文档库 最新最全的文档下载
当前位置:文档库 › 用微积分理论证明不等式的方法

用微积分理论证明不等式的方法

用微积分理论证明不等式的方法
用微积分理论证明不等式的方法

用微积分理论证明不等式的方法

江苏省扬中高级中学 卞国文 212200

高等数学中所涉及到的不等式,大致可分为两种:函数不等式(含变量)和数值不等式(不含变量).对于前者,一般可直接或稍加变形构造一函数,从而可通过研究所构造函数的性质,进而证明不等式;对于后者,我们也可根据数值不等式的特点,巧妙的构造辅助函数,从而将数值不等式问题转化为函数的问题,研究方法正好与前者相似.

微积分是高等数学中的重要内容,以它为工具能较好的研究函数的形态,有些常规方法难于证明的不等式,若能根据不等式的结构特征,巧妙的构造函数,将不等式问题转化为函数的问题,利用微积分理论研究函数的性质,应用函数的性质证明不等式.

一、用导数定义证明不等式法

1.证明方法根据-导数定义

导数定义:设函数)(x f y =在点0x 的某个邻域内有定义,若极限

x

y x x x x x x f x f ??→?→=--lim lim

0)

()(0

存在,则称函数)(x f 在0x 可导,称这极限为函数)(x f y =在点

0x 的导数,记作)(0x f y '=.

2.证明方法:

(1)找出0x ,使得)(0x f y '=恰为结论中不等式的一边;(2)利用导数的定义并结合已知条件去研究.

3.例

例1:设函数nx a x a x a x f n sin 2sin sin )(21+++= ,其中n a a a ,,21都为实数,n 为正整数,已知对于一切实数x ,有x x f sin )(≤,试证:1221≤+++n na a a .

分析:问题中的条件与结论不属于同一类型的函数,如果能找出它们之间的关系,无疑能帮助解决此题,可以看出:)0(221f na a a n '=+++ .于是问题可以转化为证明

1)0(≤'f .

nx

na x a x a x f n cos 2cos 2cos )(21+++=' .则n

na a a f +++=' 212)0(.

x x f x x f x f x f f x x x )

()(lim 0)0()()0(lim lim

00

→→→==--=

'.由于x x f sin )(≤. 所以1sin )0(lim

=≤'→x

x

f x .即1221≤+++n na a a .

4.适用范围

用导数定义证明不等式,此方法得适用范围不广,我们应仔细观察问题中的条件与结论之间的关系.有些不等式符合导数的定义,因此可利用导数的定义将其形式转化,以达到化繁为简的目的.

二.用可导函数的单调性证明不等式法

1.证明方法根据-可导函数的一阶导数符号与函数单调性关系定理

定理一:若函数)(x f 在),(b a 可导,则)(x f 在),(b a 内递增(递减)的充要条件是:

),(),0)((0)(b a x x f x f ∈≤'≥'.

定理二:设函数)(x f 在],[b a 连续,在),(b a 内可导,如果在),(b a 内0)(>'x f (或

0)(<'x f ),那么)(x f 在],[b a 上严格单调增加(或严格单调减少).

定理三:设函数)(x f 在),(b a 内可导,若0)(>'x f (或0)(<'x f ),则)(x f 在),(b a 内严格递增(或严格递减).

上述定理反映了可导函数的一阶导数符号与函数单调性的关系,因此可用一阶导数研究函数在所讨论区间上的单调性.

2.证明方法

(1)构造辅助函数)(x f ,取定闭区间],[b a ;

△如何构造辅助函数?

①利用不等式两边之差构造辅助函数(见例2);

②利用不等式两边相同“形式”的特征构造辅助函数(见例3);

③若所证的不等式涉及到幂指数函数,则可通过适当的变形(若取对数)将其化为易于证明的形式,再如前面所讲那样,根据不等式的特点,构造辅助函数(见例4).

(2)研究)(x f 在],[b a 上的单调性,从而证明不等式. 3.例

例2:证明不等式:)0(1)1ln(122>+>+++x x x x x .

分析:利用差式构造辅助函数),0[,1)1ln(1)(22+∞∈+-+++=x x x x x x f ,则将要证明的结论转化为要证)0(,0)(>>x x f ,而0)0(=f ,因而只要证明

)0(),0()(>>x f x f .

证明:令),0[,1)1ln(1)(22+∞∈+-+++=x x x x x x f ,易知)(x f 在),0[+∞上连续,且有),0(,0)1ln()(2+∞∈>++='x x x x f ,由定理二可知)(x f 在),0[+∞上严格单调增加,所以由单调性定义可知)0(,0)0()(>=>x f x f ,即

01)1l n (122>+-+++x x x x .因此 )0(1)1ln(122>+>+++x x x x x .

例3:求证:

b

b a

a b

a b a ++

+≤

+++111.

分析:不等式两边有相同的“形式”:

A A +1:试构造辅助函数)0(,1)(≥+=

x x

x

x f .利用定理二与在)(x f 在),0[+∞上的单调性证明不等式.

证明:设辅助函数)0(,1)(≥+=

x x

x

x f .易知)(x f 在),0[+∞上连续,且有,0)

1(1

)(2

>+=

'x x f )0(>x .则由定理二可知)(x f 在),0[+∞上严格单调增加.由b a b a +≤+≤0,有

)()(b a f b a f +≤+,得到

b

b a

a b

a b b

a a b

a b a b

a b a ++

+≤

+++

++=

+++≤

+++111111,所以原不等式成立.

例4:证明:当0>x 时,2

111)

1(x x

e

x +

+

<+.

分析:此不等式为幂指数函数不等式,若直接利用差式构造辅助函数将很难求其导数,更很难判断其在),0(+∞上的单调性,可对不等式两边分别取对数得到

2

1)1l n ()11(x x x +<++,化简得22)1ln()1(2x x x x +<++,在此基础上可利用差式构

造辅助函数:

)0)(1ln()1(22)(2≥++-+=x x x x x x f ,因0)0(=f ,因而只要证明

)0(),0()(>>x f x f 即可.

证明:分别对不等式得两边取对数,有2

1)1ln()11(x

x x +<++

,化简有: 22)1ln()1(2x x x x +<++.设辅助函数)0(),1ln()1(22)(2≥++-+=x x x x x x f ,

)1ln(22)(x x x f +-=',易知)(x f 在),0[+∞上连续,)(x f '也在),0[+∞上连续,因)0(,012)(>>+=

''x x

x

x f ,根据定理二,得)(x f '在),0[+∞上严格单调增加,所以)0(,0)0()(>='>'x f x f .又由)(x f 在),0[+∞上连续,且0)(>'x f ,根据定理二可知)(x f 在),0[+∞上严格单调增加,所以)0(,0)0()(>=>x f x f ,即

0)1l n ()1(222>++-+x x x x ,因此)1ln()1(222

x x x x ++>+,即2

111)

1(x x

e

x +

+

<+.

4.适用范围

利用函数单调性证明不等式,不等式两边的函数必须可导;对所构造的辅助函数)(x f 应在某闭区间上连续,开区间内可导,且在闭区间的某端点处)(x f 的值为0,然后通过在开区间内)(x f '的符号来判断)(x f 在闭区间上的单调性.

三、函数的极值与最大、最小值证明不等式法

1.证明方法根据-极值的充分条件定理

定理四(极值的第一充分条件) 设)(x f 在0x 连续,在),(00

δx ?内可导,

(i )若当),(00

x x x δ-∈时,0)(≥'x f ,当),(00δ+∈x x x 时,0)(≤'x f ,

则)(x f 在0x 取得极大值;

(ii) 若当),(00

x x x δ-∈时,0)(≤'x f ,当),(00δ+∈x x x 时,0)(≥'x f ,

则)(x f 在0x 取得极小值.

定理五(极值的第二充分条件) 设)(x f 在的某领域),(0δx ?内一阶可导,在0x x =处二阶可导,且

0)(0='x f ,0)(0≠''x f ,(i)若0)(0<''x f ,则)(x f 在0x 取得极大

值;(ii)若0)(0>''x f ,则)(x f 在0x 取得极小值.

