文档库 最新最全的文档下载
当前位置:文档库 › 海水淡化膜法预处理技术现状

海水淡化膜法预处理技术现状

海水淡化膜法预处理技术现状
海水淡化膜法预处理技术现状

1引言

随着水资源短缺形势的日益严峻,海水淡化已成为解决全球水资源短缺的重要途径。海水淡化水在一些沿海缺水国家和地区的经济和社会发展中发挥了重要作用。在海水淡化的发展历程中,已逐渐形成了以多级闪蒸、低温多效和反渗透为代表的三大主流技术。自2000年以来应用最多的是反渗透法(RO),约占60%;其次是多级闪蒸法(MSF),约占26%;低温多效法(MED),约占5%[1]。反渗透法为膜法,多级闪蒸法和低温多效法为蒸馏法。

海水成分非常复杂,不仅含有大量的盐分,而且存在各种微生物,特别是水温较高的表层海水中微生物的污染更为严重。海水中的悬浮物、胶体物质和大颗粒有机物等这些都会给取水设施以及海水淡化处理系统带来影响。pH值、温度、余氯等参数都会影响后续海水淡化装置的正常运行。因此,海水在进入蒸馏法和膜法淡化装置之前必须经过预处理。新型膜法预处理技术主要包括微滤技术(MF)、超滤技术(UF)、纳滤技术(NF)以及陶瓷膜过滤技术(CF)等。

2新型膜法预处理技术

2.1微滤技术(Microfiltration,MF)

微滤又称为精过滤。微滤技术是一种以压力差为推动力的膜分离技术,能截留粒径在0.1 ̄1.0μm之间的颗粒,允许大分子有机物和无机盐等通过,能阻挡悬浮物、细菌、部分病毒及大尺度胶体透过。根据微滤膜的材质不同可分为有机高分子微孔滤膜(如聚乙烯、聚砜、聚酰胺、醋酸纤维素等)和无机微孔滤膜(如氧化铝、玻璃、二氧化硅等)。采用连续微滤(CMF)技术可以代替常规的澄清过滤作为反渗透前的预处理,出水浊度NTU<0.12,SDI<3.0,出水水质能够满足反渗透进水的要求[2]。

马敬环等[3]采用一体化的斜板沉淀池进行混凝、澄清过程,外加一套集砂滤、1μm的平板膜过滤和0.2μm的中空纤维膜过滤于一体的膜过滤装置,即“混凝+澄清+砂滤+微滤”作为反渗透的预处理工艺对渤海湾海水进行预处理,其出水水质远优于GB/T19249-2003反渗透进水标准。

胡国付等[4]采用一体化混凝-微滤工艺,即经过FeCl3混凝、PAC吸附、微滤膜截留等预处理工艺处理渤海近岸海水。试验结果表明:预处理出水水质良好,浊度、SDI、总铁含量以及pH、温度等都能满足海水反渗透进水的要求。

沙布[5]采用混凝-微滤-粉末活性炭(PAC)吸附的一体式膜混凝反应器(MCR),对渤海海水进行了预处理试验。试验结果表明:经预处理后的海水,其参数SDI、浊度、总铁和pH值能够完全满足反渗透进水的要求。

马敬环等[6]采用混凝、沉淀、砂滤、折叠微滤膜、中空纤维微滤膜为一体的膜过滤装置,对渤海湾海水进行预处理试验。试验结果表明:一体化膜过滤装置结构设计合理,预处理出水浊度<0.3NTU,SDI<3,远优于GB/T19249-2003中规定的反渗透进水要求,为反渗透法海水淡化技术提供了经济可靠的技术保证。

2.2超滤技术(Ultrafiltration,UF)

超滤是在上世纪60年代走向工业应用的膜技术。UF是一种以压力差为推动力的膜分离技术,能截留粒径在0.002 ̄0.1μm之间的颗粒和杂质[7],允许小分子物质和无机盐等通过,阻挡胶体、微生物和大分子有机物,能够降低淤泥污染指数(SDI),降低RO膜的污染,UF出水水质稳定,不受原海水水质变化的影响。UF可取代传统预处理工艺中的多个步骤,空间利用率高,与传统预处理工艺相比,可节省约50%的空间[8]。从上世纪90年代末以来,由于集成膜系统的兴起,采用超滤作为海水淡化预处理工艺的研究日渐增多。

郭兴芳等[9]采用天津渤海湾近岸海水,针对海水有机污染特性,以常规混凝沉淀(气浮)、强化物化处理、活性炭吸附、UF以及生物活性炭这几种预处理工艺进行了长期连续试验,研究不同工艺对海水中有机物的去除效果,并对不同工艺进行综合比较分析。试验结果表明:对于有机物相对分子质量低、污染严

轻工科技

LIGHTINDUSTRYSCIENCEANDTECHNOLOGY资源与环境

2012年5月

第5期(总第162期)

海水淡化膜法预处理技术研究现状

石碧清,全玉莲,刘湘

(中国环境管理干部学院,河北秦皇岛066004)

【摘要】水资源短缺已成为制约经济发展的世界性问题。海水淡化作为一种解决水资源短缺的重要战略手段,正发挥着越来越重要的作用。合理的预处理是海水淡化装置成功运行的决定性因素之一。微滤技术(MF)、超滤技术(UF)、纳滤技术(NF)以及陶瓷膜过滤技术(CF)是反渗透海水淡化的几种新型膜法预处理技术。MF、UF、NF、CF和反渗透(RO)组合起来的新型的海水淡化集成技术将成为该领域的发展趋势。

【关键词】反渗透;海水淡化;膜法预处理

【中图分类号】X703【文献标识码】A【文章编号】2095-3518(2012)05-87-02

【作者简介】石碧清(1967-),女,山西大同人,硕士,副教授,研究方向:水处理技术及水环境监测。

重的海水,RO海水淡化的预处理工艺要选择生物活性炭、膜过滤甚至纳滤等单元进行集成,才能够合理优化整个预处理流程。

龙泽波等[10]采用“消毒-混凝-澄清-砂滤”、“消毒-混凝-澄清-砂滤-超滤”以及“消毒-砂滤-超滤”三套海水淡化预处理工艺进行了对比试验。试验结果表明:采用“消毒-混凝-澄清-砂滤-超滤”工艺或“消毒-砂滤-超滤”工艺是技术可行的反渗透预处理工艺,处理出水各项水质指标均达到反渗透进水水质要求。

李少杰[11]选用具有代表性的四种中空纤维超滤膜组件(内压式、外压式超滤膜各两种)进行试验研究。试验结果表明:各超滤膜对于浊度、全铁和胶体硅均具有良好的去除效果,各超滤膜出水SDI<3,符合反渗透膜进水水质要求。

徐佳等[12]采用三种中空纤维超滤组件对胶州湾海水进行处理。试验结果表明:三种超滤组件出水水质均非常稳定,SDI15<3.0,浊度值<0.12NTU,完全符合SWRO进水要求,验证了超滤作为海水反渗透预处理的可行性。

彭彩霞等[13]采用中空纤维膜超滤技术对舟山海水进行预处理试验。试验结果表明:超滤出水SDI<1,通过周期性的反冲洗膜性能有较好的恢复,采用超滤膜作为舟山地区反渗透海水淡化工艺的预处理是可行的。

2.3纳滤技术(Nanofiltration,NF)

纳滤技术是介于超滤和反渗透技术之间的一种独立的分离技术。纳滤膜是20世纪80年代末期问世的一种新型分离膜,能截留物质的大小约为1nm。纳滤膜在超低压下(0.1Mpa)仍能工作,并有较大的通量。纳滤技术己经广泛应用于海水淡化、超纯水制造、食品工业、环境保护等诸多领域。海水淡化与纳滤结合不仅可以减少海水的高硬度,而且还可以降低进入反渗透膜组件的海水盐度,为提高海水淡化回收率创造了条件。

方建慧等[14]采用美国Desal公司的HL1812纳滤膜,将系统的工作压力定在0.9 ̄1.0MPa,温度在5 ̄20℃,单支膜的回收率为11.2%的条件下进行处理海水试验。研究结果表明:纳滤膜能脱除海水中大部分结垢离子,如Ca2+,Mg2+,SO42-,HCO3-等,特别是对SO42-离子的去除率在95%以上。采用NF作为海水淡化的预处理方法,可以大幅度降低海水的硬度和TDS的含量,解决了结垢污染等许多问题,大幅度提高海水淡化的回收率,降低海水淡化的成本,采用纳滤膜处理海水在技术上是可行的。

王玉红等[15]用ESNAI型纳滤膜分别对人工海水和天然海水进行软化脱盐试验。试验结果表明:纳滤膜在实验过程中稳定性好,在较低的操作压力下膜通量较高,且ESNAI纳滤膜对Ca2+、Mg2+、SO42-离子的截留率均大于90%,初步判断此种纳滤膜可用于海水淡化预处理。

