文档库 最新最全的文档下载
当前位置:文档库 › 反射式衍射光栅

反射式衍射光栅

反射式衍射光栅
反射式衍射光栅

分光计是用来把光源激发出来的复合光展开成光谱的一种仪器,这种仪器的主要作用使复合光色散。使之成为各种不同波长的光叫做光的色散或叫分光。有棱镜和光栅二种,以棱镜为色散元件做成的分光仪,有水晶、玻璃、萤石等多种分光仪。以光栅为色散元件的分光仪又有平面衍射光栅或凹面衍射光栅分光仪之分。由于光栅刻划技术和复制技术进一步的提高,光栅已广泛应用于光电直读光谱仪中。光栅与棱镜比较具有一系列优点。首先棱镜的工作光谱区受到材料透过率的限制;在小于120nm真空紫外区和大于50微米的远红外区是不能采用的,而光栅不受材料透过率的限制,它可以在整个光谱区中应用。

光栅的角色率几乎与波长无关,光栅角色散在第一级光谱中比棱镜大,不过在紫外250nm 时石英角色散比光栅角色率大。光栅的分辨率比棱镜大;由于光栅具有上述优点将更进一步得到应用。

衍射光栅的制造

一般说来,任何一种具有空间周期性的衍屏的光学元件都可以称为光栅,如果在一块镀铝的光学玻璃毛胚上刻划一系列等宽,等距而平行的狭缝就是透射光栅。如在一块镀铝的光学玻璃毛胚上刻出一系列剖面结构象锯齿形状,等距而平行的刻线这就是一块反射光栅。

现代光栅是一系列刻划在铝膜上的平行性很好的划痕的总和,为了加强铝膜与玻璃板的结构的结合力,在它们之间镀一层铬膜或钛膜。在光学光谱区采用光栅刻划密度为0. 5—2400条/毫米。目前大量采用的600条/毫米,1200条/毫米,2400条/毫米。

为了保持划痕间距d无变化,因此对衍射光栅的刻划条件要求很严。经验证明,对光栅刻划室的温度要求保持0.01—0.0313变化范围,光栅刻划机工作

台的水平振动不超过1—3微米,光栅刻划室应该清洁,要

避免通风带来的灰尘,光栅刻划室的相对湿度不应超过60—70%。光栅毛胚大多应有学玻璃和熔融石英研磨制成,结构如图。

毛胚应该加工得很好,其表面形状和局部误差要求甚严。任何表面误差将使衍射光束的波前发生变形,从而影响成象质量和强度分布。

为了提高真空紫外区反射率,铝膜上还镀上一层氟化镁。

制造光栅的方法有机械刻划,光电刻划,复制方法和全息照相刻划四种。

机械刻划是古老方法,但可靠,间隙刻划技术比较成熟。但要刻划一块100X100mm的光栅(刻划机的刻划速度为15—25条/分)计算须要4个昼夜。因此要求机器、环境在长时间内保持精确恒定不变。

光电刻划就是利用光电控制的方法可以在某种程度上排除光栅刻划过程中机械变动和环境条件改变所产生的各种刻划误差。它一方面提高了光栅刻划质量,另方面也能在一定程度上简化机械结构、降低个别零件的精度和对周围环境的要求。

光栅复制

光栅刻划时间长和效率低,因此成本很高,不能满足光谱仪器的需求。目前复制法有二种:一次复制法就是真空镀膜法。二次复制法是明胶复制法。一次复制法是一次制成,而二次复制法是先复制母光栅的划痕,然后用该划痕印划在毛胚的明胶上。

二次复制的工艺比较烦琐,但需要设备和条件都比较简单,明胶法复制光栅质量是比母光栅差些。

右图是一次复制法的工艺过程图,

1和2是母光栅的基板和铝膜,涂上一层薄

的硅油d的清洁的母光栅水平地置于真空

镀膜机中,镀一层1.5微米的铝膜。铝膜

和硅油之间是便于使光栅分离。在铝膜3

上再涂一层粘结剂4使铝膜能与复制光栅

的基板5牢固地结合,粘结剂用环氧树脂

加咪唑(1:10)

还有刻制光栅的方法叫全息照相刻划

法,其原理如下:二束相干光重叠会产生干

涉条纹,其间距为。

D=λ/2sinα

其中入为光束波长,α为两束光干涉前

的夹角。如图示激光的射出的相干光束,通过发散物镜O和针孔S,再经抛物镜P反射后落人两块平面反射镜P1和P2。由于平面镜P1和P2的反射使已分离的两束光成交于E面,其交角为2α。这两束光是相干的所以在正面产生干涉条纹,条纹的间距d。

若在面上放置一块予先涂上抗光蚀层的毛胚,则在蚀层获得干涉条纹的空间潜象,经显影后则在毛胚上获得干涉条纹的立体象(全息象),这就是透射衍射光栅。镀反射膜后可成为反射式衍射光栅。光栅的质量与膜层厚度同光栅常数之比例有关,与光栅毛胚的法线和两相干光束干涉前夹角的等分线是否一致有关,并与显影和曝光时间有关。

全息照相刻制具有以下优点

①改变激光器的波长,可以制造整个光谱区所需要的光栅。②全息照相刻划原则上无尺寸限制可制大光栅。③可制造平面和凹面光栅。④生产效率高、成本低,促使全息照相刻划光栅获得迅速的发展。?

