文档库 最新最全的文档下载
当前位置:文档库 › 进程调度模拟设计——时间片轮转、强占式短进程优先算法

进程调度模拟设计——时间片轮转、强占式短进程优先算法

进程调度模拟设计——时间片轮转、强占式短进程优先算法
进程调度模拟设计——时间片轮转、强占式短进程优先算法

学号:

课程设计

进程调度模拟设计——时间片题目

轮转、强占式短进程优先算法

学院计算机科学与技术

专业计算机科学与技术

班级

姓名

指导教师

2011 年 1 月20 日

课程设计任务书

学生姓名:专业班级:计算机科学与技术学院

指导教师:工作单位:计算机科学与技术学院

题目: 进程调度模拟设计——时间片轮转、强占式短进程优先算法初始条件:

1.预备内容:阅读操作系统的处理机管理章节内容,对进程调度的功能以及进程调度算法有深入的理解。

2.实践准备:掌握一种计算机高级语言的使用。

要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写

等具体要求)

1.模拟进程调度,能够处理以下的情形:

⑴能够选择不同的调度算法(要求中给出的调度算法);

⑵能够输入进程的基本信息,如进程名、到达时间和运行时间等;

⑶根据选择的调度算法显示进程调度队列;

⑷根据选择的调度算法计算平均周转时间和平均带权周转时间。

2.设计报告内容应说明:

⑴课程设计目的与功能;

⑵需求分析,数据结构或模块说明(功能与框图);

⑶源程序的主要部分;

⑷测试用例,运行结果与运行情况分析;

⑸自我评价与总结:

i)你认为你完成的设计哪些地方做得比较好或比较出色;

ii)什么地方做得不太好,以后如何改正;

iii)从本设计得到的收获(在编写,调试,执行过程中的经验和教训);

iv)完成本题是否有其他方法(如果有,简要说明该方法);

v)对实验题的评价和改进意见,请你推荐设计题目。

时间安排:

设计安排一周:周1、周2:完成程序分析及设计。

周2、周3:完成程序调试及测试。

周4、周5:验收、撰写课程设计报告。

(注意事项:严禁抄袭,一旦发现,抄与被抄的一律按0分记)

指导教师签名:年月日

系主任(或责任教师)签名:年月日

进程调度模拟设计

(时间片轮转、强占式短进程优先算法)1.需求分析

通过设计一个模拟进程调度的系统,来实现进程调度,对进程调度的功能以及进程调度算法有一个更加深入的理解。

进程PCB(包含进程名、到达时间、预计运行时间等)

调度算法(时间片轮转、强占式短进程优先)

能够处理以下的情形:

(1)能够选择不同的调度算法(要求中给出的调度算法)

(2)能够输入进程的基本信息,如进程名、到达时间和运行时间等

(3)根据选择的调度算法显示进程调度队列

(4)根据选择的调度算法计算平均周转时间和平均带权周转时间

此次做的进程调度模拟系统,用户可以输入各进程信息(包含进程名、到达时间、估计运行时间);输入完毕确认后,可选择两种调度算法中的一种执行,查看结果可得到相应算法的调度序列,每个进程的到达时间、预计运行时间、开始时间、结束时间和周转时间、带权周转时间,以及平均周转时间和平均带权周转时间。

1.1 对进程信息的描述和实现

此次课程设计中,进程作为基本数据处理单元,需要对进程的基本信息进行相关的描述。进程的基本信息包括进程进程名、到达的时间、预计的进程运行时间、进程开始运行时间、进程仍需运行的时间、进程完成的时间、进程运行的次数等。在此,可以定义一个结构体链表来储存进程信息。并在此基础上进行其他操作。数据结构如下:

struct PCB

{string name;//进程名

int ta;//进程到达时间

int ts;//进程估计运行的时间

int tb;//进程开始运行时间

int tm;//进程仍需运行的时间

int to;//进程完成的时间

int rn;//进程运行的次数

int totalTime;//周转时间

double weightTotalTime;//带权周转时间(周转时间/估计运行时间)

PCB *next;//定义指向下一个进程的指针};

1.2 对调度算法的描述和实现

进程基本信息所构成的模块作为基本单元,并且相关调度算法的侧重进程基本信息点不同,所以要根据其调度算法的特点来结合基本信息进行对应的设计。此次课程设计要求的调度算法描述如下:

1.2.1 时间片轮转调度算法

时间片轮转法的中心思想在于将CPU的运行划分为一个个时间片,然后将这些时间片平均分配给已经准备就绪的进程,在一个时间片内只允许一个进程占用处理器。如果当前进程运行结束则时间片终止。这样可以较公平的分配处理器运行时间,使每个进程都可以得到处理。

1.2.2 强占式短进程优先调度算法

此调度算法和先来先服务调度算法相区别,强占式短进程优先调度算法对强占式短进程优先调度算法而言,其本质特征便是按进程的预计运行时间长短进行排序,先执行短进程。

若内存中运行的进程优先级比就绪队列中的某进程优先级低(即运行的进程预计运行时间比就绪队列中的某进程长),此运行的进程让出内存并进入就绪队列,优先级更高的短进程强占内存资源并运行直到结束或者遇到优先级更高的进程强占为止。

2功能设计及模块说明)

几个主要函数的功能如下:

void main() 程序主函数,提示用户输入相关信息并输出时间片轮转, 强占式短进程算法的运行结果

PCB *create(PCB *head);//创建进程队列

void SJFrun(PCB *head);//强占式短进程优先算法

void cyclerun(PCB *head);//时间片轮转算法

程序的主程序流程如下:

void main()

{

char choice;

cout<<"*进程调度模拟设计——时间片轮转、强占式短进程优先算法*"<

cout<<"***********1.时间片轮转算法***************************"<

cout<<"***********2.强占式短进程优先算法*********************"<

cout<<"***********else 退出*************************************"<

cout<<"请输入您的选择:"<

cin>>choice;

while(choice=='1'||choice=='2')

{

PCB *head=NULL;

switch(choice)

{

case '1':head=create(head);cyclerun(head);break;

case '2':head=create(head);SJFrun(head);break;

}

cout<<"*进程调度模拟设计——时间片轮转、强占式短进程优先算法*"<

cout<<"***********1.时间片轮转算法***************************"<

cout<<"***********2.强占式短进程优先算法*********************"<

cout<<"***********else 退出*************************************"<

cout<<"请输入您的选择:"<

cin>>choice;

}

}

3源程序的主要部分

本次实验是使用VC++6.0进行编程,测试结果正确,程序运行无误. 本次课设设计重要代码如下:

3.1时间片轮转算法

void cyclerun(PCB *head)//时间片轮转算法{

sort(head);

int time=0;//记录当前时间

int newarrive;//新到达进程数

PCB *rhead;

rhead=new PCB;

rhead->next=rhead;//创建新的循环链表,存放当前就绪队列中的进程

PCB *p,*q;

p=rhead;

q=p->next;//q记录当前应当运行的进程

cout<<"******************************** **********************"<

cout<<"时间片长度为"<

cout<<"******************************** **********************"<

while(time<=total)

{

newarrive=getCount(head,time);

if(newarrive>0)move(head,rhead,newarriv e);//将head后的newarrive个节点移动到rhead 队列中

if(rhead->next==rhead)time++;

else if(q==rhead)

