文档库 最新最全的文档下载
当前位置:文档库 › 基于嵌入式Linux的USB驱动程序的设计与实现

基于嵌入式Linux的USB驱动程序的设计与实现

基于嵌入式Linux的USB驱动程序的设计与实现
基于嵌入式Linux的USB驱动程序的设计与实现

嵌入式Linux应用软件开发流程

从软件工程的角度来说,嵌入式应用软件也有一定的生命周期,如要进行需求分析、系统设计、代码编写、调试和维护等工作,软件工程的许多理论对它也是适用的。 但和其他通用软件相比,它的开发有许多独特之处: ·在需求分析时,必须考虑硬件性能的影响,具体功能必须考虑由何种硬件实现。 ·在系统设计阶段,重点考虑的是任务的划分及其接口,而不是模块的划分。模块划分则放在了任务的设计阶段。 ·在调试时采用交叉调试方式。 ·软件调试完毕固化到嵌入式系统中后,它的后期维护工作较少。 下面主要介绍分析和设计阶段的步骤与原则: 1、需求分析 对需求加以分析产生需求说明,需求说明过程给出系统功能需求,它包括:·系统所有实现的功能 ·系统的输入、输出 ·系统的外部接口需求(如用户界面) ·它的性能以及诸如文件/数据库安全等其他要求 在实时系统中,常用状态变迁图来描述系统。在设计状态图时,应对系统运行过程进行详细考虑,尽量在状态图中列出所有系统状态,包括许多用户无需知道的内部状态,对许多异常也应有相应处理。 此外,应清楚地说明人机接口,即操作员与系统间地相互作用。对于比较复杂地系统,形成一本操作手册是必要的,为用户提供使用该系统的操作步骤。为使系统说明更清楚,可以将状态变迁图与操作手册脚本结合起来。

在对需求进行分析,了解系统所要实现的功能的基础上,系统开发选用何种硬件、软件平台就可以确定了。 对于硬件平台,要考虑的是微处理器的处理速度、内存空间的大小、外部扩展设备是否满足功能要求等。如微处理器对外部事件的响应速度是否满足系统的实时性要求,它的稳定性如何,内存空间是否满足操作系统及应用软件的运行要求,对于要求网络功能的系统,是否扩展有以太网接口等。 对于软件平台而言,操作系统是否支持实时性及支持的程度、对多任务的管理能力是否支持前面选中的微处理器、网络功能是否满足系统要求以及开发环境是否完善等都是必须考虑的。 当然,不管选用何种软硬件平台,成本因素都是要考虑的,嵌入式Linux 正是在这方面具有突出的优势。 2、任务和模块划分 在进行需求分析和明确系统功能后,就可以对系统进行任务划分。任务是代码运行的一个映象,是无限循环的一段代码。从系统的角度来看,任务是嵌入式系统中竞争系统资源的最小运行单元,任务可以使用或等待CPU、I/O设备和内存空间等系统资源。 在设计一个较为复杂的多任务应用系统时,进行合理的任务划分对系统的运行效率、实时性和吞吐量影响都极大。任务分解过细会不断地在各任务之间切换,而任务之间的通信量也会很大,这样将会大大地增加系统的开销,影响系统的效率。而任务分解过粗、不够彻底又会造成原本可以并行的操作只能按顺序串行执行,从而影响系统的吞吐量。为了达到系统效率和吞吐量之间的平衡折中,在划分任务时应在数据流图的基础上,遵循下列步骤和原则:

CAN总线在嵌入式Linux下驱动程序的实现

CAN总线在嵌入式Linux下驱动程序的实现 时间:2009-11-05 09:41:22 来源:微计算机信息作者:黄捷峰蔡启仲郭毅锋田小刚 1 引言 基于嵌入式系统设计的工业控制装置,在工业控制现场受到各种干扰,如电磁、粉尘、天气等对系统的正常运行造成很大的影响。在工业控制现场各个设备之间要经常交换、传输数据,需要一种抗干扰性强、稳定、传输速率快的现场总线进行通信。文章采用CAN总线,基于嵌入式系统32位的S3C44B0X微处理器,通过其SPI接口,MCP2510 CAN控制器扩展CAN总线;将嵌入式操作系统嵌入到S3C44B0X微处理器中,能实现多任务、友好图形用户界面;针对S3C44B0X微处理器没有内存管理单元MMU,采用uClinux嵌入式操作系统。这样在嵌入式系统中扩展CAN设备关键技术就是CAN设备在嵌入式操作系统下驱动程序的实现。文章重点解决了CAN总线在嵌入式操作系统下驱动程序实现的问题。对于用户来说,CAN设备在嵌入式操作系统驱动的实现为用户屏蔽了硬件的细节,用户不用关心硬件就可以编出自己的用户程序。实验结果表明驱动程序的正确性,能提高整个系统的抗干扰能力,稳定性好,最大传输速率达到1Mb/s;硬件的错误检定特性也增强了CAN的抗电磁干扰能力。 2 系统硬件设计 系统采用S3C44B0X微处理器,需要扩展CAN控制器。常用的CAN控制器有SJA1000和MCP2510,这两种芯片都支持CAN2.0B标准。SJA1000采用的总线是地址线和数据线复用的方式,但是嵌入式处理器外部总线大多是地址线和数据线分开的结构,这样每次对SJA1000操作时需要先后写入地址和数据2次数据,而且SJA1000使用5V逻辑电平。所以应用MCP2510控制器进行扩展,收发器采用82C250。MCP2510控制器特点:1.支持标准格式和扩展格式的CAN数据帧结构(CAN2.0B);2.0~8字节的有效数据长度,支持远程帧;3.最大1Mb/s的可编程波特率;4.2个支持过滤器的接受缓冲区,3个发送缓冲区; 5.SPI高速串行总线,最大5MHz; 6.3~5.5V宽电压范围供电。MCP2510工作电压为3.3V,能够直接与S3C44B0X微处理器I/O口相连。为了进一步提高系统抗干扰性,可在CAN控制器和收发器之间加一个光隔6N137。其结构原理框图如图1: 图1.S3C44B0X扩展CAN结构框图图2.字符设备注册表 3 CAN设备驱动程序的设计 Linux把设备看成特殊的文件进行管理,添加一种设备,首先要注册该设备,增加它的驱动。设备驱动程序是操作系统内核与设备硬件之间的接口,并为应用程序屏蔽了硬件细节。在linux中用户进程不能直接对物理设备进行操作,必须通过系统调用向内核提出请求,