§4—2 光栅方程

光栅能分光,是由于光栅上每个刻槽产生衍射的结果。由于光的衍射使光经过光栅后不同波长的光沿不同方向衍射出去。每个刻槽衍射的光彼此之间是互相干涉的。波长不同的光干涉的极大值出现的方向不同,因而复合光经过光栅后使色散而成光谱。这里,我们不对光栅每个刻槽的衍射和各刻槽之间多光束的干涉作详细地讨论,只给出光栅衍射后波长和衍射角的关系。

相邻两刻槽间距离为d,设入射光线与光栅法线成α角入射,此时不同波长的光衍射方向是不同的,如波长为入的光将与法线成β角的方向衍射。两相邻刻槽的衍射光①和②,在到光栅前,光线②多走光程为dsinα,而经光栅衍射后光线①又比光线②多走dsinβ,故衍射光①和②经光栅衍射后光程差为d(sinα—sinβ)。衍射光产生干涉,按干涉原理,当光程差为波长的整倍数时,起到了增强和迭加作用。因此,对于波长为入的光,其衍射方向应满足下列方程。

d(sinα—sinβ)=mλ (m为正整数)

显然,如果衍射光线和入射光线同在法线一侧,则光程差为:

d(si nα+sinβ)=mλ 由此得到下列公式:

d(sinα±sinβ)=mλ

式中:

d相邻两刻线间的距离,称光栅常数。

α入射角,即入射光束和光栅法线夹角。

β衍射角,即衍射光束和光栅法线夹角。

如α与β都在光栅法线同一侧,方程取“+”号。

如α与β都在光栅法线异侧时,方程取“—”号

λ衍射光的波长:

m干涉级或称光谱级。

这个公式称光栅方程,这对平面,凹面,反射和透射光栅都是适用。当给定光栅的入射角确定时,便可以计算不同波长衍射方向。

对于给定d和α值,计算不同波长光的β值时,如β为负值,即表示入射光和衍射光在法线的异侧;如β为正值,即表入射光和衍射光在法线的同侧。

光栅方程公式对每个不同的m值有相应的光谱,这称光谱的级。当m取0,1,2…时,分别为0级,1级,2级光谱。相应于各m的负值,有各负级光谱。所谓0级光谱,就是光栅不起色散作用,只起镜面反射形成的入射狭缝的像。

应当看到这样一个事实,当光栅常数d和入射角给定时,对于不同波长的光会被衍射到不同的β角方向,这就是光栅的分光作用,这些被分光后的光束经聚焦后就成为按波长排列的狭缝象一光谱线。应当看到,一级光谱中波长为λ的谱线和波长为λ/2的二级谱线,波长为λ/3的三级谱线一重迭在一起,这是光栅光谱的一个特点。

光栅的色散

光栅的角色率是指它对不同波长的光彼此衍射的角度间隙的大小,这是作为色散元件光栅的重要参量。我们把光栅方程的d和α看作常量,对β和λ求微分可得到:

这就是表示光栅的角色散率的公式,其单位是弧度/nm。

由上式可以看出,光栅的角色散率随不同的衍射角β而变化。但当衍射光在光栅的法线方向,则

β=0,COSβ=1。如取正一级光谱,则角色散率就是以弧度/nm为单位光栅常数的倒数。尽管角色散率是光栅的重要参数,但通常并不标出,只标出光栅每毫米宽度中的刻线数。减少d值,就可以提高分光仪的角色率。但是,光栅的刻线密度有一定的限制。对于给定的光栅,如果我们利用级数高的光谱,也可提高色散率。如二级光谱的角色散率是一级光谱的两倍。

通常不用角色散来标志分光仪的性能,而用线色散率或线色散率的倒数来标志其性能。

线色散率是标志不同波长的谱线在分光仪焦面上分开的线距离的大小,它的单位是mm/n m,线色散率和角色散率的关系为:(只有当焦面垂直于仪器的光轴时,此式能成立)。

其中f是分光仪的成象焦距。由此可见,要增大分光仪的线色散率,须提高光栅的角色散率或者增长分光仪的焦距。

习惯上分光仪的色散能力总是以线色散率的倒数来表示。即用nm/mm来表示。因此,这个数字愈小,表示分光仪的色散能力愈大。

光栅的分辨本领

光栅的分辨本领指的它能分开相邻谱线的能力。当然光栅分辨本领同它的角色散率有关。但并不是一回事,两者有不同的概念。如果波长λ+Δλ的谱线刚好能与波长λ谱线分开,在这个光谱区域的分辨本领的定义用R=λ/dλ来表示,称之为理论分辨率。如图所示:

分辨率可分为理论分辨率及实际分辨率。理论分辨率比实际分辨率大。理论分辨率的数等于mN。用下式表示

式中:m为光栅级次

N为光栅的总线槽数。数值上等于光栅的有效长度L(毫米)和线槽密度N(线/毫米)的乘积,因此上式可写为:

R理论=m?N=m?L?n

由此可知,影响理论分辨率的因素是光谱级次,光栅有效长度,光栅的线槽密度以及光的入射角和衍射角。R随这些因素增大而增大。

实际分辨率还要考虑到其他因素,例如光学系统的象散,仪器狭缝的实际宽度及色散能力,接受器的分辨能力等,因此R实际要比R理论小。

实际分辨率的表示方法,指出该仪器可以分辨开那些谱线组中的邻近线,这时可以选择谱线组中相距最近的两条谱线的平均波长入与其波长差Δ入之比来表示。

光栅的集光本领

集光本领取决于光栅刻划面积的大小,因为光强正比于仪器相对孔径的平方值,故衡量集光本领只需比较相对孔径值的大小,而相对孔径D/f上的D值是指光栅刻划面积的等效直径

值,即

式中:h 光栅高度,

B 光栅宽度,

α 入射角。

凹面光栅

凹面光栅与平面光栅的区别在于毛胚为凹球面反射镜刻成光栅的,在光电直读光谱仪中,凹面光栅本身既是色散元件,又是聚焦元件,由于凹面光栅分光仪的色差小,透镜吸收小,反射损失率小,所以能用到远紫外光谱区。