{

p=q;q=q->next;

}

else

{

cout<<"进程名:"<name<

cout<<"到达时间:"<ta<

if(q->rn==1)

{

cout<<"第"<rn<<"次运行开始时间:"<

q->tb=time;

}

if(q->tm<=QT)

{

time+=q->tm;

q->to=time;

q->totalTime=time-q->ta;

cout<<"进程"<name<<"运行结束时间:"<

cout<<"周转时间:"<totalTime<

q->weightTotalTime=q->totalTime/(double )q->ts;

weight+=q->weightTotalTime;

cout<<"带权周转时间:"<weightTotalTime<

cout<<"******************************** **********************"<

PCB *tmp=q;

q=q->next;

p->next=q;

free(tmp);

}

else

{

if(q->rn!=1)cout<<"第"<rn<<"次运行开始时间:"<

time+=QT;

cout<<"第"<rn<<"次运行结束时间:"<

cout<<"******************************** **********************"<

q->tm-=QT;

q->rn++;

p=q;q=q->next;

}

}

}

cout<<"平均周转时间:"<

cout<<"平均带权周转时间:"<

cout<<"******************************** **********************"<

}

3.2强占式短进程优先算法

void SJFrun(PCB *head)//强占式短进程优先算法

{

sort(head);

int time=0,count;

PCB *p,*q;

string re=" ";

while(head->next!=NULL)

{

count=getCount(head,time);

if(count==0)time++;

else

{

if(count==1)

{

p=head;

q=p->next;

if(q->name!=re)

{

cout<<"******************************** **********************"<

cout<<"进程名:"<name<

re=q->name;

cout<<"到达时间:"<ta<

}

if(q->rn==1)cout<<"进程开始运行时间:"<

++time;

++q->rn;

--q->tm;

if(q->tm==0)

{

cout<<"进程"<name<<"运行结束时间:"<

q->totalTime=time-q->ta;

cout<<"周转时间:"<totalTime<

q->weightTotalTime=q->totalTime/(double )q->ts;

weight+=q->weightTotalTime;

cout<<"带权周转时间:"<weightTotalTime<

cout<<"******************************** **********************"<

del(p);

}

}

else

{

p=SJF(head,count);

q=p->next;

if(q->name!=re)

{

cout<<"******************************** **********************"<

cout<<"进程名:"<name<

re=q->name;

cout<<"到达时间:"<ta<

}

if(q->rn==1)cout<<"进程开始运行时间:"<

++time;

++q->rn;

--q->tm;

if(q->tm==0)

{

cout<<"进程"<name<<"运行结束时间:"<

q->totalTime=time-q->ta;

cout<<"周转时间:"<totalTime<

q->weightTotalTime=q->totalTime/(double )q->ts;

weight+=q->weightTotalTime;

cout<<"带权周转时间:"<weightTotalTime<

cout<<"******************************** **********************"<

del(p);

}

}

}

}

cout<<"平均周转时间:"<

cout<<"平均带权周转时间:"<

cout<<"******************************** **********************"<

}

以上2个重要函数的思想是根据功能设计里面设计的来编程的。其他几个函数在

附录里的代码有详细记录.在此不做过多给出.

4测试用例,运行结果与运行情况分析

关于本程序的输入格式,其中开始时根据之前给出的main函数可以清楚地进行选择算法以及退出操作。选择完算法后输入各进程的信息来初始化PCB表。每个进程信息用回车键分开,同一进程各信息用空格键隔开。测试情况如下:

4.1时间片轮转算法:

进程名进程到达时间预计运行时间

a 5 10

b 0 10

c 2 10

运行结果如下:

由于时间片轮转法时间片固定为2,因此程序的执行流程过长,在此只将需要运行结果的最后总结部分截图在此。

4.2强占式短进程优先算法:

进程名进程到达时间预计运行时间

a 5 10

b 0 10

c 2 5

运行结果如下:

经分析进程b先运行,运行到第2秒时进程c抢占了处理器,于是运行c,而第5秒时a准备就绪但是根据短进程优先b和c的优先级都比较高于是a最后运行。

综上所述,2种方法的结果与分析的运行结果一致,程序正确。

5自我评价与总结

本次课程设计比较简单,其中具体的思路我们在操作系统课程上已经全部学会了,而设计到的具体代码也比较容易完成,因此我对于本次课程设计还是比较满意的。但是我的程序还是存在一些不足的。

不足:

在课程设计将要结束时,我发现我在定义数据结构的时候出了一个问题,那就是我的时间都是定义成int型的,也就意味着我不能处理毫秒级别的问题,处理时间片轮转法时我是将时间片固定为2秒,并不能根据具体的进程来具体分析。意味着如果需要处理的进程的运行时间都很长的话,会浪费比较多的系统资源来轮转处理器的执行。

优势:

我在刚开始具体课程设计的时候定义了一个结构体PCB,本来我是准备使用单链表来完成全部的2个算法的。但是在具体编程时我发现对于轮转法来说,使用循环链表这一结构体来实现算法会方便的多,时间复杂度也会小一些。于是我就重写了轮转法的运行部分,使用这一方法虽然使我的2种调度算法区别变大了,增加了思考和代码量。但是这使我的程序能比别人快上那么一丝,在进程调度这种时间宝贵的问题上我觉得还是值得的。

收获:

通过这次设计,我更加深刻的理解了2种调度算法之间的共同点、差别、以及在不同情况下的优劣。不过在关于本次课程设计时遇到的具体问题时,我的收获可能还是在于C++方面,在程序的最后运行时我遇到一个问题,在于开始的时候我将choice这一变量设为了int型,但是由于C++流的问题,在输入字母如g 的时候并不能正确的表示choice,这将会导致程序进入死循环阶段,因为cin>>choice的时候流并不能将一个g正确赋给choice,而是停留在缓冲区。为了解决这一问题,我只能将choice设为char。虽然只有一字之差,但是结果就不一样。

本次课程设计还算简单,所花时间不多。希望下次能难一些。

6程序代码附录

(重要代码在之前已经贴出来了,在此省略)

#include

#include

using namespace std;

#define QT 2//定义时间片长度为2

struct PCB

{

string name;//进程名

int ta;//进程到达时间

int ts;//进程估计运行的时间

int tb;//进程开始运行时间

int tm;//进程仍需运行的时间

int to;//进程完成的时间

int rn;//进程运行的次数

int totalTime;//周转时间

double weightTotalTime;//带权周转时间(周转时间/估计运行时间)

PCB *next;//定义指向下一个进程的指针

};

int pronum;//定义进程数为pronum

int total;//记录所有进程的总时间double weight;//记录所有进程的总带权周转时间

PCB *create(PCB *head);//创建进程队列

void del(PCB *p);//删除p的下一个节点

void sort(PCB *head);//将进程按到达的先后顺序排列

int getCount(PCB *head,int time);//察看在time之前到达但未移动到运行队列的进程数量

PCB *searchEnd(PCB *head);//查找并返回循坏队列的尾节点

void move(PCB *headF,PCB *headT,int n);//将headF 后的n个节点移动到循环队列headT中

void cyclerun(PCB *head);//时间片轮转算法

PCB *SJF(PCB *head,int count);//在头节点后的count个节点中选择需时间最小的返回

void SJFrun(PCB *head);//强占式短进程优先算法

PCB *create(PCB *head)

