文档库 最新最全的文档下载
当前位置:文档库 › 活泼金属薄膜法对稀土金属铽中氧含量的影响-

活泼金属薄膜法对稀土金属铽中氧含量的影响-

文章编号:1001-9731(2015)23-23061-03

活泼金属薄膜法对稀土金属铽中氧含量的影响?

李国玲1,2,李一里2,傅一凯1,韩丽辉1,李星国2,田文怀1

(1.北京科技大学材料科学与工程学院,北京100083;

2.北京大学化学与分子工程学院,稀土材料化学及应用国家重点实验室,北京100871)

摘一要:一通过磁控溅射法在基体金属表面溅射活泼金属层作为吸气剂,在高真空加热条件下,促进间隙杂质氧的脱除.选用活泼金属钇为脱氧剂,可以有效地去除金属铽中固溶的大部分氧元素,氧含量由4.9?10-4降至6.24?10-5.薄膜法是一种特殊的样品制备方法,在脱氧过程中有重要作用.在加热过程中,钇与间隙杂质发生热力学作用,是脱氧的关键.

关键词:一磁控溅射;铽;钇;氧

中图分类号:一TF841文献标识码:A DOI:10.3969/j.issn.1001-9731.2015.23.013

1一引一言

稀土具有特殊的物理和化学性能,因其特异的光二电二磁和催化性能,已在能源二信息二环保二农业和国防等各方面获得了重要的应用.稀土铽金属具有较平坦的4f电子云结构,广泛应用于磁性材料二稀土高温超导材料和光电材料,在开发新能源方面发挥着重要的作用[1-4].然而铽金属同时具有极高的化学反应活性,制备工艺复杂,储存条件要求苛刻,尤其易被氧二次污染形成高容量间隙固溶体[5].氧大量固溶于基体金属会严重影响材料的后期制备及现场应用[6].由于铽金属与氧之间具有极强的亲合力[7],使得脱氧工作成为一个极具挑战的工作.

高纯稀土铽的基本工艺包括单质制备和金属纯化两部分.制备方法有氟化物熔盐电解法和钙热还原法,纯度较低的铽金属单质再经过真空蒸馏法可以去除残余的氟化物或氧化物原料.纯化工艺主要包括电子束熔炼法二区域熔炼法与电弧熔炼法,样品经纯化后可以脱除大部分金属杂质从而获得较高纯度铽单质.复杂工艺流程中固溶的大量氧在纯化阶段无法脱除,需要再次经过特殊的脱氧工艺.广泛应用的脱氧方法是外吸气法,将高活泼性金属与基体金属放在同一密闭环境,经过真空加热或离子束加热,有效脱除目标金属中掺杂入的非金属杂质[8-9].稀土金属钆是镧系中较活泼的重金属元素,用钇做吸气剂,经氩气电弧熔炼可以有效地将钆中的氧元素降低至1?10-4以下[10].鉴于铽金属具有较高的蒸汽压,电弧熔炼法会造成样品大量挥发,本文采用磁控溅射法在基体金属表面包覆一层致密的钇薄膜,通过高温高真空加热促进间隙杂质氧元素的脱除.

2一实一验

实验过程采用JS3S-50B型磁控溅射仪,如图1所示,主要包括真空系统二磁控溅射系统及样品台3部分.高温加热设备为CXZW-20-20型高真空钨丝炉,真空度为1?10-5Pa,最高温度可达2000K.原材料为商业用金属铽(纯度为99.8%,氧含量4.9?10-4),样品形状为长50mm二直径5mm的棒状.首先将原始样品镀膜,溅射电流为0.25A,每次镀膜时间为8min,间隔5min,平均溅射10次.镀膜后的样品在钨丝炉中加热,温度范围为873~1473K,保温时间由60~300min不等.

采用ICP(美国Leeman,PROFILE SPEC)分析技术测试基体中钇元素含量,用氧分析仪(美国LE-CO,TCH600)定量分析样品中剩余氧含量.

图1一磁控溅射仪示意图

Fi g1The dia g ram of ma g netron s p utterin g 3一实验结果及分析

3.1一镀膜后样品SEM-EDS形貌

图2为金属铽表面经溅射后的EDS谱线及SEM 形貌图,从图2可以看出左侧为一层致密的钇薄膜,右侧为基体金属铽,钇膜均匀紧密地附着在基体金属表面.