2.4陶瓷膜过滤技术(Ceramicmembranefiltration,CF)无机陶瓷膜是一种新型的膜材料,与传统的有机膜相比,具有耐高温、耐酸碱腐蚀、化学稳定性强、机械强度高及孔径分布窄等优点,被广泛应用于食品和生物制品的提纯、电解液的过滤及气体除尘等多个领域。目前陶瓷膜在水处理领域的应用主要集中在污废水的处理,近几年陶瓷膜也被应用在海水淡化预处理领域。

徐佳[16]选用南京九思高科技有限公司生产的50nm陶瓷超

滤膜,对胶州湾海水进行了处理。试验结果表明:50nm陶瓷超

滤膜具有优异的浊度去除功能,渗透液出水浊度<0.10NTU,浊

度去除率>97%,初步验证了陶瓷膜作为海水淡化预处理工艺

的技术可行性。

柏其亚等[17]采用低能耗的终端过滤方式进行陶瓷膜法海

水淡化预处理试验,比较了“絮凝沉降+陶瓷膜”和“砂滤+陶

瓷膜”两种预处理工艺。研究结果表明:采用低能耗的终端陶瓷

膜法进行海水淡化预处理,其产水水质达到反渗透膜的进水水

质要求,且不受原海水水质的影响,“絮凝沉降+陶瓷膜”预处

理工艺明显优于“砂滤+陶瓷膜”预处理工艺,该预处理工艺不

仅延长了膜再生周期,而且该工艺条件下的平均渗透通量、产

水回收率及产水SDI15值明显较好。

马敬环等[18]采用”砂滤+0.2μm陶瓷膜”进行海水淡化预

处理,实验结果表明:该预处理装置运行比较稳定,出水浊度

<0.1NTU,SDI≤1,各项指标完全符合反渗透海水淡化进水的

需要。

3结语

膜法预处理和传统的混凝预处理相比,不仅可以大幅度降

低海水的浊度,TDS和硬度,提高进水水质,而且减少了化学试

剂的添加量和反渗透膜的清洗次数,最大限度地维持出水率和

脱盐率。新型海水淡化系统的发展趋势是采用膜法集成系统(IMS),即将各种膜法预处理和RO组合起来。因此,随着新型

膜与集成膜技术的开发,海水淡化成本将进一步降低,使膜法

海水淡化技术在解决世界性水资源短缺的难题中发挥更大的

作用。

参考文献

[1]AL-SHAMMIRIM,SAFARM.Multi-effectdistillationplants:Stateoftheart[J].Desalination,1999,126:45-59.

[2]谢长血.连续微滤技术在反渗透预处理系统中的应用[J].工业水处理,2001,21(12):31-33.

[3]马敬环,黄锦言,秦竞蕊.反渗透法海水淡化预处理工艺研究[J].盐业与化工,2006,35(6):13-14.21.

[4]胡国付,沙布,等.海水预处理一体化混凝-微滤工艺[J].膜科学与技术,2007,27(4):55-59.

[5]沙布.膜反应器用于海水预处理和地表水处理的实验研究[D].天津大学,2007.

[6]马敬环,秦竞蕊,黄锦言.一体化膜过滤装置在海水淡化预处理中的应用[J].海湖盐与化工,2005,35(2):29-32.

[7]时钧,袁权,高从堦.膜技术手册[M].北京:化学工业出版社,2001:336-337.

[8]MerrileeA.,JamesM.Ultrafiltrationforseawaterreverseosmosis

pretreatment[J].MembraneTechnology,2004,(1):5-8.

[9]郭兴芳,陈立,李伟,等.天津渤海湾反渗透海水淡化预处理工艺选择研究[J].水处理技术,2011,37(9):77-79.

[10]龙泽波,张大群,张万钦,等.渤海海水淡化反渗透法的预处理工艺[J].城市环境与城市生态,2003,16(6):241-242.

[11]李少杰.超滤膜用于海水淡化预处理的试验研究[J].沿海企业与科

(下转第104页)

(上接第88页)

技,2009,(10):35-37.

[12]徐佳,阮国岭,高从堦.超滤膜预处理在胶州湾海水淡化的应用[J].水处理技术,2007,33(7):64-67.

[13]彭彩霞,丛宇琪,张益炬,等.超滤膜在舟山海水淡化预处理中的可行性研究[J].广州化工,2010,38(12):123-124,139.

[14]方建慧,姜华,刘继全,等.纳滤膜在海水淡化中的应用研究[J].膜科学与技术,2006,26(1):50-54.

[15]王玉红,苏保卫等.纳滤膜脱盐性能及其在海水软化中应用的研究[J].工业水处理,2006,26(2):46-49.

[16]徐佳.超滤作为海水淡化预处理工艺的应用研究和MonteCarlo模

拟[D].中国海洋大学,2008.

[17]柏其亚,刘学文,范益群,等.终端陶瓷膜法海水淡化预处理[J].膜科学与技术,2008,28(5):86-89.

[18]马敬环,秦竞蕊,黄锦言,等.陶瓷膜在海水淡化预处理中的应用研究[J].天津化工,2007,21(2):26-28.

2.5生物质发电厂燃料的压块、打捆和解包

生物质发电厂燃料压块技术比较成熟,物料经过压块后一般控制在0.7~1.0g/cm3,可直接燃烧。研究表明,控制燃料密度,有利于防止锅炉炉膛结焦。

目前生物质发电厂燃料打捆技术也比较成熟,可满足生物质发电厂大量燃料实际需要。与压块技术相比,采用打捆技术能耗低,工艺简单,但对密度高且大的燃料解包时,对解包设备要求较高。目前解包技术还存在不少问题,直接影响了电厂的正常运行。

据了解,一些生物质发电厂还对燃料进行造粒成型处理,主要是作为燃料储存备用或出售增加效益需要。造粒成型需要增加燃料成本,不适用于目前生物质发电厂燃料长期大量需求情况,在此就不赘述。

3利用烟气干燥生物质燃料技术的经济效益分析以某工程为例,该工程建设2台110t/h秸秆锅炉,2×25MW纯冷凝式汽轮发电机组,年消耗生物质燃料约32万吨。参照糖厂蔗渣干燥耗电约8kWh/吨,锅炉实际热效率82%,当烟道气温度为165℃,生物质燃料干燥后,水份降低10%,锅炉效率可提高到85%计算,则每年可以多发电900万千瓦时,若按国家对生物质发电厂上网电价0.75元/千瓦时计算,则每年可多盈利0.75×(900-32×8)=483万元,按滚筒式蔗渣干燥器投资1200万元计,则两年多可收回投资成本。

4结语

利用自然风、太阳能干燥生物质燃料,是最简单、环保和节能的干燥方法,虽受自然气候条件约束,存在劳动强度大、效率低,含水量不易稳定控制的弱点,但不需另外增加热源和设备,成本低,干燥巨菌草等高水分生物质燃料时应首先考虑采用。

为不受气候条件约束,借鉴利用锅炉烟气余热干燥技术,是生物质发电厂燃料预处理人工干燥的研究方向和重点之一。

随着生物质发电厂燃料供应短缺问题日益突出,生物质发电厂燃料预处理技术显得越来越重要。研究发电厂生物质燃料适用预处理干燥工艺技术,对大量使用高水分巨菌草等新鲜燃料时,解决生物质发电厂燃料短缺时的干燥问题,保证电厂正

常运行,提高发电厂经济效益,有重要意义。

参考文献

[1]肖军,段菁春,王华,等.生物质利用现状[J].安全与环境工程,2003,10(I):12-14.

[2]高进伟,李海凤.生物能利用技术探讨[J].能源研究与信息,2003,19(4):236-241.

[3]孙振钧.中国生物质产业及发展取向[J].农业工程学报,2004,20(5):1-5

[4]蒋剑春.生物质能源应用研究现状与发展前景[J].林产化学与工业,2002,22(2):75-80.

[5]张殿军,陈之航.生物质燃烧技术的应用[J].能源研究与信息,1999,15(3):15-17.

[6]吴伟烽,刘聿拯.生物质能利用技术介绍[J].工业锅炉,2003(5):11-14

[7]孙利源.生物质能利用技术比较与分析[J].能源研究与信息,2004,20(2):68-73.

[8]孙伟.生物质燃料收集方式分析与比较[J].林业科技情报,2009,41(1).[9]福建南安糖厂.烟道气流态干燥蔗渣[J].甘蔗糖业,1983,(2):43-44.[10]广东鱼窝头糖厂动力车间.利用烟气余热干燥蔗渣[J].甘蔗糖业,

1983,(4):24.