{

PCB *p1,*p2;

p1=p2=new PCB;

head=p1;

cout<<"请输入进程数:";

cin>>pronum;

for(int i=0;i

{

p2=p1;

p1=new PCB;

p1->next=NULL;

cout<<"请依次输入第"<

cin>>p1->name>>p1->ta>>p1->ts;

p1->tm=p1->ts;

p1->rn=1;

total+=p1->ts;

p2->next=p1;

}

return head;

}

void sort(PCB *head)//将进程按到达的先后顺序排列

{

PCB *p,*q,*r,*s;

if(head->next!=NULL)

{

p=head->next->next;

head->next->next=NULL;

}

while(p)

{

q=p;

p=p->next;

r=head;

s=head->next;

while(s&&s->ta<=q->ta)

{

r=s;

s=s->next;

}

r->next=q;

q->next=s;

}

} void del(PCB * p)//删除p的下一个节点

{

PCB *tmp;

tmp=p->next;

p->next=tmp->next;

free(tmp);

}

int getCount(PCB *head,int time)//察看在time之前到达但未移动到运行队列的进程数量

{

int count=0;

PCB *s,*t;

s=head;

t=s->next;

while(t!=NULL&&t->ta<=time)

{

s=t;

t=t->next;

count++;//count记录当前时刻到达的进程数

}

return count;

}

PCB* searchEnd(PCB *head)//查找并返回循坏队列的尾节点

{

PCB *p,*q;

p=head;

q=head->next;

while(q->next!=head)

{

p=q;

q=q->next;

}

return p;

}

void move(PCB *headF,PCB *headT,int n)//将headF 后的n个节点移动到循环队列headT中

{

PCB *r,*s,*t;

s=headF;

t=s->next;

r=t;//r记录要移动的第一个节点

while(n>1)

{

t=t->next;

n--;

}

s->next=t->next;//以上完成从原队列中摘除相关节点,r,t分别为第一个和最后一个节点

s=searchEnd(headT);

t->next=s->next;

s->next=r;

}

void cyclerun(PCB *head)//时间片轮转算法

{

省略(见上面)

}

PCB *SJF(PCB *head,int count)

{

int min;

PCB *p,*q,*f;

p=head;

q=p->next;

min=q->ts;

f=p;

while(count>0)

{

if(q->ts

{

min=q->ts;f=p;

}

count--;

p=q;

q=q->next;

}

return f;

}

void SJFrun(PCB *head)

{

省略(见上面)

}

void main() {

省略(见上面)

武汉理工大学《编译原理》课程设计说明书

本科生课程设计成绩评定表

班级:计算机孙国锦学号:

序号评分项目满分实得分

1 学习态度认真、遵守纪律10

2 设计分析合理性10

3 设计方案正确性、可行性、创造性20

4 设计结果正确性40

5 设计报告的规范性10

6 设计验收10

总得分/等级评语:

注:最终成绩以五级分制记。优(90-100分)、良(80-89分)、中(70-79分)、及格(60-69分)、60分以下为不及格

指导教师签名:

2011 年月日

随机进程调度算法

《操作系统原理》实验报告 实验名称:Linux随机进程调度算法实现 班级: 学号: 姓名: 日期: 2012/12/31

一、实验名称 Linux随机进程调度算法实现 二、所属课程名称 《操作系统原理》 三、实验原理 linux 0.11内核目录linux/kernel中的sched.c函数是内核中进程调度管理的程序,其中schedule()函数负责选择系统中下一个要运行的进程。 schedule()函数首先对所有任务(进程)进行检测,唤醒任何一个已经得到信号的进程。具体方法是任务数组中的每个进程,检查其报警定时值alarm。如果进程的alarm时间已经过期(alarm

NR_TASKS:系统能容纳的最大进程数(64个); task[]:任务(进程)数组; 更改代码如下:(linux 0.11内核目录下linux/kernel/sched.c 源文件的scheduling()函数while(1)循环)while (1) { //定义c用来判断系统中是否可运行的任务(进程)存在; c=-1; //c初值设为-1,默认不存在可运行进程; next = 0;//next记录下一个即将运行的进程; i=jiffies % NR_TASKS+1; //i的值是随机产生的; p=&task[i];//p指向在task表中下标为i的进程; while (--i) { //遍历task[]; if(!*--p)continue; //如果task[i]不包含进程,跳过; //如果task[i]包含进程且该进程处于就绪状态,记录 //该任务(进程)序号,跳出无限循环while(1),转向 //switch_to()函数执行该任务(进程); if ((*p)->state == TASK_RUNNING) { next = i; c=i; break; } } if (c) break;//如果没有任何任务(进程)要执行,则跳出, //转向switch_to(),执行0号进程(idle)。 }

进程调度算法模拟 (操作系统课程设计报告)

福建农林大学计算机与信息学院 课程设计报告 课程名称:操作系统 实习题目:进程调度算法模拟 姓名: 系:计算机科学与技术系 专业:计算机科学与技术 年级:2012 学号: 指导教师: 职称:副教授 年月日

福建农林大学计算机与信息学院计算机类 课程设计结果评定

目录 1.本选题课程设计的目的 (4) 2.本选题课程设计的要求 (4) 3.本选题课程设计报告内容 (4) 3.1前言 (4) 3.2进程调度算法模拟的环境 (4) 3.3系统技术分析 (4) 3.4系统流程图及各模块 (5) 3.5程序调试情况 (8) 4.总结 (11) 参考文献 (11) 程序代码 (12)

1.设计目的 课程设计将课本上的理论知识和实际有机的结合起来,锻炼学生的分析系统,解决实际问题的能力。提高学生分析系统、实践编程的能力。 2.设计要求 利用学到的操作系统和编程知识,完成具有一定难度的系统分析研究或系统设计题目。其中:专题系统理论研究应包括研究目的、目标,论点和论据以及证明推导等;分析、设计系统应包括编写、调试程序以及最后写出设计报告或系统说明文档文件,系统说明文档包括系统界面、变量说明、系统功能说明、编程算法或思路、流程图和完整程序。具体要求如下: 1、对系统进行功能模块分析、控制模块分析正确; 2、系统设计要实用; 3、编程简练,可用,功能全面; 4、说明书、流程图要清楚。 3.设计方案 3.1前言 本程序包括三种算法,用C或C++语言实现,执行时在主界面选择算法(可用函数实现),进入子页面后输入进程数,(运行时间,优先数由随机函数产生),执行,显示结果。 3.2本选题设计的环境 WindowsXP下的Microsoft Visual C++ 6.0 3.3系统技术分析 (1)编程实现对N个进程采用某种进程调度算法(如动态优先权调度算法、先来先服务算法、短进程优先算法、时间片轮转调度算法)调度执行的模拟。(2)每个用来标识进程的进程控制块PCB可用结构来描述,包括以下字段:进程标识数ID。 进程优先数PRIORITY,并规定优先数越大的进程,其优先权越高。

