文档库 最新最全的文档下载
当前位置:文档库 › 飞机构造之结构

飞机构造之结构

飞机构造之结构
飞机构造之结构

第一章 飞机结构

1.1 概 述

1.2 飞机载荷

1.3 载荷、变形和应力的概念

1.4 机翼结构

1.5 机身结构

1.6 尾翼和副翼

1.7 机体开口部位的构造和受力分析

1.8 定位编码系统

1.1.概述

固定机翼飞机的机体由机身、机翼、安定面、飞行操纵面和起落架五个主要部件组成。

直升机的机体由机身、旋翼及其相关的减速器、尾桨(单旋翼直升机才有)和起落架组成。

机体各部件由多种材料组成,并通过铆钉、螺栓、螺钉、焊接或胶接而联接起来。飞机各部件由不同构件构成。飞机各构件用来传递载荷或承受应力。单个构件可承受组合应力。

对某些结构,强度是主要的要求;而另一些结构,其要求则完全不同。例如,整流罩只承受飞机飞行过程中的局部空气动力,而不作为主要结构受力件。

1.2.飞机载荷

飞行中,作用于飞机上的载荷主要有飞机重力,升力,阻力和发动机推力(或拉力)。飞行状态改变或受到不稳定气流的影响时,飞机的升力会发生很大变化。飞机着陆接地时,飞机除了承受上述载荷外,还要承受地面撞击力,其中以地面撞击力最大。飞机承受的各种载荷中,以升力和地面撞击力对飞机结构的影响最大。

1.2.1.平飞中的受载情况

飞机在等速直线平飞时,它所受的力有:飞机重力G、升力Y、阻力X和发动机推力P。为了简便起见,假定这四个力都通过飞机的重心,而且推力与阻力的方向相反。则作用在飞机上的力的平衡条件为:升力等于飞机的重力,推力等于飞机的阻力。

即:

Y = G

P = X

图 1 - 1 平飞时飞机的受载

减速。由于在飞机加速或减速的同时,飞行员减小或增大了飞机的迎角,使升力系数减小或增大,因而升力仍然与飞机重力相等。平飞中,飞机的升力虽然总是与飞机重力相等,但是,飞行速度不同时,飞机上的局部气动载荷(局部空气动力)是不相同的。飞机以小速度平飞时,迎角较大,机翼上表面受到吸力,下表面受到压力,这时的局部气动载荷并不很大;而当飞机以大速度平飞时,迎角较小,对双凸型翼型机翼来说,除了前缘要受到很大压力外,上下表面都要受到很大的吸力。翼型越接近对称形,机翼上下表面的局部气动载荷就越大。所以,如果机翼蒙皮刚度不足,在高速飞行时,就会被显著地吸起或压下,产生明显的鼓胀或下陷现象,影响飞机的空气动力性能。

1.2.2. 飞机在垂直平面内作曲线飞行时的受载情况

飞机在垂直平面内作曲线飞行的受载情况如图1-2所示。这时,作用于飞机的外力仍是飞机的重力、升力、阻力和发动机的推力。但是,这些外力是不平衡的。 曲线飞行虽是一种受力不平衡的运动状态,但研究飞机在曲线飞行中的受载情况时,为了方便起见,可以假设飞机上还作用着与向心力大小相等、方向相反的惯性离心力。这样,就可以把受力不平衡的曲线飞行作为受力平衡的运动状态来研究。 飞机在垂直平面内作曲线飞行时,升力可能大大超过飞机重量。飞机在曲线飞行中所受的载荷可能比平飞时大得多。可以推导出如下公式:其中r 为飞机机动飞行的曲率半径,v 为飞行速度。

Y -Gcos = m

r

v

2

由于飞机在每一位置的θ角不同,而且飞行速度和曲率半径也不可能一样,所以,飞机在垂直平面内做曲线飞行时,飞机的升力也是随时变化的。

图 1 - 2 飞机在垂直平面内的曲线飞行

N (惯性离心力)

1.2.3. 飞机在水平平面内作曲线飞行时的受载情况

水平转弯时,飞机具有一定的倾斜角(玻度)β,升力与垂线之间也构成β角。这时,水平分力Y sin β就是飞机转弯时的向心力,它与惯性离心力N 平衡;升力的垂直分力Ycos β与飞机重力G 平衡,即

Y =

β

cos G

水平转弯时,cos β总是小于1,故升力总是大于飞机的重量;倾斜角越大,cos β越小,因而升力越大。

1.2.4. 飞机过载

在曲线飞行中,作用于飞机上的升力经常不等于飞机的重量。为了衡量飞机在某一飞行状态下受外载荷的严重程度,引出过载(或称载荷因数)这一概念。作用于飞机某方向的除重量之外的外载荷与飞机重量的比值,称为该方向的飞机重心过载,用n 表示。飞机在Y 轴方向的过载,等于飞机升力(Y )与飞机重量的比值,即

G

Y n y =

飞机在X 轴方向的过载等于发动机推力P 与飞机阻力X 之差与飞机重量的比值,即

G

X P n x -=

图 1 - 3 飞机在水平转弯时的受载

飞机在Z 轴方向的过载等于飞机侧向力(Z )与飞机重量的比值,即

G

Z n z

飞机在飞行中,Y 轴方向的过载y n 往往较大,它是飞机结构设计中的主要指标之一,飞机的结构强度主要取决于Y 方向的过载y n 。而其它两个方向的过载(x n ,Z n )较小,它们对飞机结构强度的影响也较小。

在不同的飞行状态下,飞机

重心过载的大小往往不一样。过载可能大于1、小于1、等于1、等于零甚至是负值,这决定于曲线飞行时升力的大小和方向。飞机平飞时,升力等于飞机的重量,y n 等于1;曲线飞行时,升力经常不等于1。飞行员柔和推杆使飞机由平飞进入下滑的过程中,升力比飞机重量稍小一些,y n 就小于1;当飞机平飞时遇到强大的垂直向下的突风或在垂直平面内做机动飞行时,驾驶员推杆过猛,升力就会变成负值,y n 也就变为负值;当飞机以无升力迎角垂直俯冲时,载荷因数就等于零。

y n 的正、负号与升力的正、负号一致,而升力的正、负号取决于升力与飞机Y 轴(立轴)

的关系。如果升力的方向与Y 轴相同,则取正号;反之则取负号。

1.2.5. 飞机部件的过载

在研究飞机各部件的载荷时,只知道飞机的过载是不够的,还必须知道部件的过载。部件过载是该部件在某一飞行状态中的质量力与其本身重量的比值。当飞机没有对重心的角加速度时,部件的过载等于飞机的过载;当飞机有对重心的角加速度时,飞机重心以外各部件的过载,等于飞机的过载加上或减去一个附加过载。

Y (立轴)

Z (横轴)

X (纵轴)

飞机重心

图 1 - 4 飞机的坐标轴

1.2.6.飞机着陆时的过载

飞机着陆接地时的速度可分解为水平分速和垂直分速。由于水平分速是在着陆滑跑过程中逐渐消失的,因此飞机沿水平方向的受力不大;垂直分速是在飞机与地面相对撞击后很短的时间内消失的,故飞机沿垂直方向的撞击力较大。飞机着陆接地时承受的载荷,主要就是作用于起落架的垂直撞击力。飞机接地时垂直方向的过载,为作用于起落架上的垂直撞击力与飞机重量的比值。

如果飞机没有绕重心的角加速度,则部件的过载就等于飞机重心的过载;否则,还要加上由角加速度引起的附加过载。例如:前三点式起落架飞机以两个主轮接地时,作用于起落架的载荷对飞机重心的力矩,要使飞机产生机头下俯的角加速度。这时,飞机重心后面的部件,其过载等于飞机重心过载加上一个附加过载;而飞机重心前面的部件,则应减去一个附加过载。

图 1 - 5 飞机着陆接地时部件的载荷

1.3.载荷、变形和应力的概念

1.3.1.载荷及其分类

任何结构和结构中的各个构件,在工作过程中都会受到其它物体对它的作用力,这种作用力通常叫做载荷(或外部载荷)。例如,飞行中机翼上的空气动力,起落架等部件的重力,都是作用于机翼上的载荷。各种构件在载荷的作用下,它的支点都会对它产生反作用力。构件承受的各种载荷和支点的反作用力,统称为作用于该构件的外力。

按作用方式,载荷主要分为集中载荷和分布载荷。集中载荷是指集中作用于一点上的载荷。分布载荷是指作用一个面积或长度上的载荷。如果分布载荷的作用面积相对较小,可以把它近似看作是集中载荷,这样在实际中可使问题简化。例如吊装在机翼上发动机对机翼的载荷可认为是集中载荷。

根据载荷作用于构件的性质的不同,载荷可分为静载荷和动载荷。如果载荷是逐渐加到构件上去的,或者载荷加到构件上后,它的大小和方向不变或变化很小,此载荷叫静载荷。如飞机停放时起落架所承受的载荷,就是一种静载荷;又如,千斤顶顶飞机时,所承受的载荷是逐渐增大的,它也属于静载荷。

如果载荷是突然加到构件上去的,或者载荷加到构件上后,它的大小和方向(或其一)有显著变化,这样的载荷称为动载荷。如飞机着陆时起落架所受到的地面撞击力;飞机着陆滑跑因为跑道不平,使各部分承受的力都属于动载荷。

气动力分布载荷

机身反

作用力

机翼重力分布载荷

发动机

集中载荷

图 1 - 6 作用于机翼上的外载荷

1.3.