[11]周少基等.新型烟道气蔗渣干燥器的试验研究[J].甘蔗糖业,2010,(1).[12]孙悦平等.甘蔗渣烘干成套设备的应用探讨[J].广西蔗糖,2011,(9).[13]张国梁等.生物质成型燃料生产与应用的问题研究[J].农机化研究.

2011,(8):177-182.

[14]陈乃超等.生物质电厂燃料成型设备的技术现状[J].上海电力学院

学报,2010,(6):227-229.

[15]袁正光等.广西生物质发电的现状及建议[J].广西水利水电,2011,(4):81-83.

[16]伊晓路等.生物质秸秆预处理技术.可再生能源[J].2005,(2):31-33.[17]郝永俊等.生物质固化成型设备的最新研究进展[J].环境卫生工程,

2011,(8):44-46.

[18.霍丽丽等.生物质固体成型燃料技术及设备研究进展[J].安全与环

境学报.2009(12).27-30.

[19]孔雪辉等.物质燃料固化成型设备发展现状及趋势机[J].电产品开

发与创新,2010,(3):12-21.

[20]车站斌.生物质就地及时压缩成型技术[J].中国能源,2005,(1):28-31.[21]樊峰鸣等.大粒径生物质成型燃料物理特性的研究[J].农业环境科

学学报,2005,24(2):398-402.

[22]王建祥等.生物质压缩成型燃料的物理品质及成型技术[J].农机化

研究,2008,(1):203-215.

海水淡化相关术语

英亩英尺(AF) : 衡量水体积的单位。一英亩-英尺等于325,851 加仑(面积为一英亩深度为一英尺的水的体积)或1,233 立方米。一百万加仑等于3.07 英亩-英尺。. 巴:衡量压力的单位。1 巴= 14.5 psi = 0.99 atm 生物杀菌剂:用于杀死生物有机体的化学物品(例如亚硫酸氢钠)。 苦咸水: 含盐量小于10,000 ppm 的水- 比淡水含盐多,但是比海水含盐少。 浓盐水:含盐量大于50,000 ppm 的水。从海水淡化的装置中排出的浓盐水还包含在预处理过程中所添加的化学成分。 BTU(英制热量单位):衡量热量的标准单位。电、天然气或任何其他能源均可使用BTU 衡量。一BTU 是指在海平面上将1 磅的水温度升高1 华氏度所需的热量。1000 BTU 等于0.29 千瓦时。 凝结:在某些海水淡化装置中使用的预处理工艺。在溶液中添加某种物质(例如氯化铁).使悬浮颗粒凝聚并形成比小颗粒更易于从溶液中除去的较大颗粒。 热电联产:热电联产。某电厂旨在节约能源,采用发电中的“余热”用作另一个目的,例如,热法海水淡化,或加热SWRO给水。 脱气:去除氧气。在海水淡化装置中用于减少腐蚀和污垢的预处理过程。 气浮(DAF):在海水淡化装置子中用于去除固体和有机体的预处理过程。 蒸馏:加热进水产生蒸汽的海水淡化装置。然后蒸汽被凝结为低盐浓度的成品水。 效率:能量传递效率表达为:在PX?装置或装置列中,流出与流入的能量总和比率,使用以下方程式计算: 功效= ∑(压力x 流量)流出x100% ∑(压力x 流量)流入 电渗析:水中的大部分杂质以离子(带电)状态存在。接通电流时,离子将向正极和负极移动。使中间区域的水被净化,并流出净化的成品水。此技术适用于苦咸水淡化,但当前不适用于工业规模的海水淡化商业运行。 原水: 供给海水淡化装置的水。这可以是经过预处理的原水,也可以是未经过预处理的源水。 污垢: 在反渗透膜或预处理设备上产生的污染物或生物污垢。 淡水: 溶解固体含量少于1,000 毫克/升(mg/L) 的水;一般来讲,溶解固体含量多于500 mg/L 的水不适合饮用和许多工业用途。

热法及膜法海水淡化经济性分析

膜法热法海水淡化技术经济分析 大连海水淡化工程研究中心华维国 一、海水淡化方法概述: 海水淡化是指从海水中获取淡水的技术和过程,通过脱除海水中的大部分盐类,使处理后的海水达到生活和生产用水标准的水处理技术,目前淡化方法已达数十种,达到商业化规模的主要有反渗透法和蒸馏法,也就是常说的“膜法”和“热法”,蒸馏淡化技术又分成多级闪蒸、多效蒸馏和压汽蒸馏三种。 1、蒸馏法淡化技术 蒸馏法又称蒸发法,是最早采用的淡化技术。早期主要用于少量蒸馏水的生产和制糖工业的料液浓缩,近代工业逐渐用于电厂和大型工业锅炉供水。 蒸馏法与膜法不同,经蒸发所得的水就是蒸馏水,水质较高,产品水的含盐量(总固溶物)可以降到5ppm以下。蒸馏法所能处理的原料水比其它方法更加广泛,原水含盐量从几百毫克/升到几万毫克/升都可适应。 蒸馏法海水淡化的装置类型较多,主要的有:多级闪蒸海水淡化、多效蒸发海水淡化和压汽蒸馏海水淡化。以下对各种方法进行简介: (1)多级闪蒸技术(MSF) ● 基本原理 多级闪蒸是将海水加热到一定温度后,引入到一个闪蒸室,其室内的压力低于海水所对应的饱和蒸汽压,部分海水迅速汽化,冷凝后即为所需淡水;另一部分海水温度降低,流入另一个压力较低的闪蒸室,又重复蒸发和降温的过程。将多个闪蒸室串联起来,室内压力逐级降低,海水逐级降温,连续产出淡化水。 ● 工艺流程 经过澄清和加氯消毒处理的海水,首先送入排热段作为冷却水。离开排热段的大部分冷却海水又排回海中,小部分作为进料海水(补给海水),经预处理后,从排热段末级闪蒸室流入第一级闪蒸室,如技术原理所说明的那样,逐级降压,海水逐级降温,连续产出淡化水。见图1-1。 多级闪蒸的造水比是指生产的淡水(蒸馏水)的重量与所消耗的加热蒸汽之比,是淡化厂经济效益的直接体现,通常小型装置的造水比较小,大型装置的造水比较高,如日产淡水几百吨或四、五千吨的装置,造水比一般为5-8左右;日产淡水万吨级的装置,造水比多在10以上,日产淡水四~五万吨的装置造水比可达到13-14。

海水淡化方案

·······65吨/天 反渗透海水淡化工程 设计方案Designing Scheme ·

目录 1、设计基础 2、工艺流程及说明 3、控制系统说明 4、设备技术规范 5、技术服务内容 6、技术保证 7、供配电和原材料供应 8、环境处理 9、投资方式与运行管理 10、建设内容与施工期 11、投资估算 12、经济效益及社会效益评价

前言 据甲方公司提供的信息,我公司对筹建“65吨/日的反渗透海水淡化工程”进行工程投资并参与建设,现就“65吨/日的反渗透海水淡化工程”进行方案设计,提供以下设计方案,以供负责项目部门参考。 1.0 设计基础 1.1 本方案涉及的流程及设备是能满足制备生活饮用水,有如下要求; 1.1.1 产水用途:生活饮用水。 1.1.2 系统出力:65m3/d(25℃)。 1.1.3 系统回收率:35%~40%。 1.2 本方案主要依据如下: 1.2.1 海水水源:用户提供。 1.2.2 设计界限:从取水点至终端水箱。 1.2.3 其它涉及的设计基础条件将在技术联络中讨论确定。 1.3 设备制造及设计参考标准: 1.3.1 JB2932-86《水处理设备制造条件》。 1.3.2 HGJ34-90《化工设备管道外防腐设计规定》。

1.4 出水水质:达到生活饮用水水质卫生规范(2001) 1.5 系统对外要求: 1.5.1供电缆:根据方案设计的容量,将动力电缆送至变压器的供配电 1.5.2 出水管:至终端水箱出水口处。 1.5.3 药品:调试过程所用药品由用户提供。 1.5.4 环境处理:按标准统一考虑。 2.0 工艺流程及说明: 反渗透部分 反渗透装置主要由阻垢剂注入系统、保安滤器、高压泵、能量回收装置、反渗透膜元件、压力管、反渗透水箱及仪器、仪表等组成。 系统采用超滤+二级反渗透装置,反渗透出水65m3/d。 (2)高压泵 反渗透装置工作动力是压力差,由高压泵将经预处理的原水升压达到反渗透的工作压力,通常为5.0~6.9Mpa使反渗透过程得以进行,即克服海水渗透压使水分子透过反渗透膜到淡水层。高压泵选用Q=3m3/h P=5.6Mpa。 (3)反渗透主机

