文档库 最新最全的文档下载
当前位置:文档库 › 武汉中科创新HS600型仪器调试方法

武汉中科创新HS600型仪器调试方法

武汉中科创新HS600型仪器调试方法
武汉中科创新HS600型仪器调试方法

中科创新汉威HS600型仪器调试方法

一、焊缝探伤

1、调校仪器(CSK-IA试块,斜探头)

1)测量探头前沿

A:开机后按“通道”键选定通道,再按“参数”键进入参数列表,将光标移至<探头类型>一栏,通过按“确认”

键,将探头改为斜探头,然后按“参数”键退出。

B:按“自动调校”键,仪器屏幕右上方显示“自动校准”字样,根据提示一次通过按“确认”键输入声速、起始距离和终止距离。

C: 将探头放在CSK-IA试块R50圆心和端边处。

D:按“波峰记忆”键,寻找该处最高波。

E:找到最高波后按“自动增益”键,将100mm处最高回波调到满屏的80%高度。

F:按“确定”键并保持探头不动,直到仪器提示“自动调校完毕”、“请用钢尺测量前沿”。

G:用钢尺测量探头前端至试块R100顶端处距离X。

H:用100mm — X结果即为探头前沿.

I:按“参数”键进入参数列表,将光标移至<探头前沿>一栏,通过按“确认”键通过方向键输入前沿值,按“确认”

键, 然后按“参数”键退出,结束前沿测试。

2)测试探头K值

A:按K值下对应的三角键,进入探头K值测试,通过左下方向键选为自动模式,按确认键依次确定孔径和孔深。

B:将探头放在试块刻度K2.0(或K2.5、K3.0)附近,并寻找最高波。(可按“波峰记忆”键辅助寻找)

C:按“确认”键,显示K值测试结果。

2、制作DAC曲线(CSK-IIIA试块)

A:根据待测工件厚度确定需要测试的点数。(最后一个孔的深度应超过工件厚度的2倍)

B:按“参数”键,将<距离坐标>改为H.然后按“参数”键返回工作界面.按“曲线”键,再按“制作”键开始制作曲线。

C:按左方向键将闸门移至10mm刻度线上。(如需调整范围可按“闸门移位”将其变为“范围”再按左方向键调整)

D:制作第一点曲线,将探头放在试块10mm反射回波处并寻找10mm孔最高反射波。

E:按“波峰记忆”键,寻找最高波。

F:找到最高波后按“自动增益”键将其提高到屏幕满刻度的80%高度。

G:按“确认”键结束第一点曲线的制作。(如需删除该曲线段则按“调整”键)

H:第二、三、四……点依此类推。

I:按“确认”键结束制作。

J:按“参数”键进入参数列表,输入<工件厚度>,根据JB/T 4730-2005输入评定/定量/判废和表面补偿值。

K:按“参数”键退出,再按下“闸门”键,曲线制作完毕。

3、焊缝探伤实际操作

S2:缺陷终点距试板左端基准线的距离

S3:缺陷波幅最高时距试板左端基准线距离

操作步骤:

按照前面所述的斜探头的校准方法以曲线制作完成后进入焊缝探伤工作,输入实际探伤中使用的相应标准.下面以

常用JB/T4730.3-2005标准为例:

按不同的工件厚度输入曲线的标准,(本例以 15mm < T <46mm 为例,即判废:+5、定量:-3、评定 -9、表面补

偿按 +4dB为准。

①输入标准后,将探头放在待测工件上进行扫查如图所示箭头表示扫查方向。

②当发现缺陷后观察回波高度,如果回波高度超过定量线,此时仔细移动探头寻找最高回波,找到最高波后,按住探头不动,此时观察屏幕上数据显示区缺陷深度的读数 x.x 即H,以及波高所在区域,并用钢尺量出探头到钢板左端边的距离即S3,(从探头中心位置测量,或从探头左边测量再加上探头宽度的二分之一),再观测屏幕上数据显示区缺陷水平的读数 xx,用钢尺从探头前端量出缺陷所在位置,并用钢尺量出缺陷位置与焊缝中心线的距离,如上图,探头前端到焊缝中心线的距离为30㎜,而仪器测量出的水平位置为27㎜,则距焊缝中心距离为3mm,缺陷偏向焊缝中心线B侧,则记录为-3,此时缺陷最大波幅时的数据记录完毕。

③然后开始测量缺陷长度。按键将缺陷最高波调整到满刻度的80%,此时向左平行移动探头观察屏幕上的回波,

当回波降低到40%的时候,(即最高波的一半)此时量出探头到钢板左端边距离,记作S1,此时再向右平行移动探头,

回到最高波位置,然后继续向右平行移动,直到回波降低到40%的时候,此时量出探头到钢板左端边的距离,记作S2,然后用S2减去S1所得到的数值即为缺陷长度(L )。

④将上面测量出的数据填入表格里相应的栏目中。依照上述方法将缺陷逐一找出并测量。

武汉中科创新技术股份有限公司竭诚为您提供专业、优质、高效的服务!

中科创新汉威HS600型仪器调试方法

二、锻件探伤

1、调校仪器(CSK-IA 试块、直探头)

A :按“参数”键进入参数列表,将光标移至<探头类型>一栏改为直探头。

B :将CSK-IA 试块竖立放置,将直探头放置其上,按“自动调校”键。

C :仪器提示“请输入材料声速”,按“确认”键;仪器提示“请输入起始距离、终止距离”,按方向键将其分别修改为100mm 和200mm ,修改完毕按“确认“键,再按“自动增益”键。

D :按“确认”键等待仪器提示“自动校准完毕”即可。

2调校完毕后点

,将探头放在“待测工件”上,按闸门移位对应的

再按方向键用闸门套住底波,寻找到底波最高波后,按键将底波调到80%,

记录此时dB 值记为BG (无缺陷底波dB 值)。 用2

2lg

20D

X

dB ??=?πλ(λ=材料声速/频率,X 为锻件厚度,D 为平底孔直径,这里以Φ2为准)计算Φ2平顶孔的灵敏度。计算BG+dB ?(探伤灵敏度)再

键和方向键输入仪器。

(二)使用探头在工件上寻找缺陷波,按闸门移位对应的

键,再按

方向移动闸门套住缺陷波,按

键,将缺陷波降到80%,记录(1)缺陷深度↓XX.X(缺陷最大处的深度)(2)基准栏dB 读数为F1。将闸门移到底波,

键,将底波调至80%,记录BF 。

BG=无缺陷处底波dB 值; BF=缺陷最大处底波dB 值 (三)计算:

方法一:(1)dB h

X

dB 12lg

40-F1-2 -Φ=± 即缺陷大小相当于Φ4+dB ±

方法二:通过公式f

j x f a a D D ??=Φlg

40F1-2 其中

x

a

为锻件厚度,

f

a

为缺陷实测深 度,

f

D 为待测缺陷孔径,

j

D 为

Φ2,通 过仪器读出缺陷深度位置,代入公式进行运算,最后算出缺陷的Φ值。

平底孔与Φ4孔相对当量换算 (1)4

lg

40f D dB =± 即缺陷大小相当于Φ4+dB ±

3记录缺陷坐标值(X,Y )如下图:

记录锻件X 、Y 坐标值时,明确锻件的实际标号位置,确定X 、Y 坐标轴,正确记录锻件X 、Y 坐标值。

锻件探伤报告表

武汉中科创新技术股份有限公司竭诚为您提供专业、优质、高效的服务!