2.构件在载荷作用下的变形

构件在载荷作用下,其尺寸和形状都会有不同程度的改变,这种尺寸和形状的改变叫做变形。

构件在载荷作用下所产生的变形,当载荷去掉后即能消失的变形,叫弹性变形。不能消失的变形叫永久变形(或残余变形)。

构件承受载荷的情况不同,它所产生的变形形式也不一样,但其基本变形为拉伸、压缩、剪切、扭转和弯曲五种。实际上,飞机结构受力时,各构件的变形,往往是比较复杂的,常常是几种变形的组合,称为复合变形。

1.3.3.内力和应力的概念

当构件受到外力作用而变形时,材料分子之间的距离发生变化,这时分子之间会产生一种反抗变形,力图使分子间的距离恢复原状的力,这种力叫内力。构件受力变形时所产生的内力,可利用截面法求得。

要判断构件受力的严重程度,仅知道内力的大小是不够的。构件在外力作用下,单位横截面面积上的内力叫做应力。如果内力是均匀分布的,则构件任意截面上的应力等于截面上的总内力除以横截面积。应力可分成垂直于所取截面和平行于所取截面的两个分量。垂直于横截面的应力称为正应力,平行于横截面的应力称为剪应力。

1.3.4. 强度和刚度的概念

构件在传力过程中,横截面上的应力要随着载荷的增大而增大。对于一定材料制成的构件来说,当截面上的应力增大到一定限度后,构件就会损坏(产生显著的永久变形或断裂)。构件在外力作用下,抵抗破坏(或断裂)的能力叫做构件的强度。构件的强度越大,表示它开始损坏时所受的载荷越大。为了使构件在规定的载荷作用下工作可靠,应保证它具有足够的强度。

构件即使强度足够,但在载荷作用下还可能由于变形量过大而影响工作。因此,构件还应具有足够的抵抗变形的能力。构件在外力作用下抵抗变形的能力称为构件的刚度。构件的刚度越大,在一定的载荷作用下产生的变形越小。

构件在外力作用下保持其原有平衡形式的能力称为构件的稳定性。细长杆和薄壁结构受压后易突然失去原有的平衡形式,此种现象叫做失去稳定性,简称失稳。飞机蒙皮在受压后会产生皱折的现象,就是由于蒙皮受压失稳造成的。

要保证构件正常工作,构件必须具有足够的强度、刚度和稳定性。构件的强度、刚度、稳定性与其材料的性质、截面尺寸和形状有关。另外构件的强度和刚度还与使用、维护的条件有关。例如,构件装配不当,受到划伤或腐蚀等,强度和刚度就会减弱。因此,维护和使用过程中,应根据构件的性质和受力特点等,注意保持其强度和刚度。

1.3.5. 飞机承受的五种主要应力 所有飞机都承受有五种主要应力 ● 拉伸应力 ● 压缩应力 ● 扭转应力(扭矩) ● 剪切应力 ●

弯曲应力(弯矩)

拉伸应力是抵抗试图拉断物体的应

力。压缩应力是抵抗压力的应力。扭矩是产生扭转变形的应力。剪切应力是抵抗力

图引起材料某一层与相邻一层产生相对错动之力的应力。弯曲应力是压缩应力和拉伸应力的组合。当杆件受到弯曲作用时,弯曲的内侧面缩短(压缩),而弯曲的外侧面拉长(拉伸)。

拉 伸 压 缩

扭 转

剪 切

弯 曲

中性层

拉 伸

压 缩

图 1 - 7 作用于飞机上的五种基本应力

1.4. 机翼结构

1.4.1. 机翼的功用

机翼是飞机的一个重要部件,其主要功用是产生升力。当它具有上反角时,可为飞机提供一定的横侧稳定性。在机翼上安装有一些操纵面,在其后缘,有副翼和后缘襟翼;在其前缘有前缘襟翼、缝翼;在其上表面有扰流板。另外很多飞机的发动机和主起落架安装于机翼结构上。机翼的内部空间常用来收藏主起落架和储存燃油。

1.4.

2. 机翼的配置

目前,除了个别低速飞机仍是双翼机外,绝大多数是单翼机。

单翼机在机身上的配置,可分为上单翼、中单翼和下单翼三种型式。

从机翼与机身的干扰阻力来看,以中单翼为最小,

上单翼次之,下单翼最大。从机身内部容积的利用来看,以上单翼为最优跃。因为上单翼飞机机翼通过机身的部分骨架,位于机身上部,不影响机身内部容积的利用;中单翼的翼梁要横穿机身中部,对机身内容积的利用有一定影响;下单翼飞机机身内的可用容积较大,但固定在机身下部的翼梁,会限制安装在机翼下部部件的尺寸。吊装在下单翼飞机下部的发动机可使发动机的维护方便。从起落架的配置来看,如果将起落架装在机翼上,上单翼飞机的起落架较长,这样

不仅重量大,而且不易收放。在这方面,下单翼机比较有利。此外,上单翼飞机由于机翼位置较高,检修、

拆装机翼上的发动机或其它附件,以及向机翼内的油箱加添燃油都不方便,这会给维护工作带来困难。

1.4.3.

机翼上的外载荷

如图1-10所示,飞行中,作用于机翼的外部载荷有:空气动力、机翼结构质量力和部件的质量力。机翼在外部载荷作用下,象一根固定在机身上的悬臂梁一样,要产生弯曲和扭转变形,因此,在这些外载荷作用下,机翼各截面要承受剪力、弯矩和扭矩。由于机翼结构沿水平方向尺寸较大,因而水平剪力和水平弯矩的对飞机结构受力影响较小,在受力分析时只分析垂直剪力、扭矩和垂直弯矩。

图 1 - 8 机翼的配置形式

垂直剪力

垂直弯矩

水平弯矩

水平剪力扭矩

图 1 - 9 机翼上所受的剪力、弯矩、扭矩

机翼结构质量力是机翼结构重量和它在飞行中产生的惯性力的总称,即机翼结构重量和变速运动惯性力。

升力是当机翼以一定速度相对空气运动时,空气作用在机翼表面上的空气动力在垂直于来流方向上的分量。

图 1 - 10 翼剖面上的空气动力

1.4.4.平直机翼各截面的剪力、弯矩和扭矩图

机翼主要受两种类型的外载荷:一种是以空气动力载荷为主,包括机翼结构质量力的分布载荷;另一种是由各连接点传来的集中载荷。这些外载荷在机身与机翼的连接处,由机身提供的支反力取得平衡。当机翼分成两半分别与机身相连时,可把每半个机翼看做支持在机身上的悬臂梁;若整个机翼为一体时,则可把它看做支持在机身上的双支点外伸梁。

作用于机翼各截面的剪力、弯矩和扭矩是不相等的。如图1-11所示,为平直机翼的剪力、弯

矩和扭矩图,它们描述了机翼截面剪力、弯矩和扭矩沿机翼翼展方向的变化情况。可以看出:①如果机翼上只有空气动力和机翼结构质量力,则越靠近机翼根部,横载面上的剪力、弯矩和扭矩

越大。②当机翼上同时作用有部件集中质量力时,上述力图会在集中质量力作用处产生突变或转折。

如图1-12所示为后掠机翼的剪力、弯矩和扭矩图。

1.4.5. 机翼主要受力构件

机翼的外部载荷,是由许多构件组成一定型式的结构来承受的。

机翼通常是由翼梁、桁条、翼肋和蒙皮等构件组成。翼梁由缘条和腹板铆接而成,翼肋铆结在翼梁腹板上,桁条铆接在翼肋上,蒙皮则铆接在翼梁缘条、翼肋和桁条等构件上。

机翼结构中,各种构件的基本作用不外乎有两方面:一是形成和保持必需的机翼外形;二是承受外部载荷引起的剪力、弯矩和扭矩。

形成机翼外形的基本构件是翼肋和蒙皮。翼肋的形状就是根据选定的翼型制成的。蒙皮包在整个机翼骨架外面,可以保证机翼外表光滑和形成必要的翼型。为了使蒙皮在局部空气动力作用下,不致产生过大的鼓胀和下陷,现代飞机都采用了金属蒙皮。此外,桁条对保持机翼的外形也有一定作用,因为它能支持蒙皮,防止蒙皮产生过大的变形。

机翼结构中承受剪力、弯矩和扭矩的基本构件是翼梁、桁条和蒙皮(如图1-13所示)。

图 1 - 11 平直机翼剪力、弯矩和扭矩 图 1 - 12 后掠翼力图

剪力Q 要使截面外端沿垂直方向向上移动。由于机翼的蒙皮、翼梁缘条和桁条沿垂直方向很容易产生变形,而翼梁腹板抵抗垂直方向变形的能力却很大,它能有效地阻止机翼向上移动。所以,剪力主要是由翼梁腹板承受的。