膜法水处理行业分析报告

目录 一、膜技术及市场分析 (2) 1.1 中国膜产业和市场 (2) 1.1.1 RO膜市场 (4) 1.1.2 UF/MF膜市场 (5) 1.1.3 MBR市场状况 (6) 1.2 中国膜产业企业情况 (7) 二、膜法水处理行业分析 (9) 2.1 水处理行业概况 (9) 2.2 膜法水处理技术概述 (15) 2.3 膜法水处理产业链 (18) 2.4 主要水务公司运营情况 (21) 三、膜法水处理主要公司 (24) 3.1 碧水源 (24) 3.2 津膜科技 (25) 3.3 万邦达 (26) 3.4 南方汇通 (26)

一、膜技术及市场分析 膜技术是膜分离技术的简称,是仿生物学膜,通过人工材料(膜材料)实现不同介质分离的技术,分离的过程多由压力、浓度差、电势差等因素驱动。按照分离精度的不同,膜又可以分为微滤(MF)膜、超滤(UF)膜、纳滤(NF)膜和反渗透(RO)膜等等。 膜技术广泛用于环境、能源、电子、医药等各个方面,近二十年来,由于膜技术可以去除常规处理工艺难以去除的水污染物,在水处理领域的应用越发受到各国重视,不同种类的膜技术分别应用于不同的细分领域,主要下游包括市政污水处理及再生、自来水处理、工业水回用、海水淡化、家用净水器等。 膜技术图谱 1.1 中国膜产业和市场 1999年,全球膜及膜组件市场销售额为44亿美元,21世纪初全球膜市场开始强劲增长,2012年全球膜制品的销售额超过120亿美元,CAGR在7-8%。 最近十几年是中国膜产业的高速增长期,我国膜产业总产值从1993年2亿元人民币上升到2012年近400亿元(膜行业总产值是指膜制品、膜组件、膜附属设备及相关工程的总值,其中膜制品与膜组件是整个行业的核心),复合增长

海水淡化系统主要工艺流程及功能

海水淡化系统主要工艺流程及功能 海水淡化系统技术由于海水盐含量很高,不能直接使用,主要在两个方面:海水脱盐,蒸馏和反渗透。蒸馏法主要用于大型海水淡化和能源丰富的地方。反渗透膜是非常广泛的,和脱盐率很高,所以被广泛应用于。反渗透膜是第一个水提取,预处理,降低海水的浊度,防止细菌,藻类和其他微生物的生长,然后用专用的高压增压泵,水进入反渗透膜,因为含盐量高,所以海水反渗透膜必须具有高脱盐率,耐腐蚀,耐高压,抗污染,通过反渗透膜处理后的海水,其盐的含量大大降低,TDS含量从36000毫克/ 1到200毫克/升。淡化水比自来水更好的水后,可用于工业,商业,住宅和船舶,船舶使用。 海水淡化处理 海水淡化即利用海水脱盐工艺生产淡水。通过海水淡化处理可以保障沿海居民饮用水和工业锅炉补水等稳定供水。反渗透法是目前海水淡化主要处理技术之一,反渗透法是利用只允许溶剂透过、不允许溶质透过的半透膜将海水与淡水分隔开,在通常情况下,淡水通过半透膜扩散到海水一侧,因受半透膜的阻力,海水一侧的液面逐渐升高,直至升到一定的高度才停止,这个过程为渗透。此时,海水一侧高出的水柱静压称为渗透压。如果对海水一侧施加一个大于海水渗透压的外压,那么海水中的纯水将渗透到淡水中。反渗透法的最大优点是节约场地和能耗。 现将该厂海水淡化系统的主要工艺流程介绍如下:

从系统的功能上讲,预处理系统的主要功能是将海水中的悬浮物、胶体通过直流凝聚和深层过滤进行去除。 一级和二级反渗透的主要功能是将海水中的盐分,通过反渗透设备中的反渗透膜的物理筛分和超过滤的作用,将大部分的阴阳离子、大分子的有机物、部分微生物进行去除的过程。 在一级反渗透除盐系统中,由于海水的含盐量很高,对应的渗透压也很高,所以选择了海水高压泵设备作为一级反渗透膜的进水动力。由于一级反渗透的浓水排放压力较高。所以设置了能量回收装置将浓水排放压能进行回收。

及世界海水淡化发展和现状概述

中国及世界海水淡化的发展和现状概述 种种现实已经深刻地表明:水是可以耗尽的,水资源是取之不尽、用之不竭的观点应当改变。保护水资源,并加强水资源的开发,是增创新优势、并实施可持续发展决策的一项具有重大战略意义的举措,而海水淡化是缓解当今水危机,并沿海地区和岛屿水资源开发的必然趋势和最终归宿。 一、淡水资源严重短缺 随着现代化建设的高速发展,人口的急剧膨胀,以及人们物质文化生活水平的极大提高,水的用量与日俱增,但是供水量却有减无增,而且水体污染日趋严重。因此,全球范围及至全国性的供水矛盾日益突出。人类正面临着来自水资源和水质性两大危机越来越严峻的挑战。所以,合理地开发利用和有效地保护水资源已成为全世界共同关注的热点,防止水危机的呼声浪高一浪,正席卷全球。 1.缺水与日俱增 <1)世界范围 从1990年到1995年,水的消耗量增长了6倍,比人口增长速度还快2倍,约有80个国家和地区严重缺水,占地球陆地面积的60%,有15亿人口缺少饮用水,20亿人得不到安全的用水。其中29个国家的4.5亿多人口完全生活在缺水状态中。 因为饮用不符合卫生要求的水源而导致的疾病有50多种,平均每天发生与水相关的疾病65万例,夺去2.5万人的生命。 到2000年,全世界人均占水量减少24%。估计到2025年,全世界将有近1/3的人口<23亿)缺水。按每年取水量4—5%递增为计,到2100年地球上所有河水将被耗尽,到2230年,人类将耗尽地质圈内所有储备的淡水资源。 <2)全国范围 河川地面迳流量平均每年为2.81万亿立方M,居世界第六位。但按人口平均,每人每年仅2400立方M,仅为世界人口平均占有量的四分之一。中国人口占世界22%,而淡水占有量仅为8%,世界排序名列第109位,是世界12个严重贫水国之一。 径流的地区和时空分布很不均衡,包括北京、上海、广州、沈阳、长春、大连等我国40多个城市也被列入世界性严重缺水的黑名单上。据资料表明,因为水资源短缺、生态退化、水污染加剧等原因。 全国近600多座城市中,有400多座城市缺水,严重缺水的城市就有110多个。 我国城市2000年缺水达600多亿立方M,每年因缺水而损失,仅工业产值就达2400亿元。据预测,我国30年后将出现用水高峰,2030年人口总量将达16亿,城市化水平将达到40%,届时用水总量将达7000—8000亿立方M。 广东目前年缺水约42.45亿立方M,近年取水量将达50亿万吨。 2.污染日趋严重 <1)世界范围 全世界每年排放的污水现达4000多亿吨,从而造成5万多亿吨水体被污染,致使地球每年有700多万人因不洁净饮水引起疾病而死亡。估计到2005年前,因水的原因而成为“环境难民”者将多达1亿人。 到2005年全世界污水总排放量将达6900亿立方M,仅仅为了稀释这些污染物,就要耗尽全球河流水量。 <2)中国范围 我国沿海地区企业每年排入近岸海域工业废水39.8亿吨,年工业废水和生活污水排放量已达到620亿吨之多,相当于每人平均排放量近49吨。 致使全国138个城市河段中的133个河段已受到不同程度的污染,78%的河段不适宜作饮

海水淡化工艺方案

1 前言 1.1 概况 我国淡水资源极为匮乏,全国660多个城市中,有400多个城市缺水,其中100多个城市严重缺水。淡水资源短缺乃至水危机是我国经济社会可持续发展过程中的最大制约之一。电厂在生产电能的同时,可利用其廉价的热和电,进行海水淡化,不仅可满足其工业用水的需要,而且还可为周边地区提供淡水水源。在推动和利用海水淡化技术方面,电厂有着其得天独厚的有利条件。因此滨海电厂配套建设海水淡化装置已成发展趋势。 1.2 水源及水质特点 某电厂取水具有海域辽阔、水量充沛、海水较清、悬浮物及有害微生物少等特点,可大大节省海水取水成本及原料海水预处理成本。 海水水质分析报告如下:

1.3 海水淡化规模 根据建厂地区的缺水状况,电厂可针对性地提出水电联产的方案,目前可解决电厂的淡水用水,以后可根据需要适时配套建设大规模的海水淡化厂,为地方经济发展提供淡水资源保障。本项目结合2×1000MW发电机组的建设规模,暂按配套建设2×104m3/d规模的海水淡化装置设计;并对总规模为40×104m3/d海水淡化厂作出展望。 本专题报告按本期工程厂内自用的2×104m3/d规模和规划容量的40×104m3/d的海水淡化站分别进行比较论述。 2 海水淡化技术概述 海水淡化技术的种类很多,但适于产业化的主要有蒸馏法(俗称热法)和反渗透法(俗称膜法)。蒸馏法主要有多级闪蒸(MSF)、低温多效蒸馏(LT-MED)技术。 2.1 蒸馏法淡化技术 2.1.1 多级闪蒸(MSF) MSF是蒸馏法海水淡化最常用的一种方法,在20世纪80年代以前,较大型的海水淡化装置多数采用MSF技术。大港电厂二期工程引进了美国的多级闪蒸(MSF)海水淡化装置,是我国第一套大型的海水淡化装置。 MSF的典型流程示意图见图2-1。 图2-1 盐水再循环式多级闪蒸(MSF)原理流程

膜法水处理技术在农村饮用水工程中的研究与应用

膜法水处理技术在农村饮用水工程中的研究与应用

膜法水处理技术在农村饮用水工程中的研究与应用 董浩1董福平2杨新新1 (1.浙江省农田水利总站,浙江杭州310009;2.浙江省水利学会,浙江杭州310020)摘要:浙江内陆地区农村饮用水工程存在服务对象分散、源水水质差、地形复杂等特点,而东南沿海及海岛地区具有资源型缺水,但滩涂水库亚海水资源丰富的现状,与城市供水之间有着明显的差异。本文着重论述了超滤技术在农村饮用水工程中的应用研究以及利用反渗透技术进行亚海水淡化的研究成果。 关键词:膜;超滤(UF);反渗透(RO);饮用水;农村 1. 概述 浙江内陆地区农村饮用水工程存在服务对象分散、源水水质差、地形复杂等特点,而东南沿海及海岛地区具有资源型缺水,但滩涂水库亚海水资源丰富的现状,与城市供水之间有着明显的差异。为推广应用先进适用技术,多途径解决农村饮用水水源问题,我们开展了膜法水处理技术在农村饮用水工程中的研究与应用,取得了较好的效果。 目前,国内外的饮用水处理技术主要有常规处理技术、强化常规处理技术、深度处理技术、膜处理技术等。传统的饮用水处理工艺一般为:混凝—沉淀—过滤—消毒,以去除水中的悬浮物、胶体颗粒物为主,相对受污染水源中溶解性有机物的去除能力则明显不足。同时,随着对消毒副产物、微生物指标和内分泌干扰物质研究的深入,人类对水质标准不断提升,部分常规水处理技术已经无法适应需求。 膜技术是20世纪水处理领域的关键技术,常用的膜技术包括微滤(Microfiltration,MF)、超滤(Ultrafiltration,UF)、纳滤(Nanofiltration,NF)、电渗析(Electro Dialysis,ED)和反渗透(Reverse Osmosis,RO)。该技术依据原水水质,选用不同的膜来截留水中物质,所以它是一种严格的物理的和绝对的分离技术。 表1.1显示了水中各种杂质的大小和去除它们所使用的分离方法。微滤是传统过滤法的直接延伸,属于亚微米级范围,用以过滤胶体和细菌(<10-2~10-7m);超滤比微滤晋升一级,可去除病毒和大分子量有机物质(10-7~10-8m);纳滤可去除小分子量

海水淡化工艺浅析

海水淡化工艺浅析 摘要:水资源是关系国家经济发展和社会进步的重大战略问题,海水淡化工程 是解决水资源短缺问题的重要举措,已成为解决沿海地区淡水资源短缺的重要方法。本文讲述海水淡化工艺流程和原理,以及工艺流程中出现的具体问题及解决 措施。 关键词:反渗透;海水淡化;工艺 引言 随着经济社会的高速发展和人口的急剧增加,淡水资源短缺已经成为人们面 临的巨大挑战;开发利用海水资源,进行海水淡化。成为开源节流、解决淡水短 缺的一个重要途径。目前膜法海水淡化日益成为海水淡化的主流技术,主要有已 获得大规模应用的反渗透、正在发展的正渗透和膜蒸馏等技术。 本文在简要介绍海水淡化的工艺流程的基础上,着重介绍工作原理,以及工 艺流程中出现的具体问题及解决措施。海水淡化分为三个子过程:预处理流程、 膜处理流程、污泥浓缩处理流程。 预处理流程 预处理流程主要功能是除去海水中的悬浮物、藻类及微生物等物质,使出水 水质达到后续膜处理的要求,为海水淡化膜处理子系统供水;根据海水取水水质,海水平均悬浮物含量为781~1902㎎/L,无法满足海水淡化的超滤要求,必须对海水淡化原水进行预处理,使悬浮物将至2㎎/L以下。 工艺流程为:海水原水经过原水升压泵升压后,通过玻璃钢管输送至海水原 水预处理站内混凝沉淀池,进行沉淀处理以除去海水淡化原水中较大的固体悬浮 杂质。考虑到海水含沙量较大,混凝反应沉淀池排泥需用一定水量,即海水原水 经混凝反应沉淀池后产生混凝反应澄清水,污泥水通过混凝反应沉淀池底部的排 泥管排入附近排水沟,自流至污泥沉淀池。经混凝反应沉淀池处理后的海水自流 至V型滤池中进一步过滤处理以保证进入海水淡化车间的海水水质。V型滤池自 用一部分清水冲洗,其余部分供给清水池。 混凝沉淀池 混凝沉淀池是将混合、絮凝、沉淀集成一体,能有效的去除水中的颗粒、细菌、有机物、悬浮物、浊度和部分胶体,使出水浊度小于5NTU。 混凝沉淀原理:水中杂质按照其杂质形态,可分为悬浮物、胶体物质和溶解物。悬浮物质:包括草本、垃圾等大块物质和颗粒粒径大于100μm以上的泥沙。在水中粒径大于100μm以上的悬浮杂质可以依靠重力进行除去。溶解物质:由于水的溶解能力很强,某些矿物质溶解于其中,并且在水中离解成离子状态,其粒 径小于1μm以下; 胶体物质:多为黏土微粒、高分子物质、微生物、细菌等(粒径一般在1μm-100μm之间,光线照射上去被散射而呈现浑浊现象。)高分子物质一般来源于动 植物的蛋白类化合物,或已分解的蛋白类,如腐殖酸、腐殖质等。黏土胶体是造 成水浑浊的主要原因,而腐殖质是水体带色的主要原因。对于胶体杂质由于布朗 运动、水化作用和胶体颗粒带电,使胶体颗粒颗粒分散状态保持不变。根据双电 层理论中胶体的胶核和吸附层组成胶粒带负电,胶粒和扩散层组成的胶团呈电中性,水中的微小颗粒一般均带负电荷;它们之间既相互排斥又在水中不断做布朗 运动,故极为稳定而不易下沉。为改变这种情况,在水中投加混凝剂,混凝剂溶 解后,提供大量正离子。正离子扩散,大量正离子涌入带负电的胶体扩散层乃至