Linux设备驱动程序举例

Linux设备驱动程序设计实例2007-03-03 23:09 Linux系统中,设备驱动程序是操作系统内核的重要组成部分,在与硬件设备之间 建立了标准的抽象接口。通过这个接口,用户可以像处理普通文件一样,对硬件设 备进行打开(open)、关闭(close)、读写(read/write)等操作。通过分析和设计设 备驱动程序,可以深入理解Linux系统和进行系统开发。本文通过一个简单的例子 来说明设备驱动程序的设计。 1、程序清单 //MyDev.c 2000年2月7日编写 #ifndef __KERNEL__ #define __KERNEL__//按内核模块编译 #endif #ifndef MODULE #define MODULE//设备驱动程序模块编译 #endif #define DEVICE_NAME "MyDev" #define OPENSPK 1 #define CLOSESPK 2 //必要的头文件 #include //同kernel.h,最基本的内核模块头文件 #include //同module.h,最基本的内核模块头文件 #include //这里包含了进行正确性检查的宏 #include //文件系统所必需的头文件 #include //这里包含了内核空间与用户空间进行数据交换时的函数宏 #include //I/O访问 int my_major=0; //主设备号 static int Device_Open=0; static char Message[]="This is from device driver"; char *Message_Ptr; int my_open(struct inode *inode, struct file *file) {//每当应用程序用open打开设备时,此函数被调用 printk ("\ndevice_open(%p,%p)\n", inode, file); if (Device_Open) return -EBUSY;//同时只能由一个应用程序打开 Device_Open++; MOD_INC_USE_COUNT;//设备打开期间禁止卸载 return 0; } static void my_release(struct inode *inode, struct file *file)

linux驱动开发的经典书籍

linux驱动开发的经典书籍 结构、操作系统、体系结构、编译原理、计算机网络你全修过 我想大概可以分为4个阶段,水平从低到高 从安装使用=>linux常用命令=>linux系统编程=>内核开发阅读内核源码 其中学习linux常用命令时就要学会自己编译内核,优化系统,调整参数 安装和常用命令书太多了,找本稍微详细点的就ok,其间需要学会正则表达式 系统编程推荐《高级unix环境编程》,黑话叫APUE 还有《unix网络编程》 这时候大概还需要看资料理解elf文件格式,连接器和加载器,cmu的一本教材中文名为《深入理解计算机系统》比较好 内核开发阅读内核源码阶段,从写驱动入手逐渐深入linux内核开发 参考书如下《linux device drivers》,黑话叫ldd 《linux kernel development》,黑话叫lkd 《understading the linux kernel》,黑话叫utlk 《linux源码情景分析》 这四本书为搞内核的必读书籍 最后,第三阶段和第四阶段最重动手,空言无益,光看书也不罩,不动手那些东西理解不了 学习linux/unix编程方法的建议 建议学习路径: 首先先学学编辑器,vim, emacs什么的都行。 然后学make file文件,只要知道一点就行,这样就可以准备编程序了。 然后看看《C程序设计语言》K&R,这样呢,基本上就可以进行一般的编程了,顺便找本数据结构的书来看。 如果想学习UNIX/LINUX的编程,《APUE》绝对经典的教材,加深一下功底,学习《UNP》的第二卷。这样基本上系统方面的就可以掌握了。 然后再看Douglus E. Comer的《用TCP/IP进行网际互连》第一卷,学习一下网络的知识,再看《UNP》的第一卷,不仅学习网络编程,而且对系统编程的一些常用的技巧就很熟悉了,如果继续网络编程,建议看《TCP/IP进行网际互连》的第三卷,里面有很多关于应用