极值和最值是两个不同的概念.极值仅是在某点的邻域内考虑,而最值是在某个区间上考虑.若函数在一个区间的内部取得最值,则此最值也是极值.极值的充分条件定理反映了可导函数的一阶导数符号或二阶导数在可疑点上的导数符号与函数极值的关系.

2.证明方法

(1)构造辅助函数)(x f ,并取定区间.

△如何构造辅助函数?

①当不等式两边均含有未知数时,可利用不等式两边之差构造辅助函数(见例5); ②当不等式两边含有相同的“形式”时,可利用此形式构造辅助函数(见例6); ③当不等式形如a x g ≥)((或a x g ≤)()(a 为常数)时,可设)(x g 为辅助函数(见例7).

(2)求出)(x f 在所设区间上的极值与最大、最小值.

△极值与最大、最小值的求法 ①极值求法:(1)求出可疑点,即稳定点与不可导的连续点;(2)按极值充分条件判定可疑点是否为极值点.

②最大、最小值的求法:(1)闭区间],[b a 上连续函数的最大、最小值的求法:先求出可疑点,再将可疑点处的函数值与端点b a ,处的函数值比较,最大者为最大值,最小者为最小值.(2)开区间),(b a 内可导函数的最大值、最小值的求法:若)(x f 在),(b a 内可导,且有唯一的极值点,则此极值点即为最大值点或最小值点.

3.例

例5:证明:当0>x 时有455

+≥x x .

分析:利用差式构造辅助函数)0(,45)(5>--=x x x x f ,这与前面利用函数单调性定义证明不等式中所构造辅助函数的方法相同,但由于)(x f 在),0(+∞上不是单调函数,(因对任意0,21>x x ,且)(5)()()(,215

25

12121x x x x x f x f x x ---=->,不能判断

)(x f 的符号).所以不能用可导函数的单调

性证明此不等式,则可采用函数的极值方法试之.函数的单调性证明此不等式,则可采用函数的极值方法试之.

证明:构造辅助函数)0(,45)(5>--=x x x x f ,则有

),1)(1)(1(5)1)(1(555)(2224-++=-+=-='x x x x x x x f 令0)(='x f ,解得1±=x ,

其中只有1=x 在区间),0(+∞内,由)1(45lim )(lim 5

1

1

f x x x f x x =--=→→,有)(x f 在1

=x 点连续.因当10<x 时,0)(>'x f ,则)(x f 在),1(+∞上为增函数;由定理四可知,)(x f 在1=x 处取得极小值,即0)1(=f 为区间),0(+∞上的最小值,所以当0>x 时,有0)1()(=≥f x f .故),0(0455>≥--x x x 即)0(455>+≥x x x .

例6:设0,0>>b a ,则b b b

a

b a )()11(

1≥+++. 分析:此不等式两边含有相同的“形式”:B

B

A )(

,可将不等式变形为b b b b b b a a 11)1()1(+++≥+,可构造辅助函数)0()1()(1

>+=+x x

x x f b

b . 证明:将不等式变形为b

b b b b b a a 1

1)1()1(+++≥+,构造辅助函数)0()1()(1

>+=+x x x x f b b ,则有b

b b x

b x x x x f 21)()1()(-+='-,令0)(='x f ,则有b x =.当

b x <<0时,0)(<'x f ,所以)(x f 单调递减;当b x >时,0)(>'x f ,则)(x f 单调递

增.因此,由定理四可知)(x f 在b x =时取得极小值,即最小值.所以当),0(+∞∈?a ,

有≥+=+b b a a a f 1)1()(b

b b

b b f 1)1()(++=,即)0,(,)()11(1>≥+++b a b a b a b

b .

例7:证明:若1>p ,则对于]1,0[中的任意x 有:1

21

)1(1-≥

-+≥p p

p x x .

分析:显然设辅助函数)10(,)1()(≤≤-+=x x x x f p p ,若设12

1

)(-=p x g ,由

)10(0)1(2

1

1)0()0()0(1≤≤≠=-=-=-x F g f F p ,故很难用函数单调性的定义去证

明.考虑到1)1()0(==f f ,不难看到不等式1)1(≤-+p p x x ,即为)(x f 与其端点

1,0==x x 处的函数值的大小比较问题,因而可想到用最值方法试之.

证明:设辅助函数为)10(,)1()(≤≤-+=x x x x f p p ,则10≤≤x 时,有:

],)1([)1()(1111------=--='p p p p x x p x p px x f 令

)(='x f 得

11)1(---=p p x x ,解之得稳定点2

1

=

x ,因函数)(x f 在闭区间[0,1]上连续,因而在[0,1]上有最大值和最小值,已知

1

2

1

)211()21()21(,1)1()0(-=-+===p p p f f f .

,1}2

1,

1{max )}({max 1

]

1,0[]

1,0[==-∈∈p x x x f =∈)}({min ]

1,0[x f x

,2

1}2

1,

1{min 11

]

1,0[--∈=p p x 因此对一切1],1,0[>∈p x 时,

有,1)(2

11

≤≤-x f p 所以原不等式

得证.

4.适用范围

(1)所设函数)(x f 在某闭区间上连续,开区间内可导,但在所讨论的区间上不是单调函数时;(2)只能证不严格的不等式而不能证出严格的不等式.

四、用拉格朗日中值定理证明不等式法

1.证明方法根据-拉格朗日中值定理

拉格朗日中值定理:若函数)(x f 满足下列条件:(I ))(x f 在闭区间],[b a 上连续;(ⅱ))(x f 在开区间),(b a 内可导,则在),(b a 内至少存在一点ξ,使得

a

b a f b f f --=

')

()()(ξ.

拉格朗日中值定理反映了函数或函数增量和可导函数的一阶导数符号之间的关系.

2.证明方法

①辅助函数)(x f ,并确定)(x f 施用拉格朗日中值定理的区间],[b a ; ②对)(x f 在],[b a 上施用拉格朗日中值定理;

③利用ξ与b a ,的关系,对拉格朗日公式进行加强不等式.

3.例

例8:证明:当x x x

x

x <+<+>)1ln(1,

0. 分析:所证不等式中的函数)1ln(x +的导数为

x

+11

,即所证不等式中含有函数及其导数,因而可用拉格朗日中值定理试之.由于01ln =,因此可构造函数的改变量

1ln )1ln(-+x ,则相应自变量的改变量为x ,原不等式等价于:

11

)1(11)1ln(11<-+-+<+x n x x ,由不等式中间部分的形式可知,可利用拉格朗日中值定理去证明.

证明:构造函数t t f ln )(=,因)(t f 在)0](1,1[>+x x 上连续,在)1,1(x +上可

导,)(t f 在

)0](1,1[>+x x 上满足拉格朗日条件,于是存在)1,1(x +∈ξ,使

ξ

ξ1

)(1)1()1()1(='=-+-+f x f x f ,因

1

1

11),1ln(1ln )1ln()1()1(<<++=-+=-+ξx x x f x f ,所以

1)1l n (11<+<+x x x . 即

)0(,)1ln(1><+<+x x x x

x

.

4.适用范围

当所证的不等式中含有函数值与一阶导数,或函数增量与一阶导数时,可用拉格朗日中值定理来证明.

五、用柯西中值定理证明不等式法

1.证明方法根据-柯西中值定理

柯西中值定理:若⑴函数)(x f 与)(x g 都在闭区间],[b a 上连续;⑵)(x f 与)(x g 都在开区间),(b a 内

可导;⑶)(x f '与)(x g '在),(b a 内不同时为0;⑷)()(b g a g ≠. 则在),(b a 内至少存在一点ξ,使得

)

()()

()()()(a g b g a f b f g f --=''ξξ . 柯西中值定理反映了两个函数或两个函数增量与它们一阶导数之间的关系.

2.证明方法

①构造两个辅助函数)(x f 和)(x g ,并确定它们施用柯西中值定理的区间],[b a ; ②对)(x f 与)(x g 在],[b a 上施用柯西中值定理; ③利用ξ与b a ,的关系,对柯西公式进行加强不等式.

3.例

例9:设2

0,π

<

<<>y x e a ,证明a a y x a a x x y ln )cos (cos ->-.