16032

李国玲等:活泼金属薄膜法对稀土金属铽中氧含量的影响

?基金项目:国家重点基础研究发展计划(973计划)资助项目(2012CBA01207)

收到初稿日期:2015-01-06收到修改稿日期:2015-04-24通讯作者:田文怀,E-mail:wenhuaitian@ustb.edu.cn 作者简介:李国玲一(1989-),女,山东青州人,在读博士,师承田文怀教授,从事稀土材料研究.

17种稀土元素名称及用途

17种稀土元素名称及用途 镧(La) "镧"这个元素是1839年被命名的,当时有个叫"莫桑德"的瑞典人发现铈土中含有其它元素,他借用希腊语中"隐藏"一词把这种元素取名为"镧"。镧的应用非常广泛,如应用于压电材料、电热材料、热电材料、磁阻材料、发光材料(兰粉)、贮氢材料、光学玻璃、激光材料、各种合金材料等。她也应用到制备许多有机化工产品的催化剂中,光转换农用薄膜也用到镧,在国外,科学家把镧对作物的作用赋与"超级钙"的美称。 铈(Ce)"铈"这个元素是由德国人克劳普罗斯,瑞典人乌斯伯齐力、希生格尔于1803年发现并命名的,以纪念1801年发现的小行星--谷神星。 铈的广泛应用: (1)铈作为玻璃添加剂,能吸收紫外线与红外线,现已被大量应用于汽车玻璃。不仅能防紫外线,还可降低车内温度,从而节约空调用电。从1997年起,日本汽车玻璃全加入氧化铈,1996年用于汽车玻璃的氧化铈至少有2000吨,美国约1000多吨. (2)目前正将铈应用到汽车尾气净化催化剂中,可有效防止大量汽车废气排到空气中。美国在这方面的消费量占稀土总消费量的三分之一强。 (3)硫化铈可以取代铅、镉等对环境和人类有害的金属应用到颜料中,可对塑料着色,也可用于涂料、油墨和纸张等行业。目前领先的是法国罗纳普朗克公司。 (4)Ce:LiSAF激光系统是美国研制出来的固体激光器,通过监测色氨酸浓度可用于探查生物武器,还可用于医学。铈应用领域非常广泛,几乎所有的稀土应用领域中都含有铈。如抛光粉、储氢材料、热电材料、铈钨电极、陶瓷电容器、压电陶瓷、铈碳化硅磨料、燃料电池原料、汽油催化剂、某些永磁材料、各种合金钢及有色金属等。 镨(Pr) 大约160年前,瑞典人莫桑德从镧中发现了一种新的元素,但它不是单一元素,莫桑德发现这种元素的性质与镧非常相似,便将其定名为"镨钕"。"镨钕"希腊语为"双生子"之意。大约又过了40多年,也就是发明汽灯纱罩的1885年,奥地利人韦尔斯巴赫成功地从"镨钕"中分离出了两个元素,一个取名为"钕",另一个则命名为"镨"。这种"双生子"被分隔开了,镨元素也有了自己施展才华的广阔天地。镨是用量较大的稀土元素,其用于玻璃、陶瓷和磁性材料中。 镨的广泛应用: (1)镨被广泛应用于建筑陶瓷和日用陶瓷中,其与陶瓷釉混合制成色釉,也可单独作釉下颜料,制成的颜料呈淡黄色,色调纯正、淡雅。