凹面光栅所产生的光谱完全符合光栅方程:

d(sinα±sinβ)=mλ

其中α:入射角

β:衍射角

m:光谱级数

d:光栅常数

入:衍射波长

α和β在法线同侧时取十号,异侧时取—号,d是指球面上弦等分的刻线槽距。罗兰(RowL and)于1882年发现凹面光栅所产生的光谱线的焦点可由下式表示:

式中:α 入射角

β 衍射角

ρ 凹面光栅的曲率半径。

S 入缝到光栅中心的距离。

S’光栅面中心到谱线位置的距离。

罗兰发现,当其中一个解为:

s =ρcosα

s’=ρcosβ

时,入射狭缝s,谱线s,及光栅面中心G在一个图上,该园称为罗兰圆。圆的直径即为凹面光栅的曲率半径Po必须注意,光栅在G点是与园相切的,并不与它相重合,光栅的半径不是园的半径,而是它的直径,同时,该园是垂直于光栅刻线方向的。

光栅的闪耀

光栅的闪耀涉及能量分配问题。由于光栅的分光作用和棱镜不同,同时产生着许多级的光谱,这样就使得光栅分光时能量分配十分分散,每级光谱能量很弱,尤其是零级光谱占去很大部分。但它是不产生色散的,不能利用的。

光栅分光后,在每一级光谱中间的能量分配取决于光栅刻槽的微观形状,因此在反射光栅中,可以控制刻槽平面和光栅平面之间的夹角,使每个刻槽平面就好象一面镜子把光能高度集中到一个方向去,

这种方法叫闪耀。

如果入射光沿N,方向入射,显然沿N’方向衍射的波长的光能量最强,因为这个方向正好是每个小刻槽面象镜子一样反射光方向。我们定义这个衍射方向的波长,即从光栅上衍射的方向恰好的槽面反射光的方向的那个波长为闪耀波长。因此,沿N,方向入射,闪耀波长就是沿N,方向衍射的波长应满足方程

光栅的鬼线

一块理想的光栅刻线应该是等距离的。但实际是难以做到的。总是存在一些误差。这种刻线的误差,在光栅仪器中产生的光谱中以鬼线和伴线的形式表现出来。也就是说在不应该有谱线的位置上出现“伪线”

1.罗兰鬼线

当刻线间隔有周期性误差时,所出现的伪线称为罗兰鬼线。这些鬼线离母线很近,在母线两边对称出现。

2.赖曼鬼线

如果光栅刻线误差是两种周期误差迭加起来的复合误差,则所产生的伪线为离母线很远的“赖曼鬼线”。这种鬼线与母线的距离为母线波长的简单的整数分数倍。

3.伴线:

如果光栅上某一局部地方有少数几条间隔不正确的刻线,则在光谱中产生伴线,或称卫线。伴线一般离母线极近。有时分不开。

全内反射式衍射光栅近场光学特性

第19卷 第9期强激光与粒子束Vol.19,No.9 2007年9月H IGH POWER LASER AND PART ICLE BEAMS Sep.,2007 文章编号: 1001-4322(2007)09-1413-04 全内反射式衍射光栅近场光学特性 *周平和1, 王少华1, 刘世杰1,2, 邵建达2 (1.陕西理工学院物理系,陕西汉中723000; 2.中国科学院上海光学精密机械研究所,上海201800) 摘 要: 利用傅里叶模式理论分析了具有高衍射效率的全内反射式衍射光栅在T E 和T M 偏振态下的 近场光分布特点,讨论了光栅结构参数以及入射角度对光栅内电场增强的影响。结果表明:全内反射光栅内部 电场分布对偏振态较敏感,光栅槽深和占宽比对电场增强影响较小,光栅内的峰值电场随光栅周期增大而增 大,并且峰值电场随着入射角度的增大而减小。在应用于高功率激光时,降低光栅内部的电场增强可以有效降 低损伤风险。 关键词: 全内反射; 衍射光栅; 电场增强; 损伤阈值; 近场分布 中图分类号: T B113 文献标识码: A 高衍射效率的光栅在现代光学系统中发挥着重要的作用,包括光通信、光谱测量、传感和成像等。高效率光栅也是激光系统中不可缺少的元件,特别是作为啁啾脉冲放大(CPA)系统中的脉冲展宽/压缩器[1]。用于CPA 系统中的衍射光栅不仅要有高的衍射效率,而且用于压缩超短脉冲的光栅也需要较高的损伤阈值,以保证整个激光系统的稳定运行。由于存在较大的吸收,金属光栅的损伤阈值较低,也限制了衍射效率的进一步提高[2]。相比之下,全介质光栅具有很低的吸收,制作材料可具有高于金属膜数十倍的损伤阈值,衍射效率也接近100%,从而减少了能量损耗。因此,发展高效率的全介质光栅是提高脉冲激光功率的必由之路。 近年来提出的多层介质膜光栅(M DG)被广泛用于CPA 系统[3]。M DG 由多层介质高反射膜和位于其顶层的浮雕光栅组成,在自准直角使用条件下,MDG 的-1级衍射效率可高于99%,损伤阈值目前已提高到4.5J/cm 2(10ps,1053nm )[4]。然而,MDG 不仅需要设计顶层光栅结构,还要考虑底层高反射膜的特性,随着光栅面积的增大,多层膜的均匀性和清洁度的控制也给工艺过程带来挑战[5]。因此,直接在体材料上制作光栅成为获得这种高衍射效率光栅的另外一种选择,体材料的损伤阈值也要比薄膜材料高得多[6]。最近,Maciante 等人提出了一种基于全内反射(T IR)原理的光栅[7],该光栅直接制作在熔石英材料上,在全内反射和自准直使用条件下,-1级衍射效率仍可高于99%。在不同使用波长处,通过优化T IR 光栅结构可以获得高效、低插入损耗的各种应用器件[8]。然而,对于应用于高功率激光系统的光栅,近场光分布特性对其抗激光损伤特性有重要的影响。这主要是由于高峰值电场强度是光栅材料发生雪崩离化导致破坏的主导因素[9-10]。目前,对于满足高效率的TIR 光栅,其峰值电场随光栅结构的变化规律报道还很少。因此,理论分析和优化TIR 光栅的近 场光分布对其在高功率激光系统中的应用有重要意义。 Fig.1 Structu re of TIR grating 图1 T IR 光栅结构示意图 本文利用傅里叶模式理论分析了T IR 光栅近场光分布, 分别讨论了TE 波和TM 波入射时,具有高效率的TIR 光栅 的近场光分布特点,分析了峰值电场随光栅槽深、占宽比以及 周期的变化规律,最后讨论了入射角度变化对峰值电场的影 响。 1 理论模型 图1为T IR 光栅结构示意图,具有矩形结构的浮雕光栅 位于石英体材料上。当入射光以自准直角 i 从石英入射到 光栅,并且光栅周期满足(1)式时,入射光全部被反射回石英 体内,且沿入射光反方向上可获得接近100%的衍射效率[7]*收稿日期:2007-03-27; 修订日期:2007-09-05 基金项目:国家自然科学基金资助课题(10376040);陕西理工学院科研基金资助课题(SLGQD0406)作者简介:周平和(1955 ),男,陕西汉中人,实验师,主要从事光电技术的研究;zhou pinghe@https://www.wendangku.net/doc/cc11178876.html, 。