现代仪器分析简答

1、现代仪器分析法有何特点?它的测定对象与化学分析法有何不同? 分析速度快,自动化程度高,特别适用于大批量分析; 灵敏度高,试样用量少,适合微量和痕量组分; 用途范围广,能适合各种分析的要求;选择性高 2、评价一种仪器分析方法的技术指标是什么? 主要技术指标: 1、精密度; 2、准确度; 3、标准曲线; 4、灵敏度; 5、检出限; 6、选择性 3、影响原子吸收谱线宽度的因素有哪些?其中最主要的因素是什么? 答:影响原子吸收谱线宽度的因素有自然宽度 △ fN 多普勒变宽和压力变宽。 其中最主要的 是多普勒变宽和洛伦兹变宽。 4、原子吸收光谱仪主要由哪几部分组成?各有何作用? 答:原子吸收光谱仪主要由光源、原子化器、分光系统、检测系统四大部分组成。 光源的作用:发射待测元素的特征谱线。 原子化器的作用:将试样中的待测元素转化为气态的能吸收特征光的基态原子。 分光系统的作用:把待测元素的分析线与干扰线分开,使检测系统只能接收分析线。 检测系统的作用: 把单色器分出的光信号转换为电信号, 经放大器放大后以透射比或吸光度 的形式显示出来。 5、与火焰原子化器相比,石墨炉原子化器有哪些优缺点? 答:与火焰原子化器相比,石墨炉原子化器的优点有:原子化效率高, 气相中基态原子浓度 比火焰原子化器高数百倍,且基态原子在光路中的停留时间更长,因而灵敏度高得多。 缺点:操作条件不易控制,背景吸收较大,重现性、准确性均不如火焰原子化器,且设备复 杂,费用较高。 6、测定植株中锌的含量时,将三份 1.00g 植株试样处理后分别加入 0.00mL 、 1.00mL 、 2.00mL0.0500mol?L-1ZnCl2 标准溶液后稀释定容为 25.0mL ,在原子吸收光谱仪上测定吸光 度分别为0.230、0.453、0.680,求植株试样中锌的含量( 3.33 X10-3g.g-1 )。 解:设植株试样中锌的含量为 Cx mol.L-1 ??? A1=KCx A2=K(25 X 10-3Cx+1.00 0X .0500 A3=K(25 X 10-3Cx+2.00 0X .0500 解之得 Cx=2X 10-3 mol.L-1 7、 电子跃迁有哪几种类型?哪些类型的跃迁能在紫外及可见光区吸收光谱中反映出来? 答:电子跃迁的类型有四种: 6^6 * n 宀6* n ^n* n^n 。* 其中n ~6* n ~n* n^n 的跃迁能在紫外及可见光谱中反映出来。 8、何谓发色团和助色团?举例说明。 答:发色团指含有不饱和键,能吸收紫外、可见光产生 n ^n*或 n^n 跃迁的基团。例如: > C=C V, — C = C — ,> C=O , — N=N —, — COOH 等。 助色团:指含有未成键 n 电子 本身不产生吸收峰 但与发色团相连能使发色团吸收峰向 长波方向移动 吸收强度增强的杂原子基团。 例如: —NH2 —OH —OR —SR —X 等。 ?/ A=KC X 65.4 X 10-3)/25 1X 0-3 X 65.4 X 10-3) /25 10X -3 ?植株试样中锌的含量为 3.33X 10-3g.g-1

各种试验仪器设备校验方法与规程

混凝土坍落度筒校验方法 编号:SG-C02-01本方法是用于新购和使用中的以及检修后的混凝土坍落度筒及维勃稠度仪用的坍落度筒的校验。 一、概述 坍落度筒是混凝土拌合物稠度试验的专用设备,用于骨料最大粒径不大于40mm、坍落度值不小于10mm的混凝土拌合物稠度测定。 二、技术要求 1.坍落度筒应为薄钢板或其他金属制成的圆台形筒。内壁光滑、无凹凸部位。底面和顶面应互相平行并与锥体的轴线垂直。 2.坍落度筒筒外三分之二高度处应焊两个手把,下端应焊脚踏板。 3.坍落度筒的内部尺寸为 底部直径 200±2mm 顶部直径 100±2mm 高度 300±2mm 筒壁厚度不小于1.5mm 4.捣棒直径(16±0.2)mm,长(600±5.0)mm的钢棒,表面光滑平直,端部应磨圆。 三、校验项目及校验条件 5.校验项目 (1)外观检查 (2)筒各部位尺寸检查 6.校验用仪器 (1)游线卡尺量程300mm,分度值0.02mm (2)钢直尺量程500mm,分度值1mm (3)直角尺 四、校验方法 7.外观检查 目测检查:内壁是否光滑,有无凹凸部位。 8.用钢直尺测量两个把手是否在筒外三分之二高度处。底面和顶面是否平行并与锥体轴线垂直,测量捣棒长度。 9.用游标卡尺测量筒壁厚度及捣棒直径,准确至0.1mm;测量筒底及顶部的直径和高度尺寸,各部位应测量三点,取其算术平均值,准确至1mm。 10.用直角尺量测底面、顶面是否与筒轴线垂直。 五、校验结果处理

全部检验项目结果的,应填写校验证书。全部项目合格,在结论栏内填写“合格”;任一项目不合格时,校验结论为“不合格”,并给出不合格项目的数值。 六、校验周期 校验周期为一年。 注:本方法摘自铁道部《铁路工程试验专用仪器校验方法》。 附录1 坍落筒校验记录 送验单位仪器编号校验号 混凝土及砂浆试模校验方法

最新食品现代仪器分析实验指导课件

食品现代仪器分析实验指导福州大学生物科学与工程学院 吴佳

2016年5月

实验一苦味饮料中硫酸奎宁的荧光法测定 1. 目的意义 喹啉结构是“苯并吡啶”。即一个苯环与一个吡啶环稠合而成。奎宁是喹啉的衍生物,其结构如下: N 喹啉 CH2 CH N CH 3 O C H OH C H 2 N CH2 CH2 CH2 奎宁 奎宁是金鸡纳树皮中含有的苦味晶状粉末,抗疟疾药。疟疾曾是热带、亚热带地区猖獗流行的疾病,曾夺走成千上万人的生命。17世纪末,奎宁由欧洲传入我国,曾称为“金鸡纳霜”,当时是非常罕见的药。后来,瑞典纳尤斯对这种植物的树皮进行了认真的研究,提取了其中的有效成分金鸡纳碱,起名为“奎宁”。“奎宁”这个词在秘鲁文字中是树皮的意思。直到1945年,奎宁才实现了人工合成。奎宁是碱性物质,与硫酸反应生成盐,俗名硫酸奎宁。 在饮料中硫酸奎宁是调味料,主要用在滋补品和苦柠檬水中,有调味及预防疟疾之功效,例如汤力水是Tonic Water的音译,又叫奎宁水、通宁汽水。是苏打水与糖、水果提取物和奎宁调配而成的。可作为苦味饮料或用于配制鸡尾酒或其它饮料。奎宁饮料以其微苦的口味成为畅销的解渴饮料,特别是在夏季人们大量饮用,但大量消费含奎宁成分的饮料对一些个体有害,如新陈代谢紊乱或对这种物质有超敏性的人要避免摄取奎宁,特别是孕妇。对怀孕期间每天饮用一升以上奎宁饮料的孕妇进行的调查显示,出生后24小时,新生儿就出现神经战栗症状,在他们的尿液中发现了奎宁成分,但2个月以后这些症状就不存在了。为此,对奎宁含量的测定具有重要意义。 2. 原理: 本实验包括荧光光谱和激发光谱测定,以及苦味饮料中硫酸奎宁含量测定。硫酸奎宁是强荧光性物质,在紫外光照射下,会发射蓝色荧光。在稀溶液中荧光强度与硫酸奎宁浓度成正比,可根据荧光强度求出硫酸奎宁浓度。 荧光(发射)光谱: 固定激发光波长和强度,在不同的波长下测定所发射的荧光强度,以发射波长为横坐标,以荧光强度为纵坐标,所作曲线为荧光发射光谱。 荧光发射光谱是选择最大荧光发射波长的依据。 荧光激发光谱: 固定荧光发射波长(一般在最大发射波长处),改变激发光波长,得出不同激发波长的荧光强度,以激发光波长为横坐标,以荧光强度为纵坐标,所得曲线称为激发光谱。