分析:原不等式可等价于a a x

y a a x x

y ln cos cos -<--.可看出不等式左边可看成是函数

t a t f =)(

与t t g cos )(=在区间],[y x 上的改变量的商,故可用柯西中值定理证明之.

证明:原不等式等价于a a x

y a a x x

y ln cos cos -<--,

可构造函数t a t f =)(,t t g cos )(=,因),(t f )(t g

均在],[y x 上连续,在),(y x 上可导,且0ln )(≠='a a t f t ,由于2

<

<

y y g x x g t t g cos )(cos )(,0sin )(=≠=≠-=',所以),(t f )(t g 在],[y x 上满足柯西中

值条件,于是存在),(y x ∈ξ,使得ξ

ξξξsin ln cos cos )()()()()()(-=

--=--=''a

a x y a a x g y g x f y f g f x y ,又因),,(,y x e a ∈>ξ

,

2

<

<

1ln ,1sin 1

,

>>

ξ,得到

ξ

ξξξsin ln ln ,sin ln ln a a a a a a a a x

x

-

>-< ,因此 a a x

y a a x x

y ln cos cos -<--,即a a y x a a x x y ln )cos (cos ->-.

4.适用范围

当不等式含有两个函数的函数值及其一阶导数,或两个函数的函数增量及其一阶导数时,可用柯西中值定理证明.

六、上述二、三、四、五种方法小结

前面二、三、四、五种方法中,均可利用差式构造函数,但有时应用导数研究函数单调性证明不等式,

有时应用导数研究函数极值证明不等式,而有时应用拉格朗日中值定理或柯西中值定理证明不等式.三者有何区别:

⑴若所证不等式含有函数值及其导数,宜用中值定理;若所证不等式

),(),()(b a x x g x f ∈<,其两端函数)(),(x g x f 均可导,且)()()(a g a f a F -=或)()()(b g b f b F -=有一为0时,宜用函数的单调性.

⑵若所证不等式的两端函数有不可导时,不能用函数单调性证明,宜用中值定理. ⑶若所证不等式),(),()(b a x x g x f ∈<,两端函数)(),(x g x f 均可导,但

)()()(x g x f x F -=不是单调的函数时,宜用函数的极值来证明.

七、用函数的凹凸性证明不等式

1.证明方法根据-凹凸函数定义及其定理和詹森不等式

定义:设)(x f 为定义在区间I 上的函数,若对于I 上任意两点21,x x 和实数)1,0(∈λ,总有

)()1()())1((2121x f x f x x f λλλλ-+≤-+,则称)(x f 为I 上的凸函数,若总有 )()1()())1((2121x f x f x x f λλλλ-+≥-+,则称)(x f 为I 上的凹函数.

定理六:设)(x f 为I 上的二阶可导函数,则)(x f 为I 上的凸函数(或凹函数)的充要条件是在I 上

)0)((0)(≤''≥''x f x f 或 .

命题(詹森不等式) 若)(x f 在],[b a 上为凸函数,对任意的

)2,1(0],,[n i b a x i i =>∈λ且11

=∑=n i i λ,则≤

∑=)(1

n

i i i x f λ)(1

i

n

i i

x f ∑=λ.该命题可用数

学归纳法证明.

函数的凹凸性定理反映了二阶可导函数的二阶导数符号与凹凸函数之间的关系. 2.证明方法:

①定义证明法:将不等式写成定义的形式,构造辅助函数)(x f ,并讨论)(x f 在所给区间上的凹凸性.

②詹森不等式法:对一些函数值的不等式,构造凸函数,应用詹森不等式能快速证此

类不等式.

3.例

例10:证明:当0,0>>y x 时, 2

ln )(ln ln y

x y x y y x x ++>+. 分析:不等式等价于:

2

ln )2(2ln ln y

x y x y y x x ++>+.不等式两边含有相同“形式”:

t t ln ,

可设辅助函数)0(ln )(>=t t t t f .因此原不等式可化为要证)2

(2)()(y

x f y f x f +>+.只

要证明)(t f

在),0(+∞上为凸函数,即证)(x f 在),(y x 内0)(>''x f 即可.

证明(定义证明法):设)0(ln )(>=t t t t f .有)0(01

)(,1ln )(>>=''+='t t

t f t t f .则)(t f 在),0(+∞

为凸函数.对任意)(0,0y x y x ≠>>,有

)2(2)()(y x f y f x f +>+(取2

1

=λ).(要使

)(x f 与)(x g 的系数相同,当且仅当λλ-=1时成立,即2

1

=λ).因此

2

ln )(ln ln y

x y x y y x x ++>+.

例11:若A,B,C 是ABC ?的三内角,则32

3

sin sin sin ≤

++C B A . 分析:不等式左边为x sin 的函数的和,考虑构造凸函数x x f sin )(-=.

证明(詹森不等式):令π<<-=x x x f 0,sin )(,则0sin )(>=''x x f .则)(x f 是

),0(π上的凸函数, π<

13

1

=∑=i i

λ

,得到

3

1

321=

==λλλ,由詹森不等式结论

)sin sin (sin 3

1

3sin

C B A C B A ++-≤++-,因C B A ,,是ABC ?的三内角,则

π=++C B A ,可

得2

3

3sin )sin sin (sin 31=≤++πC B A .即323sin sin sin ≤++C B A .

4.适用范围

当不等式可写成凹凸函数定义的形式或对一些函数值和且能够构造凸函数的不等式.

八、用泰勒公式证明不等式法

1.证明方法根据-泰勒定理

泰勒定理:若函数)(x f 满足如下条件:

⑴在闭区间],[b a 上函数)(x f 存在直到n 阶连续导数;⑵在开区间),(b a 内存在)(x f 的1+n 阶导数,则对任何),(b a x ∈,至少存在一点),(b a ∈ξ,使得:

1

)1()(2)()!

1()()(!)()(!2)())(()()(++-++-++-''+-'+=n n n

n a x n a f a x n a f a x a f a x a f a f x f . 泰勒公式揭示了多项式与函数之间的关系.

2.证明方法

①根据已知条件,围绕证明目标,选取恰当的点将函数在这些点展成泰勒展式; ②根据已知条件,向着有利于证明目标不等式的方向对上面的展式作适当的处理,直到可以结合已知条件证出不等式为止.(注意具体的题目应用此方法时要灵活运用,有些题目在进行①前,要先对已知条件或证明目标进行适当的转化,以更有利于证明的进行,使②不会过于繁琐.)

3.例

例12:设函数)(x f 在]1,0[上二阶可导,)1()0(f f =,且2)(≤''x f ,试证明:

1)(≤'x f .

分析:根据题设条件,)(x f 在]1,0[上二阶可导,且函数值)1()0(f f =,2)(≤''x f ,可写出函数)(x f 在x 处的一阶泰勒公式,并取考察点0或1,利用相应的泰勒公式,对

)(x f '作估计.

10≤≤x ,由泰勒公式分别有:

,0,)0)((21

)0)(()()0(121x x f x x f x f f <<-''+-'+=ξξ

10,)1)((2

1

)1)(()()1(222<<-''+-'+=ξξx f x x f x f f .由于)1()0(f f =,则将以上

两式做差,整理得:

],)1)(()([2

1

)(2221x f x f x f -''-''='ξξ所以

])1()()([2

1

)(2221x f x f x f -''+''≤'ξξ

)0)1(2(,1)1(21)1(])1(22[2

1

2222≥-≤--=-+=-+≤x x x x x x x x .因此原不等式成立.

4.适用范围

当遇到含有函数或高阶导数,或函数增量与高阶导数,或要证的是导数(一阶或二阶)不等式时,可利用泰勒公式来证明有关的不等式.

九、用幂级数展开式证明不等式法

1.证明方法根据-几个重要的初等函数的幂级数展开式 几个重要的初等函数的幂级数展开式如下:

),(,!

1

!2112+∞-∞∈++++

+=x x n x x e n x ; ),(,)!12(1)1(!31sin 1213+∞-∞∈+--++-=--x x n x x x n n ; ),(,)!