时间片轮转进程调度模拟算法的实现

武汉理工大学华夏学院课程设计报告书 课程名称:操作系统原理 题目:时间片轮转进程调度模拟算法的实现系名:信息工程系 专业班级:计算机1132班 姓名:李杰 学号: 10210413209 指导教师: 司晓梅 2015年 6 月 26日

武汉理工大学华夏学院信息工程系 课程设计任务书 课程名称:操作系统原理课程设计指导教师:司晓梅 班级名称:计算机1131-2 开课系、教研室:自动化与计算机 一、课程设计目的与任务 操作系统课程设计是《操作系统原理》课程的后续实践课程,旨在通过一周的实践训练, 加深学生对理论课程中操作系统概念,原理和方法的理解,加强学生综合运用操作系统原理、 Linux系统、C语言程序设计技术进行实际问题处理的能力,进一步提高学生进行分析问题 和解决问题的能力,包含系统分析、系统设计、系统实现和系统测试的能力。 学生将在指导老师的指导下,完成从需求分析,系统设计,编码到测试的全过程。 二、课程设计的内容与基本要求 1、课程设计题目 时间片轮转进程调度模拟算法的实现 2、课程设计内容 用c/c++语言实现时间片轮转的进程调度模拟算法。要求: 1.至少要有5个以上进程 2.进程被调度占有CPU后,打印出该进程正在运行的相关信息 提示: 时间片轮转调度算法中,进程调度程序总是选择就绪队列中的第一个进程,也就是说按照先来先服务原则调度,但一旦进程占用处理机则仅使用一个时间片。在使用完一个时间片后,进程还没有完成其运行,它必须释放出处理机给下一个就绪的进程,而被抢占的进程返回到就绪队列的末尾重新排队等待再次运行。 1)进程运行时,只打印出相关提示信息,同时将它已经运行的时间片加1就可以了。 2)为进程设计出PCB结构。PCB结构所包含的内容,有进程名、进程所需运行时间、已运行时间和进程的状态以及指针的信息等。 3、设计报告撰写格式要求: 1设计题目与要求 2 设计思想 3系统结构 4 数据结构的说明和模块的算法流程图 5 使用说明书(即用户手册):内容包含如何登录、退出、读、写等操作说明 6 运行结果和结果分析(其中包括实验的检查结果、程序的运行情况)

短作业优先调度算法

青岛理工大学 操作系统课程设计报告 院(系):计算机工程学院 专业:计算机科学与技术专业 学生姓名: 班级:__学号: 题目:短作业优先调度算法的进程调度程序_ 起迄日期:________ 设计地点: 指导教师: 2011—2012年度第 1 学期 完成日期: 2012 年 1 月日

一、课程设计目的 进行操作系统课程设计主要是在学习操作系统课程的基础上,在完成操作系统各部分实验的基础上,对操作系统的整体进行一个模拟,通过实践加深对各个部分的管理功能的认识,还能进一步分析各个部分之间的联系,最后达到对完整系统的理解。同时,可以提高运用操作系统知识解决实际问题的能力;锻炼实际的编程能力、开发软件的能力;还能提高调查研究、查阅技术文献、资料以及编写软件设计文档的能力。 二、课程设计内容与要求 设计目的:在多道程序和多任务系统中,系统内同时处于就绪状态的进程可能有若干个,且进程之间也存在着同步与互斥的关系,要求采用指定的调度策略,使系统中的进程有条不紊地工作,通过观察诸进程的运行过程,以巩固和加深处理机调度的概念。 2、设计要求(多道、单处理机): 1)每一个进程有一个PCB,其内容可以根据具体情况设定。 2)可以在界面设定的互斥资源(包括两种:输入设备与输出设备)的数目 3)进程数、进入内存时间、要求服务时间可以在界面上进行设定 4)进程之间存在一定的同步与互斥关系,可以通过界面进行设定,其表示方法如下: 进程的服务时间由三段组成:I2C10O5(表示进程的服务时间由2个时间片的输入,10个时间片的计算,5个时间片的输出) 进程间的同步关系用一个段表示:W2,表示该进程先要等待P2进程执行结束后才可以运行 因此,进程间的同步与互斥关系、服务时间可以统一用四段表示为:I2C10O5W2 5)可以在运行中显示各进程的状态:就绪、阻塞、执行 6)采用可视化界面,可在进程调度过程中随时暂停调度,查看当前进程的状态以及相 应的阻塞队列 7)具有一定的数据容错性 三、系统分析与设计 1、系统分析 本系统主要是采用短作业优先算法进程的进程调度过程。短作业优先调度算法,是指对短作业或短进程优先调度的算法。他们可以分别用于作业调度和进程调度,短作业优先的调度算法是从后备队列中选择一个或若干个估计运行时间最短的作业,将他们调入内存运行。而短进程优先调度算法则是从就绪队列中选出一个估计运行时间最短的进程,将处理机分配给他,,使它立即执行并一直执行到完成,或发生某事件而被阻塞放弃处理机时再度重新调度。本程序采用了非抢占式短作业优先调度。而非抢占式这种方式,一旦把处理机分配给某进程后,便让该进程一直执行,直至该进程完成或发生某事件而被阻塞时,才再把处理机分配给其它进程,决不允许某进程抢占已经分配出去的处理机。这种调度方式的优点是实现简单,系统开销小,适用于大多数的批处理系统环境。但它难以满足紧急任务的要求——立即执行,因而可能造成难以预料的后果。因此,在要求比较严格的实时系统中,不宜采用这种调度方式本系统的主要是在满足要求多道单处理机的情况下进行短作业的优先调度。 本系统在测试时输入了五个进程,按实验要求如I2C10O5(表示进程的服务时间由2个时间片的输入,10个时间片的计算,5个时间片的输出,5个时间片的计算组成)的方式输入,各进程的信息如下:(0 0 1 1 1 )(1 2 1 2 2 )(2 4 1 1 1 )

进程调度算法模拟实验

华北科技学院计算机系综合性实验 实验报告 课程名称操作系统C 实验学期2012至2013学年第2学期学生所在系部计算机系 年级专业班级 学生姓名学号 任课教师杜杏菁 实验成绩 计算机系制

《操作系统C》课程综合性实验报告 开课实验室:基础六机房2013年6月3日 实验题目进程调度算法模拟 一、实验目的 通过对进程调度算法的模拟,进一步理解进程的基本概念,加深对进程运行状态和进程调度过程、调度算法的理解。 二、设备与环境 1.硬件设备:PC机一台 2.软件环境:安装Windows操作系统或者Linux操作系统,并安装相关的程序开发环境,如C \C++\Java等编程语言环境。 三、实验内容 (1)用C语言(或其它语言,如Java)实现对N个进程采用某种进程调度算法(如动态优先权调度)的调度。 (2)每个用来标识进程的进程控制块PCB可用结构来描述,包括以下字段: ?进程标识数ID。 ?进程优先数PRIORITY,并规定优先数越大的进程,其优先权越高。 ?进程已占用CPU时间CPUTIME。 ?进程还需占用的CPU时间ALLTIME。当进程运行完毕时,ALLTIME变为0。 ?进程的阻塞时间STARTBLOCK,表示当进程再运行STARTBLOCK个时间片后,进程将进 入阻塞状态。 ?进程被阻塞的时间BLOCKTIME,表示已阻塞的进程再等待BLOCKTIME个时间片后,将 转换成就绪状态。 ?进程状态STATE。 ?队列指针NEXT,用来将PCB排成队列。 (3)优先数改变的原则: ?进程在就绪队列中呆一个时间片,优先数增加1。 ?进程每运行一个时间片,优先数减3。 (4)为了清楚地观察每个进程的调度过程,程序应将每个时间片内的进程的情况显示出来,包括正在运行的进程,处于就绪队列中的进程和处于阻塞队列中的进程。