现代仪器分析与实验技术复习题

现代仪器分析与实验技术 一.名词解释 标准曲线:是待测物质的浓度或含量与仪器信号的关系曲线,由于是用标准溶液测定绘制的,所以称为标准曲线。 准确度:是指多次测定的平均值与真值(或标准值)相符合的程度,常用相对误差来表示。 超临界流体:某些具有三相点和临界点的纯物质,当它在高于其临界点即高于其临界温度和临界压力时,就变成了既不是气体也不是液体而是一种性质介于气体和液体之间的流体,称为超临界流体。 延迟荧光:分子跃迁至T1态后,因相互碰撞或通过激活作用又回到S1态,经振动弛豫到达S1的最低振动能级再发射荧光。这种荧光称为延迟荧光。 精密度:是指在相同条件下用同一方法对同一试样进行的多次平行测定结果之间的符合程度。 灵敏度:指被测组分在低浓度区,当浓度改变一个单位时所引起的测定信号的改变量,它受校正曲线的斜率比较和仪器设备本身精密度的限制。 检出限:是指能以适当的置信度被检出的组分的最低浓度或最小质量。 线性范围:指定量测定的最低浓度到遵循线性响应关系的最高浓度间的范围。 梯度洗脱:指在一个分析周期中,按一定的程序连续改变流动相中溶剂的组成(如溶剂的极性、离子强度、pH等)和配比,使样品中的各个组分都能在适宜的条件下得到分离。 锐线光源:锐线光源是空心阴极灯中特定元素的激发态,在一定条件下发出的半宽度只有吸收线五分之一的辐射光。 自吸收:指当浓度较大时,处于激发光源中心的原子所发射的特征谱线被外层处于基态的同类原子所吸收,使谱线的强度减弱,这种现象称为自吸收。 原子线:原子外层电子吸收激发能后产生的谱线称为原子线。 离子线:离子外层电子从高能级跃迁到低能级时所发射的谱线。 电离能:使原子电离所需要的最小能量。 共振线:在所有原子发射的谱线中凡是由各高能级跃迁到基态时所长生的谱线。

现代仪器分析重点总结(期末考试版)

现代仪器分析:一般的说,仪器分析是指采用比较复杂或特殊的仪器设备,通过测量物质的某些物理或物理化学性质的参数及其变化来获取物质的化学组成、成分含量及化学结构等信息的一类方法。灵敏度:指待测组分单位浓度或单位质量的变化所引起测定信号值的变化程度。灵敏度也就是标准曲线的斜率。斜率越大,灵敏度就越高 光分析法:利用光电转换或其它电子器件测定“辐射与物质相互作用”之后的辐射强度等光学特性,进行物质的定性和定量分析的方法。 光吸收:当光与物质接触时,某些频率的光被选择性吸收并使其强度减弱,这种现象称为物质对光的吸收。 原子发射光谱法:元素在受到热或电激发时,由基态跃迁到激发态,返回到基态时,发射出特征光谱,依据特征光谱进行定性、定量的分析方法。 主共振线:在共振线中从第一激发态跃迁到激发态所发射的谱线。 分析线:复杂元素的谱线可能多至数千条,只选择其中几条特征谱线检验,称其为分析线。 多普勒变宽:原子在空间作不规则的热运动所引起的谱线变宽。 洛伦兹变宽:待测原子和其它粒子碰撞而产生的变宽。 助色团:本身不吸收紫外、可见光,但与发色团相连时,可使发色团产生的吸收峰向长波方向移动,且吸收强度增强的杂原子基团。 分析仪器的主要性能指标是准确度、检出限、精密度。 根据分析原理,仪器分析方法通常可以分为光分析法、电分析化学方法、色谱法、其它仪器分析方法四大类。 原子发射光谱仪由激发源、分光系统、检测系统三部分组成。 使用石墨炉原子化器是,为防止样品及石墨管氧化应不断加入(N2)气,测定时通常分为干燥试样、灰化试样、原子化试样、清残。 光谱及光谱法是如何分类的? ⑴产生光谱的物质类型不同:原子光谱、分子光谱、固体光谱;⑵光谱的性质和形状:线光谱、带光谱、连续光谱;⑶产生光谱的物质类型不同:发射光谱、吸收光谱、散射光谱。 原子光谱与发射光谱,吸收光谱与发射光谱有什么不同 原子光谱:气态原子发生能级跃迁时,能发射或吸收一定频率的电磁波辐射,经过光谱依所得到的一条条分立的线状光谱。 分子光谱:处于气态或溶液中的分子,当发生能级跃迁时,所发射或吸收的是一定频率范围的电磁辐射组成的带状光谱。 吸收光谱:当物质受到光辐射作用时,物质中的分子或原子以及强磁场中的自选原子核吸收了特定的光子之后,由低能态被激发跃迁到高能态,此时如将吸收的光辐射记录下来,得到的就是吸收光谱。发射光谱:吸收了光能处于高能态的分子或原子,回到基态或较低能态时,有时以热的形式释放出所吸收的能量,有时重新以光辐射形式释放出来,由此获得的光谱就是发射光谱。 选择内标元素和分析线对有什么要求? a. 若内标元素是外加的,则该元素在分析试样中应该不存在,或含量极微可忽略不计,以免破坏内标元素量的一致性。 b. 被测元素和内标元素及它们所处的化合物必须有相近的蒸发性能,以避免“分馏”现象发生。 c. 分析线和内标线的激发电位和电离电位应尽量接近(激发电位和电离电位相等或很接近的谱线称为“均称线对”);分析线对应该都是原子线或都是离子线,一条原子线而另一条为离子线是不合适的。 d. 分析线和内标线的波长要靠近,以防止感光板反衬度的变化和背景不同引起的分析误差。分析线对的强度要合适。 e. 内标线和分析线应是无自吸或自吸很小的谱线,并且不受其他元素的谱线干扰。 原子荧光光谱是怎么产生的?有几种类型? 过程:当气态原子受到强特征辐射时,由基态跃迁到激发态,约在10-8s后,再由激发态跃迁回到基态,辐射出与吸收光波长相同或不同的辐射即为原子荧光。 三种类型:共振荧光、非共振荧光与敏化荧光。 为什么原子发射光谱法可采用内标法来消除实验条件的影响? 影响谱线强度因素较多,直接测定谱线绝对强度计算难以获得准确结果,实际工作多采用内标法。内标法属相对强度法,是在待测元素的谱线中选一条谱线作为分析线,然后在基体元素或在加入固定量的其他元素的谱线中选一条非自吸谱线作为内标线,两条谱线构成定量分析线对。 通常为什么不用原子吸收光谱法进行物质的定性分析? 答:原子吸收光谱法是定量测量某一物质含量的仪器,是定量分析用的,不能将物质分离,因此不能鉴定物质的性质,因此不能。。。。 原子吸收光谱法,采用峰值吸收进行定量分析的条件和依据是什么? 为了使通过原子蒸气的发射线特征(极大)频率恰好能与吸收线的特征(极大)频率相一致,通常用待测元素的纯物质作为锐线光源的阴极,使其产生发射,这样发射物质与吸收物质为同一物质,产生的发射线与吸收线特征频率完全相同,可以实现峰值吸收。 朗伯比尔定律的物理意义是什么?偏离朗伯比尔定律的原因主要有哪些? 物理意义是:当一束平行单色光通过均匀的溶液时,溶液的吸光度A与溶液中的吸光物质的浓度C及液层厚度L的乘积成正比。A=kcL 偏离的原因是:1入射光并非完全意义上的单色光而是复合光。2溶液的不均匀性,如部分入射光因为散射而损失。3溶液中发生了如解离、缔合、配位等化学变化。 影响原子吸收谱线宽度的因素有哪些?其中最主要的因素是什么? 答:影响原子吸收谱线宽度的因素有自然宽度Δf N、多普勒变宽和压力变宽。其中最主要的是多普勒变宽和洛伦兹变宽。 原子吸收光谱法,采用极大吸收进行定量的条件和依据是什么? 答:原子吸收光谱法,采用极大吸收进行定量的条件:①光源发射线的半宽度应小于吸收线半宽度;②通过原子蒸气的发射线中心频率恰好与吸收线的中心频率ν0相重合。定量的依据:A=Kc 原子吸收光谱仪主要由哪几部分组成?各有何作用? 答:原子吸收光谱仪主要由光源、原子化器、分光系统、检测系统四大部分组成。