2(1)1(!41!211cos 242+∞-∞∈+-++-

=x x n x x x n n ; )1,0(,111

2∈+++++=-x x x x x

n ; ]1,1(,)1(3121)1ln(132-∈+-+++-=+-x n

x

x x x x n

n

初等函数是中学数学教学重点,某些初等函数可展开成幂级数,在展开式中添加或删去某些幂级数时,

可很快证明出某些含幂级数的不等式.

2.证明方法

先把初等函数展开成幂级数,然后在展开式中添加或删去某些幂级数即可快速证明此不等式.

3.例

例13:当)1,0(∈x ,证明x e x

x

211>-+. 证明:因

x e x

2,11

-分别可写成幂级数展开式,有:=++++++=-+)1)(1(112 n x x x x x

x

)

1,0(,22212∈+++++x x x x n .

),(,!

2!2221222+∞-∞∈+++++=x x n x x e

n

n x

则左边的一般项为n

x 2,右边的一般项为!2n x n n ,因此当!22,3n n n

>≥,所以

)1,0(,112∈>-+x e x

x

x .

4.适用范围

当不等式中含有上面几个重要初等函数之一时,可用幂级数展开式法来证明此不等式.

十、用定积分理论来证明不等式法

1.证明方法根据-定积分的性质和变上限辅助函数理论

定积分性质之一:设)(x f 与)(x g 为定义],[b a 在上的两格可积函数,若

],[),()(b a x x g x f ∈≤

则dx x g dx x f b

a

b

a

??

≤)()(.

微积分学基本定理:若函数)(x f 在],[b a 上连续,则由变动上限积分

],[,)()(b a x dt t f x x

a

∈=Φ?,

定义的函数Φ在],[b a 上可导,而且)()(x f x =Φ'.也就是说,函数Φ是被积函数)

(x f 在],[b a 上的一个原函数.

微积分学基本定理沟通了导数和定积分这两个从表面看去似不相干的概念之间的内在联系.

2.证明方法

①利用定积分的性质证明不等式法:对可积函数)(x f ,)(x g ,先证出)()(x g x f ≤,然后由定积分的性质可证

dx x g dx x f b

a

b

a

??

≤)()((见例14);

②构造变上限辅助函数证明不等式法:对于含有定积分的不等式,可把常数变为变数构造辅助函数, 利用变上限积分?

x

a

dt t f )(及函数的单调性解决此类不等式(见例15).

3.例 例14:证明:

??

≤2

1

2

1

ln ln xdx x xdx x .

证明(利用定积分性质):当]2,1[∈x 时,0ln ,>≤x x x ,则x x x x ln ln ≤.

x x ln ,x x ln 在]2,1[上均为连续函数.则x x x x ln ,ln 在]2,1[均可导.由定积

分性质可知:??

≤2

1

2

1

ln ln xdx x xdx x .

例15:设)(x f 在],[b a 上连续,且单调递增,试证明dx x f b a dx x xf b

a b

a ??+≥)(2

)(. 分析:可将此定积分不等式看成是数值不等式,并将常数b 变为变数t ,利用差式构

造辅助函数:

dx x f t a dx x xf t F t

a

t

a ??+-=)(2)()(,则要证0)()(=≥a F

b F .

证明:(利用构造变上限辅助函数):设辅助函数dx x f t a dx x xf t F t

a t

a

??

+-

=)(2

)()(.显然0)(=a F . 对

]

,[b a t ∈?,

???-=--=+--

='t

a t a t a dx x f t f dx x f t f a t t f t a dx x f t tf t F )]()([2

1)(21)(2)(2)(21)()(

),(t a x ∈.因为)(x f 单调递增,则0)(≥'t F ,则)(t F 单调递增,所以)(,0)()(a b a F b F ≥=≥.

因此dx x f b a dx x xf b

a b

a ??+≥)(2

)(.

4.适用范围

当不等式含有定积分(或被积函数)()(x g x f ≤时),可用定积分的性质来证明或构造上限辅助函数来证明.

十一、引入参数证明不等式法

1.证明方法根据-将对数值不等式的证明转化为对函数不等式的证明,用微积分理论研究函数的性质,从而证明不等式.

2.证明方法

引入参数t ,构造辅助函数

0])()([2

≥-?dx x tg x f b

a ,得到关于t 的二次多项式,利用判别式0≤?来证明不等式.

3.例

16:设

)(),(x g x f 在区间],[b a 上连续,证明:

dx x g dx x f dx x g x f b

a

b

a

b

a

???≤)()())()((22

2

(柯西-许瓦茨不等式).

分析:欲证不等式是函数)(),(2

2x g x f ,以及)()(x g x f 的积分不等式,引入参数t ,考虑辅助函数

2)]()([x tg x f -在区间],[b a 上的积分.

证明:利用定积分的性质易知

0])()([2

≥-?dx x tg x f b

a ,即0)()()(2)(222≥+-???b

a

b

a

b

a

dx x f dx x g x f t dx x g t .这是关于t 的二次多项式不等式,因

此,判别式:

0)()(4))()((422

2

≤-=????b

a

b

a

b

a

dx x g dx x f dx x g x f ,即:

dx x g dx x f dx x g x f b

a

b a

b a

???≤)()())()((222.

4.适用范围

当积分式含有平方项)(2

x f ,或)(2

x f '的情形.

参考文献:

1.《高等数学选讲》 2.《数学分析》 3.《常微分选讲》

积分不等式的若干证明技巧

题目:积分不等式的若干证明技巧 学院:数学科学学院 专业班级:数学07-4实验班 学生姓名:努尔艾拉.阿西木 指导教师:塔实甫拉提副教授 答辩日期:2011年5月10日 新疆师范大学教务处

目录 1引言 (1) 2 利用有些定义证明积分不等式 (1) 2.1利用定积分的定义证明积分不等式 (1) 2.2利用积分和及凸函数的性质证明积分不等式 (2) 3 利用函数的单调性证明积分不等式 (4) 4利用微分中值定理证明积分不等式 (4) 5利用积分中值定理证明积分不等式 (6) 6利用一些基本不等式证明积分不等式 (7) 7利用泰勒展开式证明积分不等式 (7) 8利用将单积分化为重积分的方法 (8) 9利用分部积分法来证明积分不等式 (9) 10 结论 (10) 参考文献: (11) 致谢 (12)

积分不等式的若干证明技巧 摘要:不等式是高等数学和近代数学分析的重要内容之一,它反映了各变量之间很重要的一种联系。论证不等式的方法很多,本文的目的主要是利用徽积分学原理归纳、总结“高等数学”中证明积分不等式的常用方法.由于积分具有较大的灵活性,故积分不等式的证明往往富有很强的技巧性,是理工科学生学习的一个难点,以下我们仅从讨论过程中的关键步骤出发,大致地分成若干种方法,介绍有关证题的技巧和规律。 关键词:积分不等式,积分中值定理;Rolle中值定理;Cauchy中值定理;Lagrange中值定理 Integral inequality of several proof skills Abstracts:inequality is higher mathematics and the important content of modern mathematics analysis, it reflects the one between the variables a contact is very important. Demonstrates many methods, this paper the inequality in the main purpose of the principle is to use badge integral calculus "advanced mathematics synthesized and summarized in" the commonly used method proved integral inequality. Because integral has greater flexibility, so integral inequality proof often rich strong skilled, an engineering student learning a difficulty, below we only from a critical step in discussion, starting into several ways roughly, introduces relevant papers topic the skills and law. Keywords: integral inequality, integral mean-value theorem; Rolle mid-value theorem; Cauchy mid-value theorem; Lagrange mid-value theorem 。

利用导数证明不等式的两种通法

利用导数证明不等式的两种通法 吉林省长春市东北师范大学附属实验学校 金钟植 岳海学 利用导数证明不等式是高考中的一个热点问题,利用导数证明不等式主要有两种通法,即函数类不等式证明和常数类不等式证明。下面就有关的两种通法用列举的方式归纳和总结。 一、函数类不等式证明 函数类不等式证明的通法可概括为:证明不等式()()f x g x >(()()f x g x <)的问 题转化为证明()()0f x g x ->(()()0f x g x -<),进而构造辅助函数 ()()()h x f x g x =-,然后利用导数证明函数()h x 的单调性或证明函数()h x 的最小值(最 大值)大于或等于零(小于或等于零)。 例1 已知(0, )2 x π ∈,求证:sin tan x x x << 分析:欲证sin tan x x x <<,只需证函数()sin f x x x =-和()tan g x x x =-在(0,)2 π 上 单调递减即可。 证明: 令()sin f x x x =- ,其中(0,)2 x π ∈ 则/ ()cos 1f x x =-,而(0,)cos 1cos 102 x x x π ∈?