弯矩要使机翼产生弯曲变形。当向上弯曲

时,翼梁下缘条、机翼下表面的桁条和蒙皮,都会产生拉伸的轴向内力,而翼梁上缘条、上

表面的蒙皮和桁条,则产生压缩的轴向内力,它们组成内力偶与弯矩平衡。所以,弯矩引起的轴向力是由翼梁缘条、桁条和蒙皮共同承受的。

机翼受扭矩作用时,翼梁缘条和桁条都很

容易变形,而金属蒙皮和翼梁腹板所组成的合

围框,却能很好地反抗扭转变形,这时,蒙皮和腹板截面上会产生扭转剪应力并形成反力矩来与扭矩平衡。因此,金属蒙皮机翼的扭矩,

是由蒙皮和腹板所组成的几个合围框承受。由于翼梁腹板上同时产生的两个方向相反的扭转剪应力,能互相抵消或部分抵消,所以,可近似地认为,扭矩是由蒙皮形成的整个合围框承受的。 对于双梁式机翼,其扭矩是由上、下翼面蒙皮和前、后梁组成的合围框(盒段)承受和传递。如果机翼前缘没有安装前缘缝翼和前缘襟翼,则前缘蒙皮与前梁组成的盒段也承受和传递一小部分扭矩。

蒙皮

桁条

翼肋

翼梁缘条

翼梁腹板

图 1 - 13 机翼结构的基本组成构件

图 1 - 14 机翼结构中各构件的连接关系

1.4.6. 机翼结构型式 一.布质蒙皮机翼

这种机翼的结构特点是采用了布质蒙皮。布质蒙皮在机翼承受弯曲、扭转作用时,很容易变形,因此,它不能承受机翼的弯矩和扭矩,只能承受由于局部空气动力(吸力或压力)所产生的张力。如图1-16所示,为一种布质蒙皮机翼结构图。在这种机翼结构中,弯矩引起的轴向力,全部由翼梁缘条承受;剪力由翼梁腹板承受;扭矩则由翼梁、加强翼肋和张线组成的桁架来承受。

由于机翼前缘的局部空气动力较大,布质蒙皮机翼的前缘常采用薄金属蒙皮制成。这种机翼的扭矩,一部分由加强翼肋、张线等组成的桁架承受,另一部分则由前缘蒙皮和前梁腹板组成的合围框承受。

布质蒙皮机翼的抗扭刚度较差,而且蒙皮容易产生局部变形(鼓胀和下陷),飞行速度较大时,会使机翼的空气动力性能受到很大影响,所以只适用于低速轻型飞机。 Q (剪力)

Q 前腹板

Q 后腹板

M 弯

M 扭

N 压

N 拉

τ扭

A B

C

图 1 - 15 机翼结构的受力概况

二.金属蒙皮机翼

现代飞机广泛应用了金属蒙皮机翼。金属蒙皮机翼不仅能承受局部空气动力,而且能承受机翼的扭矩和弯矩。

翼梁腹板承受剪力,机翼上下蒙皮和腹板组成的合围框承受扭矩,同时蒙皮还参与承受弯矩,是这类机翼结构受力的共同点。然而机翼的具体构造不同,蒙皮参与承受弯矩的程度也有所不同。这样,金属蒙皮的机翼结构,又可分为梁式和单块式两类。

梁式机翼

梁式机翼通常有单梁式和双梁式两种。它们装有一根或两根强有力的翼梁,蒙皮很薄,桁条的数量不多而且较弱,有些机翼的桁条还是分段断开的。梁式机翼的桁条承受轴向力的能力极小,其主要作用是与蒙皮一起承受局部空气动力,并提高蒙皮的抗剪稳定性,使之能够更好地承受扭金属蒙皮

布质蒙皮

加强翼肋

翼肋

张线

副翼

翼肋

张线

翼梁

加强翼肋

布质蒙皮

扭矩

紧 松

图 1 - 16 布质蒙皮机翼

分的蒙皮,由于截面积很小,分担的拉伸力也很小。由此可见,弯矩引起的轴向力主要是由翼梁缘条承受的。所以,这种机翼叫做梁式机翼。

梁式机翼的受力特点是:弯曲引起的轴向力主要由翼梁的缘条承受。剪力由翼梁的腹板承受。对双梁式机翼的扭矩可由前后梁腹板与上下蒙皮组成的盒段(合围框)、前梁腹板与前缘蒙皮组成的盒段承受。

梁式机翼的主要受力构件是翼梁,因此,它具有便于开口、与机身(或机翼中段) 连接较简便等优点。当飞行速度增大到一定程度后,薄金属蒙皮在局部空气动力作用下就难以保持良好的气动外形。同时,薄金属蒙皮的机翼结构,也不容易获得必要的抗扭刚度。

单块式机翼

现代飞机多采用单块式机翼。单块式机翼的构造特点是:蒙皮较厚;桁条较多而且较强;翼梁的缘条较弱,有时缘条的横截面积和桁条差不多。有的单块式机翼还用波形板来代替桁条。这种机翼的蒙皮,不仅具有良好的抗剪稳定性,而且有较好的抗压稳定性,因此,它不仅能更好地承受机翼的扭矩,而且能同桁条一起承受机翼的大部分弯矩。由于这种机翼结构,是由蒙皮、桁条和缘条组成一个整块构件来承受弯矩所引起的轴向力,所以叫做单块式机翼。

蒙皮

翼肋

桁条

翼梁

副翼

襟翼

图 1 - 17 单块式机翼

如今,单纯的梁式机翼很少采用,一般只用在低速或小型飞机上。速度较高的飞机大多采用带两、三根梁的单块式翼盒结构或多梁厚蒙皮式结构。

单块式机翼的受力特点是:弯曲引起的轴向力由蒙皮、桁条和缘条组成的整体壁板承受。剪力由翼梁腹板承受。扭矩由蒙皮与翼梁腹板形成的闭室承受。

单块式机翼的优点是:①通较好地保持翼型。②抗弯、扭刚度较大。③受力构件分散。

缺点是:①不便于开大舱口。②不便于承受集中载荷。③接头联接复杂。

梁式机翼与单块式机翼比较:

表 1 - 1 梁式、单块式机翼的结构特点

表 1 - 2 梁式、单块式机翼的受力特点

夹层结构机翼:

夹层结构机翼,在较大的局部空气动力作用下,仍能精确地保持翼型;在翼型较薄的条件下,可以得到必要的强度和刚度。

夹层结构机翼采用了夹层壁板来做蒙皮和其它构件。夹层壁板由内外两层薄金属板和夹芯组成。夹芯层有的是用轻金属箔制成的蜂窝状结构,有的是一层泡沫塑料或轻质金属波形板。夹芯层与内外层金属板胶接或焊接在一起。目前应用较广泛的是蜂窝夹芯壁板。

夹层结构的最大优点是能够承受较大的局部空气

动力而不致发生鼓胀、下陷现象;能够更好地承受弯

矩引起的轴向压力而不易失去稳定性。因此,蜂窝结

构机翼能够在大速度飞行时很好地保持外形,同时结

构重量也较轻。

蜂窝结构还有一些缺点,例如:很难在蜂窝壁板

上开舱口,不便于承受大的集中载荷,损坏后不容易

修补,各部分连接比较复杂。

在飞机上使用蜂窝结构的部位主要是一些承受局

部空气动力载荷的非主要受力构件上。如操纵面、调

图 1 - 18 蜂窝夹层结构

整片、机翼前缘、整流罩等。

1.4.7.机翼构件构造

●翼梁

在各种形式的机翼结构中,翼梁的主要功用都是承受机翼的弯矩和剪力。主要有三种形式的翼梁:腹板式、整体式和桁架式翼梁。现代飞机机翼,一般都采用腹板式金属翼梁。这种翼梁由缘条和腹板铆接而成。缘条用铝合金或合金钢的厚壁型材制成,用于承受拉、压力。腹板用铝合金板制成,用于承受剪力。薄壁腹板上往往还铆接了许多铝合金支柱,以增强其抗剪稳定性和连接翼肋。为了合理地利用材料和减轻机翼的结构重量,缘条和腹板的截面积,一般都是沿翼展方向改变,即翼根部分的横截面积较大,翼尖部分的横截面积较小。腹板式翼梁的优点是,能够较好地利用机翼结构高度来减轻重量,制造方便。

某些飞机上采用了整体式翼梁。整体式翼梁实际上是一种用高强度的合金钢锻制成的腹板式翼梁,它的优点是:刚度大,截面积寸可以更好地做得符合等强度要求。

在翼型较厚的低速重型飞机上,常采用桁架式翼梁。这种翼梁由上下缘条和许多直支柱、斜支柱连接而成。翼梁受剪力时,缘条之间的支柱承受拉力和压力。缘条和支柱,有的采用铝合金管或钢管制成,有的则用厚壁开口型材制成。

●桁条

在金属蒙皮机翼中,桁条的主要功用是:支持蒙皮,防止它在承受局部空气动力时产生过大的局部变形,并与蒙皮一起把局部空气动力传给翼肋;提高蒙皮的抗剪和抗压稳定性,使它能更好地承受机翼的扭矩和弯矩;与蒙皮一起承受由弯矩引起的轴向力。