进程调度算法实验报告

操作系统实验报告(二) 实验题目:进程调度算法 实验环境:C++ 实验目的:编程模拟实现几种常见的进程调度算法,通过对几组进程分别使用不同的调度算法,计算进程的平均周转时间和平均带权周转时间,比较 各种算法的性能优劣。 实验内容:编程实现如下算法: 1.先来先服务算法; 2.短进程优先算法; 3.时间片轮转调度算法。 设计分析: 程序流程图: 1.先来先服务算法 开始 初始化PCB,输入进程信息 各进程按先来先到的顺序进入就绪队列 结束 就绪队列? 运行 运行进程所需CPU时间 取消该进程 2.短进程优先算法

3.时间片轮转调度算法 实验代码: 1.先来先服务算法 #include #define n 20 typedef struct { int id; //进程名

int atime; //进程到达时间 int runtime; //进程运行时间 }fcs; void main() { int amount,i,j,diao,huan; fcs f[n]; cout<<"请输入进程个数:"<>amount; for(i=0;i>f[i].id; cin>>f[i].atime; cin>>f[i].runtime; } for(i=0;if[j+1].atime) {diao=f[j].atime; f[j].atime=f[j+1].atime; f[j+1].atime=diao; huan=f[j].id; f[j].id=f[j+1].id; f[j+1].id=huan; } } } for(i=0;i #define n 5 #define num 5 #define max 65535 typedef struct pro { int PRO_ID; int arrive_time;

进程调度算法的模拟实现

操作系统课程设计报告题目:进程调度算法的模拟实现_ 专业计算机科学与技术 学生姓名 班级 学号 指导教师 发放日期2015.1.30 信息工程学院

目录 1 概述 (1) 2 设计原理 (1) 2.1先来先服务算法 (1) 3 详细设计与编码 (2) 3.1 模块设计 (2) 3.2 系统流程图 (2) 3.3 系统详细设计 (2) 4 结果与分析 (6) 4.1 测试方案 (6) 4.2 测试结果 (6) 4.3 测试结果分析 (9) 5 设计小结 (10) 6 参考文献 (10) 附录程序代码 (12)

进程调度算法的模拟实现 进程调度算法的模拟实现 1 概述 选择一个调度算法,实现处理机调度,进程调度算法包括:先来先服务算法,短进程优先算法,时间片轮转算法,动态优先级算法。可选择进程数量,本程序包括四种算法,用C或C++语言实现,执行时在主界面选择算法(可用函数实现),进入子页面后输入进程数,(运行时间,优先数由随机函数产生),执行,显示结果。 2 设计原理 2.1先来先服务(FCFS)算法 每次调度都是从后备作业队列中选择一个或多个最先进入该队列的作业,将它们调入内存,为它们分配资源创建进程,然后放入就绪队列 2.2 时间片轮转法(RR)算法 系统将所有的就绪进程按先来先服务的原则排成一个队列,每次调度时,把CPU分配给队首进程,并令其执行一个时间片。时间片的大小从几ms到几百ms。当执行的时间片用完时,由一个计时器发出时钟中断请求,调度程序便据此信号来停止该进程的执行,并将它送往就绪队列的末尾;然后,再把处理机分配给就绪队列中新的队首进程,同时也让它执行一个时间片。 2.3短作业优先(SJF)算法 短作业优先调度算法是从就绪队列中选出一个估计运行时间最短的进程,将处理机分配给它,使它立即执行并一直执行到完成,或发生某事件而被阻塞放弃处理机时再重新调度。 2.4最高优先权优先(HRRN)算法 优先权调度算法是为了照顾紧迫型作业,使之在进入系统后便获得优先处理,引入最高优先权优先调度算法。动态优先权是指在创建进程时所赋予的优先权,是可以随进程的推进或随其等待时间的增加而改变的,以便获得更好的调度性能。

进程调度算法实验报告

实验报告 实验一:进程调度算法 一、实验目的 1.利用高级语言实现三种不同及进程调度算法: 短作业优先算法、时间片轮转调度算法和优先级调度算法。 2.通过实验理解有关进程控制块,进程队列等的概念。 二、实验原理 各调度算法思想: 1.先来先服务算法(FCFS): 按照进程进入就绪队列的先后次序来分配CPU,一旦一个进程占有CPU,就一直运行下去,知道该进程完成工作,才释放CPU。 2.时间片轮转算法: 系统将所有就绪进程按到达时间的先后次序排成一个队列,进程调度程序总是选择队列中的第一个进程执行,且仅能执行一个时间片,在使用完一个时间片后,即使进程并未完成其运行,也必须将CPU交给下一个进程;如果一个时间片未使用完就完成了该进程,则剩下的时间分配给下一个进程。 3.优先权调度算法;在创建进程时就确定优先权,确定之后在整个程序运行期间不再改 变,根据优先级排列,系统会把CPU分配给优先权最高的进程。 三、实验步骤、数据记录及处理 1、算法流程

抽象数据类型的定义:PCB块结构体类型 struct PCB { int name; int arrivetime; // 到达时间 int servicetime; // 服务时间 //int starttime[max]; // 开始时间 int finishtime; // 完成/ 结束时间 int turntime; // 周转时间 int average_turntime; // 带权周转时间 int sign; // 标志进程是否完成 int remain_time; // 剩余时间 int priority; // 优先级 }pcb[max]; 主程序的流程以及各程序模块之间的层次( 调用) 关系:主程序中从键盘得到进程的数量,创建PCB,调用layout ()函数显示选择界面。 Layout ()函数中选择相应的算法并调用相关函数如:FCFS()、time_segment(); Priority() ,这三个函数分别实现先来先服务算法,时间片轮转算法和优先级算法,最后分别打印。 程序流程图:

进程模拟调度算法课程设计

一.课程概述 1.1.设计构想 程序能够完成以下操作:创建进程:先输入进程的数目,再一次输入每个进程的进程名、运行总时间和优先级,先到达的先输入;进程调度:进程创建完成后就选择进程调度算法,并单步执行,每次执行的结果都从屏幕上输出来。 1.2.需求分析 在多道程序环境下,主存中有着多个进程,其数目往往多于处理机数目,要使这多个进程能够并发地执行,这就要求系统能按某种算法,动态地把处理机分配给就绪队列中的一个进程,使之执行。分配处理机的任务是由处理机调度程序完成的。由于处理机是最重要的计算机资源,提高处理机的利用率及改善系统必(吞吐量、响应时间),在很大程度上取决于处理机调度性能的好坏,因而,处理机调度便成为操作系统设计的中心问题之一。本次实验在VC++6.0环境下实现先来先服务调度算法,短作业优先调度算法,高优先权调度算法,时间片轮转调度算法和多级反馈队列调度算法。 1.3.理论依据 为了描述和管制进程的运行,系统为每个进程定义了一个数据结构——进程控制块PCB(Process Control Block),PCB中记录了操作系统所需的、用于描述进程的当前情况以及控制进程运行的全部信息,系统总是通过PCB对进程进行控制,亦即,系统是根据进程的PCB 而不是任何别的什么而感知进程的存在的,PCB是进程存在的惟一标志。本次课程设计用结构体Process代替PCB的功能。 1.4.课程任务 一、用C语言(或C++)编程实现操作模拟操作系统进程调度子系统的基本功能;运用多 种算法实现对进程的模拟调度。 二、通过编写程序实现进程或作业先来先服务、高优先权、按时间片轮转、短作业优先、多 级反馈队列调度算法,使学生进一步掌握进程调度的概念和算法,加深对处理机分配的理解。 三、实现用户界面的开发