高中不等式的证明方法

不等式的证明方法 不等式的证明是高中数学的一个难点,证明方法多种多样,近几年高考出现较为形式较为活跃,证明中经常需与函数、数列的知识综合应用,灵活的掌握运用各种方法是学好这部分知识的一个前提,下面我们将证明中常见的几种方法作一列举。 注意ab b a 22 2 ≥+的变式应用。常用2 222b a b a +≥ + (其中+ ∈R b a ,)来解决有关根式不等式的问题。 一、比较法 比较法是证明不等式最基本的方法,有做差比较和作商比较两种基本途径。 1、已知a,b,c 均为正数,求证: a c c b b a c b a ++ +++≥++1 11212121 证明:∵a,b 均为正数, ∴ 0) (4)(44)()(14141)(2 ≥+=+-+++=+-+-b a ab b a ab ab b a a b a b b a b a b a 同理 0)(41 4141)(2 ≥+= +-+-c b bc c b c b c b ,0) (414141)(2 ≥+=+-+-c a ac a c a c a c 三式相加,可得 01 11212121≥+-+-+-++a c c b b a c b a ∴a c c b b a c b a ++ +++≥++111212121 二、综合法 综合法是依据题设条件与基本不等式的性质等,运用不等式的变换,从已知条件推出所要证明的结论。 2、a 、b 、),0(∞+∈c ,1=++c b a ,求证: 31222≥ ++c b a 证:2 222)(1)(3c b a c b a ++=≥++?∴ 2222)()(3c b a c b a ++-++0 )()()(222222222222≥-+-+-=---++=a c c b b a ca bc ab c b a 3、设a 、b 、c 是互不相等的正数,求证:)(4 4 4 c b a abc c b a ++>++ 证 : ∵ 2 2442b a b a >+ 2 2442c b c b >+ 2 2442a c a c >+∴ 222222444a c c b b a c b a ++>++ ∵ c ab c b b a c b b a 2 2222222222=?>+同理:a bc a c c b 222222>+ b ca b a a c 222222>+ ∴ )(222222c b a abc a c c b b a ++>++ 4、 知a,b,c R ∈,求证: )(22 2 2 2 2 2 c b a a c c b b a ++≥++ ++ + 证明:∵ ) (2 2 2 2 2 2 2 2)(22b a b a b a b a ab ab +≥++≥+∴≥+

证明不等式的几种方法

证明不等式的几种方法 淮安市吴承恩中学 严永飞 223200 摘要:不等式证明是中学数学的重要内容,证明方法多种多样.通常所用的公式法、放缩法只能解决一些较简单的问题,对于较难的问题则束手无策.本文给出了几种特殊方法.如倒数变换法、构建模型法、逆用等比数列求和公式等方法,使解题容易,新颖独特. 关键词:不等式,公式法,构建模型法 前言 证明不等式是中学数学的重要内容之一,内容抽象,难懂,证明方法更是变化多端.通常所用的一些方法如公式法、放缩法只能解决一些较简单的问题,较难的问题则无法解决.本文给出了几种特殊方法.如倒数变换法、构建模型法、逆用等比数列求和公式等方法. 这里所举的几种证明不等式的特殊方法看似巧妙,但如果认真思考,广泛联系,学以致用,一定能使问题得到很好的解决. 1 运用倒数变换证明不等式 这里所说倒数变换是根据具体的题目要求把不等式的部分进行倒数变换,通过化简后使不等式变得简单,更好更快的解决证明问题. 例1 设+∈R z y x ,,,且xyz =1 求证:)(13z y x ++)(13z x y ++)(13y x z +≥2 3 分析 如果先通分再去分母,则不等式将变得很复杂. 令A x =-1,B y =-1 ,C z =-1 ,则+∈R C B A ,,且1=ABC . 欲证不等式可化为 C B A +2+A C B +2+B A C +2≥23(*) 事实上,a 2+22b λ≥ab λ2 (+∈R b a ,,λ), 而当b >0时, a 2/b ≥b a 22λλ-. (*)式左边≥A λ2-2λ(C B +)+ B λ2-2λ(C A +)+C λ2-2λ(A B +) = λ2(λ-1)(C B A ++) ≥λ6(λ-1)3ABC = λ6(λ-1). 令λ=21时,C B A +2+A C B +2+ B A C +2 ≥6×21×(1-21)=23 得证. (这里用到二元平均不等式的变形和三元平均不等式.) 例 2 已知z y x ,,>0,n 为大于1的正整数,且n n x x +1+n n y y +1+n n z z +1=1 求证:n x x +1+n y y +1+n z z +1≤n n 12-

利用导数证明不等式的常见题型

利用导数证明不等式的常见题型 山西大学附属中学 韩永权 邮箱:hyq616@https://www.wendangku.net/doc/c614292119.html, 不等式的证明是近几年高考的一个热点题型,它一般出现的压轴题的位置,解决起来比较困难。本文给出这一类问题常见的证明方法,给将要参加高考的学子一些启示和帮助。只要大家认真领会和掌握本文的内容,定会增强解决对这一类问题的办法。下面听我慢慢道来。 题型一 构造函数法,把不等式的证明转化为利用导数研究函数的单调性或求最值,从而证明不等式,而如何根据不等式的结构特征构造一个可导函数是用导数证明不等式的关键。 例1(人教版选修2-2第32页B 组1题)利用函数的单调性,证明不列不等式 (1)),0(,sinx π∈-x x x (3)0,1≠+>x x e x (4)0,ln ><x 时,求证:x x x ≤+≤+- )1ln(1 1 1 证明:令x x x f -+=)1ln()(,则1 111)(+- =-+='x x x x f ∴当01<<-x 时,0)(>'x f ,当0>x 时,0)(<'x f ,()f x 在),1(+∞-上的最大值为 0)0()(max ==f x f ,因此,0)0()(=≤f x f ,即0)1ln(≤-+x x ∴x x ≤+)1ln((右面得证), 再证左面,令11 1 )1ln()(-+++=x x x g ,2 2)1()1(111)(+=+-+='x x x x x g 则 当0)(,),0(;0)(,)0,1(>'+∞∈<'-∈x g x x g x 时当时,函数)(x g 在),1(+∞-上的最小值为 0)0()(m i n ==g x g ,∴0)0()(=≥g x g ,即011 1 )1ln(≥-+++x x ∴111)1ln(+-≥+x x (左面得证),综上,当x x x x ≤+≤-+->)1ln(11 1 ,1有时 启示:证明分三个步骤,一是构造函数,二是对函数求导,判断函数的单调性,三是求此函数的最值,得 出结论。 题型二 通过对函数的变形,利用分析法,证明不等式 例.bx x x h +=ln )(有两个不同的零点21,x x ①求b 的取值范围;②求证:1221x x e >. 解析:①()ln h x x bx =+,其定义域为(0,+∞).由()0h x =得ln -x b x =,记ln ()x x x ?=-,则2 l n 1 ()x x x ?-'=, 所以ln ()x x x ?=-在(0,)e 单调减,在(,)e +∞单调增,所以当x e =时ln ()x x x ?=-取得最小值1e -. 又(1)0?=,所以(0,1)x ∈时()0x ?>,而(1,)x ∈+∞时()0x ?<,所以b 的取值范围是(1 e -,0). ②由题意得1122ln 0,ln 0x bx x bx +=+=, 所以12122121ln ()0,ln ln ()0x x b x x x x b x x ++=-+-=,所以 12122121 ln ln ln x x x x x x x x +=--,不妨设21x x <, 要证212x x e >,需证12122121 ln (ln ln )2x x x x x x x x +=->-.即证2121212()ln ln x x x x x x -->+, 设21(1)x t t x =>,则2(1)4()ln ln 211 t F t t t t t -=-=+-++, 所以2 22 14(1)()0(1)(1) t F t t t t t -'=-=>++,所以函数()F t 在(1,+∞)上单调增, 而(1)0F =,所以()0F t >即2(1) ln 1 t t t ->+,所以212x x e >.