linux驱动程序的编写

linux驱动程序的编写 一、实验目的 1.掌握linux驱动程序的编写方法 2.掌握驱动程序动态模块的调试方法 3.掌握驱动程序填加到内核的方法 二、实验内容 1. 学习linux驱动程序的编写流程 2. 学习驱动程序动态模块的调试方法 3. 学习驱动程序填加到内核的流程 三、实验设备 PentiumII以上的PC机,LINUX操作系统,EL-ARM860实验箱 四、linux的驱动程序的编写 嵌入式应用对成本和实时性比较敏感,而对linux的应用主要体现在对硬件的驱动程序的编写和上层应用程序的开发上。 嵌入式linux驱动程序的基本结构和标准Linux的结构基本一致,也支持模块化模式,所以,大部分驱动程序编成模块化形式,而且,要求可以在不同的体系结构上安装。linux是可以支持模块化模式的,但由于嵌入式应用是针对具体的应用,所以,一般不采用该模式,而是把驱动程序直接编译进内核之中。但是这种模式是调试驱动模块的极佳方法。 系统调用是操作系统内核和应用程序之间的接口,设备驱动程序是操作系统内核和机器硬件之间的接口。设备驱动程序为应用程序屏蔽了硬件的细节,这样在应用程序看来,硬件设备只是一个设备文件,应用程序可以像操作普通文件一样对硬件设备进行操作。同时,设备驱动程序是内核的一部分,它完成以下的功能:对设备初始化和释放;把数据从内核传送到硬件和从硬件读取数据;读取应用程序传送给设备文件的数据和回送应用程序请求的数据;检测和处理设备出现的错误。在linux操作系统下有字符设备和块设备,网络设备三类主要的设备文件类型。 字符设备和块设备的主要区别是:在对字符设备发出读写请求时,实际的硬件I/O一般就紧接着发生了;块设备利用一块系统内存作为缓冲区,当用户进程对设备请求满足用户要求时,就返回请求的数据。块设备是主要针对磁盘等慢速设备设计的,以免耗费过多的CPU时间来等待。 1 字符设备驱动结构 Linux字符设备驱动的关键数据结构是cdev和file_operations结构体。

《Linux设备驱动开发详解:基于最新的Linux 4.0内核》19. Linux电源管理系统架构和驱动

以下电子书来源于宋宝华《Linux设备驱动开发详解:基于最新的Linux 4.0内核》第19章《Linux电源管理系统架构和驱动》 本章导读 Linux在消费电子领域的应用已经铺天盖地,而对于消费电子产品而言,省电是一个重要的议题。 本章将介绍Linux设备树(Device Tree)的起源、结构和因为设备树而引起的驱动和BSP 变更。 19.1节阐述了Linux电源管理的总体架构。 19.2~19.8节分别论述了CPUFreq、CPUIdle、CPU热插拔以及底层的基础设施Regulator、OPP以及电源管理的调试工具PowerTop。 19.9节讲解了系统Suspend to RAM的过程以及设备驱动如何提供对Suspend to RAM的支持。 19.10节讲解了设备驱动的Runtime suspend。 本章是相对《Linux设备驱动开发详解(第2版)》全新的一章内容,也是Linux设备驱动工程师必备的知识体系。

第十九章Linux电源管理系统架构和驱动 1.Linux电源管理全局架构 Linux电源管理非常复杂,牵扯到系统级的待机、频率电压变换、系统空闲时的处理以及每个设备驱动对于系统待机的支持和每个设备的运行时电源管理,可以说和系统中的每个设备驱动都息息相关。 对于消费电子产品来说,电源管理相当重要。因此,这部分工作往往在开发周期中占据相当大的比重,图19.1呈现了Linux内核电源管理的整体架构。大体可以归纳为如下几类: 1.CPU在运行时根据系统负载进行动态电压和频率变换的CPUFreq 2.CPU在系统空闲时根据空闲的情况进行低功耗模式的CPUIdle 3.多核系统下CPU的热插拔支持 4.系统和设备对于延迟的特别需求而提出申请的PM QoS,它会作用于CPUIdle的具体 策略 5.设备驱动针对系统Suspend to RAM/Disk的一系列入口函数 6.SoC进入suspend状态、SDRAM自刷新的入口 7.设备的runtime(运行时)动态电源管理,根据使用情况动态开关设备 8.底层的时钟、稳压器、频率/电压表(OPP模块完成)支撑,各驱动子系统都可能用 到 图19.1 Linux电源管理系统架构 2.CPUFreq驱动 CPUFreq子系统位于drivers/cpufreq目录,负责进行运行过程中CPU频率和电压的动态