先来先服务和短作业优先调度算法

《操作系统》实验一实验报告 【实验题目】:先来先服务FCFS和短作业优先SJF进程调度算法【实验目的】 通过这次实验,加深对进程概念的理解,进一步掌握进程状态的转变、进程调度的策略及对系统性能的评价方法。 【实验内容】 问题描述: 设计程序模拟进程的先来先服务FCFS和短作业优先SJF调度过程。假设有n个进程分别在T1, …,T n时刻到达系统,它们需要的服务时间分别为S1, … ,S n。分别采用先来先服务FCFS和短作业优先SJF 进程调度算法进行调度,计算每个进程的完成时间,周转时间和带权周转时间,并且统计n个进程的平均周转时间和平均带权周转时间。 程序要求如下: 1)进程个数n;每个进程的到达时间T1, …,T n和服务时间S1, … ,S n;选择算法1-FCFS,2-SJF。 2)要求采用先来先服务FCFS和短作业优先SJF分别调度进程运行,计算每个进程的周转时间,带权周转时间,并且计算所有进程的平均周转时间,带权平均周转时间; 3)输出:要求模拟整个调度过程,输出每个时刻的进程运行状态,如“时刻3:进程B开始运行”等等; 4)输出:要求输出计算出来的每个进程的周转时间,带权周转时间,

所有进程的平均周转时间,带权平均周转时间。【实验过程】 #include using namespace std; #define MaxNum 100 int ArrivalTime[MaxNum]; double ServiceTime[MaxNum]; double FinishTime[MaxNum]; double WholeTime[MaxNum]; double A VEWholeTime[MaxNum]; double A VEWeightWholeTime[MaxNum]; double WeightWholeTime[MaxNum]; double AverageWT_FCFS,AverageWT_SJF; double AverageWWT_FCFS,AverageWWT_SJF; double AllTime,WeightAllTime; double a[MaxNum]; int b[MaxNum]; int c[MaxNum]; int d[MaxNum]; void FCFS(); void SJF();

短作业优先算法

短作业(进程)优先调度算法 1.短作业(进程)优先调度算法SJ(P)F,是指对短作业或 短进程优先调度的算法。它们可以分别用于作业调度和进程调度。短作业优先(SJF)的调度算法是从后备队列中选择一个或若干个估计运行时间最短的作业,将它们调入内存运行。而短进程(SPF)调度算法则是从就绪队列中选出一个估计运行时间最短的进程,将处理机分配给它,使它立即执行并一直执行到完成,或发生某事件而被阻塞放弃处理机再重新调度。SJ(P)F 调度算法能有效地降低作业(进程)的平均等待时间,提高系统吞吐量。该算法对长作业不利,完全未考虑作业的紧迫程度。 2.流程图 3.代码

#include<> #include<> #include<> struct sjf{ char name[10]; float arrivetime; float servicetime; float starttime; float finishtime; float zztime; float dqzztime; }; sjf a[100]; void input(sjf *p,int N) { int i; printf("intput the process's name & arrivetime & servicetime:\nfor exmple: a 0 100\n"); for(i=0;i<=N-1;i++) { printf("input the %dth process's information:\n",i+1); scanf("%s%f%f",&p[i].name,&p[i].arrivetime,&p[i].servicetim e);

进程调度算法模拟程序设计C++

(1)用C语言(或其它语言,如Java)实现对N个进程采用某种进程调度算法(如动态优先权调度)的调度。 (2)每个用来标识进程的进程控制块PCB可用结构来描述,包括以下字段:?进程标识数ID。 ?进程优先数PRIORITY,并规定优先数越大的进程,其优先权越高。 ?进程已占用CPU时间CPUTIME。 ?进程还需占用的CPU时间ALLTIME。当进程运行完毕时,ALLTIME变为0。 ?进程的阻塞时间STARTBLOCK,表示当进程再运行STARTBLOCK个时间 片后,进程将进入阻塞状态。 ?进程被阻塞的时间BLOCKTIME,表示已阻塞的进程再等待BLOCKTIME 个时间片后,将转换成就绪状态。 ?进程状态STATE。 ?队列指针NEXT,用来将PCB排成队列。 (3)优先数改变的原则: ?进程在就绪队列中呆一个时间片,优先数增加1。 ?进程每运行一个时间片,优先数减3。 (4)为了清楚地观察每个进程的调度过程,程序应将每个时间片内的进程的情况显示出来,包括正在运行的进程,处于就绪队列中的进程和处于阻塞队列中的进程。 (5)分析程序运行的结果,谈一下自己的认识。 实验代码 #include "iostream.h" #include "windows.h" //#define N 3 typedef struct{ int ID; int PRIORITY; int CPUTIME;

int ALLTIME; int STARTBLOCK; int BLOCKTIME; int STATE;//0-运行1-阻塞2-就绪3-结束4-未到达 int REACH; int TIME; }PROCESS; void textcolor (int color) { SetConsoleTextAttribute (GetStdHandle (STD_OUTPUT_HANDLE), color ); } void main(){ int i,time,max,l,l1,time1,flag=0,total=0,N,server[10],sum=0; PROCESS pro[10]; textcolor(13); cout<<"注意:本程序中状态代表如下"<>N; cout<<"请设置时间片长度:"; cin>>time; cout<<"请输入各进程初始状态:"<>pro[i].ID>>pro[i].PRIORITY>>pro[i].REACH;

操作系统短作业优先调度算法

课程设计 采用短作业优先调度算法调度程序 学号: 姓名: 专业: 指导老师: 日期:

目录 一、实验题目 (3) 二、课程设计的目的 (3) 三、设计内容 (3) 四、设计要求 (3) 五、主要数据结构及其说明 (4) 六、程序运行结果 (5) 七、流程图 (7) 八、源程序文件 (9) 九、实验体会 (13) 十、参考文献 (13)