稀土材料的应用简介

稀土矿的应用简介 一、稀土矿的简介 1、稀土的发现史 从1794年发现元素钇,到1945年在铀的裂变物质中获得钷,前后经过151年的时间,人们才将元素周期表中第三副族的钪、钇、镧、铈、镨、钕、钷、钐、铕、钆、铽、镝、钬、铒、铥、镱、镥17个性质相近的元素全部找到,把它们列为一个家族,取名稀土元素。我国稀土品种全,17种元素除钷尚未发现天然矿物,其余16种稀土元素均已发现矿物、矿石。2、资源储量分布 我国稀土矿产主要集中在内蒙古白云鄂博铁-铌、稀土矿区,其稀土储量占全国稀土总储量的90%以上,是我国轻稀土主要生产基地。即轻稀土主要分布在北方地区,重稀土则主要分布在南方地区,尤其是在南岭地区分布可观的离子吸附型中稀土、重稀土矿,易采、易提取,已成为我国重要的中、重稀土生产基地。此外,在南方地区还有风化壳型和海滨沉积型砂矿,有的富含磷钇矿(重稀土矿物原料);在赣南一些脉钨矿床(如西华山、荡坪等)伴生磷钇矿、硅铍钇矿、钇萤石、氟碳钙钇矿、褐钇铌矿等重稀土矿物,在钨矿选冶过程中可综合回收,综合利用。 二、稀土的用途 稀土(RE)常被冠以“工业味精”的美誉。稀土元素因其具有独特的电子结构而表现出特殊的光、电、磁学等物理化学性质。无论是稀土金属还是其化合物都有良好的应用价值。1、传统领域中的稀土材料 (1)稀土在农轻工中的应用 稀土元素作为微量元素用于农业有2个优点:一是作为植物的生长、生理调节剂;二是稀土属低毒、非致癌物质,合理使用对人畜无害、环境无污染。如添加稀土元素的硝酸盐化合物作为微量元素化肥施用于农作物可起到生物化学酶或辅助酶的生物功效,具有增产效果。 纺织业中:铈组元素(Eu以前的镧系元素)的氯化物或醋酸盐可提高纺织品的耐水性,并使织物具有防腐、防蛀、防酸等性能。某些稀土化合物还可以作为皮革的着色剂或媒染剂,La、Ce、Nd的一些化合物可用作油漆的干燥剂,增强油漆的耐腐蚀性。 (2)稀土在冶炼工业中的应用 稀土元素对O、S和某些非金属具有强亲和力,利用这一特点,将稀土用于炼钢中能净化钢液,能起到脱S和脱O的作用,其原理是加入钢中的稀土能结合钢中可能生成的MnS、Al2O3和硅铝酸夹杂物中的O和S形成化合物。 钢的脱硫:在钢中添加混合稀土金属的目的之一是控制硫夹杂物的含量和形状。炼钢通常要添加锰,锰与硫结合形成硫化物夹杂物,这种夹杂物在轧钢时会变形。而添加混合稀土金属则能产生稀土的硫化物、硫氧化物,它们在轧钢时形状保持不变,使钢的性能得到改善。 稀土球墨铸铁:混合稀土金属以稀土硅铁合金或硅镁钛合金的形式加入铁不中促进石墨的球化,从而提高铸铁的可锻强度。产品称球墨铸铁。 打火石:混合稀土金属制造打火石,这是75%的混合稀土金属和25%的铁制成的一种合金。 有色金属合金中:稀土金属有色金属合金中也获得广泛应用。例如有一种稀土镁合金(含有Mg、Zn、Zr、La、Ce)可用于制造喷气式发动机的传动装置,直升飞机的变速箱,飞机的着陆轮和座舱罩。在镁合金中添加稀土金属优点是可提高其高温抗蠕变性,改善铸造性能和室温可焊性。有一种铝锆钇合金用作电线,其特点是输出功率高、耐热、耐振动和耐腐蚀。(3)稀土在炼油业中的应用 目前,世界上90%的炼油裂化装置都使用含稀土的催化剂,其中稀土分子筛型石油裂化

稀土元素镧及其应用(精)

