XP 或WINDOWS 2000),并安装MATLAB 语言编程环境。 三、实验内容 21001.(),3G s s s = +已知系统开环传递函数为试绘制单位负反馈闭环系统的阶跃响应曲线,并测出动态性能指标。 代码、曲线及性能指标: 代码 sys=tf(100,[1 3 0]); sysc=feedback(sys,1); damp(sysc) step(sysc) 曲线 性能指标 Pole Damping Frequency Time Constant (rad/seconds) (seconds) -1、50e+00 + 9、89e+00i 1、50e-01 1、00e+01 6、67e-01 -1、50e+00 - 9、89e+00i 1、50e-01 1、00e+01 6、67e-01

2.=n n ζωωζ当0,0.25,0.5,0.75,1,1.25时,对应系统的闭环极点 和自然振荡频率见表,编程求取对应系统的阶跃响应曲线,并分析一定时,变化对系统性能的影响。。 ζ 闭环极点 /(/)n rad s ω 阶跃响应曲线 =0ζ j ± 10 等幅振荡 =0.25ζ 2.59.68j -± 10 衰减振动 =0.5ζ 58.66j -± 10 衰减振动 =0.75ζ 7.5 6.61j -± 10 衰减振动 =1ζ 两实重根-10 10 单调上升 =1.25ζ 两不等实根 -5与-20 5,20 单调上升 曲线: 结论:可见当/(/)n rad s ω一定时,系统随着阻尼比ξ增大,闭环极点的实部在S 左半平面的位置更加远离原点,虚部减小到0,超调量减小,调节时间缩短,稳定性更好。 0.25,10,30,50n n ζωζ==3.时,对应点的单位阶跃响应曲线并分析不变,对系统性能的影响。 曲线:

控制系统仿真和设计实验报告

控制系统仿真与设计实验报告 姓名: 班级: 学号: 指导老师:峰

7.2.2控制系统的阶跃响应 一、实验目的 1.观察学习控制系统的单位阶跃响应; 2.记录单位阶跃响应曲线; 3.掌握时间相应的一般方法; 二、实验容 1.二阶系统G(s)=10/(s2+2s+10) 键入程序,观察并记录阶跃响应曲线;录系统的闭环根、阻尼比、无阻尼振荡频率;记录实际测去的峰值大小、峰值时间、过渡时间,并与理论值比较。 (1)实验程序如下: num=[10]; den=[1 2 10]; step(num,den); 响应曲线如下图所示: (2)再键入: damp(den); step(num,den); [y x t]=step(num,den); [y,t’] 可得实验结果如下:

实际值理论值峰值 1.3473 1.2975 峰值时间 1.0928 1.0649 过渡时间+%5 2.4836 2.6352

+%2 3.4771 3.5136 2. 二阶系统G(s)=10/(s2+2s+10) 试验程序如下: num0=[10]; den0=[1 2 10]; step(num0,den0); hold on; num1=[10]; den1=[1 6.32 10]; step(num1,den1); hold on; num2=[10]; den2=[1 12.64 10]; step(num2,den2); 响应曲线:

(2)修改参数,分别实现w n1= (1/2)w n0和w n1= 2w n0响应曲线 试验程序: num0=[10]; den0=[1 2 10]; step(num0,den0); hold on; num1=[2.5]; den1=[1 1 2.5]; step(num1,den1); hold on; num2=[40]; den2=[1 4 40]; step(num2,den2); 响应曲线如下图所示: 3.时作出下列系统的阶跃响应,并比较与原系统响应曲线的差别与特点,作出相应的实验分析结果。

二阶系统阶跃响应实验报告

实验一二阶系统阶跃响应 一、实验目的 (1)研究二阶系统的两个重要参数:阻尼比E和无阻尼自振角频率3 态性能的影 响。 (2)学会根据模拟电路,确定系统传递函数。 二、实验内容 二阶系统模拟电路图如图2-1所示 a 2-i二阶系疣按拟电帘图 系统特征方程为TV+KTS+仁0其中T=RC K=R0/R1根据二阶系统的标准 形式可知,E =K/2,通过调整K可使E获得期望值 三、预习要求 (1) 分别计算出T=0.5,E = 0.25, 0.5, 0.75时,系统阶跃响应的超调量c P和过渡过程时 间ts。 代入公式得: T=0.5, E : =0.25, c P=44.43%,t s=6s; T=0.5, E : =0.5 , d P=16.3% ,t s=3s; T=0.5, E : =0.75, c p=2.84% ,t s=2s; (2) 分别计算出E = 0.25,T-0.2,0.5,1.0时,系统阶跃响应的超调量c P和过渡 过程时间ts。 E = =0.25,T-0.2, c p-44.43% ,t s- 2.4s; E = =0.25,T-0.5, c P-44.43% ,t s-6s; E = =0.25,T-1.0, c P-44.43% ,t s- 12s; 四、 (1) 实验步骤 通过改变K,使E获得0, 0.25, 0.5, 0.75, 1.0等值,在输入端加同样幅值的阶跃 信号,观察过渡过程曲线,记下超调量b P和过渡过程时间ts,将实验值和理论值 进行比较。 n对系统动 ) 2 t s 3T