Linux驱动工程师成长之路

本人此刻还不是什么驱动工程师,连入门都谈不上,但我坚信在未来的3-5年我肯定能成为我想像中的人,因为我马上就要进入这一行工作了。写下这个日志来记录我是怎么最后成为我想像中的人才的,呵呵。 《Linux驱动工程师》这个东西是我在大二的时候看到有一篇讲如何学习嵌入式的,点击这里下载PDF,里面讲到嵌入式分为四层:硬件,驱动,系统,应用程序;还说linux驱动最难然后工资也最高就冲着他这句话我就决定我大学毕业的时候要去做这个linux驱动工程师,随后我就先后买了51单片机,ARM7,ARM9还有一大堆的视频教程准备来进行学习。我还跟我旁边那个哈工大哥们说:“我们学校像我这样的人很少,你们学校呢?”他说:“太少了,不过我们学校都是做这种板子卖的人比较多!”。行,你们牛!即使是买了这些东西,从大二到现在都快毕业了但感觉还是没有入门。回想一下我都学过什么啊:1:自己在ARM9上写bootloader(主要锻炼了三方面的知识:C语言应该写了有近万行的代码,ARM9的外设的基本操作方法如UART,LCD,TOUCH,SD,USB,ETHERNET...,makefile);2:移植和学习linux驱动。下面我说一下我学习Linux驱动的一个思路这也是我在面试的时候自我介绍中最重要的部分;1:硬件知识学习Linux驱动首先得了解这个驱动对应的硬件的一些基本原理和操作方法比如LCD你得了解它的场同步,行同步,像素时钟,一个像素的表示模式,还有就是这个LCD是怎么把图像显示在屏幕上的。如果是USB,SD卡就得了解相关协议。可以通过spec(协议)、datasheet来了解,这就是传说中的Linux驱动开发三件宝之二,还有一个就是linux相关源码。2:了解linux驱动框架linux下的每一类驱动差不多都是一个比较完善的子系统,比如FLASH的驱动它就属于MTD子系统从上到下分为四层:设备节点层,设备层,原始设备层,最下面的与具体硬件相关的硬件驱动层,通常要我们自己来实现就是最下面这个与具体硬件相关那部分代码。3:了解这个驱动的数据流。这个过程与第二个过程紧密相关,如果了解了驱动的框架差不多这个过程也算了解了。比如flash.在/dev/目录下有对应flash的字符设备文件和块设备文件,用户对这些文件进行读、写、ioctl操作,其间通过层层的函数调用最终将调用到最下面的硬件驱动层对硬件进行操作。了解这个过程我相信在调试驱动的时候是很有帮助。3:分析与硬件相关通常需要我们实现的那部分源代码。4:三板子上将驱动调试出来。每次调试都会出问题,但我买的板子提供的资料比较全调试过程中遇到的问题都比较浅显,即使是浅显的问题也要把它记录下来。(这个是我上次在华为面试的时候,那个人问我你调试驱动遇到过什么问题吗?你是如何解决的。当时我学习还没有到调试驱动这一步,所以那次面试也惨败收场)。 好像说了这么多,还没有进入正题《工作的选择》。在年前去了龙芯,实习2.8K,转正3.5k,环境还是不错,经理很好,头儿也很帅都是中科院的硕士。不过去了两周我就没去了身边的人都不太理解,我也一度有过后悔的时候,从龙芯出来应该是1月6号,也就是从那个时候开始我就没有再找工作,转而学习linux驱动。一直到上周日。上周日的晚上我就开始投简历一开始要找linux驱动,在智联里面输入linux驱动出来500来个职位,点开一看没有一个自己符合要求的,差不多都要3-5年经验本科,有时候好不容易有个实习的关键字在里面,一看要求硕士,严重打击了我的信心,哎不管了随便投,最后又投了一下嵌入式关键字的职位。最后就瞎申请,看看职位要求差不多就申请。周一来了,这周一共来了6个面试,创下了我求职以来的历史新高。周一下午面了一家感觉还不错不过到现在也没有给我一个通知,估计当时我要了4500把他给要跑了,这家是做测量的不是Linux驱动,差不多是把ARM当单片机用。周二上午一家也是要招linux驱动面了估计不到二分钟,他

从零开始搭建Linux驱动开发环境

参考: 韦东山视频第10课第一节内核启动流程分析之编译体验 第11课第三节构建根文件系统之busybox 第11课第四节构建根文件系统之构建根文件系统韦东山书籍《嵌入式linux应用开发完全手册》 其他《linux设备驱动程序》第三版 平台: JZ2440、mini2440或TQ2440 交叉网线和miniUSB PC机(windows系统和Vmware下的ubuntu12.04) 一、交叉编译环境的选型 具体的安装交叉编译工具,网上很多资料都有,我的那篇《arm-linux- gcc交叉环境相关知识》也有介绍,这里我只是想提示大家:构建跟文件系统中所用到的lib库一定要是本系统Ubuntu中的交叉编译环境arm-linux- gcc中的。即如果电脑ubuntu中的交叉编译环境为arm-linux-

二、主机、开发板和虚拟机要三者互通 w IP v2.0》一文中有详细的操作步骤,不再赘述。 linux 2.6.22.6_jz2440.patch组合而来,具体操作: 1. 解压缩内核和其补丁包 tar xjvf linux-2.6.22.6.tar.bz2 # 解压内核 tar xjvf linux-2.6.22.6_jz2440.tar.bz2 # 解压补丁

cd linux_2.6.22.6 patch –p1 < ../linux-2.6.22.6_jz2440.patch 3. 配置 在内核目录下执行make 2410_defconfig生成配置菜单,至于怎么配置,《嵌入式linux应用开发完全手册》有详细介绍。 4. 生成uImage make uImage 四、移植busybox 在我们的根文件系统中的/bin和/sbin目录下有各种命令的应用程序,而这些程序在嵌入式系统中都是通过busybox来构建的,每一个命令实际上都是一个指向bu sybox的链接,busybox通过传入的参数来决定进行何种命令操作。 1)配置busybox 解压busybox-1.7.0,然后进入该目录,使用make menuconfig进行配置。这里我们这配置两项 一是在编译选项选择动态库编译,当然你也可以选择静态,不过那样构建的根文件系统会比动态编译的的大。 ->Busybox Settings ->Build Options