衍射光栅实验

衍射光栅实验 【实验目的】 1.了解分光计的原理与结构。 2.学习掌握分光计的调节方法。 3. 观察光通过光栅后的衍射现象。 4. 测透射光栅的光栅常数。 5. 用透射光栅测光波波长 【仪器用具】 分光计、光源、平面反射镜、汞灯光源、透射光栅 【实验原理】 1.分光计 分光计是一种用来精确测量角度的仪器,如测量反射角、折射率和衍射角等。通过测量有关角度,可以确定测定材料的折射率、光波波长和色散率等,其用途十分广泛。近代摄谱仪、单色仪等精密光学仪器也是在分光计的基础上发展起来的。 分光计结构复杂、构件精密、调节要求高,对初学者有一定难度。但只要了解了其结构和光路,严格按要求步骤耐心调节,就能掌握。 (一)仪器描述 图1 JJY型分光仪 1狭缝体锁紧螺钉;2 狭缝体锁紧螺钉;3 狭缝宽度调节手轮;4 狭缝体高低调节手轮; 5 平行光管部件;6平行光管水平调节螺钉;7载物台;8载物台调平螺钉;9 望远镜部件;10望远镜水平调节螺钉;11目镜组锁紧螺钉;12目镜组;13目镜调节手轮;14望远镜光轴高低调节螺钉;15支臂;16望远镜微调螺钉;17转座;18度盘止动螺钉;19载物台锁紧螺钉;20制动架;21望远镜止动螺钉;22度盘;23底座;24立柱;25游标盘微调手轮;26游标盘止动螺钉。 分光计的种类繁多,但构造基本相同。分光计主要由望远镜、平行光管、载物台、光学游标刻度盘四部分组成,其外形如图1所示。 分光计的下部是金属底座,底座中央装有竖直的固定轴,望远镜、载物台、主刻度盘和游标刻度盘都可绕这一固定竖轴旋转,此轴为分光计主轴(中心轴)。 (1)望远镜它由物镜、阿贝目镜、分划板三部分组成。分划板上刻有双十字准线(“╪”),在分划板的右下方紧贴一块45°全反射小三棱镜,其表面涂不透明薄膜,薄膜上刻有一个空心十字透光窗口,反射棱镜另一光学面上涂有绿色,当小电珠光从管侧射入后成为

光栅衍射实验

光栅衍射实验 Prepared on 22 November 2020

一、实验名称:光栅衍射实验核51粟鹏文 二、实验目的: (1)进一步熟悉分光计的调整与使用; (2)学习利用衍射光栅测定光波波长及光栅常数的原理和方法; (3)加深理解光栅衍射公式及其成立条件。 三、实验原理: 衍射光栅简称光栅,是利用多缝衍射原理使光发生色散的一种光学元件。它实际上是一组数目极多、平行等距、紧密排列的等宽狭缝,通常分为透射光栅和平面反射光栅。透射光栅是用金刚石刻刀在平面玻璃上刻许多平行线制成的,被刻划的线是光栅中不透光的间隙。而平面反射光栅则是在磨光的硬质合金上刻许多平行线。实验室中通常使用的光栅是由上述原刻光栅复制而成的,一般每毫米约250~600条线。由于光栅衍射条纹狭窄细锐,分辨本领比棱镜高,所以常用光栅作摄谱仪、单色仪等光学仪器的分光元件,用来测定谱线波长、研究光谱的结构和强度等。另外,光栅还应用于光学计量、光通信及信息处理。 1.测定光栅常数和光波波长 光栅上的刻痕起着不透光的作用,当一束单色光垂直Array照射在光栅上时,各狭缝的光线因衍射而向各方向传 播,经透镜会聚相互产生干涉,并在透镜的焦平面上形 成一系列明暗条纹。 如图1所示,设光栅常数d=AB的光栅G,有一束平行 光与光栅的法线成i角的方向,入射到光栅上产生衍射。 从B点作BC垂直于入射光CA,再作BD垂直于衍射光 AD,AD与光栅法线所成的夹角为。如果在这方向上由图1光栅的衍射