梁式机翼的桁条,一般都用薄铝板制成,它有开口和闭口两种。开口截面桁条的稳定性很差,而且由于壁很薄,实际上不能参与承受机翼的弯矩。闭口截面的桁条,稳定性较好,可以参与承受机翼的弯矩。但是这种桁条与蒙皮铆接时,具有两道铆缝,对于保持机翼表面光滑不利。

单块式机翼的桁条,是用铝合金挤压而成的,壁较厚,稳定性很好。

●翼肋

翼肋按其功用可分为普通翼肋和加强翼肋两种。普通翼肋的功用是:构成并保持规定的翼型;把蒙皮和桁条传给它的局部空气动力传递给翼梁腹板,而把局部空气动力形成的扭矩,通过铆钉以剪流的形式传给蒙皮;支持蒙皮、桁条、翼梁腹板,提高它们的稳定性等。加强翼肋除了具有上述作用外,还要承受和传递较大的集中载荷;在开口边缘处的加强翼肋,则要把扭矩集中起来传给翼梁。

腹板式普通翼肋通常都用铝合金板制成,其弯边用来同蒙皮和翼梁腹板铆接。周缘弯边和与它铆接在一起的蒙皮,作为翼肋的缘条承受弯矩。翼肋的腹板则承受剪力。这种翼肋的腹板,强度一般都有富裕,为了减轻重量,腹板上往往开有大孔。利用这些大孔还可穿过副翼、襟翼等传动构件。为了提高腹板的稳定性,开孔处往往还压成卷边,有时腹板上还铆着加强支柱,或者压成凹槽。腹板式加强翼肋的缘条,是铝合金型材料制成的。为了承受较大的集中载荷,加强翼肋的腹板较厚,有时还采用双层腹板,或者在腹板上用支柱加强。

桁架式翼肋的构造与桁梁相似,也由缘条、直支柱和斜支柱组成。有些翼型较厚的机翼,用这种翼肋来承受较大的集中载荷。

腹板式翼梁

整体式翼梁

桁架式翼梁

B —B 截面

A —A 截面

C —C 截面

D —D 截面

A —A 截面

B —B 截面

腹板

支柱

缘条

直支柱

斜支柱

缘条

图 1 - 19 翼梁的构造

蒙皮

各种机翼的蒙皮,都具有承受局部空气动力和形成机翼外形的作用。在金属蒙皮机翼结构中,蒙皮还要承受机翼的扭矩和弯矩。

现代飞机的机翼,通常都采用铝合金蒙皮,它的厚度随机翼的结构型式和它在机翼上的部位确定。由于机翼前缘承受的局部空气动力较大,飞行中又要求它能够更准确地保持外形,而翼根部位承受的扭矩和弯矩通常较大,所以一般机翼的前缘和翼根部位,蒙皮最厚,后缘和翼尖部位,蒙皮较薄。为了避免由于各块蒙皮的厚度不同而影响机翼表面的光滑性,某些飞机还采用了变厚度的过渡蒙皮。现代飞机的某些操纵面采用了复合材料。

1.4.8. 平直机翼结构中力的传递

机翼受到各种外力作用后,结构中互相连接的各构件,就会产生作用力和反作用力,依次把

腹 板

腹板式加强翼肋

缘 条

桁架式翼肋

斜支柱

直支柱

缘 条

支 柱

图 1 - 20 翼肋的构造

这些外力传到机身上去。同时机身就给机翼以反作用力使之平衡。力在机翼结构中的传递过程,就是建立在构件之间的作用和反作用的关系上的。

一.空气动力的传递

蒙皮怎样将局部空气动力传给桁条和翼肋

蒙皮铆接在桁条和翼肋上,当它受到吸力作用时,就会通过铆钉把力传给桁条和翼肋,这时铆钉承受拉力;蒙皮受到压力作用时,局部空气动力直接由蒙皮作用在桁条和翼肋上,铆钉并不受力。无论在吸力或压力作用下,蒙皮都要承受张力。

通过铆钉或由蒙皮直接传给桁条的力,由桁条在翼肋上的固定点产生反作用力来平衡。可见,桁条在局部空气动力作用下,象支持在许多翼肋上的多支点梁一样,要受到弯曲作用。有些蒙皮较厚的机翼上,桁条并不与翼肋直接连接,蒙皮受吸力时传给桁条的力,由桁条两边蒙皮与翼肋相连的铆钉产生的反作用力来平衡。综上所述,作用在翼肋上的空气动力来自两方面:一方面是由直接与翼肋贴合的蒙皮传来的;另一方面,来自与翼肋相连的桁条。

局部空气动力

翼肋反作用力

桁 条

翼 肋

桁条反作用力

蒙皮

铆 钉 图 1 - 21 蒙皮的受力平衡

飞机构造

第一章 在大气层内或大气层空间(太空)飞行的器械统称为飞行器。飞行器可分为:航空器,航天器,火箭,导弹。 在大气层内飞行的飞行器称为航空器 在太空飞行的飞行器称为航天器 火箭是以火箭发动机为动力的飞行器 有动力装置产生前进推力,有固定机翼产生升力,在大气层中飞行的重于空气的航空 器称为飞机 飞机的主要组成部分由:机翼,尾翼,机身,起落架,飞机操纵系统,飞机动力装置 和机载设备等 航空发动机分类:(1)活塞式航空发动机。(2)燃气涡轮发动机,又分为:涡轮喷 气发动机、涡轮风扇发动机、涡轮螺旋桨发动机、涡轮轴发动机。(3)冲压发动机 活塞式航空发动机的结构与原理结构:由气缸,活塞以及把活塞的往复运动转变为曲轴旋转运动的曲柄连杆机构等主要部分组成。原理:曲柄连接着螺旋桨,螺旋桨随 着曲柄转动而转动,曲柄侧支承在轴承上。气缸上装有进气门和排气门,进气门是控 制空气和汽油的混合气进入的零件,汽油燃烧完以后由排气门排出。 燃气涡轮发动机原理:空气在压气机中北压缩后,在燃烧室中与喷入的燃油混合燃烧,生成高温高压燃气驱动燃气涡轮作高速旋转,将燃气的部分能量转变为涡轮功。涡轮 带动压气机不断吸进空气并进行压缩,是核心机连续工作。从燃气涡轮排出的燃气任 具有很高的压力和温度,晶膨胀后释放能量用于推进。 第六章 飞机结构设计的基本要求:(1)气动要求(2)重量要求(3)使用维护要求(4)工 艺性要求(5)成本要求——经济性要求 过载:飞机上出重力之外的外力之和与飞机重力之比。典型的过载:定直平飞过载, 定常盘旋的过载,垂直机动的过载,着陆时的过载 飞机分类:1、甲类飞机——可以完成全部机动动作的飞机,2、乙类飞机——可以完成部分机动动作的飞机,3、丙类飞机——不能作机动飞行的飞机。 安全系数:定义为设计载荷与使用载荷之比,也就是设计过载与使用过载之比。其物 理意义就是实际使用载荷要增大到多少倍结构才破坏,这个倍数就是安全倍数。

飞机原理与构造简答题答案

1、以双梁式直机翼为例,说明气动载荷是如何传递的。(18分) (1)蒙皮把气动载荷分别传给长桁和翼肋:蒙皮受气动吸力时,桁条和翼肋通过铆钉受拉对蒙皮提供支反力;蒙皮受气动压力时,蒙皮直接压在桁条和翼肋上,根据作用力与反作用力的原理,蒙皮把外载传递给了翼肋和长桁。 (2)长桁把自身承受的初始气动载荷传给翼肋 桁条与翼肋直接用角片(或间接通过蒙皮)相连,此时载荷方向垂直于长桁轴线,翼肋向长桁提供支持。此时,桁条可以看成支持在翼肋上的多点连续梁,长桁把气动载荷传递给了翼肋。至此,作用在蒙皮上的气动载荷直接或由长桁间接地全部传给了翼肋。 (3)翼肋把气动载荷转换成了垂直载荷和力矩,并相应的传到了梁腹板和组成封闭翼盒的各元件上 (4)翼梁将剪流往根部传递 由于梁腹板的抗弯能力比梁的缘条小的多,可略去其承弯能力,因而腹板以平板受剪的形式平衡,并将剪流往根部传递。最后在根部有机翼—机身对接接头提供垂直方向的支反力来平衡。 (5)蒙皮、腹板承受扭矩。机翼的第三个总体内力扭矩以蒙皮和腹板受剪的形式,向根部传递,总扭矩到机翼根部应通过加强肋将一圈剪流转换成适合于机翼—机身对接接头承受的一对集中力,再通过接头传给机身。 2、说明双梁式直机翼的普通翼肋的作用。(10分) (1)用以承受蒙皮传来的局部气动载荷 (2)把局部气动载荷转换成适合于主受力盒段各组成元件受力特性的载荷形式 (3)然后把它们传到这些主要元件上,向机翼根部传递,并进而通过对接接头传给机身 3、比较分析机翼各典型受力型式的结构受力特点。(20分) (1)梁式机翼:翼梁是主要受力构件,梁式机翼便于开口而不致破坏原来的主要传力路线;机翼、机身通过几个集中接头连接,所以连接简单、方便;主要依靠翼梁承受弯矩(2)单块式机翼:上、下壁板为主要受力构件。这种机翼比梁式机翼的刚度特性好。同时,由于结构分散受力,能更好的利用剖面高度,在某些情况下材料利用率较高,重量可能较轻,缺点是不便于大开口。 (3)多腹板式机翼:主要由上、下蒙皮承受弯矩,与梁式、单块式机翼相比,材料分散性更大。一般来说,多腹板式机翼的刚度大,材料利用率也更好些,然而也存在类似单块式机翼的缺点 4、以桁条式机身后段上的一个垂直集中力Pz为例,分析说明载荷是如何传给机身结构,又是如何在机身结构中传递的?(10分) 桁条式机身的一个加强隔框和水平尾翼的接头相连接,该加强隔框受到由接头传来的P z力,该框受到P z力后,要有向上移动的趋势,对此桁条起不了直接的限制作用,而由蒙皮通过沿框缘的连接铆钉给隔框以支反剪流q。q的分布与机身的受力型式,更明确地说,是和该框平面处机身壳体上受正应力面积的分布有关。对桁条式机身,假设只有桁条承受正应力,而蒙皮只受剪切时,剪流沿周缘按阶梯形分布。若蒙皮也受正应力,则在两桁条间的剪流值将不是等值,而成曲线分布。又因为蒙皮与桁条连接,蒙皮因剪流q受剪时将由桁条提供轴向支反剪流平衡,也即蒙皮上的剪流q将在桁条上产生拉、压的轴向力。 作用在框平面内的集中力:(1)由加强框承受该集中载荷(2)加强框将集中力扩散,以剪流的形式传给蒙皮。(3)剪流在蒙皮中向机身中段传递时,其剪切内力通过蒙皮连续向前传递;而弯曲内力则通过桁条的轴向拉、压力向前传递。 5、阐述飞机起落架减震机构中油气式减震器工作原理。(12分)