Linux驱动框架及驱动加载

本讲主要概述Linux设备驱动框架、驱动程序的配置文件及常用的加载驱动程序的方法;并且介绍Red Hat Linux安装程序是如何加载驱动的,通过了解这个过程,我们可以自己将驱动程序放到引导盘中;安装完系统后,使用kudzu自动配置硬件程序。 Linux设备驱动概述 1. 内核和驱动模块 操作系统是通过各种驱动程序来驾驭硬件设备,它为用户屏蔽了各种各样的设备,驱动硬件是操作系统最基本的功能,并且提供统一的操作方式。正如我们查看屏幕上的文档时,不用去管到底使用nVIDIA芯片,还是ATI芯片的显示卡,只需知道输入命令后,需要的文字就显示在屏幕上。硬件驱动程序是操作系统最基本的组成部分,在Linux内核源程序中也占有较高的比例。 Linux内核中采用可加载的模块化设计(LKMs ,Loadable Kernel Modules),一般情况下编译的Linux内核是支持可插入式模块的,也就是将最基本的核心代码编译在内核中,其它的代码可以选择是在内核中,或者编译为内核的模块文件。 如果需要某种功能,比如需要访问一个NTFS分区,就加载相应的NTFS模块。这种设计可以使内核文件不至于太大,但是又可以支持很多的功能,必要时动态地加载。这是一种跟微内核设计不太一样,但却是切实可行的内核设计方案。 我们常见的驱动程序就是作为内核模块动态加载的,比如声卡驱动和网卡驱动等,而Linux最基础的驱动,如CPU、PCI总线、TCP/IP协议、APM(高级电源管理)、VFS等驱动程序则编译在内核文件中。有时也把内核模块就叫做驱动程序,只不过驱动的内容不一定是硬件罢了,比如ext3文件系统的驱动。 理解这一点很重要。因此,加载驱动时就是加载内核模块。下面来看一下有关模块的命令,在加载驱动程序要用到它们:lsmod、modprob、insmod、rmmod、modinfo。 lsmod

编写嵌入式Linux设备驱动程序的实例教程

编写嵌入式Linux设备驱动程序的实例教程 一、Linux device driver 的概念 系统调用是操作系统内核和应用程序之间的接口,设备驱动程序是操作系统内核和机器硬件之间的接口。设备驱动程序为应用程序屏蔽了硬件的细节,这样在应用程序看来,硬件设备只是一个设备文件,应用程序可以象操作普通文件一样对硬件设备进行操作。设备驱动程序是内核的一部分,它完成以下的功能: 1、对设备初始化和释放; 2、把数据从内核传送到硬件和从硬件读取数据; 3、读取应用程序传送给设备文件的数据和回送应用程序请求的数据; 4、检测和处理设备出现的错误。 在linux操作系统下有三类主要的设备文件类型,一是字符设备,二是块设备,三是网络设备。字符设备和块设备的主要区别是:在对字符设备发出读/写请求时,实际的硬件I/O一般就紧接着发生了,块设备则不然,它利用一块系统内存作缓冲区,当用户进程对设备请求能满足用户的要求,就返回请求的数据,如

果不能,就调用请求函数来进行实际的I/O操作。块设备是主要针对磁盘等慢速设备设计的,以免耗费过多的CPU时间来等待。 已经提到,用户进程是通过设备文件来与实际的硬件打交道。每个设备文件都都有其文件属性(c/b),表示是字符设备还是块设备?另外每个文件都有两个设备号,第一个是主设备号,标识驱动程序,第二个是从设备号,标识使用同一个设备驱动程序的不同的硬件设备,比如有两个软盘,就可以用从设备号来区分他们。设备文件的的主设备号必须与设备驱动程序在登记时申请的主设备号一致,否则用户进程将无法访问到驱动程序。 最后必须提到的是,在用户进程调用驱动程序时,系统进入核心态,这时不再是抢先式调度。也就是说,系统必须在你的驱动程序的子函数返回后才能进行其他的工作。如果你的驱动程序陷入死循环,不幸的是你只有重新启动机器了,然后就是漫长的fsck。 二、实例剖析 我们来写一个最简单的字符设备驱动程序。虽然它什么也不做,但是通过它可以了解Linux的设备驱动程序的工作原理。把

基于Linux系统的HHARM9电机驱动程序设计

收稿日期:2005-09-22 作者简介:朱华生(1965-),男,江西临川人,副教授. 文章编号:1006-4869(2005)04-0051-03 基于Linux 系统的HHARM9电机驱动程序设计 朱华生,胡凯利 (南昌工程学院计算机科学与技术系,江西南昌330099) 摘 要:对嵌入式Linux 操作系统驱动程序的组成进行分析,讨论了驱动程序的基本框架,以HHARM9电机控制为实例,详细论述了电机驱动程序的实现过程. 关键词:嵌入式;Linux;驱动程序 中图分类号:TP316 文献标识码:A Linux System -Based Design of HHARM 9Electromotor Driver ZHU Hua -sheng,HU Ka-i li (Department of Computer and Science,Nanchang Institute of Technology,Nanchang 330099,China) Abstract:The paper analyses the composition of driver in embedded linux system,disuses its basic frame of driver,and illustrales the process of driver design of HHARM9electromotor in detail. Key words:Embedded;Linux; driver 嵌入式Linux 操作系统因具有免费、开放源代码、强大的网络功能等 特点,在嵌入式产品中得到越来越广泛的应用.基于Linux 操作系统的嵌入 式产品结构[1]如图1所示.本文主要探讨嵌入式系统驱动程序的设计. 1 嵌入式Linux 操作系统驱动程序简介 1)驱动程序和应用程序的区别 驱动程序的设计和应用程序的设计有很大的区别[2].首先,驱动程序 的设计要对硬件的结构、信号的工作流程十分清楚,而在应用程序的设计 中,一般不需要了解这些.其次,应用程序一般有一个main 函数,从头到尾 执行一个任务;驱动程序却不同,它没有main 函数,通过使用宏module _init(初始化函数名),将初始化函数加入内核全局初始化函数列表中,在内核初始化时执行驱动的初始化函数,从而完成驱动的初始化和注册,之后驱动便停止等待被应用软件调用.应用程序可以和GLIB C 库连接,因此可以包含标准的头文件,比如等;在驱动程序中,不能使用标准C 库,因此不能调用所有的C 库函数,比如输出打印函数只能使用内核的printk 函数,包含的头文件只能是内核的头文件,比如. 2)Linux 系统设备文件 为了方便应用程序的开发,在Linux 操作系统中,使用了设备文件这一概念来管理硬件设备.Linux 操 第24卷 第4期 2005年12月南昌工程学院学报Journal of Nanchang Institute of Technology Vol.24No.4Dec.2005