刍议环境保护中全膜法水处理工艺技术探讨

刍议环境保护中全膜法水处理工艺技术探讨 发表时间:2019-01-17T11:44:52.890Z 来源:《防护工程》2018年第30期作者:董丽娜王晓岩刘娜 [导读] 进一步提高相关工作人员对全膜法水处理工艺技术应用的认识。 陕西省环境监测中心站陕西省西安市 710054 摘要:全膜法水处理工艺技术是一种新型水环境处理保护的应用措施,它没有繁琐的操作步骤,却能保证水质的纯净和稳定,在各项工业水系统应用中都有较高的使用效率,下面本文对传统水处理工艺和全膜法水处理工艺分别进行分析,对比全膜法水处理技术的优点,同时对全膜法水处理技术在水环境处理中的应用进行探讨,进一步提高相关工作人员对全膜法水处理工艺技术应用的认识。 关键词:全膜法水处理;工艺技术;环境保护 引言 可大幅降低耗水量的有效手段有:回收利用工业污水、市政污水,废水零排放,循环水处理等方式。“全膜法”水处理工艺不仅水处理效率高,而且效果显著,同时,具有经济性的新技术,可有效地解决不断严重的脱盐工艺中酸碱的使用及排污问题。 1 分析全膜法水处理工艺技术 通过超滤或微滤预处理原水,然后进行反渗透处理,最后通过电渗析除盐(简称EDI)形成高纯水,即“全膜法”(IMS)水处理技术的流程。 1.1 膜法预处理 采取膜法预处理,可将水中的微粒、胶体、细菌及高分子有机物等有效地去除,其过滤精度一般是0.005μm—0.01μm之间,大幅提高了下游脱盐系统的进水水质。超滤过程具有较好的耐氧化性、耐温性、以及耐酸碱性,且无相转化。超滤膜的材料和工艺设计,根据不同的水质条件和分离功能,选择了相应的孔径以及截留分子量。 1.2 反渗透 反渗透又叫RO,主要由两部分组成,一是高压泵,二是反渗透膜。在高压的情况下,水中的微生物、有机物、矿物质、以及其它物质等都会被阻截在膜外,且会受到高压水流的冲击,而渗透到另一面的水则是纯净的、安全的,卫生的。利用反渗透的分离特性能够将水中的细菌、有机物、溶解盐、及胶体等杂质有效的去除,实现低能耗、零污染,从而使反渗透出水水质达到EDI设备的进水要求。 1.3 EDI技术 EDI技术是一种高新技术,它有机相结合了电渗析技术与离子交换技术,因此,又被称为“填充床电渗析”或“电混床”。它的应用不需要酸碱参与,摒弃酸碱对树脂的再生作用,而持续提取高纯水的一种先进技术。由于二级除盐加上反渗透的系统或者是混床加反渗透系统的废液排放较繁琐以及再生操作的问题,EDI成功克服了其缺点,彻底解决了其酸碱排放的问题。 EDI技术的应用机制是在模堆里添加能够改善膜发生极化的树脂,利用电极促使模堆发生电位差,借助通过离子交换膜吸附作用,吸附并去除源水中的离子。操作中,将直流电连接模堆两侧电极,通电后模堆发生电位差,促使水中的阳离子物质移向发生阴极作用的阳离子交换膜,促使水中的阴离子物质移向产生阳极作用的阴离子交换膜,不同极吸附的阴阳物质聚集,同时利用树脂防止极化作用,升高电阻率将其再次分解进行电离再生作用,形成H+与OH-,从而反复进行水质盐离子聚集和电解,最终电渗析生产高纯水。EDI技术在运行过程中,水电导率可达到0.057us/cm—0.062us/cm,这基本上相同于纯水电导率的理想探讨值0.055us/cm,另外,EDI技术不需要酸碱的使用,通过树脂电离再生,不断脱盐,进而生成高纯水,充分体现了全膜法的显著优势。 2 在环境保护中,全膜法水处理工艺技术的应用 全膜法水处理工艺已越来越多的推广施予在工业水污染处理中,现在,电子产品生产企业、半导体生产厂商等许多企业,在水处理中都已使用了全膜法技术,根据相关研究证明,在小于25℃以下的水中,电阻率都比较稳定在18MΩ以上。另外,在全膜法水处理技术的流程中,通过仔细观察超滤系统,NAHSO灭菌剂的使用,可有效杀灭细菌,避免超滤使用中发生断丝或膜被污染的现象,另外,为了提高膜的使用效率,避免膜被氧化,需加装ORP表以此优化设置。 在进行反渗透过程中,为了高效阻滞各分子杂质,需选择特殊材质的反渗透膜,其不仅要具备较高的细腻度较、较强融水性,还需有效阻截水质中杂质,以防止膜被污染,另外,还需有利于水分子的透过,并可高效处理矿物质及微生物等杂质,为避免单纯高压泵的直接冲击力,可通过高压泵变频进行加压。在全膜水处理工艺中,其最关键的一个流程即是反渗透,它对EDI膜起着有效的保护作用,所以,在该过程中,为了阻滞镁及钙等不溶于水的物质形成污垢,需添加适当的阻垢剂,以促进反渗透作用。另外,企业为了提高水质的纯度,实现环境保护,在全膜法反渗透中还利用了双极反渗透。双极反渗透使用的是抗污染性能强、脱盐效果好的低压复合膜,其利用率超过了97%,而且该膜具有较长的生命周期,一般使用寿命在五年以上。 在EDI技术的应用中,利用电极作用,结合离子交换技术,对树脂进行再生作用,反复对水质进行电解脱盐,因此,使水的纯度大幅提高,在加上抛光床技术的使用,有效的排除了水质中含有的浓度较低的离子,充分发挥了EDI技术的作用,从而大幅提高了水的质量以及纯净度,确保了水质的安全性。抛光床的使用是不可再生的,每年可定期更换一次,它的作用就是加强微粒的释放,从而弥补树脂再生达不到的要求,更进一步提纯水质。而在锅炉补给水的工艺中,传统的过滤净化是先进行混凝澄清,再通过砂滤过滤较大悬浮物,之后利用交换技术去除水中的盐,该过程不仅操作复杂,而且会产生大量的酸碱污水。 近年的化学水处理通过有效结合应用超滤技术、反渗透技术与EDI技术,能够大幅提高水处理水质。同时为了进一步提高水质处理的精度,降低水环境污染,仍需不断研究和优化全膜法水处理工艺技术,以及其操作流程,以不断提高其水处理技术水平。 3 结语 全膜法水处理工艺技术是集超滤、反渗透技术及EDI技术为一体的综合运用,该技术操作简单、方便,其通过过滤、脱盐及持续净化等过程,净化了水质,提高了水的质量、纯度、以及安全性,另外,在水处理过程中不会排出酸碱废液,可实现所有有害物质的回收利用,有效的保护了环境,因此,该技术被广泛地应用于水处理中。

各海域海水淡化方案及水质参数

为应对全球淡水资源短缺的问题,许多沿海国家及地区积极开展海水淡化和综合利用的技术研发工作。以色列70%的饮用水来自海水淡化水;澳大利亚的海水利用主要用于市政,占总装机规模的96%;美国的海水利用主要用于市政,占89.5%;沙特阿拉伯是目前全球最大的海水淡化生产国,2010年其产量达到11亿m3。 中国淡水资源缺乏,人均淡水资源量仅为世界人均占有量的1/4,沿海地区人口稠密,淡水供需矛盾尤为突出。海水淡化技术可以增加水资源总量,有效缓解我国沿海地区淡水短缺的矛盾。在海水资源方面,我国拥有渤海、黄海、东海、南海四大海域,海岸线超过1.8万km,水资源相当丰富。但海水淡化发展速度相对其他国家缓慢,直至“十一五”期间海水淡化产业才开始较为迅速地增长。据统计,至2011年底我国海水淡化能力为66万m3/d。目前,影响海水淡化的因素有政策、技术和价格等。其中海水水质是影响淡化技术正常应用及成本的重要因素。有研究发现,海水中的有机物污染、SDI(淤泥密度指数)、温度、浊度和盐度是影响反渗透膜运行的重要指标,进而影响淡化水品质。因此对中国海域的海水理化性质、海水利用现状、研究进展进行探讨,对于优化沿海水资源结构、保障国家用水安全和促进沿海经济社会可持续发展具有战略意义。基于此,笔者首次将海水水质和海水利用状况相结合,介绍中国渤海、黄海、东海、南海4个海域海

水淡化的相关水质情况,归纳各地区海水利用的工艺技术条件和发展现状,分析形成原因和经验教训,旨对海水利用发展落后的沿岸地带提供帮助,对海水淡化利用较好地区的发展和转型方向提供参考,并为中国海水利用的发展提供新的思考途径。 1 渤海海域 1.1 渤海的水质特征 渤海是一个近封闭的内海,水温受北方大陆性气候影响显著,2月份平均水温在0 ℃左右,8月份达21 ℃。受大陆淡水注入的影响,盐度仅为30‰,是中国近海中最低的。1978—2010年历年8月的观测资料结果表明渤海夏季海水pH年际变化范围为7.86~8.30,渤海水温年际变化、降水量(酸雨)和月均黄河口径流量年际变化是影响海水pH变化的主要因素。 吴琳琳等研究发现2012年4—7月渤海湾海水温度为12.7~30.8 ℃、pH为7.30~8.55、海水CODMn为0.98~3.36 mg/L、溶解性总固体(TDS)为30.7~32.1 g/L、浊度为2.96~136 NTU、Cl-为16.9~17.8 g/L、电导率为44 800~49 800 μS/cm。整体而言渤海水质的浊度变化范围较宽,主要受渤海湾海水泥沙含量的影响,特别在有潮汐和风浪时会大幅升高。此外还发现海水温度升

海水淡化工艺方案

海水淡化工艺方案

1 前言 1.1 概况 中国淡水资源极为匮乏,全国660多个城市中,有400多个城市缺水,其中100多个城市严重缺水。淡水资源短缺乃至水危机是中国经济社会可持续发展过程中的最大制约之一。电厂在生产电能的同时,可利用其廉价的热和电,进行海水淡化,不但可满足其工业用水的需要,而且还可为周边地区提供淡水水源。在推动和利用海水淡化技术方面,电厂有着其得天独厚的有利条件。因此滨海电厂配套建设海水淡化装置已成发展趋势。 1.2 水源及水质特点 某电厂取水具有海域辽阔、水量充沛、海水较清、悬浮物及有害微生物少等特点,可大大节省海水取水成本及原料海水预处理成本。 海水水质分析报告如下:

1.3 海水淡化规模 根据建厂地区的缺水状况,电厂可针对性地提出水电联产的方案,当前可解决电厂的淡水用水,以后可根据需要适时配套建设大规模的海水淡化厂,为地方经济发展提供淡水资源保障。本项目结合2×1000MW发电机组的建设规模,暂按配套建设2×104m3/d规模的海水淡化装置设计;并对总规模为40×104m3/d海水淡化厂作出展望。 本专题报告按本期工程厂内自用的2×104m3/d规模和规划容量的40×104m3/d的海水淡化站分别进行比较论述。

2 海水淡化技术概述 海水淡化技术的种类很多,但适于产业化的主要有蒸馏法(俗称热法)和反渗透法(俗称膜法)。蒸馏法主要有多级闪蒸(MSF)、低温多效蒸馏(LT-MED)技术。 2.1 蒸馏法淡化技术 2.1.1 多级闪蒸(MSF) MSF是蒸馏法海水淡化最常见的一种方法,在20世纪80年代以前,较大型的海水淡化装置多数采用MSF技术。大港电厂二期工程引进了美国的多级闪蒸(MSF)海水淡化装置,是中国第一套大型的海水淡化装置。 MSF的典型流程示意图见图2-1。 图2-1 盐水再循环式多级闪蒸(MSF)原理流程多级闪蒸过程原理如下;将原料海水加热到一定温度后引入闪蒸室,由于该闪蒸室中的压力控制在低于热盐水温度所对应的饱和蒸汽压的条件下,故热盐水进入闪蒸室后即成为过热水而急速地部分气化,从而使热盐水自身的温度降低,所产生的蒸汽冷

海水淡化工艺设计方案

1刖占1.1概况 我国淡水资源极为匮乏,全国660多个城市中,有400多个城市缺水,其中100多个城市严重缺水。淡水资源短缺乃至水危机是我国经济社会可持续发展过程中的最大制约之一。电厂在生产电能的同时,可利用其廉价的热和电,进行海水淡化,不仅可满足其工业用水的需要,而且还可为周边地区提供淡水水源。在推动和利用海水淡化技术方面,电厂有着其得天独厚的有利条件。因此滨海电厂配套建设海水淡化装置已成发展趋势。 1.2水源及水质特点 某电厂取水具有海域辽阔、水量充沛、海水较清、悬浮物及有害微生物少等特点,可大大节省海水取水成本及原料海水预处理成本。 海水水质分析报告如下: 分析报告

1.3海水淡化规模

根据建厂地区的缺水状况,电厂可针对性地提出水电联产的方案,目前可解决电厂的淡水用水,以后可根据需要适时配套建设大规模的海水淡化厂,为地方经济发展提供淡水资源保障。本项目结合 2x1000MW发电机组的建设规模,暂按配套建设2x104m3/d规模的海水淡化装置设计;并对总规模为40x1。伽%海水淡化厂作出展望。 本专题报告按本期工程厂内自用的 2 x104m3/d规模和规划容量的40x 104m3/d的海水淡化站分别进行比较论述。 2海水淡化技术概述 海水淡化技术的种类很多,但适于产业化的主要有蒸镭法(俗称热法)和反渗透法(俗 称膜法)。蒸镭法主要有多级闪蒸(MSF)、低温多效蒸镭(LT-MED)技术。 2.1蒸镭法淡化技术 2.1.1多级闪蒸(MSF) MSF是蒸馆法海水淡化最常用的一种方法,在20世纪80年代以前,较大型的海水淡化装置多数采用MSF技术。大港电厂二期工程引进了美国的多级闪蒸(MSF)海水淡化装置,是我国第一套大型的海水淡化装置。 MSF的典型流程示意图见图2-1 。 图2-1盐水再循环式多级闪蒸(MSF)原理流程 多级闪蒸过程原理如下;将原料海水加热到一定温度后引入闪蒸室,由于该闪蒸室中的压力控制在低于热盐水温度所对应的饱和蒸汽压的条件下,故热盐水进入闪蒸室后即成为过热水而急速地部分气化,从而使热盐水自身的温度降低,所产生的蒸汽冷凝后即为所需的淡水。 MSF装置具有设备单机容量大、使用寿命长、出水品质好、造水比高、热

各海域海水淡化方案及水质参数

各海域海水淡化方案及水质参 数(总15页) -CAL-FENGHAI.-(YICAI)-Company One1 -CAL-本页仅作为文档封面,使用请直接删除

为应对全球淡水资源短缺的问题,许多沿海国家及地区积极开展海水淡化和综合利用的技术研发工作。以色列70%的饮用水来自海水淡化水;澳大利亚的海水利用主要用于市政,占总装机规模的96%;美国的海水利用主要用于市政,占89.5%;沙特阿拉伯是目前全球最大的海水淡化生产国,2010年其产量达到11亿m3。 中国淡水资源缺乏,人均淡水资源量仅为世界人均占有量的 1/4,沿海地区人口稠密,淡水供需矛盾尤为突出。海水淡化技术可以增加水资源总量,有效缓解我国沿海地区淡水短缺的矛盾。在海水资源方面,我国拥有渤海、黄海、东海、南海四大海域,海岸线超过1.8万km,水资源相当丰富。但海水淡化发展速度相对其他国家缓慢,直至“十一五”期间海水淡化产业才开始较为迅速地增长。据统计,至2011年底我国海水淡化能力为66万m3/d。目前,影响海水淡化的因素有政策、技术和价格等。其中海水水质是影响淡化技术正常应用及成本的重要因素。有研究发现,海水中的有机物污染、SDI(淤泥密度指数)、温度、浊度和盐度是影响反渗透膜运行的重要指标,进而影响淡化水品质。因此对中国海域的海水理化性质、海水利用现状、研究进展进行探讨,对于优化沿海水资源结构、保障国家用水安全和促进沿海经济社会可持续发展具有战略意义。基于此,笔者首次将海水水质和海水利用状况相结合,介绍中

国渤海、黄海、东海、南海4个海域海水淡化的相关水质情况,归纳各地区海水利用的工艺技术条件和发展现状,分析形成原因和经验教训,旨对海水利用发展落后的沿岸地带提供帮助,对海水淡化利用较好地区的发展和转型方向提供参考,并为中国海水利用的发展提供新的思考途径。 1 渤海海域 1.1 渤海的水质特征 渤海是一个近封闭的内海,水温受北方大陆性气候影响显著,2月份平均水温在0 ℃左右,8月份达21 ℃。受大陆淡水注入的影响,盐度仅为30‰,是中国近海中最低的。1978—2010年历年8月的观测资料结果表明渤海夏季海水pH年际变化范围为7.86~8.30,渤海水温年际变化、降水量(酸雨)和月均黄河口径流量年际变化是影响海水pH变化的主要因素。 吴琳琳等研究发现2012年4—7月渤海湾海水温度为 12.7~30.8 ℃、pH为 7.30~8.55、海水CODMn为0.98~3.36 mg/L、溶解性总固体(TDS)为 30.7~32.1 g/L、浊度为 2.96~136 NTU、Cl-为16.9~17.8 g/L、电导率为44 800~49 800 μS/cm。整体而言渤海水质的浊度变化范围较宽,主要受

海水淡化工艺方案

1前言 1.1 概况 我国淡水资源极为匮乏,全国660多个城市中,有400多个城市缺水,其中100多个城市严重缺水。淡水资源短缺乃至水危机是我国经济社会可持续发展过程中的最大制约之一。电厂在生产电能的同时,可利用其廉价的热和电,进行海水淡化,不仅可满足其工业用水的需要,而且还可为周边地区提供淡水水源。在推动和利用海水淡化技术方面,电厂有着

规模的 2 (俗 多级闪蒸过程原理如下;将原料海水加热到一定温度后引入闪蒸室,由于该闪蒸室中的压力控制在低于热盐水温度所对应的饱和蒸汽压的条件下,故热盐水进入闪蒸室后即成为过热水而急速地部分气化,从而使热盐水自身的温度降低,所产生的蒸汽冷凝后即为所需的淡水。 MSF装置具有设备单机容量大、使用寿命长、出水品质好、造水比高、热效率高、寿命长等优点。但该装置海水的最高操作温度在110℃~120℃左右,对传热管和设备本体的腐蚀