于光振动的加强而在F 处产生了一个明条纹,其光程差CA +AD 必等于波长的整数倍,即: ()sin sin d i m ?λ±=(1) 式中,为入射光的波长。当入射光和衍射光都在光栅法线同侧时,(1)式括号内取正号,在光栅法线两侧时,(1)式括号内取负号。 如果入射光垂直入射到光栅上,即i=0,则(1)式变成: sin m d m ?λ=(2) 这里,m =0,±1,±2,±3,…,m 为衍射级次,m 第m 级谱线的衍射角。 2.用最小偏 向角法测定光波波长 如图2所示,波长为λ的光束入射在光栅G 上,入射角为i ,若与入射线同在光栅 法线n 一侧的m 级衍射光的衍射角为沪,则由式(1)可知 ()sin sin d i m ?λ±=(3) 若以△表示入射光与第m 级衍射光的夹角,称为偏向角, i ??=+(4) 显然,△随入射角i 而变,不难证明i ?=时△为一极小值,记作δ,称为最小偏向角。并且仅在入射光和衍射光处于法线同侧时才存在最小偏向角。此时 2 i π ?== (5) 带入式(3)得 2sin 2 d m δ λ=m=0,±1,±2, (6) 由此可见,如已知光栅常数d ,只要测出了最小偏向角δ,就可根据式(6)算出波长λ。 四、主要的实验仪器及实验步骤: 图2衍射光谱的偏向角示意图 图3光栅衍射光谱

平面光栅摄谱仪原理

(平面)光栅摄谱仪原理 光栅摄谱仪的色散元件是光栅。 ★光栅的色散作用 光栅分为透射光栅和反射光栅,用得较多的是反射光栅.反射光栅又可分为平面反射光栅(或称闪耀光栅)及凹面反射光栅。光栅是一种多狭缝元件,光栅光谱的产生是单狭缝衍射和多狭缝干涉两者联合作用的结果。单狭缝衍射决定谱线的强度分布,多狭缝干涉决定谱线出现的位置。 图10.14 平面光栅色散原理 图10.14是平面反射光栅的一段垂直于刻线截面的色散示意图.其色散作用可用光栅公式表示:

式中、分别为入射角和衍射角,d为光栅常数,n为光谱级次,n =0,±1,±2,…。角规定为正值,如果角与角在光栅法线同侧, 角取正值,异侧取负值。当n=0时,即零级光谱,衍射角与波长无关,即无分光作用。在n>0的相邻光谱级次之间,会产生不同级次光谱的重叠,可采用滤光片或低色散的棱镜分级器等方法消除。 ★光栅的光学特性 光栅的光学特性有色散率、分辨率及闪耀三个方面表示。 色散率 当入射角不变时,光栅的角色散率可用光栅公式微分求得: 当很小且变化不大时,可以认为cos=1。则,即光栅 的角色散率只决定于光栅常数d 及光谱级数n,可以认为是常 数,不随波长而变,这样的光谱在长波及短波的各波段时波长 间隔是一样的,称为“均排光谱”。这是光栅优于棱镜的一个方 面。在实际工作中常用线色散率表示,对于平面光栅来说,线色散率为:

(凹面光栅的线色散率为,r为曲率半径) 式中为会聚透镜的焦距。由于则cos≈1(≈6o)则。 分辨率 光栅的分辨率R为光谱级次与光栅刻痕总数N(光栅的宽度与 单位长度的刻痕数的乘积)的乘积,即 例如,对于一块宽度为50mm,单位长度刻痕数为1200条/mm 的光栅,在第一级光谱中(n=1),它的分辨率为: R=nN=1×50×1200=6×104 可见光栅的分辨率比棱镜高得多,这是光栅优于棱镜的又一方 面。光栅的宽度越大,单位长度的刻痕数越多,分辨率就越大。闪耀特性 在平面光栅中,不同级次光谱的能量分布是不均匀的。未经色散的零级(n=0)光谱的能量最大,按正负一级、二级光谱等逐级减弱。若将光栅的刻痕刻成具有三角形的槽线,使每一刻痕的小反射面与光栅平面保持一定的夹角,以控制每一个小反射面对光的反射方向,使光能集中在所需要的一级光谱上,获得特别明亮的光谱,这个现象称为闪耀,这种光栅称为闪耀光栅,刻痕的小反射面与光栅平面夹角称