嵌入式Linux内核驱动开发学习路线图

【原创】嵌入式Linux内核驱动开发学习路线图 -------作者:尚观嵌入式 为什么选择学习嵌入式? 嵌入式系统无疑是当前最热门最有发展前途的IT应用领域之一,同时也是当今IT 领域仅存的几个金领职位之一。当前的中国IT人才面临严重的“后继乏人”,而且这种缺口由于培训缺乏、教育模式等原因造成的,而缺口最大的,就是高级IT人才。如果你从事的IT培训不专业,面对竞争越来越激烈的职场,基本找不到工作。据专家预测,嵌入式每年人才缺口在30万左右。 嵌入式行业平均薪资分布 嵌入式职业发展讲解视频 视频中主要讲解什么样的人适合从事嵌入式行业、嵌入式行业从业人员需要具备哪些基本素质、嵌入式行业的特点以及嵌入式行业的现状与发展。 嵌入式研发方向职业生涯讲解视频(1)嵌入式研发方向职业生涯 讲解视频(2) 嵌入式研发方向职业生涯讲解视频(3) 嵌入式研发方向职业生涯讲解视频(4)嵌入式研发方向职业生涯讲解视频(5) ARM+Linux嵌入式底层内核驱动方向学习总体路线图

基础学习Ⅰ---Linux入门 目前嵌入式主要开发环境有Linux、Wince等;Linux因其开源、开发操作便利而被广泛采用。而Linux操作系统也只是一个简单的操作系统,简单的使用对于嵌入式开发人员来说价值并不很高,真正有价值的是掌握Linux的基本服务和Linux的设计理念、思想,这对于嵌入式开发人员的长期发展是很极其重要的。Linux 系统有很多发行版,RedHat、Ubuntu、Fedora等。作为嵌入式开发人员,我们没有必要把精力放到使用哪个Linux发行版上,而是尽快把Linux系统尽快安装好。如果打算坚持长期学习,那么建议您把自己的电脑做成双系统,而不要在虚拟机上安装。 Ubuntu系统下载地址:https://www.wendangku.net/doc/cd14108257.html,/?a=index&m=index&c=iframe&url=http%3A%2F%2Fwww.ubuntu.or https://www.wendangku.net/doc/cd14108257.html,%2Fdesktop%2Fget-ubuntu%2Fdownload%2F A)经典书籍推荐:

linux驱动程序进入内核

ARM-uClinux下编写加载驱动程序详细过程 本文主要介绍在uClinux下,通过加载模块的方式调试IO控制蜂鸣器的驱动程序。实验过程与上篇文章所讲的过程基本相似,更多注重细节及注意事项。 本文适合学习ARM—Linux的初学者。 //================================================================== 硬件平台:MagicARM2200教学试验开发平台(LPC2290) Linux version 2.4.24,gcc version 2.95.3 电路连接:P0.7——蜂鸣器,低电平发声。 实验条件:uClinux内核已经下载到开发板上,能够正常运行;与宿主机相连的网络、串口连接正常。 //================================================================== 编写蜂鸣器的驱动程序相对来说容易实现,不需要处理中断等繁琐的过程,本文以蜂鸣器的驱动程序为例,详细说明模块化驱动程序设计的主要过程和注意事项。 一、编写驱动程序 驱动程序的编写与上文所说的编写过程基本相同,这里再详细说明一下。 //========================================== //蜂鸣器驱动程序:beep.c文件 //------------------------------------------------------------------- #include /*模块相关*/ #include /*内核相关*/ #include /*linux定义类型*/ #include /*文件系统 file_opertions 结构体定义*/ #include /*出错信息*/ /*PINSEL0 注意:低2位是UART0复用口,不要改动*/ #define PINSEL0 (*((volatile unsigned*) 0xE002C000)) /*P0口控制寄存器*/ #define IO0PIN (*((volatile unsigned*) 0xE0028000))

嵌入式Linux驱动程序开发要点(20210201123523)