稀土元素镧及其应用 在稀土元素家族中,锢无疑是个非常重要的成员。论地位和名气,他居于稀土家族主体“镧系元素”之首,作为15个元素的代表占据了化学元素周期表主表中的一个空格,并以他的名字来命名这个元素族系。论地壳中丰度为32ppm,占稀土总丰度的14.1%,仅次于铈和钕,居第三位。从发现年代看,他也仅排在钇和铈之后,是第三个被发现的稀土元素。 1839年,那位曾经发现铈的瑞典化学家伯采利乌斯(J.J.Berzelius),有一个瑞典学生名叫莫桑德(Car1 Mosander),在研究“铈土”时,分离并发现其中还隐藏着一种新元素,于是莫桑德便借用希腊语中“隐藏”一词把这种元素取名为”镧”。从此,镧便登上了被人类认识和利用的历史舞台。 镧之所以被较早发现,与他在元素周期表中的位置,也就是原子结构和性质密切相关。他居镧系元素之首,4f轨道上电子数为0,与其他元素发生化学反应时呈正三价。钪和钇虽然与他同在IIIB族,但不在一个周期,性质悬殊。与他紧邻的铈又能呈稳定正四价状态,也造成较大的化学性质差异,易于分离。而他与错钕等其他稀土元素之间又有铈相隔,因此镧比较容易同其他稀土分离并提纯。 稀土元素作为典型的金属元素,其金属活泼性仅次于碱金属和碱土金属。在17个稀土元素当中,按金属的活泼次序排列,由钪、钇到镧递增,又由镧到镥递减,属镧最为活泼。因此作为金属热还原工艺的还原剂,他可以用来还原制备其他稀土金属,而还原制备金属镧,则只能采用比他更为活泼的碱金属和碱土金属,通常采用金属钙作还原剂。 活跃的化学活性和丰富的储量,使镧广泛应用于冶金、石油、玻璃、陶瓷、农业、纺织和皮革等传统工业领域。尽管生产镧并不困难,但为了降低成本,在充分发挥镧及稀土共性的前提下,经常以混合轻稀土或富镧稀土的产品形式使用。 稀土作为金属材料的净化和变质剂,通常以混合稀土金属或中间合金的形态来使用。而镧作为最活泼的一员,在去除氧、硫、磷等非金属杂质和铅、锡等低熔点金属杂质,以及细化晶粒等方面自然会发挥首当其冲的作用。只是他经常和铈错钕等轻稀土弟兄们一起协同作战。当然,也能同其他金属协同作战,如在铅中加入富镧稀土金属(0.01‰~0.2‰)和铁(0.005‰~ 0.1‰),可明显提高抗折拉性能,使铅板机械强度提高上百倍。不仅改善了铅板防辐射性能,还扩大了合金基材的应用范围。以银-氧化镧复合镀层取代纯银作为电接触材料,可节约用银70%~90%,有很大经济效益。 20世纪80年代,石泊裂化催化剂曾经是稀土最大应用领域,因为稀土用作Y 型沸石催化剂,以镧的催化活性最强。在美国一直采用富镧稀土作为石油裂化催化

稀土发光材料及其应用(精)

稀土发光材料及其应用 1、概述稀土离子的发光特性,主要取决于稀土离子4f壳层电子的性质。随着稀土离子4f壳层电子数量的变化,表现出不同的跃迁形式和极其丰富的能级跃迁。研究表明,稀土离子的4fN电子组态中,有1639个能级,能级之间的可跃迁数目高达199177个,可观察到的谱线达30000多条,如果再涉及到4f—5d的能级跃迁,则数目更多。因而,稀土离子可以吸收或发射从紫外到红外区的各种波长的光,形成多种多样的发光材料。由于稀土离子特有的发光特性,为其作为高效发光材料奠定了基础,并在发光学和发光材料的发展过程中起着里程碑的作用。如1964年Y2O3∶Eu和Y2O3S∶Eu等彩电红粉的出现,使彩电的亮度提高到一个新的水平;20世纪70年代出现的红外变可见上转换发光材料,从理论上提出反Stokes效应;1974年报道的稀土三基色荧光粉为新一代荧光灯奠定了基础。近30年来,稀土发光材料正在逐渐取代非稀土发光材料,已经在光致发光、电致发光、阴极射线发光和X射线发光材料方面获得重要而广泛的应用,稀土发光材料的研究也成为发光材料的研究重点和前沿,国内外的竞争非常激烈。 2、国内本 行业的发展现状及未来发展趋势(1)阴极射线发光材料主要应用于电视机、计算机、示波器、雷达等各种荧光屏和显示器,其中在彩色阴极射线管(CRT)的发展最快,在彩色电视的发展过程中,稀土荧光粉起到了里程碑的作用。在20世纪60年代中期,成功地合成了YVO4∶Eu、Y2O3∶Eu和Y2O3S∶Eu等稀土红色荧光粉,突破了红粉亮度上不去的障碍,使彩电的亮度提高到一个新的水平。目前,国内普通彩电中使用的蓝粉和绿粉仍然是硫化锌系列荧光粉,但由于硫化锌型绿粉的光衰比蓝粉和红粉的大,需要增加电视机的色彩调节,因此需要开发新的绿色荧光粉。近几年随着国外新型稀土蓝色荧光粉和绿色荧光粉的开发成功,正在取代传统的荧光粉,使高清晰度大屏幕彩电开始大批量投放市场,进入平常百姓家庭。对于彩色电视飞点扫描管、束电子引示管、扫描电子显微镜探测镜等所需的超短余辉荧光粉(τ≤μs),目前都是Ce3+激活的,其寿命非常短,一般在30~100ns。(2)电致发光材料固体平板显示技术是显示技术领域的主要发展趋势之一,液晶显示、电致发光显示、等离子体显示是三种主要的平板显示技术。电致发光平板化微机终端显示器用于便携式微机,已经在美国、日本、芬兰有商品生产,预计在今后将迅速发展,与阴极射线发光分庭抗争。目前已商品生产的电致发光材料是ZnS∶Mn。为实现彩色电致发光平板显示,国内外许多实验室正在大力研究掺杂稀土的薄膜材料。(3)X射线发光材料以稀土荧光粉为主的新的X射线增感屏作为X射线发光材料已日益受到人们的重视,并得到不断的发展,近年来新发现的几种荧光粉,不仅具有与CaWO4同样的照