传统分析方法与现代仪器分析法的比较

传统分析方法与现代仪器分析法的比较 【摘要】随着现代科技的发展,传统的化学分析方法也在与时俱进,逐步与现代科技相融合、渗透,从而使化学分析的效率比以往更加富有成效,分析的精密度、准确度更加优异,分析结果也使人更加放心,通过氯化物的传统滴定方法与间断式流动分析仪仪器法的对比,得出传统法与仪器法的各自优缺点,仅作参考。 【关键词】滴定法;仪器法;氯化物 1 实验原理比较 氯化物广泛存在于天然水中,传统测定方法是滴定法,在中性或弱碱性溶液中,以铬酸钾为指示剂,用硝酸银滴定氯化物时,由于氯化银的溶解度小于铬酸银,氯离子首先被完全沉淀,然后铬酸根才以铬酸银的形式沉淀出来,产生砖红色物质,指示氯离子滴定的终点。 目前分析氯化物的仪器主要是间断化学分析仪、流动注射分析仪、离子色谱仪等,以间断化学分析仪为例,Smartchem140全自动化学分析仪工作原理实际上是经典的比色法,试剂和样品被精确地加入反应槽,搅拌混匀,反应,然后反应混合物被传送到高精度比色计测量吸光度。 2 仪器与试剂比较 滴定法所用实验器材 锥形瓶;棕色酸式滴定管; NaCI、AgNO3、K2CrO4、NaOH(均为分析纯); 间断化学分析仪所用实验器材 比色杯、流通池、0.45微米滤膜过滤装置(上海摩速有限公司) 3 样品测定比较 滴定法首先取150mL水样置于锥形瓶中,另外取一个锥形瓶加入50mL蒸馏水作空白,加入1mL K2CrO4指示液,用AgNO3、标准溶液滴定至砖红色沉淀刚刚出现即为终点,整个实验过程都是手工操作,费时费力,分析一个水样耗时十几分钟,不适合大批量样品分析。 间断化学分析仪Smartchem-140采用目前世界上最先进的第二代全自动间断化学分析技术,吸光率反应终点采取了比色管直读式,样品与试剂在独立的

仪器分析--实验报告

仪器分析方法在食品分析中的应用综合实验 摘要:本文分别采用了气质联用技术检测食品中的塑化剂,用高效液相色谱检测食品中的防腐剂,原子吸收光谱检测食品中的金属元素。并对检测结果进行了分析。 关键词:气质联用技术,高效液相色谱,原子吸收光谱 前言 现代食品的显著特点是食品的营养化、功能化、方便化,并保证食品质量与安全,这就要求食品加工从原理的选择、加工过程到最终产品及保藏整个链条中对食品的成分及成分的变化有全面的把握和认识。传统的分析手段和分析方法尽管能从宏观上了解和掌握成分及其变化,但已不能完全适应现代食品加工业的要求,现代仪器分析技术已经成为食品分析中不可缺少的重要分析手段。 实验内容 一.气-质联用技术检测食品中塑化剂的实验 (一)方法[1] 对于食品中邻苯二甲酸酯类化合物的检测,GB/T21911-2008《食品中邻苯二甲酸酯的测定》中规定了GC-MS作为检测方法。 1仪器: 气相色谱-质谱联用仪,凝胶渗透色谱分离系统,分析天平,离心机,旋转蒸发器,振动器,涡旋混合器,粉碎机,玻璃器皿。 2试剂: 正己烷,乙酸乙酯,环己烷,石油醚,丙酮,无水硫酸钠,16种邻苯二甲酸酯标准品,标准储备液,标准使用液。 3步骤: (1)试样制备:取同一批次3个完整独立包装样品(固体样品不少于500g、液体样品不少于500mL),置于硬质玻璃器皿中,固体或半固体样品粉 碎混匀,液体样品混合均匀,待用。 (2)试样处理(不含油脂液体试样):量取混合均匀液体试样5.0mL,加入正己烷2.0mL,振荡1min,静置分层,取上层清液进行GC-MS分析。 (3)空白试验:实验使用的试剂都按试样处理的方法进行处理后,进行GC-MS分析。 (4)色谱条件: 色谱柱:HP-5MS石英毛细管柱[30m×0.25mm(内径)×0.25μm]; 进样口温度:250℃; 升温程序:初始柱温60℃,保持1min,以20℃/min升温至220℃, 保持1min,再以5℃/min升温至280℃,保持4min; 载气:氦气,流速1mL/min; 进样方式:不分流进样; 进样量:1μL。 (5)质谱条件: 色谱与质谱接口温度:280℃; 电离方式:电子轰击源; 检测方式:选择离子扫描模式; 电离能量:70eV;

现代仪器分析知识点总结

现代仪器分析 绪论: 1仪器分析定义:现代仪器分析就是以物质的物理性质或物理化学性质及其在分析过程中所产生的分析信号与物质的内在关系为基础,借助比较复杂或特殊的现代仪器,对待测物质进行定性、定量及结构分析与动态分析的一类分析方法。2仪器分析的特点:灵敏度高,试样用量少;选择性好;操作简便,分析速度快,自动化程度高;用途广泛,能适应各种分析要求;相对误差较大。需要价格比较昂贵的专用仪器。3仪器分析包括:光分析法;分离分析法;电化学分析法;分析仪器联用技术;质谱法。4光分析:光分析法就是利用待测组分的光学性质(如光的发射、吸收、散射、折射、衍射、偏振等)进行分析测定的一种仪器分析方法。5光谱法包括:紫外/可见吸收光谱法;原子吸收光谱法;原子发射光谱法;分子发光分析法;拉曼光谱法;红外光谱法。6电化学分析法:电化学分析法就是利用待测组分在溶液中的电化学性质进行分析测定的一种仪器分析方法。7电化学分析法包括:电导分析法;电位分析法;极谱与伏安分析法;电解与库仑分析法。8分离分析法:利用物质中各组分间的溶解能力、亲与能力、吸附与解吸能力、渗透能力、迁移速率等性能的差异,先分离后分析测定的一类仪器分析方法。分离分析法包括:超临界流体色谱法;气相色谱法;高效液相色谱法;离子色谱法;高效毛细管电泳法;薄层色谱法。9质谱法:质谱法就是将待测物质置于离子源中电离形成带电离子,让离子加速并通过磁场或电场后,离子将按质荷比(m/z)大小分离,形成质谱图。依据质谱线的位置与质谱线的相对强度建立的分析方法称为质谱法。10联用分析技术:已成为当前仪器分析的重要发展方向。将几种方法结合起来,特别就是分离方法(如色谱法)与检测方法(红外吸收光谱法、质谱法、原子发射光谱法等)的结合,汇集了各自的优点,弥补了各自的不足,可以更好地完成试样的分析任务。气相色谱—质谱法(GC—MS)、气相色谱—质谱法—质谱法(GC—MS—MS)、液相色谱—质谱法(HPLC—MS)。11仪器分析方法的主要评价指标:精密度(Precision) ;准确度(Accuracy);选择性(Specificity);标准曲线(Calibration Curve);灵敏度(Sensitivity);检出限(Detection Limit)。12精密度:指在相同条件下用同一方法对同一样品进行多次平行测定结果之间的符合程度。同一人员在相同条件下测定结果的精密度—重复性、不同人员在不同实验室测定结果的精密度—再现性。13准确度:指测定值与真值相符合的程度。准确度常用相对误差Er来描述; Er越小,准确度越高。准确度就是分析过程中系统误差与随机误差的综合反映,准确度愈高分析结果才愈可靠。14选择性:指分析方法不受试样中基体共存物质干扰的程度。选择性越好,即干扰越少。15标准曲线:就是待测物质的浓度(或含量)与仪器响应(测定)信号的关系曲线。标准曲线的直线部分所对应的待测物质浓度(或含量)的范围称为该方法的线性范围。16灵敏度:待测组分单位浓度或单位质量的变化引起响应信号值的变化程度,用b表示。指在浓度线性范围内标准曲线的斜率。斜率越大,方法的灵敏度就越高。17检出限:指某一分析方法在给定的置信度能够被仪器检出的待测物质的最低量。D=3S0/b;S0—空白信号(仪器噪声)的标准偏差、b—分析方法的灵敏度(标准曲线的斜率)、3—IUPAC建议在一定置信度所确定的系数。检出限就是方法的灵敏度与精密度的综合指标,方法的灵敏度越高,精密度越好,检出限就越低。精密度、准确度及检出限就是评价仪器性能及分析方法的最主要技术指标。 第一章光分析法导论 1光分析法:基于电磁辐射能量与待测物质相互作用后所产生的辐射信号与物质组成及结构关系所建立起来的分析方法。电磁辐射范围:射线~无线电波所有范围、相互作用方式:吸收、发射、散射、反射、折射、干涉、衍射与偏振等。光分析法在研究物质组成、结构表征、表面分析等方面具有其她方法不可取代的地位。2电磁辐射的波粒二象性:光在传播时主要表现出波动性,可用波长(或波数)、频率υ描述;在与其她物质相互作用时,主要表现出粒子性,可用能量描述。3光的吸收:M + 光子→M*当光与物质接触时,某些频率的光被选择性