高中数学不等式的几种常见证明方法(县二等奖)

高中数学不等式的几种常见证明方法 摘 要:不等式是中学数学的重要知识,考察学生对不等式理论熟练掌握的程度也是衡量学生数学水平的重要方面,同时,不等式也是高中数学的基础,因此,在每年的数学高考题中,有关不等式的相关题目都有所出现,本文介绍了几种不等式的证明方法,并举例进一步加强对各种不等式的理解. 关键字:不等式;数学归纳法;均值;柯西不等式 一、比较法 所谓比较法,就是通过两个实数a 与b 的差或商的符号(范围)确定a 与b 大小关系的方法,即通过“0a b ->,0a b -=,0a b -<;或1a b >,1a b =,1a b <”来确定a ,b 大小关系的方法,前者为作差法,后者为作商法. 例 1 设,x y R ∈,求证:224224x y x y ++≥+. 证明: 224224x y x y ++-- =2221441x x y y -++-+ =22(1)(21)x y -+- 因为 2(1)0x -≥, 2(21)0y -≥ ∴ 22(1)(21)0x y -+-≥ ∴2242240x y x y ++--≥ ∴224224x y x y ++≥+ 例 2 已知:a >b >c >0, 求证:222a b c a b c ??>b c a c b c a b c +++??. 证明:222a b c b c a c b c a b c a b c +++????=222a b c b a c c b c a b c ------?? >222a b c b a c c b c c c c ------??

=0c =1 222a b c b c a c b c a b c a b c +++??∴??>1 ∴222a b c a b c ??>b c a c b c a b c +++?? 二、分析法 分析法:从求证的不等式出发,分析这个不等式成立的充分条件,把证明这个不等式的问题转化为证明这些条件是否具备的问题,如果能够肯定这些条件都已具备,那么就可以判定所证的不等式成立. 例 3 求证3< 证明: 960+>> 5456<成立运用分析法时,需积累一些解题经验,总结一些常规思路,这样可以克服无目的的乱写,从而加强针对性,较快地探明解题的途径. 三、综合法 从已知或证明过的不等式出发,根据不等式的性质及公理推导出欲证的不等式,这种证明方法叫做综合法. 例 4 已知,a b R +∈,1a b +=,求证:221125()()2 a b a b +++≥ 证明:∵ 1a b += ∴ 1=22222()22()a b a b ab a b +=++≤+ ∴ 221 2 a b +≥

用微积分理论证明不等式的方法

用微积分理论证明不等式的方法 高等数学中所涉及到的不等式,大致可分为两种:函数不等式(含变量)和数值不等式(不含变量).对于前者,一般可直接或稍加变形构造一函数,从而可通过研究所构造函数的性质,进而证明不等式;对于后者,我们也可根据数值不等式的特点,巧妙的构造辅助函数,从而将数值不等式问题转化为函数的问题,研究方法正好与前者相似. 微积分是高等数学中的重要内容,以它为工具能较好的研究函数的形态,有些常规方法难于证明的不等式,若能根据不等式的结构特征,巧妙的构造函数,将不等式问题转化为函数的问题,利用微积分理论研究函数的性质,应用函数的性质证明不等式. 一、用导数定义证明不等式法 1.证明方法根据-导数定义 导数定义:设函数)(x f y =在点。0x 的某个邻域内有定义,若极限 x y x x x x x x f x f ??→?→=--lim lim 0) ()(0 存在,则称函数)(x f 在0x 可导,称这极限为函数)(x f y =在点0 x 的导数,记作)(0x f y '=. 2.证明方法: (1)找出0x ,使得)(0x f y '=恰为结论中不等式的一边;(2)利用导数的定义并结合已知条件去研究. 3.例 例1:设函数nx a x a x a x f n sin 2sin sin )(21+++= ,其中n a a a ,,21都为实数, n 为正整数,已知对于一切实数x ,有x x f sin )(≤,试证:1221≤+++n na a a . 证 明 : 因 nx na x a x a x f n cos 2cos 2cos )(21+++=' .则 n na a a f +++=' 212)0(. 得:x x f x x f x f x f f x x x ) ()(lim 0)0()()0(lim lim 00 →→→==--= '.由于x x f sin )(≤. 所以1sin )0(lim =≤ '→x x f x .即1221≤+++n na a a . 4.适用范围 用导数定义证明不等式,此方法得适用范围不广,我们应仔细观察问题中的条件与结论之间的关系.有些不等式符合导数的定义,因此可利用导数的定义将其形式转化,以达到化繁为简的目的. 二.用可导函数的单调性证明不等式法

积分不等式的证明及应用论文

广西科技大学毕业论文 题目:积分不等式的证明及应用 英文题目:The integral inequality proof and application.所在学院:理学院 所在专业:信息与计算科学 学号:200900901071 作者姓名:朱伟 指导老师:张明俊 二零一三年五月

摘要 积分不等式是学习高等数学中的一个重要内容,在数学分析中的应用也很广泛,也经常会在考研试卷中出现.有很多积分不等式的证明方法,一些方法综合性和技巧性也很强。利用导数和积分的相关知识去证明不等式,可以降低技巧性,使证明的思路变得简单,在此总结出可用于证明不等式的知识点。文中涉及到的知识有积分不等式、柯西不等式、拉格朗日中值定理、泰勒公式等高等数学中的内容。 【关键词】积分不等式、函数、拉格朗日中值定理、柯西不等式、泰勒公式

Abstract Mathematical analysis is an important information and calculation science specialized basic course,integral inequality is important content of mathematical analysis,using the integral inequality can solve many problems,thus the application of integral inequality is very wide.Proof of integral inequality and applications has always been a difficulty in mathematical analysis,it's proved that erected a bridge for different branches of mathematics,greatly improved our creative thinking.It's proof and application is also very cleverly,can solve some difficult problems.So,a deep understanding, to grasp the method of integral inequality proof, and its different applications in mathematical analysis,can improve our understanding of theoretical knowledge and application,at the same time also is good for our future study,to improve our thinking ability, innovation ability, and skill also has the very big help. 【Key words】Integral inequality, Probability mass function, Lagrange's mean value theorem, Cauchy inequality, Taylors formula.

2021届高考数学(理)一轮复习学案:第3章导数及其应用第4节利用导数证明不等式

第四节 利用导数证明不等式 课堂考点探究 考点1 单变量不等式的证明 单变量不等式的证明方法 (1)移项法:证明不等式f (x )>g (x )(f (x )<g (x ))的问题转化为证明f (x )-g (x )>0(f (x )-g (x )<0),进而构造辅助函数h (x )=f (x )-g (x ); (2)构造“形似”函数:对原不等式同解变形,如移项、通分、取对数;把不等式转化为左右两边是相同结构的式子的结构,根据“相同结构”构造辅助函数; (3)最值法:欲证f (x )<g (x ),有时可以证明f (x )max <g (x )min . 直接将不等式转化为函数的最值问题 已知函数f (x )=ln x +ax 2+(2a +1)x . (1)讨论f (x )的单调性; (2)当a <0时,证明f (x )≤-3 4a -2. [解] (1)f (x )的定义域为(0,+∞),f ′(x )=1x +2ax +2a +1= x +1 2ax +1 x . 当a ≥0,则当x ∈(0,+∞)时,f ′(x )>0,故f (x )在(0,+∞)上单调递增. 当a <0,则当x ∈? ????0,-12a 时,f ′(x )>0;当x ∈? ????-12a ,+∞时,f ′(x )<0. 故f (x )在? ????0,-12a 上单调递增,在? ?? ??-12a ,+∞上单调递减. (2)证明:由(1)知,当a <0时,f (x )在x =-12a 取得最大值,最大值为f ? ????-12a =ln ? ??? ?-12a -1-1 4a . 所以f (x )≤-34a -2等价于ln ? ????-12a -1-14a ≤-34a -2,即ln ? ????-12a +1 2a +1≤0.设g (x ) =ln x -x +1,则g ′(x )=1 x -1.当x ∈(0,1)时,g ′(x )>0;当x ∈(1,+∞)时,g ′(x ) <0.所以g (x )在(0,1)上单调递增,在(1,+∞)上单调递减.故当x =1时,g (x )取得最大 值,最大值为g (1)=0.所以当x >0时,g (x )≤0.从而当a <0时,ln ? ????-12a +1 2a +1≤0, 即f (x )≤-3 4a -2. 将不等式转化为函数最值来证明不等式,其主要思想是依据函数在固定区间