《飞机构造基础》课程教学大纲

《飞机构造基础》课程教学大纲 课程名称:飞机构造基础计划学时:48 计划学分:2.5 先修课程:工程力学、飞行技术基础课程性质:专业课 课程类型:必修课适用专业:飞机机电维修专业 编制单位:广州民航职业技术学院机务工程系编制时间:2001年11月 一、课程的性质和任务 本课程是飞机机电专业的一门重要专业课,其主要任务是使学生初步了解飞机的结构及飞机各系统的基本知识,为进行实际维护工作及故障诊断打下基础。本课程也是后续课程《飞机系统与附件》的基础课程 二、课程特色 本课程突出技能和能力培养,配合双证书制,使学生在校期间即可获得岗位资格证书。 本课程可利用现有737飞机附件,飞行操纵摸拟器及飞机电源系统示教板,采用现场教学方法使学生加深对飞机各系统的理解. 三、知识能力培养目标 (一)基本知识 飞机结构、载重与平衡、飞行操纵系统、液压系统、起落架系统、座舱环境控制系统、防冰排雨系统、飞机燃油系统、飞机防火系统、飞机电子系统等。 (二)应用能力 通过本课程的学习,使学生了解飞机组成、结构形式及受力特点,飞机载重与平衡的基本知识,掌握飞机飞行操纵系统、液压系统、起落架系统、座舱环境控制系统、飞机燃油系统的基本组成及工作原理;了解防冰排雨系统、飞机防火系统、飞机电子系统的基本知识。 (三)自学能力 培养学生具有对飞机构造及各系统的总的认识,为以后的飞机维护和排故工作打下基础。 四、课程内容和要求 见附表 五、考核方法和成绩评定 (一)考核方法 本课程的考核以平时作业、平时测验和期末笔试为主,平时占总成绩的40%,期34

末占总成绩的60%。 (二)成绩评定 1.基本知识,应知考核(书面、闭卷)成绩 2.上课的出勤率,学习态度 3.平时实践操作情况 六、教学参考书 ⑥《飞机构造基础》宋静波·王洪涛主编,广州民航职业技术学院出版 ⑥《航空电气》盛乐山主编 ⑥《民用航空器维修人员指南》(机体部分) 七、说明与建议 1.本大纲的总学时为48学时,学习本门课,应具有《飞行技术基础》、《工程力学》的基本知识。 2.本大纲由机务工程系宋静波老师编写。 附表: 35

飞机结构重要资料

单选 1. 直升机尾浆的作用是B A:提供向前的推力B:平衡旋翼扭矩并进行航向操纵 C:提供直升机主升力D:调整主旋翼桨盘的倾斜角 2. 正常飞行中,飞机高度上升后,在不考虑燃油消耗的前提下,要保持水平匀速飞行,则需要采取的措施为D A:降低飞行速度B:开启座舱增压设备C:打开襟翼D:提高飞行速度 3. 2.飞机高速小迎角飞行时,机翼蒙皮的受力状态是A A:上下蒙皮表面均受吸(易鼓胀)B:上下蒙皮表面均受压(易凹陷) C:上表面蒙皮受吸,下表面受压D:上表面蒙皮受压,下表面受吸 4. 3.飞机低速大迎角飞行时,蒙皮的受力状态为C A:蒙皮上表面受压,下表面受吸B:蒙皮上下表面都受吸 C:蒙皮上表面受吸,下表面受压D:蒙皮上下表面都受压 5. 4.垂直突风对飞机升力具有较大的影响主要是因为它改变了C A:飞机和空气的相对速度B:飞机的姿态C:飞机的迎角D:飞机的地速 6. 水平尾翼的控制飞机的A A:俯仰操纵和俯仰稳定性B:增升C:偏航操纵和稳定性D:减速装置 7. 2.飞机低速飞行时要作低角加速度横滚操纵一般可使用C A:飞行扰流板B:内侧高速副翼C:机翼外侧低速副翼D:飞行扰流板和外侧低速副翼 多选 1. 飞机转弯时,可能被操纵的舵面有BCD A:襟翼B:副翼C:飞行扰流板D:方向舵 2. 地面扰流板的作用有AD A:飞机着陆时减速B:横滚操纵C:俯仰操纵D:飞机着陆时卸除升力 3. 对飞机盘旋坡度具有影响的因素有A,B,C,D A:发动机推力B:飞机的临界迎角C:飞机的强度D:飞机的刚度 4. 飞机的部件过载和飞机重心的过载不相等是因为A,C,D A:飞机的角加速度不等于零B:飞机的速度不等于零 C:部件安装位置不在飞机重心上D:飞机的角速度不等于零 5. 梁式机翼主要分为A,C,D A:单梁式机翼B:整体式机翼C:双梁式机翼D:多梁式机翼 6. 从结构组成来看,翼梁的主要类型有B,C,D A:复合材料翼梁B:腹板式C:整体式D:桁架式 7. 机身的机构形式主要有A,C,D A:构架式B:布质蒙皮式C:硬壳式D:半硬壳式 8. 飞机表面清洁的注意事项有A,B,C,D A:按规定稀释厂家推荐的清洁剂与溶剂B:断开与电瓶相连的电路 C:遮盖规定部位,保证排放畅通D:防止金属构件与酸、碱性溶液接触 9. 飞机最易直接受到雷电击中的部位包括A,C,D A:雷达整流罩B:机翼上表面C:机翼、尾翼的尖端和后缘D:发动机吊舱前缘 10. 胶接的优点有: BC A:降低连接件承压能力B:减轻重量、提高抗疲劳能力 C:表面平整、光滑,气动性与气密性好D:抗剥离强度低、工作温度低

飞机构造课程复习考试试题及答案

《飞机构造》复习纲要 一、填空题 1. 构件在外力作用下,抵抗破坏(或断裂)的能力叫做构件的_______ 2. 夹层结构机翼采用了_______ 来做蒙皮和其他构件。 3. 动力装置主要用来产生________ ,使飞机前进。 4. _____ 是飞机处于平飞姿态时,为考虑平衡问题所选取的假想垂直面。 5. 机翼的主要功用是为飞机提供________ 。 、单选题 1. 加强隔框除了具有普通隔框的作用外,其主要作用是()。 A. 形成和保持机身的外形 B.提高蒙皮的稳定性 C.承受局部空气动力 D.承受和传递某些大部件传来的集中载荷 2. 机翼上的剪力主要是由以下哪个构件承受的?() A. 翼梁缘条 B.翼梁腹板 C.桁条 D.翼肋 3. 飞机在x轴方向的过载等于()。 A. 发动机推力与飞机阻力之差与飞机重量的比值 B. 飞机升力与飞机重量的比值 C. 飞机侧向力与飞机重量的比值 D. 飞机横向力与飞机重量的比值 4. 力臂的符号在什么情况下为正?() A. 重量的力臂在基准面之后 C.重量的力臂在重心之后 5. 最大起飞重量的定义是()。 A.经过核准的飞机及其载重的最大重量 C.飞机着陆所允许的最大重量6. 重力供油的原理是()。 A.燃油利用自身重力自动地向发动机供油 B. 重量的力臂在基准面之前 D.重量的力臂在重心之后 B. 在飞机开始起飞滑跑时所允许的最大重量D.当飞机在停机坪停机时所允许的最大重量 B. 采用电动油泵将燃油从油箱中抽出,然后供到发动 机 C. 在密封的油箱内通进一定压力的气体,使油从油 箱中压出供发动机工作的需要 D. 以上都不对 B.增大活塞移动的距离 D.增大油液流量 ()。 B.矿物基液压油 D.以上都不对 B.空气驱动泵 D.冲压空气涡轮驱动泵