现代仪器分析与实验技术复习题

现代仪器分析与实验技术复习题. 版权所有--毛毛雨制作 现代仪器分析与实验技术 一.名词解释 标准曲线:是待测物质的浓度或含量与仪器信号的关系曲线,由于是用标准溶液测定绘制的,所以称为标准曲线。 准确度:是指多次测定的平均值与真值(或标准值)相符合的程度,常用相对误差来表示。 超临界流体:某些具有三相点和临界点的纯物质,当它在高于其临界点即高于其

临界温度和临界压力时,就变成了既不是气体也不是液体而是一种性质介于气体和液体之间的流体,称为超临界流体。 延迟荧光:分子跃迁至T1态后,因相互碰撞或通过激活作用又回到S1态,经振动弛豫到达S1的最低振动能级再发射荧光。这种荧光称为延迟荧光。 精密度:是指在相同条件下用同一方法对同一试样进行的多次平行测定结果之间的符合程度。 灵敏度:指被测组分在低浓度区,当浓度改变一个单位时所引起的测定信号的改变量,它受校正曲线的斜率比较和仪器设备本身精密度的限制。 检出限:是指能以适当的置信度被检出的组分的最低浓度或最小质量。 线性范围:指定量测定的最低浓度到遵循线性响应关系的最高浓度间的范围。梯度洗脱:指在一个分析周期中,按一定的程序连续改变流动相中溶剂的组成(如溶剂的极性、离子强度、pH等)和配比,使样品中的各个组分都能在适宜的条件下得到分离。 锐线光源:锐线光源是空心阴极灯中特定元素的激发态,在一定条件下发出的半宽度只有吸收线五分之一的辐射光。 自吸收:指当浓度较大时,处于激发光源中心的原子所发射的特征谱线被外层处于基态的同类原子所吸收,使谱线的强度减弱,这种现象称为自吸收。 原子线:原子外层电子吸收激发能后产生的谱线称为原子线。 离子线:离子外层电子从高能级跃迁到低能级时所发射的谱线。 电离能:使原子电离所需要的最小能量。 共振线:在所有原子发射的谱线中凡是由各高能级跃迁到基态时所长生的谱线。最后线:指样品被测元素的含量如果不断降低,强度弱的谱线就从光谱图上消失,接着是次强的谱线消失,当含量将至一定值后,只剩下最后的谱线称为最后线。荧光:分子从S1态的最低振动能级跃迁至S0各个振动能级所产生的辐射光称为荧光。 桑榆非晚!东隅已逝 2 毛毛雨制作版权所有-- 接着发生快速的振动弛豫到达三重态的最低振,磷光:单重态的分子发生系间窜跃到三重态后发射出的光便是磷光。,再由该激发态跃迁回基态的各个振动能级时,动能级称为化学发光。因吸收化学反应能激发发光,化学发光:因发生在生物体内有酶类物质参与的化学发光。生物发光:电子由高振动能,,可被激发到任一振动能级。在同一电子能级中振动松弛:分子吸收光辐射后这样的,,而将多余的能量以分子振动能形式消耗掉一部分(约10-12s)转至低振动能级级迅速是一种无辐射去激过程。过程称之为振动弛豫, :内转换相同多重态间的无辐射去激叫内转换。:不同多重态间的一种无辐射跃迁过程叫系间窜跃。系间窜跃其它反映了荧光物质发射荧光的的能力,量子产率:荧光量子产率是物质荧光特性的重要参数, /吸收的光子数。,物质的荧光越强。定义为φf=发射的光子数值越大 ,都是激发态分子重回基态得得途径。去激发光:荧光或磷光去活化的过程,S1态的最低振动能级斯托克斯位移:由于荧光物质分子吸收的光经过无辐射去激的消耗后降至这种现象称为斯托克斯位移。,能量比激发光小,因而发射的荧光的波长比激发光长物质因吸收光能而激发发光的现象。光致发光:其荧光强度随卤素的相对原子质量,,系间窜跃加强、Br、I后、重原子效应:苯环上取代上FCl 磷

实验室建设仪器设备的管理方案计划与维护

实验室建设仪器设备的管理与维护 为了解决实验室设备管理中存在的使用人员对设备疏于养护,重使用、轻保养、缺维修档案的问题,今天的内容主要对检验机构实验室仪器设备从采购到使用维护等方 面的内容进行介绍,希望能对检测实验室设备管理提供一些参考建议。 试验设备是开展质量检测的物质基础之一。本文从设备采购期间的选型论证,到设备使用期间的养护维修两方面的角度,介绍了实验室仪器设备的管理与维护。 【检测试验设备的特点】 1、科技含量高,结构复杂 随着国家对产品质量要求的不断提高,检测技术也飞速发展,先进的仪器设备不断涌现,老设备不断升级、换代;同时,现代试验技术正在向着多学科交叉渗透、多学 科智能密集型方向发展。许多大型精密仪器设备是化学、机械、电子、光学、生物、 计算机等多学科智能的集中体现,如气质联用仪、原子吸收光谱仪等。。。 2、品种多、数量大 如,各种超声振荡仪、真空干燥箱、紫外可见分光光度计、光学显微镜、天平等。。。这类仪器单价低、品种多、数量大,适合基础检测任务,频繁使用导致老化,会给维修人员带来很大的工作量,难以及时修复,从而,影响检测。专业检测设备和 大型精密仪器设备台数少,但品种多,单价高,使用者需参加仪器厂商培训及检测操 作上岗培训,发生故障,只依靠本单位内的维修力量难以修复,必须联系厂家进行处理,这样势必造成维修周期长,维修价格高,延误检测任务的完成。。。 【主要存在的问题】

1、设备疏于养护 大多数化学检测设备都属于精密仪器,不但要求试验操作人员会使用,还要了解仪器的基本原理、使用注意事项、仪器的存放环境,这样仪器的故障率才会减少[1],例如,纺织实验室常见的单纱强力机、做剥离顶破试验使用的万能材料试验机,机械部 分的丝杠需经常上油保养,但在实际使用中,往往因为使用频率不高,疏于保养,还 有大量使用的光学仪器紫外-可见分光光度计属于光学精密仪器,光学镜片定位精准,存放环境要防尘防震防潮,对环境的要求保持室温15℃~35℃,无直射光,无强烈的震动或连续不断的微震动,无强磁场,相对湿度40%~80%,无腐蚀性气体,无引起紫外吸收的有机、无机气体,少灰尘。如果光学仪器存放在一般实验室,在潮湿的环 境下,镜面受潮而霉变。在有的实验室,存在将光学分析仪器靠近离心机或振荡器等 设备,以便操作人员在离心程序后,样品即可进行光学分析,但是光学分析仪器长期 在高速运转的仪器旁,镜片可能会被震掉或震碎。在维修过程中,发现诸如此类问题 较多,仪器管理稍不重视[2],对检测试验带来较大的影响,加大了维修人员的工作量及维修经费。 2、仪器缺维修档案 试验仪器在购置、安装、验收后进行正常使用,都要将相关材料归类进档,建立仪器档案。档案主要包括合同、使用说明书等技术资料,设备到达相应的院系后即应有 相应的仪器使用记录、保养记录、维修记录,但是,有时会形成“重购置,轻维修; 重使用,轻管理”,对于使用保养和维修记录不够重视。例如,超声振荡仪器在实验 室用得较多,在维修中发现,由于保养不当,操作者在使用后,未及时擦干溅出的水 或化学药物,腐蚀仪器的电路板,从而造成整个电路板更换,既延长了维修时间,又 耽误了使用,增加了费用。很多仪器维修过,因为维修时间紧,任务又多,往往疏于 对维修进行记录,既不利于统计使用率,也不便于新入职的维修人员故障查询和零部 件的更换,影响重复性故障或相关故障的维修效率。 3、老旧设备不能满足能力验证的要求 CNAS实验室的能力认证计划几乎每年都有不同的项目,通过实验室间比对检验本 单位的实力,通常情况下,实验室大型仪器因价格昂贵,通常在维护方面是重点对象,