光栅衍射

光栅衍射 衍射光栅是利用单缝衍射和多缝干涉原理使光发生色散的元件。它是在一块透明板上刻有大量等宽度等间距的平行刻痕,每条刻痕不透光,光只能从刻痕间的狭缝通过。因此,可把衍射光栅(简称为光栅)看成由大量相互平行等宽等间距的狭缝所组成。由于光栅具有较大的色散率和较高的分辨本领,故它已被广泛地应用于各种光谱仪器中。光栅一般分为两类:一类是利用透射光衍射的光栅称为透射光栅;另一类是利用两刻痕间的反射光进行衍射的光栅称为反射光栅。本实验选用的是透射光栅。 一. 实验目的 1. 进一步熟悉分光计的调整和使用。 2. 观察光栅衍射的现象,测量汞灯谱线的波长。 二. 实验仪器 分光计、光栅、汞灯、平面镜等。 三. 实验原理 当一束平行单色光垂直入射到光栅上,透过光栅的每条狭缝的光都产生有衍射,而通过光栅不同狭缝的光还要发生干涉,因此光栅的衍射条纹实质应是衍射和干涉的总效果。设光栅的刻痕宽度为a ,透明狭缝宽度为b ,相邻两缝间的距离d=a+b ,称为光栅常数,它是光栅的重要参数之一。 如图3-15-1所示,光栅常数为d 的光栅,当单色平行光束与光栅法线成角度i 入射于光栅平面上,光栅出射的衍射光束经过透镜会聚于焦平面上,就产生一组明暗相间的衍射条纹。设衍射光线AD 与光栅法线所成的夹角(即衍射角)为φ,从B 点作BC 垂直入射线CA ,作BD 垂直于衍射线AD ,则相邻透光狭缝对应位置两光线的光程差为: )sin (sin i d AD AC +=+? (3-15-1) 当此光程差等于入射光波长的整数倍时,多光束干涉使光振动加强而在F 处产生一个明条纹。因而,光栅衍射明条纹的条件为: λ?K i d K =+)sin (sin K=0,±1,±2, (3-15-2) 式中λ为单色光波长,K 是亮条纹级次,K ?为K 级谱线的衍射角,i为光线的入射角。此式称为光栅方程,它是研究光栅衍射的重要公式。 本实验研究的是光线垂直入射时所形成的衍射,此时,入射角i=0 图3-15-1 光栅衍射原理示意图

VCD和DVD用全息光栅衍射效率的分析_梁万国

第22卷第6期半 导 体 学 报 V o l.22,N o.6 2001年6月 CHIN ESE JOU R NA L O F SEM I CO N DU CT O RS June ,2001 *国家“863”高技术计划资助项目.2000-06-19收到,2000-08-22定稿 ○ c 2001中国电子学会VCD 和DVD 用全息光栅衍射效率的分析 * 梁万国1  郑婉华1  谢敬辉2  梁恩主1  陈良惠1  李 卉1  刘 浩 1 (1中国科学院半导体研究所光电子器件国家工程研究中心,北京 100083) (2北京理工大学光电工程系,北京 100081) 摘要:在V CD 和DV D 中由于使用了全息光学元件,全息光学读出头的元件数量比传统光头的元件数量少.分析了光盘信号探测、聚焦、循迹原理.推出了光栅衍射效率的一般计算公式,并给出了光栅沟槽形状为“方波”时光栅衍射效率的计算公式,由此计算出了V CD 和DV D 实用的全息光学元件的蚀刻深度.关键词:全息光学元件;光学读出头;衍射效率 EEACC :4320J ;4270;4140 中图分类号:O 438.1 文献标识码A 文章编号:0253-4177(2001)06-0784-04 1 序言 八十年代末、九十年代初,夏普(SHARP) [1] 、松 下(M ATSU SHIT A )[2]等CD 唱机、CD -ROM 及其 元器件的主要生产厂家先后研制出集成了或部分集成了半导体激光器(LD )、光电集成电路(集成有半导体光探测器PD 和放大电路)和全息光学元件(HOE )的混合集成元件,以满足对CD 和CD -ROM 提出的小型化、高速度的要求.96至97年以来,随着DV D 的出现和迅速发展,几家大公司在原有CD 用OEIC 的基础上,推出了几种不同形式的DVD 用OEIC ,甚至DVD /CD 兼容的OEIC 组件. 从构成上看,这种OEIC 组件有的包括LD 、PD 、放大器和HOE,有的只包含上述部分元件.从集成方式上看,有两种典型方式.一种以夏普公司的产品为代表,另一种以松下公司的产品为代表. 夏普公司的组件中,LD 与OPIC 分别安装在底座不同位置上,由带有玻璃窗口的管帽封装.在玻璃窗口上方,是一个全息光学元件.该全息光学元件由玻璃制成,在其上、下两面,分别刻有全息光栅,光栅由标准的光刻工艺制造.OPIC 采用硅双极工艺制造,PD 与放大电路实现单片集成.夏普公司此类组件已成系列,从用于CD/CD-ROM 到97年推出的 用于2倍速DVD -ROM .其用于2倍速DVD 的组 件响应频率大于20MHz .最近,该公司正在开发用于4倍速DVD 的OPIC . 总之,经多方调查,DVD /CD 用OEIC 组件的 开发与研制已成为实现DVD/CD 系统高速度、高可靠性、小型化的关键,因而也成为各商家竞争的焦点之一. 本文研究各种沟槽形状光栅的衍射效率的计算方法. 2 全息光学头的结构和探测原理 2.1 全息激光头的结构 图1为SHARP 公司生产的传统光学读出头和全息光学读出头的结构示意图[1].在图1(a)传统的光头中,由激光器(Laser Diode )发出的激光经光栅 (Grating)衍射后分为0,±1,±2,…等衍射级,在光盘信号的读出、聚焦和循迹中,只用0,±1级衍射光(其它级的衍射光当杂散光处理),它们经分束镜(Beam -Splitter )反射后进入准直镜和物镜,经准直镜和物镜聚焦成很小的光斑入射到光盘上,经光盘反射后的诸光束再经准直镜、物镜后入射到分束镜上,经分束镜透射后入射到一凹面镜(Concave