性较大,必须采用价格昂贵的铜镍合金、特制不锈钢及钛材,因此设备造价高;设备的操作弹性小,多级闪蒸的操作弹性是其设计值的80%~110%,不适应于产水量要求可变的场合。 2.1.2 低温多效蒸馏(LT-MED) 低温多效蒸馏海水淡化技术是指盐水最高温度不超过70℃的淡化技术,是20世纪80年代成熟的高效淡化技术。其特点是将一系列的喷淋降膜蒸发器串联布置。加热蒸汽被引入第一效,其冷凝热使几乎等量的海水蒸发,通过多次蒸发和冷凝,后面的蒸发温度均低于前面一效,从而得到多倍于蒸汽量的蒸馏水,最后一效的蒸汽在海水冷凝器中冷凝。第一效冷凝液返回锅炉,而其他效及海水冷凝器的冷凝液收集后作为产品水。为提高热效率, 当提供 海水反渗透(SWRO)淡化技术在20世纪70年代后获得了很大发展。由于RO膜材料的不断改进,以及能量回收效率的不断提高,SWRO技术越来越引起人们的关注,现也已成为蒸馏海水淡化系统的主要竞争对手。 反渗透是用一种特殊的膜,在外加压力的作用下使溶液中的某些组分选择性透过,从而达到淡化、净化或浓缩分离的目的。典型的海水反渗透处理工艺流程见图2-3。

海水淡化技术及发展状况简析

一、海水淡化简介 1、海水淡化的定义 海水淡化即利用海水脱盐生产淡水。是实现水资源利用的开源增量技术,可以增加淡水总量,且不受时空和气候影响,水质好、价格渐趋合理,可以保障沿海居民饮用水和工业锅炉补水等稳定供水。从海水中取得淡水的过程谓海水淡化。 2、海水淡化的主要用途 海水淡化主要是为了提供饮用水和农业用水,有时食用盐也会作为副产品被生产出来。海水淡化在中东地区很流行,在某些岛屿和船只上也被使用。 3、海水淡化综合简介 海水淡化是人类追求了几百年的梦想。早在400多年前,英国王室就曾悬赏征求经济合算的海水淡化方法。 从20世纪50年代以后,海水淡化技术随着水资源危机的加剧得到了加速发展,在已经开发的二十多种淡化技术中,蒸馏法、电渗析法、反渗透法都达到了工业规模化生产的水平,并在世界各地广泛应用。 现在世界上有十多个国家的一百多个科研机构在进行着海水淡化的研究,有数百种不同结构和不同容量的海水淡化设施在工作。一座现代化的大型海水淡化厂,每天可以生产几千、几万甚至近百万吨淡水。 淡化水的成本在不断地降低,有些国家已经降低到和自来水的价格差不多。某些地区的淡化水量达到了国家和城市的供水规模,目前淡化水已经完全可用于农田灌溉。 4、海水淡化历史 地球表面2/3的面积被水覆盖,但水储量的97%为海水和苦咸水,这些水是很丰富的。但是,要利用海水必须经过淡化。目前,全世界有一百二十多个国家和地区采用海水或苦咸

水淡化技术取得淡水。 第一个海水淡化工厂于1954 年建于美国,现在仍在德克萨斯州的弗里波特(Freeport)运转着。佛罗里达州的基韦斯特(Key West)市的海水淡化工厂是世界上最大的一个,它供应着城市用水。 表面看海水淡化很简单,只要将咸水中的盐与淡水分开即可。最简单的方法,一个是蒸馏法,将水蒸发而盐留下,再将水蒸气冷凝为液态淡水。这个过程与海水逐渐变咸的过程是类似的,只不过人类要攫取的是淡水。另一个海水淡化的方法是冷冻法,冷冻海水,使之结冰,在液态淡水变成固态的冰的同时,盐被分离了出去。两种方法都有难以克服的弊病。 1953年,一种新的海水淡化方式问世了,这就是反渗透法。这种方法利用半透膜来达到将淡水与盐分离的目的。在通常情况下,半透膜允许溶液中的溶剂通过,而不允许溶质透过。 由于海水含盐高,如果用半透膜将海水与淡水隔开,淡水会通过半透膜扩散到海水的一侧,从而使海水一侧的液面升高,直到一定的高度产生压力,使淡水不再扩散过来。这个过程是渗透。 在新兴的反渗透法研究方兴未艾的时候,古老的蒸馏法也改弦易辙,重新焕发了青春。常识告诉我们,水在常温常压下要加热到100℃才沸腾,产生大量的水蒸气。传统的蒸馏法只考虑了通过升高温度获得水蒸气的方式,耗能甚巨。而新的方法是将气压降下来,把经过适当加温的海水,送入人造的真空蒸馏室中,海水中的淡水会在瞬间急速蒸发,全部变成水蒸气。许多这样的真空蒸馏室连接起来,就组成了大型的海水淡化工厂。如果海水淡化工厂与热电厂建在一起,利用热电厂的余热给海水加温,成本就更低了。 现在世界上的大型海水淡化工厂,大多采用新的蒸馏法。在西亚盛产石油的国度,往往土地“富得流油”,却打不出一口淡水井。水比油贵的现实,使海水淡化工厂如雨后春笋般出现在西亚的海岸线上。1983年,西亚第一大国沙特阿拉伯在吉达港修建了日产淡水30万吨

海水淡化行业分析

海水淡化行业分析 1 总论 目前,海水淡化项目中涉及海水取水方式、海水运输管道、海水预处理方式、海水淡化方法、海水退水方式的工艺选择、设计方案和设备选型等技术。不包括蒸汽系统、产品水陪水系统、海水浓盐水的处置系统(涉及到盐化工)、海水预处理的固体废弃物处理系统等相关的技术。 2 全流程技术的对比 2.1 海水取水方式 海水取水方式应根据地理环境、地质条件、后续工艺的不同进行选择。海水取水方式主要由海岸边管井取水、海滩渗井取水、铺设海底管道取水河海表面直接取水4种。 1)海岸边管井取水。取得原水位经过底层过滤的海水,水质悬浮物、浊度、污染指数(SDI)及有机物含量低,溶氧少,且季节变换对水温度影响小,受潮汐灾害影响小,但这种取水方式工程量较大,且溶解性总固体(TDS)容易高于海表面水,水源供给不稳定。天津泰达海水淡化厂选用该取水工艺。 2)海滩渗井取水。通过这种方式取得的原水由于经过天然海滩的过滤,海水中的颗粒物被海滩截留,浊度低、水质好。与海岸管井取水类似,且工程量小于海岸边管井取水,适用于小规模取水。 3)铺设海底管道取水。通过海底管道将海水引至深水区。这种取水方式工程量较大,水质较稳定,季节变换对水温影响小。浙江华能玉环电厂采用该取水方式。 4)海表面直接取水。这种取水方式工程量小,适用于大规模取水。 海岸边管井取水和海滩渗井取水为辐射式取水,铺设海底管道取水和海表面直接取水为直接取水。RO法海水淡化宜于采用辐射式取水,以减轻预处理负担。直接式取水适用于大规模取水,直接取水点的最佳位

置为海水中下部。 2.2 输送海水管道管材 应根据地理位置、输送介质和外部荷载等因素确定输送海水管道埋深、管径及管材。如地区土壤含盐量高,对混凝土有中等结晶分解复合类腐蚀,对钢材腐蚀则更为严重。输送海水管道中高速流动的海水中携带的泥沙也会加重对钢材的腐蚀。 输送海水管道可大量采用玻璃钢管及预应力钢筋混凝土管内放入钢管,其中,玻璃钢管造价与钢管相近,但其防腐蚀性能远远高于钢管;段与段之间接口为承插式,承口环和插口环与钢筒焊成一体。预应力钢筒混凝土管减少了钢材与海水及土壤的接触,从而减轻了钢材的腐蚀,且管道荷载能力较强,适用于地下管道。 2.3 海水预处理工艺 原水中有害物质包括悬浮物、胶体、铁锰盐、硬度、溶解气体、细菌和藻类等。水中的悬浮物及胶体在海水淡化过程中会沉积在受热面或膜表面,从而降低传热速度,缩短清洗周期,增加电耗或药品加入量,提高运行成本。水中的铁盐和锰盐一方面会降低水的电阻率,另一方面在空气中氧的作用下极易生成氢氧化物沉淀,堵塞水流通道、增加膜电阻、缩短膜的使用寿命。水中钙、镁等离子遇CO32-和SO42-易生成碳酸盐和硫酸盐沉淀,在pH值升高时还会生成氢氧化物沉淀,这些沉淀物同样会堵塞水流通道,降低膜的使用寿命,降低淡化效率。水中气体在海水淡化过程中,在传热面上积累而形成气膜,从而降低传热速度,O2则与金属发生腐蚀反应,损坏金属管道和设备。水中细菌与藻类在适宜的温度下,易在水体中、管道中、膜表面和淡化设备中大量繁殖,与水中悬浮物一起堵塞膜孔和管道,影响出水水质和产水量。因此,海水淡化前要去除原水水体中的悬浮物、胶体等杂质,并将水质软化,去除铁盐和锰盐,去除细菌、藻类等有害物质。预处理工艺的方案包括杀菌灭藻、凝聚澄清、过滤除浊、除气、软化等工艺步骤。 1)反渗透淡化原水预处理工艺流程

相关文档
相关文档 最新文档