浅析稀土材料的应用

稀土材料 3分 开放分类: 目录 ? ? ? ? 摘要 请用一段简单的话描述该词条,马上。 稀土材料泛指一切含有稀土元素的功能材料和结构材料。 稀土材料-什么是稀土 就是化学元素周期表中—镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)、镥(Lu),以及与镧系的15个元素密切相关的两个元素—钪(Sc)和钇(Y)共17种元素,称为稀土元素(Rare Earth)。简称稀土(RE或R)。 稀土元素最初是从瑞典产的比较稀少的矿物中发现的,“土”是按当时的习惯,称不溶于水的物质,故称稀土。 根据稀土元素原子的和物理化学性质,以及它们在矿物中共生情况和不同的离子半径可产生不同性质的特征,十七种稀土元素通常分为二组:轻稀土(又称铈组)包括:镧、铈、镨、钕、钷、钐、铕、钆;重稀土(又称钇组)包括:铽、镝、钬、铒、铥、镱、镥、钪、钇。又称铈组或钇组,是因为矿物经分离得到的稀土混合物中,常以铈或钇占优势而得名。 稀土材料-稀土材料

1.稀土永磁材料 稀土永磁材料是将钐、钕混合稀土金属与(如钴、铁等)组成的合金,用粉末冶金方法压型烧结,经充磁后制得的一种磁性材料。稀土永磁分钐钴(SmCo)永磁体和钕铁硼(NdFeB)系永磁体,其中SmCo磁体的磁能积在15~30MGOe之间,NdFeB系永磁体的磁能积在27~50MGOe之间,被称为“永磁王”,是目前磁性最高的永磁材料。钐钴永磁体,尽管其磁性能优异,但含有储量稀少的稀土金属钐和稀缺、昂贵的战略金属钴,因此,它的发展受到了很大限制。我国稀土永磁行业的发展始于上世纪60年代末,当时的主导产品是钐-钴永磁,目前钐-钴永磁体世界销售量为630吨,我国为90.5吨(包括SmCo磁粉),主要用于军工技术。随着计算机、通讯等产业的发展,稀土永磁特别是NdFeB永磁产业得到了飞速发展。 稀土永磁材料是现在已知的综合性能最高的一种永磁材料,它比十九世纪使用的磁钢的磁性能高100多倍,比、铝镍钴性能优越得多,比昂贵的铂钴合金的磁性能还高一倍。由于稀土永磁材料的使用,不仅促进了永磁器件向小型化发展,提高了产品的性能,而且促使某些特殊器件的产生,所以稀土永磁材料一出现,立即引起各国的极大重视,发展极为迅速。我国研制生产的各种稀土永磁材料的性能已接近或达到国际先进水平。 现在稀土永磁材料已成为电子技术通讯中的重要材料,用在人造卫星,雷达等方面的行波管、环行器中以及微型电机、微型录音机、航空仪器、电子手表、地震仪和其它一些电子仪器上。目前稀土永磁应用已渗透到汽车、家用电器、电子仪表、、音响设备、、移动电话等方面。在医疗方面,运用稀土永磁材料进行“磁穴疗法”,使得疗效大为提高,从而促进了“磁穴疗法”的迅速推广。在应用稀土的各个领域中,稀土永磁材料是发展速度最快的一个。它不仅给稀土产业的发展带来巨大的推动力,也对许多相关产业产生相当深远的影响。 2.稀土超磁致伸缩材料 磁性材料由于磁场的变化,其长度和体积都要发生微小的变化,这种现象称为磁致伸缩。其中长度的变化称为线性磁致伸缩,体积的变化称为体积磁致伸缩。体积磁致伸缩比线性磁致伸缩要弱得多,一般提到磁致伸缩均指线性磁致伸缩。是1842年由发现的,故又称焦耳效应。长期以来,作为磁致伸缩材料的主要是镍、铁等金属或合金,由于磁致伸缩值较小,功率密度不高,故应用面较窄。主要用于声纳、超声波发射等方面。 稀土超是国外八十年代末新开发的新型功能材料。主要是指稀土-铁系金属间化合物。这类材料具有比铁、镍等大得多的磁致伸缩值,其磁致伸缩系数比一般磁致伸缩材料高约102~103倍,因此被称为大或超磁致伸缩材料。并且机械响应快、功率密度高,在所有商品材料中,稀土超磁致伸缩材料是在物理作用下应变