摘要 在多道程序环境下,主存中有着多个进程,其数目往往多于处理机数目。这就要求系统能按某种算法,动态地把处理机分配给就绪队列中的一个进程,使之执行。分配处理机的任务是由处理机调度程序完成的。由于处理机是最重要的计算机资源,提高处理机的利用率及改善系统性能(吞吐量、响应时间),在很大程度上取决于处理机调度性能的好坏,因而,处理机调度便成为操作系统设计的中心问题之一。 在多道程序系统中,一个作业被提交后必须经过处理机调度后,方能获得处理机执行。对于批量型作业而言,通常需要经历作业调度和进程调度两个过程后方能获得处理机。作业调度是对成批进入系统的用户作业,根据作业控制块的信息,按一定的策略选取若干个作业使它们可以去获得处理器运行的一项工作。而对每个用户来说总希望自己的作业的周转时间是最小的,短作业优先(SJF)便是其中一种调度方法。本次课程设计主要是模拟短作业优先(SJF)调度算法。

一、实验题目 采用短作业优先算法的的进程调度程序 二、课程设计的目的 操作系统课程设计是计算机专业重要的教学环节,它为学生提供了一个既动手又动脑,将课本上的理论知识和实际有机的结合一起,独立分析和解决实际问题的机会。 进一步巩固和复习操作系统的基础知识。 培养学生结构化程序、模块化程序设计的方法和能力。 提高学生调试程序的技巧和软件设计的能力。 提高学生分析问题、解决问题以及综合利用C语言进行程序设计的能力。 三、设计内容 设计并实现一个采用短作业优先算的进程调度算法演示程序 四、设计要求 1. 每一个进程有一个PCB,其内容可以根据具体情况设定。 2. 进程数、进入内存时间、要求服务时间、优先级等均可以在界面上设定 3. 可读取样例数据(要求存放在外部文件中)进行进程数、进入内存时间、时间片长度、进程优先级的初始化 4. 可以在运行中显示各进程的状态:就绪、执行(由于不要求设置互斥资源与进程间同步关系,故只有两种状态) 5. 采用可视化界面,可在进程调度过程中随时暂停调度,查看当前进程的状态以及相应的阻塞队列

操作系统模拟进程调度算法

操作系统 ——项目文档报告 进程调度算法 专业: 班级: 指导教师: 姓名: 学号:

一、核心算法思想 1.先来先服务调度算法 先来先服务调度算法是一种最简单的调度算法,该算法既可以用于作业调度,也可用于进程调度。当在作业调度中采用该算法时,每次调度都是从后备作业队列中选择一个或多个最先进入该队列的作业,将他们调入内存,为它们分配资源、创建进程,然后放入就绪队列。在进程调度中采用FCFS算法时,则每次调度是从就绪队列中选择一个最先进入该队列的进程,为之分配处理机,使之投入运行。该进程一直运行到完成或发生某事件而阻塞后才放弃处理机。FCFS算法比较有利于长作业(进程),而不利于短作业(进程)。 2.短作业(进程)优先调度算法 短作业(进程)优先调度算法SJ(P)F,是指对短作业或短进程优先调度的算法。它们可以分别用于作业调度和进程调度。短作业优先(SJF)的调度算法是从后备队列中选择一个或若干个估计运行时间最短的作业,将它们调入内存运行。而短进程(SPF)调度算法则是从就绪队列中选出一个估计运行时间最短的进程,将处理机分配给它,使它立即执行并一直执行到完成,或发生某事件而被阻塞放弃处理机再重新调度。SJ(P)F调度算法能有效地降低作业(进程)的平均等待时间,提高系统吞吐量。该算法对长作业不利,完全未考虑作业的紧迫程度。 3.高响应比优先调度算法 在批处理系统中,短作业优先算法是一种比较好的算法,其主要不足之处是长作业的运行得不到保证。如果我们能为每个作业引人动态优先权,并使作业的优先级随着等待时间的增加而以速率a提高,则长作业在等待一定的时间后,必然有机会分配到处理机。该优先权的变化规律可描述为: 优先权=(等待时间+要求服务时间)/要求服务时间 即优先权=响应时间/要求服务时间 如果作业的等待时间相同,则要求服务的时间越短,其优先权越高,因而该算法有利于短作业。 当要球服务的时间相同时,作业的优先权决定于其等待时间,等待时间越长,优先权越高,因而它实现的是先来先服务 对于长作业,作业的优先级可以随着等待时间的增加而提高,当其等待时间足够长时,其优先级便可以升到很高,从而也可获得处理机。 4.时间片轮转算法 在时间片轮转算法中,系统将所有的就绪进程按先来先服务的原则排成一个队列,每次调度时,把CPU分配给队首进程,并令其执行一个时间片。当执行的时间片用完时,由一个计数器发出时钟中断请求,调度程序便据此信号来停止该进程的执行,并将它送往就绪队列的末尾;然后,再把处理机分配给就绪队列中新的队首进程,同时也让它执行一个时间片。这样就可以保证就绪队列中的所有进程在一给定的时间内均能获得一时间片的处理机执行时间。换言之,系统能在给定的时间内响应所有用户的请求。 二、核心算法流程图

短作业优先调度算法 (1)

短作业优先调度算法 学院计算机科学与技术 专业 学号 学生姓名 指导教师姓名 2014-3-18目录

九参考文献……………………………………………………………………………………………………… 实验题目 采用短作业优先算法的进程调度程序 课程设计的目的 操作系统课程设计是计算机专业重要的教学环节,它为学生提供了一个既动手又动脑,将课本上的理论知识和实际有机的结合一起,独立分析和解决实际问题的机会。 进一步巩固和复习操作系统的基础知识。 培养学生结构化程序、模块化程序设计的方法和能力。 提高学生调试程序的技巧和软件设计的能力。 提高学生分析问题、解决问题以及综合利用C语言进行程序设计的能力。 设计内容 设计并实现一个采用短作业优先算的进程调度算法演示程序 设计要求 1. 每一个进程有一个PCB,其内容可以根据具体情况设定。 2. 进程数、进入内存时间、要求服务时间、优先级等均可以在界面上设定

3. 可读取样例数据(要求存放在外部文件中)进行进程数、进入内存时间、时间片长度、进程优先级的初始化 4. 可以在运行中显示各进程的状态:就绪、执行(由于不要求设置互斥资源与进程间同步关系,故只有两种状态) 5. 具有一定的数据容错性 主要数据结构及其说明 算法的简要说明:短作业(进程)优先调度算法SJ(P)F,是指对短作业或短进程优先调度的算法。它们可以分别用于作业调度和进程调度。短作业优先(SJF)的调度算法是从后备队列中选择一个或若干个估计运行时间最短的作业,将它们调入内存运行。而短进程(SPF)调度算法则是从就绪队列中选出一个估计运行时间最短的进程,将处理机分配给它,使它立即执行并一直执行到完成,或发生某事件而被阻塞放弃处理机再重新调度。优点是SJ(P)F调度算法能有效地降低作业(进程)的平均等待时间,提高系统吞吐量。缺点是该算法对长作业不利;完全未考虑作业的紧迫程度,因而不能保证紧迫性作业(进程)长期不被调度;由于作业(进程)的长短只是根据用户所提供的估计执行时间而定的,而用户又可能会有意或无意地缩短其作业的估计运行时间,致使该算法不一定能真正做到短作业游戏那调度。 该程序定义了一个进程数据块(struct spf),该数据块有进程名(name)、到达时间(arrivetime)、服务时间(servicetime)、开始执行时间(starttime)、完成时间 (finishtime)、周转时间(zztime)、带权周转时间(dqzztime)。用到的公式有:完成时间=到达时间+服务时间;周转时间=完成时间-到达时间;带权周转时间=周转时间/服务时间;(第一次执行的进程的完成时间=该进程的到达时间;下一个进程的开始执行时间=上一个进程的完成时间)。运行进程的顺序需要对进程的到达时间和服务时间进行比较。如果某一进程是从0时刻到达的,那么首先执行该进程;之后就比较进程的服务时间,谁的服务时间短就先执行谁(如果服务时间相同则看它们的到达时间,到达时间短的先执行);如果到达时间和服务时间相同,则按先来先服务算法执行。