不等式证明的常用基本方法

证明不等式的基本方法 导学目标:1.了解证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法.2.会用比较法、综合法、分析法、反证法、放缩法证明比较简单的不等式. [自主梳理] 1.三个正数的算术—几何平均不等式:如果a ,b ,c>0,那么_________________________,当且仅当a =b =c 时等号成立. 2.基本不等式(基本不等式的推广):对于n 个正数a 1,a 2,…,a n ,它们的算术平均不小于它们的几何平均,即a 1+a 2+…+a n n ≥n a 1·a 2·…·a n ,当且仅当__________________时等号成立. 3.证明不等式的常用五种方法 (1)比较法:比较法是证明不等式最基本的方法,具体有作差比较和作商比较两种,其基本思想是______与0比较大小或______与1比较大小. (2)综合法:从已知条件出发,利用定义、______、______、性质等,经过一系列的推理、论证而得出命题成立,这种证明方法叫综合法.也叫顺推证法或由因导果法. (3)分析法:从要证明的结论出发,逐步寻求使它成立的________条件,直至所需条件为已知条件或一个明显成立的事实(定义 、公理或已证明的定理、性质等),从而得出要证的命题成立为止,这种证明方法叫分析法.也叫逆推证法或执果索因法. (4)反证法 ①反证法的定义 先假设要证的命题不成立,以此为出发点,结合已知条件,应用公理、定义、定理、性质等,进行正确的推理,得到和命题的条件(或已证明的定理、性质、明显成立的事实等)矛盾的结论,以说明假设不正确,从而证明原命题成立,我们把它称为反证法. ②反证法的特点 先假设原命题不成立,再在正确的推理下得出矛盾,这个矛盾可以是与已知条件矛盾,或与假设矛盾,或与定义、公理、定理、事实等矛盾. (5)放缩法 ①定义:证明不等式时,通过把不等式中的某些部分的值________或________,简化不等式,从而达到证明的目的,我们把这种方法称为放缩法. ②思路:分析观察证明式的特点,适当放大或缩小是证题关键. 题型一 用比差法与比商法证明不等式 1.设t =a +2b ,s =a +b 2+1,则s 与t 的大小关系是( A ) ≥t >t ≤t 0;②a 2+b 2≥2(a -b-1);③a 2+3ab>2b 2;④,其中所 有恒成立的不等式序号是 ② . ②【解析】①a=0时不成立;②∵a 2+b 2-2(a-b-1)=(a-1)2+(b+1)2≥0,成立;③a=b=0时不成立;④a=2,b=1时不成立,故恒成立的只有②.

积分不等式的证明方法及其应用

积分不等式的证明方法及其应用 【摘要】本文根据定积分的定义、性质、定理等方面简单介绍了几个证明积分 不等式的基本方法,并给出了相应的例题,从而更好地掌握其积分不等式的证明方法。尔后再给出四个重要积分不等式及其证明方法和应用,最后详细举例说明积分不等式在求极限、估计积分、证明积分不等式等上的应用及两个重要积分不等式的应用。 【关键词】积分不等式 Schwarz 不等式 Ho .. lder 不等式 Gronwall 不等式 Young 不等式 1 引言 在学习中,我们常会遇到这样的问题:有些函数可积,但原函数不能用初等函数的有限形式来表达,或者说这种积分“积不出”,无法应用Newton-Leibniz 公式求出(如2 1 0x e dx -?),这时我们只能用其它方法对积分值进行估计,或近似计 算;另一种情况是,被积函数是没有明确给出,只知道它的结构或某些性质(例如设函数f 在[]0,1上连续可微,且(1)(0)1f f -=,求1 '20()f x dx ?),因此我们希 望对积分值给出某种估计.为此我们来研究下积分不等式. 我们把含有定积分的不等式称为积分不等式. ? ? ≤ 2 1 2 1 ln ln xdx x xdx x , ()() 2 2 ()cos ()sin 1b b a a f x kxdx f x kxdx +≤? ? 都是积分不等 式. 2积分不等式的证明方法 2.1 定义法 我们根据定积分的定义,把积分区间n 等分,得出积分和,再由离散型式子,得出积分和之间的大小关系,再令∞→n ,取极限即可. 例1设函数)(x f 在区间 []0,1上可积 .试证明有不等式1 12 00 ()()f x dx f x dx ≤ ?? . 证 先用Jensen 不等式法证明不等式 : 对 R x x x n ∈?,,,21 , 有不等式

证明不等式的种方法

证明不等式的13种方法 咸阳师范学院基础教育课程研究中心安振平 不等式证明无论在高考、竞赛,还是其它类型的考试里,出现频率都是比较高,证明难度也是比较大的.因此,有必要总结证明不等式的基本方法,为读者提供学习时的参考资料.笔者选题的标准是题目优美、简明,其证明方法基本并兼顾巧妙. 1.排序方法 对问题的里的变量不妨排出大小顺序,有时便于获得不等式的证明. 例1已知,,0a b c ≥,且1a b c ++=,求证: ()22229 1. a b c abc +++≥2.增量方法 在变量之间增设一个增量,通过增量换元的方法,便于问题的变形和处理.例2设,,a b c R + ∈,试证:2222 a b c a b c a b b c c a ++++≥+++.3.齐次化法 利用题设条件,或者其它变形手段,把原不等式转换为齐次不等式. 例3设,,0,1x y z x y z ≥++=,求证: 2222222221.16 x y y z z x x y z +++≤4.切线方法 通过研究函数在特殊点处的切线,利用切线段代替曲线段,来建立局部不等式.例4已知正数,,x y z 满足3x y z ++=,求证: 323235 x y +≤++.. 5.调整方法 局部固定,逐步调整,探究多元最值,便能获得不等式的证明. 例5已知,,a b c 为非负实数,且1a b c ++=,求证:13.4 ab bc ca abc ++-≤ 6.抽屉原理

在桌上有3个苹果,要把这3个苹果放到2个抽屉里,无论怎样放,我们会发现至少会有一个抽屉里面放2个苹果.这一简单的现象,就是人们所说的“抽屉原理”.巧用抽屉原理,证明某些不等式,能起到比较神奇的效果. 例6(《数学通报》2010年9期1872题)证明:在任意13个实数中,一定能找到两个实数,x y ,使得0.3.10.3x y x ->+7.坐标方法 构造点坐标,应用解析几何的知识和方法证明不等式. 例7已知a b c R ∈、、,a 、b 不全为零,求证: ()()()22 22222 22.a b ac a b bc a b c a b +++++≥+++8.复数方法 构造复数,应用复数模的性质,可以快速证明一些无理不等式. 例8(数学问题1613,2006,5)设,,,0,a b c R λ+ ∈≥求证:9.向量方法 构造向量,把不等式的证明纳入到向量的知识系统当中去. 例9已知正数,,a b c 满足1a b c ++=,求证: 4 ≤. 10.放缩方法 不等式的证明,关键在于恒等变形过程中的有效放大、或者缩小技巧,放和缩应当恰到好处. 例10已知数列{}n a 中,首项132 a = ,且对任意*1,n n N >∈,均有 11n n a a +=++()211332.42 n n n a -+<