现代仪器分析复习题

1.热分析方法(热重、差热、差示扫描量热)要求对具体的谱图的分析,从中得出结论。热重法 TG 分析原理:在控温环境中,样品重量随温度或时间变化 谱图的表示方法:样品的重量分数随温度或时间的变化曲线 提供的信息:曲线陡降处为样品失重区,平台区为样品的热稳定区 差热分析 DTA 分析原理:样品与参比物处于同一控温环境中,由于二者导热系数不同产生温差,记录温度随环境温度或时间的变化 谱图的表示方法:温差随环境温度或时间的变化曲线 提供的信息:提供聚合物热转变温度及各种热效应的信息 差示扫描量热分析 DSC 分析原理:样品与参比物处于同一控温环境中,记录维持温差为零时,所需能量随环境温度或时间的变化 谱图的表示方法:热量或其变化率随环境温度或时间的变化曲线 提供的信息:提供聚合物热转变温度及各种热效应的信息 2.扫描电子显微镜SEM,透射电子显微分析TEM,原子力显微镜AFM。(三者表征方法可以得到哪些信息,其成像的特点以及对样品有何要求)

扫描电镜(SEM):用电子技术检测高能电子束与样品作用时产生二次电子、背散射电子、吸收电子、X射线等并放大成象 要求样品:1)尽可能保持活体时的形貌和结构;2)样品干燥、表面洁净,在真空和电子束轰击下不挥发和变形;3)具有表面良好的导电性,对不导电或导电性不好的样品,需根据实际情况进行喷金镀膜处理。 得到信息:可用于观察样品断口形貌、表面显微结构、薄膜内部的显微结构;配合 X 射线可得到物质本体化学成分信息,如微区元素分析与定量元素分析等。 透射电镜(TEM):高能电子束穿透试样时发生散射、吸收、干涉和衍射,使得在相平面形成衬度,显示出的二维图象。 样品要求:1)样品干燥,不含水分或挥发性物质;2)制备很薄以利于电子穿过;3)样品在适当溶液中具有良好的分散;4)特殊样品需特殊处理,如切片等。 得到信息:用于观察物质的超微形貌结构,微粒、微孔的形状结构和大小;配合X射线衍射装置可得电子衍射花样图象,进行微观的物相分析、结构分析;配合X射线能谱仪可进行微区成分分析。 原子力显微镜(AFM):得到样品表面原子级三维立体形貌图像 样品要求:样品表面尽量平整,与基片的结合尽可能牢固,必要时可采用化学键合;生理状态的各种物质,在大气或溶液中都能进行。 得到信息:用于研究材料的各种表面结构,测试其硬度、弹性、塑性等力学性能及表面摩擦性质。 3. X射线粉末衍射法XRD的基本原理,适用于什么样的样品?进行样品的物相分析过程如

现代仪器分析实验报告.

实验一双波长分光光度法测定混合样品溶液中 苯甲酸钠的含量 一、目的 1 ?熟悉双波长分光光度法测定二元混合物中待测组分含量的原理和方法。 2 ?掌握选择测定波长(入1)和参比波长(& )的方法。 二、原理 混合样品溶液由苯酚和苯甲酸钠组成,在0.04mol/LHCI溶液中测得其吸收光谱,苯甲酸钠的吸收峰 在229nm处,苯酚的吸收峰在210nm处。若测定苯甲酸钠,从光谱上可知干扰组分(苯酚)在229和 251 nm处的吸光度相等,则AA= KC A A仅与苯甲酸钠浓度成正比,而与苯酚浓度无关,从而测得苯甲酸钠的浓度。 三、仪器与试剂紫外分光光度计苯酚苯甲酸钠蒸馏水盐酸 四、操作步骤及主要结果 1 ?样品的制备 (1)标准储备液的配制精密称取苯甲酸钠0.1013g和苯酚0.1115g,分别用蒸馏水溶解,定量转 移至500ml容量瓶中,用蒸馏水稀释至刻度,摇匀,即得浓度为200卩g/ml的储备液,置于冰箱中保存。 (2)标准溶液的配制分别吸取标准苯酚储备液 5.00ml和标准苯甲酸钠储备液 5.00ml至100ml容 量瓶中,用0.04mol/LHCI溶液稀释至刻度,摇匀,即得浓度为10卩g/ml的标准溶液。 2 ?样品的测定(1 )波长组合的选择于可见-紫外分光光度计上分别测定苯酚和苯甲酸钠标准溶 液的吸收光谱(检测波长200~320nm),确定双波长法测定苯甲酸钠含量时的参比波长(入s=257.5nm) 和测定波长(入m=231.2nm)。(2)苯甲酸钠工作曲线的绘制配制不同浓度的I苯甲酸钠/0.04MHCl 溶液。以0.04mol/L HCl溶液为参比溶液,测定系列浓度的苯甲酸钠/0.04M HCl溶液在入m和入s处的吸 光度差值(见表1),计算其回归方程Y=0.0652X+0.0311(R 2=0.999)。(3)测定以0.04mol/L HCl溶液为参比溶液,测定混和溶液的吸光度值(n=3 ),根据回归方程计算混和溶液中苯甲酸钠的含量(X , RSD%)。见表2 表1双波长法测定不同浓度下苯甲酸钠标准溶液的吸光度 标准溶液浓度(ug/ml )231.2 nm 吸光度257.5nm吸光度吸光度差值 20.1630.0120.151 40.3240.0210.303 60.4550.0340.421 80.6050.0460.559 100.7350.0540.681 120.8710.0620.809 表2 混合溶液不同波 长下的吸光度 测量次数231.2 nm 吸光度257.5nm吸光度吸光度差值10.6120.1100.502 20.6140.1130.501 30.613 ,0.1120.501 平均值0.6120.1120.500 RSD 均小于0.1%将Y=0.500 代入回归方程Y=0.0652X+0.0311 得X=7.2 ,则样品浓度为:7.2936ug/ml 则其含量为:7.3*100/1000=0.73mg 五讨论:本试验采用双波长法测定苯酚和苯甲酸钠的混合液中苯甲酸钠的含量,关键是两个波长 的选择,同时应使两波长下苯甲酸钠的吸光度值足够大,以减小测量误差。