光栅光谱

光 栅 光 谱 仪 实 验 报 告 11级物理学01班

光栅光谱演示实验报告 光栅光谱仪系统 (Grating spectrum-meter system) 光谱分析方法作为一种重要的分析手段,在科研、生产、质控等方面,都发挥 着极大的作用。无论是穿透吸收光谱,还是荧光光谱,拉曼光谱,如何获得单波长 辐射是不可缺少的手段。由于现代单色仪可具有很宽的光谱范围(UV- IR),高光谱 分辨率(到0.001nm),自动波长扫描,完整的电脑控制功能极易与其他周边设备融 合为高性能自动测试系统,使用电脑自动扫描多光栅单色仪已成为光谱研究的首选。 实验目的:演示氦、氖、氢、汞、氮气体的光谱,并通过正交光栅观察这些光谱管的衍射图像。实验原理:光栅作为重要的分光器件,它的选择与性能直接影响整个系统性能。为 更好协助各位使用者选择,在此做一简要介绍。 光栅分为刻划光栅、复制光栅、全息光栅等。刻划光栅是用钻石刻刀在涂薄金属表 面机械刻划而成;复制光栅是用母光栅复制而成。典型刻划光栅和复制光栅的刻槽 是三角形。全息光栅是由激光干涉条纹光刻而成。全息光栅通常包括正弦刻槽。刻 划光栅具有衍射效率高的特点,全息光栅光谱范围广,杂散光低,且可作到高光谱 分辨率。 氦、氖、氢、汞、氮气体的放电管能显示出这些气体的特定波长的各种特征谱线。 气体放电管由储气室和毛细管构成,其一端为阳极,另一端为阴极。不同的气体放 电管充以不同的气体,例如氦气、氖气等。当放电管两级加上直流高压以后,放电 管中的气体开始放电,在气体放电过程中,带电粒子之间,以及带电粒子与中性粒 子(原子或分子)之间进行着频繁的碰撞。碰撞使中性粒子(原子或分子)由基态 跃迁到激发态。当原子或分子由激发态跃迁回到基态时发射光子。气体放电发射的 光谱与气体元素有关,因为不同原子(分子)的结构各不相同,能级也不相同,因 此发射的光谱也彼此各异。光谱分析方法作为一种重要的分析手段,在科研、生产、

实验:一维平面反射光栅衍射测量激光波长-实验报告

实验: 一维平面反射光栅衍射测量激光波长________________________________ 一.实验目的 1. 观察光栅衍射现象. 2. 利用一维平面反射光栅衍射测量激光波长. 二?实验原理 光栅衍射: 光栅:屏函数是空间的周期函数的衍射屏,即具有周期性结构的衍射屏.一般常用的刻 划光栅是在玻璃片上刻出大量平行刻痕制成,刻痕为不透光部分,两刻痕之间的光滑部分 可以透光,相当于一狭缝.精制的光栅,在Icm宽度内刻有几千条乃至上万条刻痕。 透射光栅:利用透射光衍射 反射光栅:禾U用反射光衍射。比如,在镀有金属层的表面上刻出许多平行刻痕,两刻痕间的 光滑金属面可以反射光。直尺表面刻痕可看作“一维平面反射光栅” 平面反射光栅衍射: 激光笔输出光以大角度斜入射到镜面(如家中光滑桌面)时,反射光在观察屏(如墙面) 上形成一个光斑. 激光笔输出光以大角度斜入射到平面反射光栅表面(如直尺),在观察屏(墙面)上会看到一 排规则排列的衍射光斑。 激光笔输出光以大角度斜入射到直尺表面刻度线形成的一维平面反射光栅时,直尺表面A 位置和B位置的光到达观察屏C位置时的光程差可以写作:= OBC- 0AC=d (CoS k—CoS ), 由光栅衍射原理可知,当光程差为零或者为入射光波长的整数倍时,即=k (k= 0, 1, 2, 3,.??)时,观察屏上就会出现亮斑。 = OBC— OAC=d(cos k-cos )=d ( 。L2- r-L j—-),d 是直尺表面刻度线 k C2 Γ2 I 2 ,2 〈2 h k L I h I 形成的反射光栅常数(通常为0.5 mπ或者1 mm)h1是激光笔出光口到直尺表面的垂直距离, L I是激光笔出光口到直尺表面光斑中心的水平距离, h k是观察屏上衍射斑到直尺表面的垂 直距离,是L 2观察屏到直尺表面光斑中心的水平距离.上述物理量在实验上都是容易测量