【高中数学】利用导数证明不等式

第四节利用导数证明不等式 考点1作差法构造函数证明不等式 (1)欲证函数不等式f(x)>g(x)(x>a),只需证明f(x)-g(x)>0(x>a),设h(x)=f(x)-g(x),即证h(x)>0(x>a).若h(a)=0,h(x)>h(a)(x>a).接下来往往用导数证得函数h(x)是增函数即可. (2)欲证函数不等式f(x)>g(x)(x∈I,I是区间),只需证明f(x)-g(x)>0(x∈I). 设h(x)=f(x)-g(x)(x∈I),即证h(x)>0(x∈I),也即证h(x)min>0(x∈I)(若h(x)min不存在,则须求函数h(x)的下确界),而这用导数往往容易解决. 已知函数f(x)=ax+x ln x在x=e-2(e为自然对数的底数)处取得极小值. (1)求实数a的值; (2)当x>1时,求证:f(x)>3(x-1). [解](1)因为f(x)定义域为(0,+∞),f(x)=ax+x ln x, 所以f′(x)=a+ln x+1, 因为函数f(x)在x=e-2处取得极小值, 所以f′(e-2)=0,即a+ln e-2+1=0, 所以a=1,所以f′(x)=ln x+2. 当f′(x)>0时,x>e-2;当f′(x)<0时,0<x<e-2, 所以f(x)在(0,e-2)上单调递减,在(e-2,+∞)上单调递增, 所以f(x)在x=e-2处取得极小值,符合题意,所以a=1. (2)证明:由(1)知a=1,所以f(x)=x+x ln x. 令g(x)=f(x)-3(x-1), 即g(x)=x ln x-2x+3(x>0). g′(x)=ln x-1,由g′(x)=0,得x=e. 由g′(x)>0,得x>e;由g′(x)<0,得0<x<e. 所以g(x)在(0,e)上单调递减,在(e,+∞)上单调递增,

证明不等式的几种常用方法

证明不等式的几种常用方法 证明不等式除了教材中介绍的三种常用方法,即比较法、综合法和分析法外,在不等式证明中,不仅要用比较法、综合法和分析法,根据有些不等式的结构,恰当地运用反证法、换元法或放缩法还可以化难为易.下面几种方法在证明不等式时也经常使用. 一、反证法 如果从正面直接证明,有些问题确实相当困难,容易陷入多个元素的重围之中,而难以自拔,此时可考虑用间接法予以证明,反证法就是间接法的一种.这就是最“没办法”的时候往往又“最有办法”,所谓的“正难则反”就是这个道理. 反证法是利用互为逆否的命题具有等价性来进行证明的,在使用反证法时,必须在假设中罗列出各种与原命题相异的结论,缺少任何一种可能,则反证法都是不完全的. 用反证法证题的实质就是从否定结论入手,经过一系列的逻辑推理,导出矛盾,从而说明原结论正确.例如要证明不等式A>B,先假设A≤B,然后根据题设及不等式的性质,推出矛盾,从而否定假设,即A≤B不成立,而肯定A>B成立.对于要证明的结论中含有“至多”、“至少”、“均是”、“不都”、“任何”、“唯一”等特征字眼的不等式,若正面难以找到解题的突破口,可转换视角,用反证法往往立见奇效. 例1 设a、b、c、d均为正数,求证:下列三个不等式:①a+b<c+d; ②(a+b)(c+d)<ab+cd;③(a+b)cd<ab(c+d)中至少有一个不正确. 反证法:假设不等式①、②、③都成立,因为a、b、c、d都是正数,所以

不等式①与不等式②相乘,得:(a +b)2<ab +cd ,④ 由不等式③得(a +b)cd <ab(c +d)≤( 2 b a +)2 ·(c +d), ∵a +b >0,∴4cd <(a +b)(c +d), 综合不等式②,得4cd <ab +cd , ∴3cd <ab ,即cd <31 ab . 由不等式④,得(a +b)2<ab +cd < 34ab ,即a 2+b 2<-3 2 ab ,显然矛盾. ∴不等式①、②、③中至少有一个不正确. 例2 已知a +b +c >0,ab +bc +ca >0,abc >0,求证:a >0,b >0, c >0. 证明:反证法 由abc >0知a ≠0,假设a <0,则bc <0, 又∵a +b +c >0,∴b +c >-a >0,即a(b +c)<0, 从而ab +bc +ca = a(b +c)+bc <0,与已知矛盾. ∴假设不成立,从而a >0, 同理可证b >0,c >0. 例3 若p >0,q >0,p 3+q 3= 2,求证:p +q ≤2. 证明:反证法 假设p +q >2,则(p +q)3>8,即p 3+q 3+3pq (p +q)>8, ∵p 3+q 3= 2,∴pq (p +q)>2. 故pq (p +q)>2 = p 3+q 3= (p +q)( p 2-pq +q 2), 又p >0,q >0 ? p +q >0, ∴pq >p 2-pq +q 2,即(p -q)2 <0,矛盾.

证明不等式的几种方法

昭通学院 学生毕业论文 论文题目证明不等式的几种方法 姓名 学号 201103010128 学院数学与统计学院 专业数学教育 指导教师 2014年3月6日

证明不等式的几种方法 摘 要:证明不等式就是要推出这个不等式对其中所有允许值都成立或推出数值不等式成立。本文主要归纳了几种不等式证明的常用方法。 关键词:不等式; 证明; 方法 1.引言 在定义域中恒成立的不等式叫做恒不等式,确认一个不等式为恒不等式的过程为对该不等式进行证明。证明不等式的主要方法是根据不等式的性质和已有的恒不等式进行合乎逻辑的等价变换。主要方法有:比较法、综合法、分析法、反证法、归纳法、放缩法、构造法、导数法、均值不等式性质证明不等式等方法。 2.不等式证明的常用方法 2.1 比较法 比较法是直接作出所证不等式,两边的差(或商)然后推演出结论的方法。具体地说欲证B A >)(B A <,直接将差式B A -与0比较大小;或若当+∈R B A ,时,直接将商式 B A 与1比较大小[]1。 差值比较法的理论依据是不等式的基本性质:“若0≥-b a ,则b a ≥;若0≤-b a ,则 b a ≤.”其一般步骤为: 1.作差:观察不等式左右两边构成的差式,将其看成一个整体。 2.变形:把不等式两边的差进行变形,或变形成一个常数,或为若干个因式的积,或一个或几个平方和。其中变形是求差法的关键,配方和因式分解是经常使用的方法。 3.判断:根据已知条件与上述变形结果判断不等式两边差的正负号,最后肯定所求不等式成立的结论。 应用范围:当被证的不等式两端是多项式,对于分式或对数式时,一般使用差值比较法。 商值比较法的理论依据是:“∈b a ,+R ,若b a 1≥则b a ≥;若b a 1≤则b a ≤.”其一 般步骤为: 1.作商:将左右两端作商。 2.变形:化简商式到最简形式。

利用导数证明不等式的常见题型及解题技巧

利用导数证明不等式的常见题型及解题技巧

利用导数证明不等式的常见题型及解题技巧 趣题引入 已知函数 设, 证明:分析:主要考查利用导数证明不等式的能力。证明:,设 当时 ,当时 , 即在上为减函数,在上为增函数 ∴,又 ∴, 即 设 当时,,因此在区间上为减函数; 因为,又 ∴, 即 故综上可知,当 时,本题在设辅助函数时,考虑到不等式涉及的变量是区间的两个端点,因此, 设辅助函数时就把其中一个端点设为自变量,范例中选用右端点,读者不妨设为左端点试一试,就能体会到其中的奥妙了。技巧精髓 一、利用导数研究函数的单调性,再由单调性来证明不等式是函数、导数、 不等式综合中的一个难点,也是近几年高考的热点。 二、解题技巧是构造辅助函数,把不等式的证明转化为利用导数研究函数的 单调性或求最值,从而证得不等式,而如何根据不等式的结构特征构造一个 x x x g ln )(=b a <<02ln )(2 ( 2)()(0a b b a b g a g -<+-+<1ln )(+='x x g )2 (2)()()(x a g x g a g x F +-+=2 ln ln )2()(21)2(2)()(''''x a x x a g x g x a g x g x F +-=+-=?+-='a x <<00)(<'x F a x >0)(>'x F )(x F ),0(a x ∈),(+∞∈a x 0)()(min ==a F x F a b >0)()(=>a F b F 0)2 (2)()(>+-+b a g b g a g 2ln )(2 (2)()()(a x x a g x g a g x G --+-+=)ln(ln 2ln 2 ln ln )(x a x x a x x G +-=-+-='∴0>x 0)('0)()(=

相关文档
相关文档 最新文档