现代仪器分析第二章习题及答案

第二章光学分析法导论 一、选择题 1.电磁辐射的粒子性主要表现在哪些方面() A.能量B.频率C.波长D.波数 2.当辐射从一种介质传播到另一种介质时,下列哪种参量不变() A.波长B.速度C.频率D.方向 3.电磁辐射的二象性是指() A.电磁辐射是由电矢量和磁矢量组成B.电磁辐射具有波动性和电磁性 C.电磁辐射具有微粒性和光电效应D.电磁辐射具有波动性和粒子性 4.可见光区、紫外区、红外光区、无线电波四个电磁波区域中,能量最大和最小的区域分别为() A.紫外区和无线电波区B.可见光区和无线电波区 C.紫外区和红外区D.波数越大 5.有机化合物成键电子的能级间隔越小,受激跃迁时吸收电磁辐射的() A.能量越大B.频率越高C.波长越长D.波数越大 6.波长为的电磁辐射的能量是() A.B.C.124eV D.1240 eV 7.受激物质从高能态回到低能态时,如果以光辐射形式辐射多余的能量,这种现象称为() A.光的吸收B.光的发射C.光的散射D.光的衍射 8.利用光栅的()作用,可以进行色散分光。 A.散射B.衍射和干涉C.折射D.发射 9.棱镜是利用其()来分光的。 A.散射作用B.衍射作用C.折射作用D.旋光作用 10.光谱分析仪通常由以下()四个基本部分组成。 A.光源、样品池、检测器、计算机 B.信息发生系统、色散系统、检测系统、信息处理系统 C.激发源、样品池、光电二级管、显示系统 D.光源、棱镜、光栅、光电池

1.不同波长的光具有不同的能量,波长越长,频率、波数越(),能量越();反之,波长越短,能量越()。 2.在光谱分析中,常常采用色散元件获得()来作为分析手段。 3.物质对光的折射率随着光的频率变化而变化,这中现象称为()。 4.吸收光谱按其产生的本质分为()、()、()等。 5.由于原子没有振动和转动能级,因此原子光谱的产生主要是()所致。 6.当光与物质作用时,某些频率的光被物质选择性的吸收并使其强度减弱的现象,称为(),此时,物质中的分子或原子由()状态跃迁到()的状态。 7.原子内层电子跃迁的能量相当于()光,原子外层电子跃迁的能量相当于()和()。 三、简答题 1.什么是光学分析法 2.何谓光谱分析法和非光谱分析法 3.简述光学分析法的分类。 4.简述光学光谱仪器的基本组成。 5.简述瑞利散射和拉曼散射的不同。 答案 一、选择题 ACDACDBBCB 二、填空题 1.越小小高 2.单色光 3.色散 4.分子吸收光谱原子吸收光谱核磁共振波普 5.电子能级跃迁 6.光的吸收能级较低能量较高 7.x紫外线可见光

现代仪器分析综述

现代仪器分析综述 (1309011025 韩武) 现代仪器分析为现代分析化学奠定了雄厚的学科理论基础——信息理论, 使现代仪器分析已经成为分析化学极其重要的组成部分,现代仪器分析所采用的分析仪器是化学、光学、电学、磁学、机械及计算机科学等现代科学综合发展的产物,仪器本身就是科学技术水平的标志。若能充分利用现代仪器分析方法和技术, 就能更加全面、准确地认识物质世界, 进一步促进科学技术向纵深发展。 1、现代分析仪器的发展及发展趋向 现代仪器分析是在化学分析的基础上逐步发展起来的一类分析方法,现代分析仪器对科技领域的发展起着关键作用,一方面科技领域对分析仪器不断提出更高的要求,另一方面随着科学技术的飞速发展,新材料、新器件不断涌现又大大推动了分析仪器的快速更新,同时为仪器分析中老方法的不断更新、新方法的不断建立提供了物质和技术基础,大大地促进了现代仪器分析的快速发展。现代分析仪器的发展趋向主要有以下特点:向多功能化、自动化和智能化方向发展,向专用型和微型化方向发展,向多维分析仪器方向发展,向联用分析仪器方向发展。仪器分析的最主要的功能是人类五官感触的延伸,人类智慧利用了光、电和磁的物理特性通过物理和化学手段将微小的物理量放大,而获得感知小型化集成化(芯片)、多功能化(联用技术)和高稳定、高灵敏度检测是仪器分析发展的最高境界。20 世纪 70 年代中期首先出现了二维气相色谱技术,70 年代后期迅速发展了二维质谱技术和二维核磁共振波谱技术。二维气相色谱技术可使 用一种流动相在两根串联的色谱柱上对组成复杂的样品实现完全分离:二维质谱技术可同时提供强的碎片离子峰和强的分子离子峰,从而获得完整的结构信息;二维核磁共振波谱技术可提供固体物质、生物大分子的三维结构,显示原子核在样品中分布的立体图像。由上述分析仪器的发展和发展趋向 ,可知现代分析仪器是一种高科技产品,它综合采用了各种技术的最新成果,在不断创新与自身发展的同时,又为各个科技领域的研究和发展提供有力的手段和重要的信息。 2、现代仪器分析的内容和分类 现代仪器分析方法内容丰富,种类繁多,每种方法都有相对独立的物理及物理化学原理,现已有三四十种,新的方法还在不断地出现。为了便于学习和掌握,根据测量原理和信号特点,大致分为电化学分析法、色谱分析法、质谱分析法,

现代仪器分析重点总结(期末考试版)