飞机基本结构123

飞机基本结构 飞机结构一般由五个主要部分组成:机翼、机身、尾翼、起落装置和动力装置(主要介绍机翼和机身)。 机翼 薄蒙皮梁式 主要的构造特点是蒙皮很薄,常用轻质铝合金制作,纵向翼梁很强(有单梁、双梁或多梁等布置).纵向长桁较少且弱,梁缘条的剖面与长桁相比要大得多,当布置有一根纵梁时同时还要布置有一根以上的纵墙。该型式的机翼通常不作为一个整体,而是分成左、右两个机翼,用几个梁、墙根部传集中载荷的对接接头与机身连接。薄蒙皮梁式翼面结构常用于早期的低速飞机或现代农用飞机、运动飞机中,这些飞机的翼面结构高度较大,梁作为惟一传递总体弯矩的构件,在截面高度较大处布置较强的梁。 多梁单块式 从构造上看,蒙皮较厚,与长桁、翼梁缘条组成可受轴力的壁板承受总体弯矩;纵向长桁布置较密,长桁截面积与梁的横截面比较接近或略小;梁或墙与壁板形成封闭的盒段,增强了翼面结构的抗扭刚度,为充分发挥多梁单块式机翼的受力特性,左、右机翼最好连成整体贯穿机身。有时为使用、维修的方便,可在展向布置有设计分离面,分离面处采用沿翼盒周缘分散连接的形式将全机翼连成一体,然后整个机翼另通过几个接头与机身相连。 多墙厚蒙皮式(有时称多梁厚蒙皮式,以下统简称为多墙式) 这类机翼布置了较多的纵墙(一般多于5个);蒙皮厚(可从几毫米到十几毫米);无长桁;有少肋、多肋两种。但结合受集中力的需要,至少每侧机翼上要布置3—5个加强翼肋。当左、右机翼连成整体时,与机身的连接与多梁单块式类似。但有的与薄蒙皮梁式类似,分成左右机翼,在机身侧边与之相连,此时往往由多墙式过渡到多梁式,用少于墙数量的几个梁的根部集中对接接头在根部与机身相连。 蒙皮

各种飞机发动机原理

一、活塞式发动机 航空活塞式发动机是利用汽油与空气混合,在密闭的容器(气缸)内燃烧,膨胀作功的机械。活塞式发动机必须带动螺旋桨,由螺旋桨产生推(拉)力。所以,作为飞机的动力装置时,发动机与螺旋桨是不能分割的。主要由气缸、活塞、连杆、曲轴、气门机构、螺旋桨减速器、机匣等组成。气缸是混合气(汽油和空气)进行燃烧的地方。气缸内容纳活塞作往复运动。气缸头上装有点燃混合气的电火花塞(俗称电嘴),以及进、排气门。发动机工作时气缸温度很高,所以气缸外壁上有许多散热片,用以扩大散热面积。气缸在发动机壳体(机匣)上的排列形式多为星形或V形。常见的星形发动机有5个、7个、9 个、14个、18个或24个气缸不等。在单缸容积相同的情况下,气缸数目越多发动机功率越大。活塞承受燃气压力在气缸内作往复运动,并通过连杆将这种运动转变成曲轴的旋转运动。连杆用来连接活塞和曲轴。曲轴是发动机输出功率的部件。曲轴转动时,通过减速器带动螺旋桨转动而产生拉力。除此而外,曲轴还要带动一些附件(如各种油泵、发电机等)。气门机构用来控制进气门、排气门定时打开和关闭。 二、涡轮喷气发动机 在第二次世界大战以前,所有的飞机都采用活塞式发动机作为飞机的动力,这种发动机本身并不能产生向前的动力,而是需要驱动一副螺旋桨,使螺旋桨在空气中旋转,以此推动飞机前进。这种活塞式发动机+螺旋桨的组合一直是飞机固定的推进模式,很少有人提出过质疑。到了三十年代末,尤其是在二战中,由于战争的需要,飞机的性能得到了迅猛的发展,飞行速度达到700-800公里每小时,高度达到了10000米以上,但人们突然发现,螺旋桨飞机似乎达到了极限,尽管工程师们将发动机的功率越提越高,从1000千瓦,到2000千瓦甚至3000千瓦,但飞机的速度仍没有明显的提高,发动机明显感到“有劲使不上”。问题就出在螺旋桨上,当飞机的速度达到800公里每小时,由于螺旋桨始终在高速旋转,桨尖部分实际上已接近了音速,这种跨音速流场的直接后果就是螺旋桨的效率急剧下降,推力下降,同时,由于螺旋桨的迎风面积较大,带来的阻力也较大,而且,随着飞行高度的上升,大气变稀薄,活塞式发动机的功率也会急剧下降。这几个因素合在一起,决定了活塞式发动机+螺旋桨的推进模式已经走到了尽头,要想进一步提高飞行性能,必须采用全新的推进模式,喷气发动机应运而生。 喷气推进的原理大家并不陌生,根据牛顿第三定律,作用在物体上的力都有大小相等方向相反的反作用力。喷气发动机在工作时,从前端吸入大量的空气,燃烧后高速喷出,在此过程中,发动机向气体施加力,使之向后加速,气体也给发动机一个反作用力,推动飞机前进。事实上,这一原理很早就被应用于实践中,我们玩过的爆竹,就是依*尾部喷出火药气体的反作用力飞上天空的。早在1913年,法国工程师雷恩.洛兰就获得了一项喷气发动机的专利,但这是一种冲压式喷气发动机,在当时的低速下根本无法工作,而且也缺乏所需的高温耐热材料。1930年,弗兰克.惠特尔取得了他使用燃气涡轮发动机的第一个专利,但直到11年后,他的发动机在完成其首次飞行,惠特尔的这种发动机形成了现代涡轮喷气发动机的基础。现代涡轮喷气发动机的结构由进气道、压气机、燃烧室、涡轮和尾喷管组成,战斗机的涡轮和尾喷管间还有加力燃烧室。涡轮喷气发动机仍属于热机的一种,就必须遵循热机的做功原则:在高压下输入能量,低压下释放能量。因此,从产生输出能量的原理上讲,喷气式发动机和活塞式发动机是相同的,都需要有进气、加压、燃烧和排气这四个阶段,不同的是,在活塞式发动机中这4个阶段是分时依次进行的,但在喷气发动机中则是

飞机结构定义

飞机结构 4. Definitions 4. 定义 A. The definitions of primary and secondary structures are as follows: A. 定义基本的和次级的结构依下列各项: WARNING: THE FAILURE OF PSE’S COULD RESULT IN THE CATASTROPHIC FAILURE OF THE AIRPLANE. 警告: PSE (主要构件)的失效可以造成飞机灾难性的故障。 (1) Primary Structure: Structure which carries flight, ground, or pressure loads. Primary structure is classified into two categories: Principal Structural Elements (PSE) and Other Structure. Most of the primary structures on the airplane are Principal Structural Elements (PSE). PSEs are also known as Structural Significant Items (SSI). (1) 基本结构:承传受飞行, 地面, 或压力载荷的结构。基本的结构又分为两类: 主要构件 (PSE) 和其他构件。飞机上的大部分基本结构是主要构件(PSE). PSEs (主要构件)也是被作为结构的重要项目(SSI). (a) Principal Structural Elements (PSE): Primary structure which contribute significantly to carrying flight, ground, and pressurization loads, and whose failure could result in the catastrophic failure of the airplane. (1) 主要构件 (PSE):主要承受飞行, 地面, 和压力载荷的基本结构,这些构件 的失效将造成飞机的灾难性故障。 (b) Other Structure: Primary structure that is not a Principal Structural Element (PSE). (b) 其他的结构: 基本结构中不是主要构件的部分 (PSE). (2) Secondary Structure: Structure which carries only air or inertial loads generated on or within the secondary structure. Most secondary structures are important to the aerodynamic performance of the airplane. (2) 次级结构:承受空气或次级结构本身产生的惯性载荷的结构。大部分次级结构对飞行的气动性能很重要。 修理定义 1. Applicability A. This subject gives the definitions related to repair classification and inspection for damage-tolerant and non-damage tolerant primary and secondary structures as applicable. 2. References Reference Title 51-10-02 INSPECTION AND REMOVAL OF DAMAGE SOPM 20-20-01 Magnetic Particle Inspection