稀土材料的主要应用

稀土在冶金工业中的应用 稀土在冶金领域应用已有30多年的历史,目前已形成了较为成熟的技术与工艺,稀土在钢铁、有色金属中的应用,是一个量大面广的领域,有广阔的前景,对国民经济建设具有重要意义。 一、稀土在钢中的应用 稀土在钢中的应用有近30年的历史,经过对稀土金属在钢中作用规律和机理的研究,搞清楚了稀土在钢中的作用;通过添加工艺方法的实验研究,掌握了稀土加入的工艺条件、添加稀土金属的品种和加入量。至八十年代末期,稀土在钢中的应用已没有技术方面的障碍。我国稀土钢产量从1985年的11万吨增长到1997年的近60万吨,品种80多个。仅武钢一家,“八五”期间就生产了160万吨稀土钢,创造经济效益3.2亿元,社会效益18.3亿元,节约外汇5000万美元。 稀土加入钢中,可起到脱氧、脱硫、改变夹杂物形态等净化和变质作用,在某些钢中还能有微合金化的作用,稀土能够提高钢的抗氧化能力,高温强度和塑性、疲劳寿命、耐腐蚀性及抗裂性等。 1.稀土加入钢中的主要作用 净化作用:钢中加入稀土,可以置换钢中可能生成的硫化锰、氧化铝和硅铝酸盐夹杂物中的氧与硫,形成稀土化合物。这些化合物中有部分从钢液中上浮进入渣中,从而使钢液中的夹杂物减少,钢液得到净化,这就是稀土对钢的净化作用。

细化组织:由于稀土在钢中同夹杂物反应生成的稀土化合物熔点较高,在钢液凝固前析出,这些细小的质点,可作为非均质形核中心,降低结晶过程的过冷度,因此,不但可以减少偏析还可细化钢的凝固组织。 对夹杂物的形态控制:钢中加入稀土后,硫化锰将被在高温塑性变形能力较小的稀土氧化物或硫化物取代,这些化合物在轧制过程中不随钢一起变形,仍保持为球状,它们对钢的机械性能影响较小,所以钢中加入稀土可以提高钢的韧性,改善钢的抗疲劳性能。 在耐大气腐蚀钢中加入稀土,使钢的内锈层致密,而且与基体的结合力变强,不易脱离,可以阻止大气中O2和H2O的扩散,从而降低了腐蚀速度,加稀土的钢的耐腐蚀性比不加稀土的钢提高0.3~2.4倍。在MnNb系低合金高强度钢中加入稀土可以显著改善钢的冷弯性能、冲击性能、低温冲击性和耐磨性,大大改善了钢的加工性能并提高其使用寿命。在铁路钢轨中加入稀土,可显著提高钢轨的耐磨性、抗剥离性,经多年使用证明钢轨寿命提高1.5倍。 2.我国主要稀土钢种 我国稀土处理钢有80多个牌号,年生产总量60万吨。但大量应用稀土的钢种只有十几种,主要钢种包括铜磷系耐大气腐蚀钢、锰铌系列低合金高强度钢、X系管线钢、铌稀土重轨钢,此外还有齿轮钢、轴承钢、弹簧钢、模具钢、工程机械用钢、低碳微合金深冲钢、不锈钢和耐热钢等。耐蚀低合金钢,经过稀土处理耐蚀率提高近10倍。用它制成的耐候货车使用寿命提高1倍,返厂进行大修的周期由

相关文档