(2)当E =0.25时,令T=0.2秒,0.5秒,1.0秒(T=RC改变两个C),分别测出超调量b P和过渡过 程tS,比较三条阶跃响应曲线的异同。 五、实验数据记录与处理: 阶跃响应曲线图见后面附图。 原始数据记录: (1) T=0.5,通过改变R0的大小改变K值 理论值与实际值比较: 对误差比较大,比如T=0.5,E =0.75时,超调量的相对误差为30%左右。造成误差的原因主要有以下几个方面: (1)由于R0是认为调整的阻值,存在测量和调整误差,且不能精确地保证E的大小等于 要求的数值; (2)在预习计算中我们使用了简化的公式,例如过渡时间大约为3~4T/ E,这并不是一个 精确的数值,且为了计算方便取3T/E作统一计算; (3)实际采样点的个数也可能造成一定误差,如果采样点过少,误差相对会大。 六、实验总结 通过本次实验,我们从图形上直观的二阶系统的两个参数对系统动态性能的影响,巩固了理论知识。其次我们了解了一个简单的系统是如何用电路方式实现的,如何根据一个

(整理)二阶系统的阶跃响应.

实验一 一、二阶系统的阶跃响应 实验报告 ___系__专业___班级 学号___姓名___成绩___指导教师__一、实验目的 1、学习实验系统的使用方法。 2、学习构成一阶系统(惯性环节)、二阶系统的模拟电路,分别推导其传递函数。了解电路参数对环节特性的影响。 3、研究一阶系统的时间常数T 对系统动态性能的影响。 4、研究二阶系统的特征参数,阻尼比ξ和无阻尼自然频率n ω对系统动态性能的影响。 二、实验仪器 1、EL-AT-II 型自动控制系统实验箱一台 2、计算机一台 三、实验内容 (一) 构成下述一阶系统(惯性环节)的模拟电路,并测量其阶跃响应。 惯性环节的模拟电路及其传递函数如图1-1。 (二)构成下述二阶系统的模拟电路,并测量其阶跃响应。 典型二阶系统的闭环传递函数为 ()2222n n n s s s ωζωω?++= (1) 其中ζ和n ω对系统的动态品质有决定的影响。 图1-1 一阶系统模拟电路图 R1 R2

构成图1-2典型二阶系统的模拟电路,并测量其阶跃响应: 电路的结构图如图 1-3 系统闭环传递函数为 ()()()()2 2 2/1//11/2T S T K s T s U S U s ++==? 式中 T=RC ,K=R2/R1。 比较(1)、(2)二式,可得 n ω=1/T=1/RC ξ=K/2=R2/2R1 (3) 由(3)式可知,改变比值R2/R1,可以改变二阶系统的阻尼比。改变RC 值可以改变无阻尼自然频率n ω。 今取R1=200K ,R2=0K Ω,50K Ω,100K Ω和200K Ω,可得实验所需的阻尼比。图1-2 二阶系统模拟电路图 图1-3 二阶系统结构图 R2

实验五 控制系统阶跃响应仿真实验

实验五控制系统阶跃响应仿真实验 一、实验目的 1、观察学习控制系统的单位阶跃响应 2、记录单位阶跃响应曲线 3、掌握时间响应分析的一般方法 二、实验内容 1、函数例题练习 >> num=[4];den=[1 1 4];sys=tf(num,den); >> step(sys); 2、二阶系统为 (1)键入程序,观察、记录阶跃响应曲线。 结论要求:1)计算与记录下系统的闭环根、阻尼比、无阻尼振荡频率。 2)记录实际测取的峰值大小、峰值时间、过渡时间。 过渡时间ts为±%5时: >> num=[10];den=[1 2 10];sys=tf(num,den); >> damp(den);

过渡时间ts为±%2时: >> num=[10];den=[1 2 10];sys=tf(num,den); >> damp(den); (2)修改参数,分别实现2,1=ζ=ζ.的响应曲线,并作记录。

>> n0=10;d0=[1 2 10];step(n0,d0) >> hold on >> n1=n0;d1=[1 6.32 10];step(n1,d1) >> n2=n0;d2=[1 12.64 10];step(n2,d2) (3)修改参数,分别实现ωn1=0.5ωn0、ωn2=2ωn0的响应曲线,并作记录。 >>n0=10;d0=[1 2 10];step(n0,d0) >>hold on >>n1=2.4964;d1=[1 1.1376 2.4964];step(n1,d1) >>n2=39.9424;d2=[1 4.5504 39.9424];step(n2,d2)