飞机基本结构

飞机结构详细讲解 机翼 机翼是飞机的重要部件之一,安装在机 上。其最主要作用是产生升力,同时也 在机翼内布置弹药仓和油箱,在飞行中 收藏起落架。另外,在机翼上还安装有 起飞和着陆性能的襟翼和用于飞机横向 纵的副翼,有的还在机翼前缘装有缝翼 加升力的装置。 由于飞机是在空中飞行的,因此和一般的运输工具和机械相比,就有很大的不同。的各个组成部分要求在能够满足结构强度和刚度的情况下尽可能轻,机翼自然也不外,加之机翼是产生升力的主要部件,而且许多飞机的发动机也安装在机翼上或机翼因此所承受的载荷就更大,这就需要机翼有很好的结构强度以承受这巨大的载荷,也要有很大的刚度保证机翼在巨大载荷的作用下不会过分变形。 机翼的基本受力构件包括纵向骨架、横向骨架、蒙皮和接头。其中接头的作用是将上的载荷传递到机身上,而有些飞机整个就是一个大的飞翼,如B2隐形轰炸机则根就没有接头。以下是典型的梁式机翼的结构。 一、纵向骨架 机翼的纵向骨架由翼梁、纵 樯和桁条等组成,所谓纵向是指沿翼展方 向,它们都是沿翼展方向布置的。 * 翼梁是最主要的纵向构件,它承受 全部或大部分弯矩和剪力。翼梁一般由凸 缘、腹板和支柱构成(如图所示)。凸缘通 常由锻造铝合金或高强度合金钢制成,腹板 用硬铝合金板材制成,与上下凸缘用螺钉或 铆钉相连接。凸缘和腹板组成工字型梁,承 受由外载荷转化而成的弯矩和剪力。 * 纵樯与翼梁十分相像,二者的区别在 樯的凸缘很弱并且不与机身相连,其长 时仅为翼展的一部分。纵樯通常布置在 的前后缘部分,与上下蒙皮相连,形成 盒段,承受扭矩。靠后缘的纵樯还可以 襟翼和副翼。 * 桁条是用铝合金挤压或板材弯制而成,铆接在蒙皮内表面,支持蒙皮以提高其承力,并共同将气动力分布载荷传给翼肋。 二、横向骨架 机翼的横向骨架主要是指翼肋,而翼肋又包括普通翼肋和加强翼肋,

(完整版)飞机构造基础_宋静波_试卷1

广州民航职业技术学院2002/2003学年第二学期00级机电班 <<飞机构造基础>>期末考试题(A) 姓名:_______________班级:___________学号:______成绩:___________ 选择题:请将最正确的答案填写在答题纸上。每空1分,共100分。 1、飞机在飞行中,对飞机结构影响最大的载荷是: A、发动机推力 B、升力 C、阻力 D、飞机重力 2、飞机在正过载时: A、机翼上壁板受压,机身上壁板受拉 B、机翼上壁板受拉,机身上壁板 受压C、机翼上壁板受压,机身下壁板受拉D、机翼上壁板受拉,机身上壁板受拉 3、下述有关机翼结构质量力的说法,哪个是正确的? A、机构结构质量力就等于机翼重力 B、小于机翼重力 C、大于机翼重力 D、机翼结构质量力等于重力与惯性力之和。 4、机翼的纵向骨架有: A、翼梁和翼肋 B、翼梁和桁条 C、腹板,缘条,桁条和隔框 D、翼肋,桁 条和翼梁 5、梁式机翼上剪力主要由哪个部件承受: A、翼梁缘条 B、桁条 C、翼梁腹板 D、翼肋 6、单块式机翼与梁式机翼相比: A、梁式机翼更能保持较好的翼型 B、单块式机翼与机身对接容易 C、梁式 机翼便于承受较大的集中载荷D、单块式机翼生存力较差 7、机身在对称载荷作用下,所受的内力有: A、剪力和弯矩 B、剪力、弯矩和扭矩 C、弯矩和扭矩 D、剪力和扭矩 8、副翼差动的目的是为了: A、保持飞机的纵向平衡 B、提高副翼操纵的灵敏性 C、减小操纵副翼所需 要的力D、使两侧机翼产生的气动阻力平衡 9、调整飞机载重与平衡的主要目的是为了: A、提高飞行效率 B、提高实用装载 C、提高飞行安全 D、降低燃油消耗 10、在对飞机进行平衡验算时,有关力臂与重量的说法,哪个正确: A、基准面前力臂取正号;增加的重量取正号 B、基准面前力臂取正号; 拆除的重量取正号C、基准面后力臂取正号;增加的重量取正号D、基准面后力臂取正号;拆除的重量取正号 11、飞机称重前的准备工作哪个是错误的: A、使飞机处于水平姿态 B、将燃油放油直到油量指示为零 C、饮用水和洗 涤水及厕所排空D、液压油箱和滑油箱排空

飞机结构布局

12.1.2 The Function of the Fuselage The fuselage structure must allow components such as lifting surfaces, engines, and landing gear to be mounted and offer adequate load paths to react the large loads these generate. Among amenities that complicate the fuselage design are the various openings that are required for easy access into and out of the volume. The openings must be carefully laid out in order to keep the number of highly stressed regions to a minimum. Since doors are usually not intended to transfer axial and shear loads (except in the case of pressurized vessels, where doors must be capable of transferring the out-of-plane pressurization loads) the openings must be reinforced to relieve stress concentrations with minimum amount of deformation of the structure. It is inevitable that each such opening (door or window) will increase stress concentration, which calls for localized reinforcement. These, in turn, increase the empty weight of the vehicle. For this reason, the designer should evaluate objectively whether a given opening into the fuselage is justi?able: is it necessary or is it just desirable? Some factors that will affect the design of the fuselage are: (1) If the airplane transports people, suf?cient internal space must be given to each person. Larger transport aircraft should offer ample space for the passengers and cabin crew members to move around (for instance, to go to a lavatory, or exit in case of an emergency). (2) If the airplane is large, amenities (lavatories and galleys) must be provided for the occupants. Large passenger transport aircraft should have at least one lavatory per 50 passengers and one galley per 100 passengers. For instance, a typical 150-passenger Boeing 737 has two galleys (one in the front, the other in the back of the cabin) and three lavatories (one in the front, two in the back). (3) The cockpit should be ergonomically laid out, regardless of airplane size. This means primary instruments and controls should all be within reach of the pilot and not require him or her to lean in order to access them. (4) Windscreen shape and strength requirements will dictate the design of the forward part of the airplane and depend on airplane geometry and operational requirements (e.g. pressurization, bird strike, etc.). (5) Layout of emergency exits: for instance 14 CFR Part 121.291 requires all operators of passenger aircraft with seating capacity greater than 44 to demonstrate it can be completely evacuated in less than 90 seconds. (6) The layout of control, electrical, and other important systems. The fuselage structure should be expected to accommodate control cables, pushrods, pulleys, and wiring harnesses so they go around critical structural members and do not penetrate them. (7) The fuselage should be designed with compartments intended to carry baggage and freight that are easily accessible. If the aircraft is large, such compartments must be accessible from the outside. The fuselage must provide structure to allow baggage to be tied down so it will not shift in ?ight, possibly altering the CG. This structure should be stout enough to react emergency landing loads as well. If landing gear loads are reacted by the fuselage (in contrast to the wing) this will require hoop frames in the area of the landing gear to be substantially reinforced. Typically, the main landing gear will then retract into special aerodynamically shaped housings on the bottom of the fuselage. An opening should be provided in the front part of the airplane to house the nose landing gear. The author is not aware of any instance that features a nose landing gear that retracts into a separate housing unit and not the fuselage itself. It is good practice to examine existing aircraft of similar con?guration and study how the landing gear housing is designed when evaluating the pros and cons of a design direction. The fuselage must also provide structure to attach it to the wing. Commuters and similar passenger aircraft usually feature high or low wing con?gurations. Mewing commuters are practically unknown in modern times e the most recent one was the

直升飞机构造及飞行原理

直升飞机构造及飞行原理构造简图

直升机的前飞 直升机的前飞,特别是平飞,是其最基本的一种飞行状态。直升机作为一种运输工具,主要依靠前飞来完成其作业任务。为了更好地了解有关直升机前飞时的飞行特点,从无侧滑的等速直线平飞人手,有关上升率Vy不为零的前飞(上升和下降)留在下一节介绍。直升机的水平直线飞行简称平飞。平飞是直升机使用最多的飞行状态,旋翼的许多特点在乎飞时表现得更为明显。直升机平飞的许多性能决定于旋翼的空气动力特性,因此需要首先说明这种飞行状态下直升机的力和旋翼的需用功率。 平飞时力的平衡 相对于速度轴系平飞时,作用在直升机上的力主要有旋空拉力T,全机重力G,机体的废阻力X身及尾桨推力T尾。前飞时速度轴系选取的原则是:X铀指向飞行速度V方向;Y轴垂直于X轴向上为正,2轴按右手法则确定。保持直升机等速直线平飞的力的平衡条件为(参见图2.1—43) 。 平飞时力的平衡 X轴:T2=X身 Y轴:T1=G