OS短作业优先调度算法C语言知识分享

O S短作业优先调度算 法C语言

采用短作业优先调度算法调度程序 学号: 姓名: 专业: 指导老师: 日期:

目录 一、实验题目 (3) 二、课程设计的目的 (3) 三、设计内容 (3) 四、设计要求 (3) 五、主要数据结构及其说明 (4) 六、程序运行结果 (5) 七、流程图 (7) 八、源程序文件 (9) 九、实验体会 (13) 十、参考文献 (14)

摘要 在多道程序环境下,主存中有着多个进程,其数目往往多于处理机数目。这就要求系统能按某种算法,动态地把处理机分配给就绪队列中的一个进程,使之执行。分配处理机的任务是由处理机调度程序完成的。由于处理机是最重要的计算机资源,提高处理机的利用率及改善系统性能(吞吐量、响应时间),在很大程度上取决于处理机调度性能的好坏,因而,处理机调度便成为操作系统设计的中心问题之一。 在多道程序系统中,一个作业被提交后必须经过处理机调度后,方能获得处理机执行。对于批量型作业而言,通常需要经历作业调度和进程调度两个过程后方能获得处理机。作业调度是对成批进入系统的用户作业,根据作业控制块的信息,按一定的策略选取若干个作业使它们可以去获得处理器运行的一项工作。而对每个用户来说总希望自己的作业的周转时间是最小的,短作业优先(SJF)便是其中一种调度方法。本次课程设计主要是模拟短作业优先(SJF)调度算法。

一、实验题目 采用短作业优先算法的的进程调度程序 二、课程设计的目的 ●操作系统课程设计是计算机专业重要的教学环节,它为学生提供了一个既 动手又动脑,将课本上的理论知识和实际有机的结合一起,独立分析和解决实际问题的机会。 ●进一步巩固和复习操作系统的基础知识。 ●培养学生结构化程序、模块化程序设计的方法和能力。 ●提高学生调试程序的技巧和软件设计的能力。 ●提高学生分析问题、解决问题以及综合利用C语言进行程序设计的能力。 三、设计内容 设计并实现一个采用短作业优先算的进程调度算法演示程序 四、设计要求 1. 每一个进程有一个PCB,其内容可以根据具体情况设定。 2. 进程数、进入内存时间、要求服务时间、优先级等均可以在界面上设定

模拟一种处理机调度算法

课程设计报告 设计名称:模拟实现一种处理机调度算法 学生姓名: xxx 专业:计算机科学与技术 班别: xxxxxxxx 学号: xxxxxx 指导老师: xxxxx 日期: 2014 年 6 月 20 日

初始条件: 1.预备内容:阅读操作系统的处理机管理章节内容,对进程调度的功能以及进程调度算法有深入的理解。 2.实践准备:掌握一种计算机高级语言的使用。 要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求) 1.模拟进程调度,能够处理以下的情形: ⑴能够选择不同的调度算法(要求中给出的调度算法); ⑵能够输入进程的基本信息,如进程名、优先级、到达 时间和运行时间等; ⑶根据选择的调度算法显示进程调度队列; ⑷根据选择的调度算法计算平均周转时间和平均带权周 转时间。 2.设计报告内容应说明: ⑴需求分析; ⑵功能设计(数据结构及模块说明); ⑶开发平台及源程序的主要部分; ⑷测试用例,运行结果与运行情况分析; ⑸自我评价与总结: i)你认为你完成的设计哪些地方做得比较好或比较出 色; ii)什么地方做得不太好,以后如何改正;

iii)从本设计得到的收获(在编写,调试,执行过程中 的经验和教训); iv)完成本题是否有其他方法(如果有,简要说明该方 法); 进程调度模拟设计——先来先服务、优先级法1、背景: 当计算机系统是多道程序设计系统时,通常会有多个进程或线程同时竞争CPU。只要有两个或更多的进程处于就绪状态,这种情形就会发生。如果只有一个CPU可用,那么就必须选择下一个要运行的进程。在操作系统中,完成选择工作的这一部分称为调度程序,该程序使用的算法成为调度算法。 进程调度的核心问题是采用什么样的算法把处理机分配给进程,好的算法将提高资源利用率,减少处理机的空闲时间,避免有些作业长期得不到相应的情况发生等,从而设计出受欢迎的操作系统。较常见的几种进程调度算法有:先来先服务调度算法;短作业优先调度算法;时间片轮转调度算法;优先级调度算法;高响应比优先算法和多级反馈队列调度算法等。 2.1设计目的 无论是在批处理系统还是分时系统中,用户进程数一般都多于处理机数、这将导致它们互相争夺处理机。另外,系统进程也同样需要使用处理机。这就要求进程调度程序按一定的策略,动态地把处理机

进程调度算法论文优先级调度~

题目操作系统课程设计 实验一:进程调度算法 1.实验目的 通过优先权法和轮转算法的模拟加深对进程概念和进程调度过程的理解,掌握进程状态之间的切换,同时掌握进程调度算法的实现方法和技巧。2.实验内容 1)用C语言或C++语言来实现对n个进程采用优先权算法以及轮转算法的进程调度。 2)每个用来标识进程的进程控制块PCB用结构来描述,包括以下字段:(1)进程标识ID,其中0为闲逛进程,用户进程标识数为1,2,3…。 (2)进程优先级Priority,闲逛进程(idle)的优先级为0,用户进程的优先级大于0,且随机产生,标识数越大,优先级越高。 (3)进程占用CPU时间CPUtime,进程每运行一次,累计值等于4. (4)进程总共需要运行时间Alltime,利用随机函数产生。 (5)进程状态,0-就绪态;1-运行态;2-阻塞态。 (6)队列指针next,用来将多个进程控制块PCB链接为队列。 3)优先数改变的原则 (1)进程在就绪队列中每呆一个时间片,优先数增加1。 (2)进程每运行一个时间片,优先数减3. 4)在调度前,系统中拥有的进程数PCB_number由键盘输入,经初始化后,所有的进程控制块PCB链接成就绪队列。 3.实验步骤 a)画出程序流程图 a)动态优先权的进程调度算法模拟流程

b)轮转法进程调度算法模拟流程

b)程序算法如下: #include "stdafx.h" #define NULL 0 #include #include #include using namespace std; /*进程PCB结构*/ struct PCB { int ID; //进程标识 int priority; //优先级 int CPUtime; // 进程占用CPU的时间 int ALLtime; // 进程总共需要运行的时间 int State; // 进程状态 struct PCB *next; // 指向下一节点的指针 }; typedef struct PCB pcb; void init(); //产生idle进程,输入用户进程数目,

相关文档
相关文档 最新文档