实验三 一阶系统的脉冲响应与阶跃响应

实验三 一阶系统的脉冲响应与阶跃响应 一、实验目的 1. 熟悉一阶系统的无源和有源模拟电路; 2.研究一阶系统时间常数T 的变化对系统性能的影响; 3.研究一阶系统的零点对系统响应的影响。 二、实验设备 1.THBCC-1型 信号与系统·控制理论及计算机控制技术实验平台 2.PC 机(安装“THBCC-1”软件) 三、实验内容 1.无零点时的单位阶跃响应(无源、有源); 2.有零点时的单位阶跃响应(无源、有源); 四、实验原理 1.无零点的一阶系统 无零点一阶系统的有源和无源模拟电路图如图3-1的(a)和(b)所示。它们的传递函数均为 1 0.2S 1G(S)=+ (a) (b) 图3-1 无零点一阶系统有源、无源电路图 2.有零点的一阶系统(|Z|<|P|) 图3-2的(a)和(b)分别为有零点一阶系统的有源和无源模拟电路图,他们的传递函数为: 1 0.2S 1)0.2(S G(S)=++ (a) (b) 图3-2 有零点(|Z|<|P|)一阶系统有源、无源电路图 3.有零点的一阶系统(|Z|>|P|) 图3-3的(a)和(b)分别为有零点一阶系统的有源和无源模拟电路图,他们的传递函数为: 1 S 10.1S G(S)=++

(a ) (b ) 图3-3 有零点(|Z|<|P|)一阶系统有源、无源电路图 五、实验步骤 1. 利用实验台上相关的单元组成图3-1(a)(或(b))所示的一阶系统模拟电路; 2.将“阶跃信号发生器”的输出拔到“正输出”,按下“阶跃信号发生器”的按钮,调节电位器RP1,使之输出电压幅值为1V ,并将“阶跃信号发生器”的“输出端与电路的输入端 “Ui ”相连,电路的输出端“Uo ”接到“数据采集接口单元”的AD1输入端,然后用虚拟示波器观测系统的阶跃响应,并由曲线实测一阶系统的时间常数T ; 3.将步骤2中一阶系统的输入端“Ui ”改接至“数据采集接口单元”的DA1输出端。打开“THBCC-1”软件的“信号发生器”窗口,选择“方波”,频率为0.1Hz ,幅值为2V ,占空比为5%,偏移为2V 。再点击“ 启动”按钮。用虚拟示波器观测系统的脉冲响应。 4.再依次利用实验台上相关的单元分别组成图3-2(a)(或(b))、3-3(a)(或(b))所示的 一阶系统模拟电路,重复实验步骤2、3,观察并记录实验曲线。 注:本实验所需的无源电路单元均可通过面板上的U 20单元的不同接线来实现。 六、实验报告 根据测得的无零点一阶系统阶跃响应曲线,测出其时间常数; 七、实验思考题 简述根据一阶系统阶跃响应曲线确定系统的时间常数T 的两种常用的方法。 八、附录 1.无零点的一阶系统 根据 1 0.2S 1R(S)C(S)+=,令S 1R(S)=则 1) S(0.2S 1C(S)+= 对上式取拉氏反变换得 t 0.21e 1C(t)--= 当0.2t =时,则0.632e 1C(0.2)1=-=- 上式表明,单位阶跃响应曲线上升到稳态值的63.2%时对应的时间,就是系统的时间常数T=0.2S 。图3-4为系统的单位阶跃响应曲线。 图3-4 无零点一阶系统的单位阶跃响应曲线 2.有零点的一阶系统(|Z|<|P|) 由传递函数G(S),求得系统单位阶跃的输出 5 S 0.8S 0.21)S(0.2S 1)0.2(S C(S)++=++=

控制系统阶跃响应仿真

实验五 控制系统MA TLAB 建模 1.实验目的 (1)熟练掌握系统模型的建立,及其MATLAB 语言表达。 (2)掌握系统传递函数模型、零极点模型、状态空间模型的MATLAB 表达及转换。 (3)掌握利用MA TLAB 求半定系统的传递函数。 (4)掌握利用MA TLAB 绘制单位阶跃响应曲线。 2.实验仪器 (1)Matlab6.5应用软件安装版 一套 (3)PC 机 一台 3. 实验原理 依据MA TLAB 的建模指令,利用MA TLAB 对系统进行仿真分析,绘制系统单位阶跃响应图。 4. 实验步骤 (1)用MATLAB 语言表达系统传递函数模型。 (2)利用MA TLAB 指令实现传递函数模型,状态空间模型、零极点模型转换。 (3)建立半定系统模型,利用MATLAB 求系统传递数。 (4)绘制系统单位阶跃响应曲线。 5. 实验报告内容(选做其中三题) 1、将下列系统传递函数模型用MATLAB 语言表达出来 )170046842541254289/()1700109329135()(23452341+++++++++=s s s s s s s s s s G )15)(5)(1/()3(15)(2++++=s s s s s G )252)(1)(1/()23()2(10023223+++-++++=s s s s s s s s s G . 2、求1中各个系统模型的等效状态空间模型。 3、将以下状态空间模型用MA TLAB 语言表达出来。 []X 5 2 1y u 321X 5-3-06 4 01 2 3X =??????????+??????????=,。 4、求3中的系统模型的等效传递函数模型和零极点模型。 5、使用MATLAB 语言分别表示图5-14所示质量系统m1、m2的位移x1、x2对输入f 的传递函数X2(s )/F (s )和X1(s )/F (s ),其中m1=12kg ,m2=8kg ,k=1000N/m ,c=0.1N/m/s 。 6、求1、3各系统的单位阶跃响应。

相关文档
相关文档 最新文档