Z轴:T3约等于T尾 其中Tl,T2,T3分别为旋翼拉力在X,Y,Z三个方向的分量。对于单旋翼带尾桨直升机,由于尾桨轴线通常不在旋翼的旋转平面内,为保持侧向力矩平衡,直升机稍带坡度角r,故尾桨推力与水平面之间的夹角为y,T尾与T3方向不完全一致,因为y角很小,即cosr约等于1,故Z向力采用近似等号。 平飞需用功率及其随速度的变化 平飞时,飞行速度垂直分量Vv=0,旋翼在重力方向和Z方向均无位移,在这两个方向的分力不做功,此时旋翼的需用功率由三部分组成:型阻功率——P型;诱导功率——P 诱;废阻功率——P废。其中第三项是旋翼拉力克服机身阻力所消耗的功率。 从上图可以看出,旋翼拉力的第二分力T2可平衡机身阻力X身。对旋翼而言,其分力T2在X轴方向以速度V作位移。显然旋翼必须做功,P =T2V或P废=X身V,而机身废阻X身在机身相对水平面姿态变化不大的情况下,其值近似与V的平方成正比,这样废阻功 平飞需用功率随速度的变化 率P废就可以近似认为与平飞速度的三次方成正比,如上图中的点划线③所示。 平飞时,诱导功率为P诱=TV,其中T为旋翼拉力,vl为诱导速度。当飞行重量不变时,近似认为旋翼拉力不变,诱导速度271随平飞速度V的增大而减小,因此平飞诱导功率P诱随平飞速度V的变化如上图中细实线②所示。 平飞型阻功率尸型则与桨叶平均迎角有关。随平飞速度的增加其平均迎角变化不大。所以P型随乎飞速度V的变化不大,如图中虚线①所示。 图中的实线④为上述三项之和,即总的平飞需用功率P平需随平飞速度的变化而变化。它是一条马鞍形的曲线:小速度平飞时,废阻功率很小,但这时诱导功率很大,所以总的乎飞需用功率仍然很大。但比悬停时要小些。在一定速度范围内,随着平飞速度的增加,由于诱导功率急剧下降,而废阻功率的增量不大,因此总的平飞需用功率随乎飞速度的增加呈下降趋势,但这种下降趋势随V的增加逐渐减缓。速度继续增加则由于废阻功率随平飞速度增加急剧增加。平飞需用功率随V的增加在达到平飞需用功率的最低点后增加;总的平飞需用功率随V的变化则呈上升趋势,而且变得愈来愈明显。 直升机的后飞

飞行学院《航空发动机原理与构造》复习

飞行学院《航空发动机原理与构造》复习资料 第一部分:航空发动机构造 一、单项选择题(每题2分) 1.涡喷?涡扇?涡桨?涡轴发动机中,耗油率或当量耗油率的关系是(A)? A.sfc涡喷>sfc涡扇>sfc涡桨>sfc涡轴B.sfc涡扇>sfc涡桨>sfc涡轴>sfc涡喷 C.sfc涡桨>sfc涡轴>sfc涡喷>sfc涡扇D.sfc涡轴>sfc涡喷>sfc涡扇>sfc涡桨 2.发动机转子卸荷措施的目的是(B)。 A.减少发动机转子负荷,降低了发动机推力,以提高发动机运行可靠性B.减少发动机转子轴向力,减少止推轴承数量,提高转子工作可靠性 C.减少发动机转子负荷,提高发动机推力 D.减少发动机转子负荷,降低转子应力水平,提高转子结构强度 3.涡扇发动机中,忽略附件传动功率,涡轮转子与压气机转子扭矩之间的关系 是(D)。 A.M涡轮>-M压气机B.M涡轮<-M压气机 C.M涡轮=M压气机D.M涡轮=-M压气机 4.压气机转子结构中,加强盘式转子是为了(B)。 A.加强转子强度,提高转子可靠性 B.加强转子刚度,提高转子运行稳定性 C.加强转子冷却效果,降低温度应力 D.加强转子流通能力,提高压气机效率 5.压气机转子结构中(B)。 A.鼓式转子的强度>盘式转子的强度 B.鼓式转子的强度<盘式转子的强度 C.鼓式转子的强度=盘式转子的强度 D.鼓式转子与盘式转子强度比较关系不确定 6.压气机转子结构中的刚度(A) A.盘鼓混合式转子>盘式转子 B.盘鼓混合式转子<盘式转子 C.盘鼓混合式转子=盘式转子 D.盘鼓混合式与盘式转子刚度大小关系不确定 7.压气机静子机匣上放气机构的放气窗口通常位于(A) A.静子叶片处B.转子叶片处 C.静子叶片与转子叶片之间D.转子叶片与静子叶片之间 8.压气机转子工作叶片的榫头结构承载能力(D) A.燕尾形>枞树形>销钉式B.燕尾形>销钉式>枞树形

飞机构造学重点

1.飞机结构设计的基本要求指哪几类要求气动要求质量要求使用维护要求工艺要求 2. 飞机机体由哪几部分组成机身机翼尾翼起落架动力装置仪表设备 3. 直机翼结构典型受力型式类型、特点 4. 机翼与机身对接接头的型式 5. 机翼的主要受力构件、用途 6. 机身结构的受力型式、特点 7. 机身主要承力构件、用途 8. 机身上哪些地方需要布置加强框? 9. 机体结构开口分类 10. 起落架的配置形式、结构形式、收放形式 11. 起落架的过载系数 12. 油气式减震器的特性系数 13. 锁机构的形式 14. 对起落架应急放下系统的要求 15. 起落架地面防收安全措施 16. 前轮稳定距定义、作用 17. 机轮通行性能的衡量指标、机轮的临界速度 18. 外胎的主要受力部分 19. 机轮气压过大、过小的危害 20. 刹车系统的组成、防滞刹车系统的作用 21. 主/辅助操纵系统、中央操纵机构 22. 传动机构的类型、优缺点、各类传动机构的主要构件、构件的用途 23. 气动补偿、气动平衡的含义、气动补偿的形式 24. 液压助力器性能分析的参数(与维护使用相关) 25. 载荷感觉器、调整片效应机构的作用 26. 电传操纵系统的可靠性指标 27. 气密座舱的类型、气密性检查方法、主要环境参数 28. 座舱高度、座舱余压的定义 29. 气源系统气源的来源及用途、需要调节的参数、调节方法 30. 座舱压力制度的定义 31. 飞机预增压的作用 32. 飞机结冰的形式、结冰强度、结冰程度的定义、冰形 33. 氧气系统的一些基本内容的选择题 34. 火的种类及相应的灭火剂 35. 飞机灭火系统的组成 36. 火警探测系统的组成 37. 飞机照明的分类、列举飞机外部照明灯 1. 典型双梁式直机翼的气动载荷传递分析(传递框图) 2. 油气式减震器的组成、工作原理/能量的转换、工作特性分析、性能的

飞机原理与构造 作业

作业一:分组大作业 从莱特兄弟的第一架飞机1903年12月升空至今已经过去了100多年。100多年来,飞机从最早的多翼/双翼、直机翼,逐步发展到单翼、后掠翼、三角翼等,从原来的方形截面机身到今天的流线型机身,从亚音速飞机的升降舵到超音速飞机的全动平尾,……,飞机外形的变化五彩缤纷。 请说明一百多年来飞机外形的发展变化,并分析为什么飞机外形和会发生如此变化,或者说飞机外形发展变化的主要原因是什么。 4~6人组成一个小组,针对上述问题,通过查阅、收集和分析相关文献资料,小组讨论等,完成一份3000~5000字的技术报告,并择机进行交流。 需要注意的是: 1. 技术报告以叙述、说明主题为目标,并为自己的分析提供论据(文字、图表等进行合理的搭配)。要求结构合理、图表规范。关于格式可以参考任何一本正式出版的教材。 2. 拷贝过多的问题:拷贝要有选择性,不要出现不管是否有意义、随意拷贝来凑字数的现象。如果仅仅是简单的拷贝就失去了锻炼自己分析问题能力的意义了。希望大家能有所收获。 3. 错别字问题:网上许多资料存在大量的错别字,不要带到我们的技术报告中。我们不是人云亦云的传递机器,要有自己的主观判断。技术报告是一种科学思想的表达,需要认真对待,这也是为将来的工作积累一些理念和能力的机会。

作业二 1. 一般要求两架飞行中的飞机之间必须有一定的距离,为什么? 2. 零升阻力D 0随飞行速度的增加而增加,诱导阻力D i 随飞行速度的增加而减小,其原因是什么?(近似认为飞机重量不变,诱导阻 力因子K 不随飞行速度变化;200L D D i D D C K C C C C ?+=+=, S v C L L ??=221ρ,S v C D D ??=22 1ρ,i D D D +=0。) 3. 一架飞机以M0.5作定直平飞,现欲水平直线加速至M0.8,飞行员应如何操纵,为什么? 4. 当变后掠机翼的后掠角由小变大时,飞机的纵向稳定性和纵向操纵性有何变化,为什么(近似认为飞行速度不变;机翼的压力中心和焦点相对于机翼本身的几何位置不变)? 作业三 1. 图1为一平面板杆结构,分析P 力的传递过程,画出各元件的受力平衡图,标出各力及剪流的大小。 2. 对于教材图6-14的集中力扩散结构,杆ef 一般要做成左端截面积大右端截面积小的变截面杆,为什么? 3. 对图2所示的封闭空间板杆(薄壁)结构,在扭矩M t 作用下,

相关文档
相关文档 最新文档