嵌入式Linux驱动程序开发要点 在Linux操作系统下有3类主要的设备文件类型:块设备、字符设备和网络设备。这种分类方法可以将控制输入/输出设备的驱动程序与其他操作系统软件分离开来。|字符设备与块设备的主要区别是:在对字符设备发出读/写请求时,实际的硬件 I/O 一般紧接着发生。块设备则不然,它利用一块系统内存作为缓冲区,若用户进程对设备的请求能满足用户的要求,就返回请求的数据;否则,就调用请求函数来 进行实际的I/O操作。块设备主要是针对磁盘等慢速设备设计的,以免耗费过多的CPU时间用来等待。网络设备可以通过BSD套接口访问数据。 每个设备文件都有其文件属性(c/b),表示是字符设备还是块设备。另外每个文件都有2个设备号,第一个是主设备号,标识驱动程序;第二个是从设备号,标识使用同一个设备驱动程序的、不同的硬件设备。设备文件的主设备号必须与设备驱动程序在登记时申请的主设备号一致,否则用户进程将无法访问驱动程序。 系统调用时操作系统内核与应用程序之间的接口,设备驱动程序是操作系统内核 与机器硬件之间的接口。设备驱动程序是内核的一部分,它完成以下功能: ?对设备初始化和释放 ?把数据从内核传送到硬件和从硬件读取数据 ?读取应用程序传送给设备文件的数据和回送应用程序请求的数据 ?佥测和处理设备出现的错误 MTD(Memory Tech no logy Device )设备是闪存芯片、小型闪存卡、记忆棒之类的设备,它们在嵌入式设备中的使用正在不断增加。MTD驱动程序是在Linux下专门为嵌入式环境开发的新的一类驱动程序。相对于常规块设备驱动程序,使用MTD驱动程序的 优点在于他们能更好的支持、管理给予闪存设备,有基于扇区的擦除和读/写操作的 更好的接口。 驱动程序结构 Linux的设备驱动程序可以分为3个主要组成部分: 1. 自动配置和初始化子程序,负责监测所要驱动的硬件设备是否存在和能否正常工作。如果该设备正常,则对这个设备及其相关的设备驱动程序需要的软件状态进行初始化。这部分驱动程序仅在初始化时被调用一次。 2. 服务于I/O请求的子程序,又称为驱动程序的上半部分。调用这部分程序是由于系统调用的结果。这部分程序在执行时,系统仍认为是与进行调用的进程属于同个进程,只是由用户态变成了核心态,具有进行此系统调用的用户程序的运行环境,因而可以在其中调用sleep()等与进行运行环境有关的函数。 3. 中断服务子程序,又称为驱动程序的下半部分。在Linux系统中,并不是直接从 中断向量表中调用设备驱动程序的中断服务子程序,而是由Linux系统来接 收硬件中断,再由系统调用中断服务子程序。中断可以在任何一个进程运行时产 生,因而在中断服务程序被调用时,不能依赖于任何进程的状态,也就不能调用任何

《基于Linux的驱动开发》PDF课件

远见品质
Linux内核与C代码
v Linux内核庞大,结构复杂
? 对Linux 2.4内核的统计:1万个文件,4百万行代码 ? 对Linux 2.6内核的统计:1.5万个文件,6百万行代码
v Linux内核的主体使用GNU C,在ANSI C
上进行了扩充
? Linux内核必须由gcc编译编译 ? gcc和Linux内核版本并行发展,对于版本的依赖性强 ? Linux 2.6内核建议使用gcc 3.3以上版本,C99编程风格
v 内核代码中使用的一些编程技巧,在通常
的应用程序中很少遇到
v 学好Linux、首先要学好C语言
《基于Linux的驱动开发》PDF课件

远见品质
linux 2.4 的内核目录结构
/arch /arch /drivers /drivers /kernel /kernel /lib /lib /boot /boot
/arm /arm
/alpha /alpha
/m68k /m68k /kernel /kernel /lib /mm /lib /mm
/mach-s3c2410 /mach-s3c2410
/Documentation /Documentation /ipc /ipc /fs /fs Linux2.4.x Linux2.4.x /include /include /mm /mm /init /init /net /net /scripts /scripts /asm-arm /asm-arm /arch-s3c2410 /arch-s3c2410 /linux /linux /proc-armv /proc-armv /net /net
《基于Linux的驱动开发》PDF课件

Linux平台下IPMI驱动程序设计与实现

中南大学 硕士学位论文 Linux平台下IPMI驱动程序设计与实现 姓名:李号双 申请学位级别:硕士 专业:计算机应用技术 指导教师:陈志刚 20090513

第一章绪论 1.1课题的研究背景 高度信息化的企业或组织都拥有为数众多的服务器,这些服务器保证公司各项生产、电子化服务的正常运作,如公司内部的ERP系统,银行交易系统、生产制造部门的库存系统、学校选课系统等,这些系统软件都是运行在专用的服务器上。若是这些服务器发生问题,将会对使用者产生不小影响,甚至造成组织极大的混乱。如果所有事情都要回到人工处理(如选课系统故障,要改为人工选课)或是整个公司产品生产因此停顿(如数据库系统故障,无法列出正确资产清单),所以维持这些服务器处于良好运行便显得十分重要。 网络的出现对服务器管理是个重大的影响,管理不再是局限于几台桌面计算机,而是通过网络技术,将百台以上的计算机组织起来集中管理,因此远程管理的能力也非常重要。 对拥有大量主机系统的组织来说,二十四小时地监控三、四十部以上的主机运行状况是一个庞大的工程。因此在1998年,Intel、DELL、HP及NEC便共同提出了IPMIv1.0(IntelligentPlatformManagementInterface)规格I¨,作为DMTFl5】标准的一部分,它提供了一个可以跨平台的标准来规范系统内各种硬件的健康状况,如CPU的运行、风扇转速、系统温度及电压等。在不同的处理器、不同BIOS、操作系统下,都可以提供识别信息、监测、运行和复原记录的功能。管理者可以将要监控的部分,设置临界值,在IPMI控制器检测到不正常状况时,可以通过发E.mail、SNMP(SimpleNetworkManagementProtoc01)Trap、灯号、或蜂鸣声来通知系统管理者处理问题。长期不问断地监控、保持机器无差错运行并不是一件容易的事,而服务器管理系统的主要目的便是用来减轻这个负担。 监控系统运行健康状况的能力可说是服务器管理当中最重要的功能,因为不论其它附属的功能有多强大,只要被监控的系统崩溃,其它模块根本无法发挥作用【281,而IPMI最主要的目的就是拿来监控系统运行健康状况,目前开源社群已开发许多遵循IPMI协议的IPMI应用程序。这些软件都遵照规定的相关步骤实现。其好处是,使用者可很容易以开源的IPMI应用程序为基础,也遵照IPMI协议的规范,开发特定的IPMI应用程序;再通过和其它系统信息软件搭配来提供系统监控功能,这样便可以构建服务器管理软件。然而所有的IPMI应用程序(如IntelIPMIConformanceTestSuite和OpenlPMI)其驱动程序都必须通过IPMI协议规定的四个系统接121KCS(KeyboardControllerStyle)、SMIC(ServerManagementInterfaceChip)、BT(BlockTransfer)、SSIF(SMbusSystem