现代仪器分析:一般的说,仪器分析是指采用比较复杂或特殊的仪器设备,通过测量物质的某些物理或物理化学性质的参数及其变化来获取物质的化学组成、成分含量及化学结构等信息的一类方法。 灵敏度:指待测组分单位浓度或单位质量的变化所引起测定信号值的变化程度。灵敏度也就是标准曲线的斜率。斜率越大,灵敏度就越高光分析法:利用光电转换或其它电子器件测定“辐射与物质相互作用”之后的辐射强度等光学特性,进行物质的定性和定量分析的方法。 光吸收:当光与物质接触时,某些频率的光被选择性吸收并使其强度减弱,这种现象称为物质对光的吸收。原子发射光谱法:元素在受到热或电激发时,由基态跃迁到激发态,返回到基态时,发射出特征光谱,依据特征光谱进行定性、定量的分析方法。 主共振线:在共振线中从第一激发态跃迁到激发态所发射的谱线。 分析线:复杂元素的谱线可能多至数千条,只选择其中几条特征谱线检验,称其为分析线。 多普勒变宽:原子在空间作不规则的热运动所引起的谱线变宽。 洛伦兹变宽:待测原子和其它粒子碰撞而产生的变宽。 助色团:本身不吸收紫外、可见光,但与发色团相连时,可使发色团产生的吸收峰向长波方向移动,且吸收强度增强的杂原子基团。 分析仪器的主要性能指标是准确度、检出限、精密度。 根据分析原理,仪器分析方法通常可以分为光分析法、电分析化学方法、色谱法、其它仪器分析方法四大类。 原子发射光谱仪由激发源、分光系统、检测系统三部分组成。 使用石墨炉原子化器是,为防止样品及石墨管氧化应不断加入(N2)气,测定时通常分为干燥试样、灰化试样、原子化试样、清残。 光谱及光谱法是如何分类的? ⑴产生光谱的物质类型不同:原子 光谱、分子光谱、固体光谱;⑵光谱 的性质和形状:线光谱、带光谱、 连续光谱;⑶产生光谱的物质类型 不同:发射光谱、吸收光谱、散射光 谱。 原子光谱与发射光谱,吸收光谱与 发射光谱有什么不同 原子光谱:气态原子发生能级跃迁 时,能发射或吸收一定频率的电磁 波辐射,经过光谱依所得到的一条 条分立的线状光谱。 分子光谱:处于气态或溶液中的分 子,当发生能级跃迁时,所发射或吸 收的是一定频率范围的电磁辐射组 成的带状光谱。 吸收光谱:当物质受到光辐射作用 时,物质中的分子或原子以及强磁 场中的自选原子核吸收了特定的光 子之后,由低能态被激发跃迁到高 能态,此时如将吸收的光辐射记录 下来,得到的就是吸收光谱。 发射光谱:吸收了光能处于高能态 的分子或原子,回到基态或较低能 态时,有时以热的形式释放出所吸 收的能量,有时重新以光辐射形式 释放出来,由此获得的光谱就是发 射光谱。 选择内标元素和分析线对有什么要 求? a. 若内标元素是外加的,则该元素 在分析试样中应该不存在,或含量 极微可忽略不计,以免破坏内标元 素量的一致性。b.被测元素和内 标元素及它们所处的化合物必须有 相近的蒸发性能,以避免“分馏”现 象发生。c.分析线和内标线的激 发电位和电离电位应尽量接近(激 发电位和电离电位相等或很接近的 谱线称为“均称线对”);分析线对 应该都是原子线或都是离子线,一 条原子线而另一条为离子线是不合 适的。d. 分析线和内标线的波长 要靠近,以防止感光板反衬度的变 化和背景不同引起的分析误差。分 析线对的强度要合适。e.内标线 和分析线应是无自吸或自吸很小的 谱线,并且不受其他元素的谱线干 扰。 原子荧光光谱是怎么产生的?有几 种类型? 过程:当气态原子受到强特征辐射 时,由基态跃迁到激发态,约在10 -8s后,再由激发态跃迁回到基态, 辐射出与吸收光波长相同或不同的 辐射即为原子荧光。 三种类型:共振荧光、非共振荧光 与敏化荧光。 为什么原子发射光谱法可采用内标 法来消除实验条件的影响? 影响谱线强度因素较多,直接测定 谱线绝对强度计算难以获得准确结 果,实际工作多采用内标法。内标 法属相对强度法,是在待测元素的 谱线中选一条谱线作为分析线,然 后在基体元素或在加入固定量的其 他元素的谱线中选一条非自吸谱线 作为内标线,两条谱线构成定量分 析线对。 通常为什么不用原子吸收光谱法进 行物质的定性分析? 答:原子吸收光谱法是定量测量某 一物质含量的仪器,是定量分析用 的,不能将物质分离,因此不能鉴定 物质的性质,因此不能。。。。 原子吸收光谱法,采用峰值吸收进 行定量分析的条件和依据是什么? 为了使通过原子蒸气的发射线特征 (极大)频率恰好能与吸收线的特征 (极大)频率相一致,通常用待测 元素的纯物质作为锐线光源的阴 极,使其产生发射,这样发射物质 与吸收物质为同一物质,产生的发 射线与吸收线特征频率完全相同, 可以实现峰值吸收。 朗伯比尔定律的物理意义是什么? 偏离朗伯比尔定律的原因主要有哪 些? 物理意义是:当一束平行单色光通 过均匀的溶液时,溶液的吸光度A 与溶液中的吸光物质的浓度C及液 层厚度L的乘积成正比。A=kcL 偏离的原因是:1入射光并非完全 意义上的单色光而是复合光。2溶 液的不均匀性,如部分入射光因为 散射而损失。3溶液中发生了如解 离、缔合、配位等化学变化。 影响原子吸收谱线宽度的因素有哪 些?其中最主要的因素是什么? 答:影响原子吸收谱线宽度的因素 有自然宽度Δf N、多普勒变宽和压 力变宽。其中最主要的是多普勒变 宽和洛伦兹变宽。 原子吸收光谱法,采用极大吸收进 行定量的条件和依据是什么? 答:原子吸收光谱法,采用极大吸收 进行定量的条件:①光源发射线的 半宽度应小于吸收线半宽度;②通 过原子蒸气的发射线中心频率恰好 与吸收线的中心频率ν0相重合。定 量的依据:A=Kc 原子吸收光谱仪主要由哪几部分组 成?各有何作用? 答:原子吸收光谱仪主要由光源、 原子化器、分光系统、检测系统四 大部分组成。 光源的作用:发射待测元素的特征 谱线。 原子化器的作用:将试样中的待测 元素转化为气态的能吸收特征光的 基态原子。 分光系统的作用:把待测元素的分 析线与干扰线分开,使检测系统只 能接收分析线。 检测系统的作用:把单色器分出的 光信号转换为电信号,经放大器放 大后以透射比或吸光度的形式显示 出来。 使用空心阴极灯应注意些什么?如 何预防光电倍增管的疲劳? 答:使用空心阴极灯应注意:使用前 须预热;选择适当的灯电流。预防 光电倍增管的疲劳的方法:避免长 时间进行连续光照。 与火焰原子化器相比,石墨炉原子 化器有哪些优缺点? 与火焰原子化器相比,石墨炉原子 化器的优点有:原子化效率高,气相 中基态原子浓度比火焰原子化器高 数百倍,且基态原子在光路中的停 留时间更长,因而灵敏度高得多。 缺点:操作条件不易控制,背景吸收 较大,重现性、准确性均不如火焰 原子化器,且设备复杂,费用较高。 光谱干扰有哪些,如何消除? 答:原子吸收光谱法的干扰按其性 质主要分为物理干扰、化学干扰、 电离干扰和光谱干扰四类。 消除方法: 物理干扰的消除方法:配制与待测 溶液组成相似的标准溶液或采用标 准加入法,使试液与标准溶液的物 理干扰相一致。 化学干扰的消除方法:加入释放剂 或保护剂。 电离干扰的消除方法:加入一定量 的比待测元素更容易电离的其它元 素(即消电离剂),以达到抑制电离的 目的。 光谱干扰的消除方法:缩小狭缝宽 度来消除非共振线干扰;采用空白 校正、氘灯校正和塞曼效应校正的 方法消除背景吸收。 比较标准加入法与标准曲线法的优 缺点。 答:标准曲线法的优点是大批量样 品测定非常方便。缺点是:对个别样 品测定仍需配制标准系列,手续比 较麻烦,特别是遇到组成复杂的样 品测定,标准样的组成难以与其相 近,基体效应差别较大,测定的准 确度欠佳。 标准加入法的优点是可最大限度地 消除基干扰,对成分复杂的少量样 品测定和低含量成分分析,准确度 较高;缺点是不能消除背景吸收, 对批量样品测定手续太繁,不宜采 用。 电子跃迁有哪几种类型?哪些类型 的跃迁能在紫外及可见光区吸收光 谱中反映出来? 答:电子跃迁的类型有四种:б→б *,n→б*,n→π*,π→π*。 其中n→б*,n→π*,π→π*的跃 迁能在紫外及可见光谱中反映出 来。 何谓发色团和助色团?举例说明。 答:发色团指含有不饱和键,能吸 收紫外、可见光产生n→π*或π→ π*跃迁的基团。例如:>C=C<, —C≡C—,>C=O,—N=N—,— COOH等。 助色团:指含有未成键n电子,本 身不产生吸收峰,但与发色团相连 能使发色团吸收峰向长波方向移动, 吸收强度增强的杂原子基团。例如: —NH2,—OH,—OR,—SR,—X等。 标准光谱比较定性法为什么选铁 谱? (1)谱线多:在210~660nm范围 内有数千条谱线; (2)谱线间距离分配均匀:容易对 比,适用面广; (3)定位准确:已准确测量了铁 谱每一条谱线的波长。 已知一物质在它的最大吸收波长处 的摩尔吸收系数κ为 1.4× 104L·mol-1·cm-1,现用1cm吸收池 测得该物质溶液的吸光度为0.850, 计算溶液的浓度。 解:∵A=KCL ∴C=A/(KL)=0.850/(1.4×104×1)= 0.607×10-4 (mol·L-1 ) 10.K2CrO4的碱性溶液在372nm 处有最大吸收,若碱性K2CrO4溶液 的浓度c(K2CrO4)=3.00×10-5 mol·L-1,吸收池长度为1cm, 在此波长下测得透射比是71.6%。 计算:(1)该溶液的吸光度;(2)摩 尔吸收系数;(3)若吸收池长度为 3cm,则透射比多大? 解:(1)A=-lgT=-lg71.6%= 0.415 (2)K=A/(CL)=0.415 /(3.00×10-5×1)=4.83×103 (L·mol-1·cm-1) (3)∵lgT=-A=-KCL=-4.8 3×103×3.00×10-5×3=-0.4347 ∴T=36.75% 苯胺在λmax为280nm处的κ为14 30 L·mol-1·cm-1,现欲制备一苯胺 水溶液,使其透射比为30%,吸收池 长度为1cm,问制备100mL该溶液需 苯胺多少克? 解:设需苯胺Xg,则∵A=-lg T= KCL ∴0.523=1430×(X/M×100×10-3) ×1 X=3.4×10-3g 化学分析:是指利用化学反应和它 的计量关系来确定被测物质的组成 --

相关文档
相关文档 最新文档