嵌入式Linux驱动开发基础总结(上篇)

嵌入式Linux驱动开发基础总结(上篇) 1, linux驱动一般分为3大类: *字符设备*块设备*网络设备 2, 开发环境构建: *交叉工具链构建*NFS和tftp服务器安装 3, 驱动开发中设计到的硬件: *数字电路知识*ARM硬件知识*熟练使用万用表和示波器*看懂芯片手册和原理图 4, linux内核源代码目录结构: *arch/: arch子目录包括了所有和体系结构相关的核心代码。它的每一个子目录都代表一种支持的体系结构,例如i386就是关于intel cpu及与之相兼容体系结构的子目录。*block/: 部分块设备驱动程序;*crypto: 常用加密和散列算法(如AES、SHA等),还有一些压缩和CRC校验算法;*documentation/: 文档目录,没有内核代码,只是一套有用的文档;*drivers/: 放置系统所有的设备驱动程序;每种驱动程序又各占用一个子目录:如,/block 下为块设备驱动程序,比如ide(ide.c)。如果你希望查看所有可能包含文件系统的设备是如何初始化的,你可以看drivers/block/genhd.c中的device_setup()。*fs/: 所有的文件系统代码和各种类型的文件操作代码,它的每一个子目录支持一个文件系统, 例如fat和ext2;*include/: include子目录包括编译核心所需要的大部分头文件。与平台无关的头文件在include/linux子目录下,与intel cpu相关的头文件在include/asm-i386子目录下,而include/scsi目录则是有关scsi设备的头文件目录;*init/: 这个目录包含核心的初始化代码(注:不是系统的引导代码),包含两个文件main.c和Version.c,这是研究核心如何工作的好的起点之一;*ipc/: 这个目录包含核心的进程间通讯的代码;*kernel/: 主要的核心代码,此目录下的文件实现了大多数linux系统的内核函数,其中最重要的文件当属sched.c;同样,和体系结构相关的代码在arch/i386/kernel下;*lib/: 放置核心的库代码;*mm/:这个目录包括所有独立于cpu 体系结构的内存管理代码,如页式存储

如何实现Linux设备驱动模型

文库资料?2017 Guangzhou ZHIYUAN Electronics Stock Co., Ltd. 如何实现Linux 设备驱动模型 设备驱动模型,对系统的所有设备和驱动进行了抽象,形成了复杂的设备树型结构,采用面向对象的方法,抽象出了device 设备、driver 驱动、bus 总线和class 类等概念,所有已经注册的设备和驱动都挂在总线上,总线来完成设备和驱动之间的匹配。总线、设备、驱动以及类之间的关系错综复杂,在Linux 内核中通过kobject 、kset 和subsys 来进行管理,驱动编写可以忽略这些管理机制的具体实现。 设备驱动模型的内部结构还在不停的发生改变,如device 、driver 、bus 等数据结构在不同版本都有差异,但是基于设备驱动模型编程的结构基本还是统一的。 Linux 设备驱动模型是Linux 驱动编程的高级内容,这一节只对device 、driver 等这些基本概念作介绍,便于阅读和理解内核中的代码。实际上,具体驱动也不会孤立的使用这些概念,这些概念都融合在更高层的驱动子系统中。对于大多数读者可以忽略这一节内容。 1.1.1 设备 在Linux 设备驱动模型中,底层用device 结构来描述所管理的设备。device 结构在文件中定义,如程序清单错误!文档中没有指定样式的文字。.1所示。 程序清单错误!文档中没有指定样式的文字。.1 device 数据结构定义 struct device { struct device *parent; /* 父设备 */ struct device_private *p; /* 设备的私有数据 */ struct kobject kobj; /* 设备的kobject 对象 */ const char *init_name; /*设备的初始名字 */ struct device_type *type; /* 设备类型 */ struct mutex mutex; /*同步驱动的互斥信号量 */ struct bus_type *bus; /*设备所在的总线类型 */ struct device_driver *driver; /*管理该设备的驱动程序 */ void *platform_data; /*平台相关的数据 */ struct dev_pm_info power; /* 电源管理 */ #ifdef CONFIG_NUMA int numa_node; /*设备接近的非一致性存储结构 */ #endif u64 *dma_mask; /* DMA 掩码 */ u64 coherent_dma_mask; /*设备一致性的DMA 掩码 */ struct device_dma_parameters *dma_parms; /* DMA 参数 */ struct list_head dma_pools; /* DMA 缓冲池 */ struct dma_coherent_mem *dma_mem; /* DMA 一致性内存 */ /*体系结构相关的附加项*/ struct dev_archdata archdata; /* 体系结构相关的数据 */ #ifdef CONFIG_OF

相关文档