1937年诺贝尔物理学奖——电子衍射

1937年诺贝尔物理学奖——电子衍射 1937年诺贝尔物理学奖授予美国纽约州纽约贝尔电话实验室的戴维森(Clinton Joseph Davisson,1881——1958)和英国伦敦大学的G.P.汤姆孙(Sir George Paget Thomson,1892—1975),以表彰他们用晶体对电子衍射所作出的实验发现。 20世纪20年代中期是物理学发展的关键时期。波动力学已经由薛定谔在德布罗意的物质波假说的基础上建立了起来,和海森伯从不同途径创立的矩阵力学,共同形成微观体系的基本理论。这一巨大变革的实验基础自然成了人们关切的课题,这就激励了许多物理学家致力于证实粒子的波动性。然而,直到1927年,才由美国的戴维森和英国的G.P.汤姆孙分别作出电子衍射实验。虽然这时量子力学已得到了广泛运用,但电子衍射实验的成功仍引起了世人的注意。 戴维森1881年10月22日出生在美国伊利诺斯州的布鲁明顿(Bloomington),早年在布鲁明顿公立学校读书。1902年中学毕业后,由于他的数学和物理成绩优异而获得芝加哥大学的奖学金,于当年9月进入芝加哥大学,在那里受教于密立根,曾一度当过密立根的助手,他在大学学习期间因付不起学费,一边教物理,一边攻读,是当时成绩最突出的一位学生,深受密立根喜爱,后来戴维森到普林斯顿(Princeton)大学工作,从事电子物理学的研究实习。正好著名的热电子发射专家里查森(O.W.Richardson)从英国应邀到普林斯顿大学作研究教授。密立根和里查森对戴维森都有很深的影响。戴维森有点口吃。教学效果不好,后来就放弃在大学任教,于1917年转入西部电气公司的工程部(现在叫贝尔电话实验室)从事研究工作,成绩卓著。他的研究集中在两个领域:热电子发射和二次电子发射。1921年,他和助手康斯曼(C.H.Kunsman )在用电子束轰击镍靶的实验中偶然发现,镍靶上发射的“二次电子”竟有少数具有与轰击镍靶的一次电子相同的能量,显然是在金属反射时发生了弹性碰撞,他们特别注意到“二次电子”的角度分布有两个极大值,不是平滑的曲线。他们仿照卢瑟福α散射实验试图用原子核对电子的静电作用力解释这一曲线。显然,他们没有领悟到这是一种衍射现象。 后来,戴维森花了两年多的时间继续这项研究,设计和安装了新的仪器设备,并用不同的金属材料作靶子。工作虽然没有多大进展,但却为以后的工作作了技术准备。1925年,戴维森和他的助手革末(L.H.Germer,比戴维森小15岁)又开始了电子束的轰击实验。一次偶然的事件使他们的工作获得了戏剧性的进展。有一天,正当革末给管子加热、去气,用于吸附残余气体分子的炭阱瓶突然破裂了,空气冲进了真空系统,致使处于高温的镍靶严重氧化。过去这种事情也发生过,整个管子只好报废。这次戴维森决定采取修复的办法,在真空和氢气中加热、给阴极去气。经过两个月的折腾,又重新开始了正式试验。在这中间,奇迹出现了。1925年5月初,结果还和1921年所得差不多,可是5月中曲线发生特殊变化,出现了好几处尖锐的峰值。他们立即采取措施,将管子切开,看看里面发生了什么变化。经公司一位显微镜专家的帮助,发现镍靶在修复的过程中发生了变

光栅式光谱仪原理

一、平面衍射光栅的分光原理 (一)光栅方程式 反射式平面衍射光栅是在高精度平面上刻有一系列等宽而又等间隔的刻痕所形成的元件,一般的光栅在一毫米内刻有几十条至数千条的刻痕,刻划面积可达到600mm×400mm。 如图12-7所示,当一束平行的复合光入射到光栅上,光栅能将它按波长在空间分解为光谱,这是由于多缝衍射和干涉的结果。光栅产生的光谱,其谱线的位置是由多缝衍射图样中的主最大条件决定的。 如图12-7所示,相邻两刻线对应的光线和光线的光程差为: 见?物光? P196(5-71)式 从波动光学可知:多缝夫琅和费衍射的强度分布公式为: 相干光束干涉极大值的条件为:

由式(1)和(2)可得相邻两光线干涉极大值的条件——光栅方程式为: 式中i--入射角 θ--衍射角 d--刻痕间距,通常称为光栅常数 m--光谱级次,m= (3)式可改写成: (二)讨论 由(4)式看出,当栅距d和入射角i一定时, 1. 从级开始,不同波长的同一级主最大,按波长次序由短波向长波散开(图12-8)。2. m=0 时,零级光所有波长都混在一起,没有色散,称零级光谱。其位置对应于反射方 向,即在零级光两边,m>0 称正极光谱;m<0 称负级光谱。

(三)限制条件 最高光谱级次受条件 与光栅常数d成反比,在遵守(5)式条件下,d选小的可获得大的色散率。

实用中常用逆线色散率来表示,单位一般用nm/mm。 3.光栅的分辨率

(8)式就是光栅理论分辨率公式。可知:

图12-11中,入射狭缝S1和出射狭缝S2都位于色散系统的同一侧,都在M的焦面上。由入射狭缝S1发出的光束,经凹面反射镜M反射后成为平行光束,投射到光栅G上,经光色散后的光束重新投射到M上,经M聚焦由平面镜M1转折到S2狭缝射出。

实验:一维平面反射光栅衍射测量激光波长-实验报告

实验: 一维平面反射光栅衍射测量激光波长 一.实验目的 1.观察光栅衍射现象。 2.利用一维平面反射光栅衍射测量激光波长。 二.实验原理 光栅衍射: 光栅:屏函数是空间的周期函数的衍射屏,即具有周期性结构的衍射 屏。一般常用的刻划光栅是在玻璃片上刻出大量平行刻痕制成,刻痕 为不透光部分,两刻痕之间的光滑部分可以透光,相当于一狭缝。精制的光栅,在1cm 宽度内刻有几千条乃至上万条刻痕。 透射光栅:利用透射光衍射 反射光栅:利用反射光衍射。比如,在镀有金属层的表面上刻出许多平行刻痕,两刻痕间的光滑金属面可以反射光。直尺表面刻痕可看作“一维平面反射光栅” 平面反射光栅衍射: 激光笔输出光以大角度斜入射到镜面(如家中光滑桌面)时,反射 光在观察屏(如墙面)上形成一个光斑。 激光笔输出光以大角度斜入 射到平面反射光栅表面(如直尺),在观察屏(墙面)上会看到一排规则排列的衍射光斑。 激光笔输出光以大角度斜入射到直尺表面刻度线 形成的一维平面反射光栅时,直尺表面A 位置和B 位置的光到达观察屏C 位置时的光程差可以写作:δ= ∠OBC-∠OAC=d (cos k β-cos α), 由光栅衍射原理可知,当光程差为零或者为入射光波长的整数倍 时,即δ= k λ(k= 0, ±1, ±2, ±3,...) 时,观察屏上就会出现亮斑。 δ=∠ OBC-∠OAC=d (cos k β-cos α)=d ( 222 2k h L L +- 21 21 1h L L +),d 是直尺表面刻度线 形成的反射光栅常数(通常为 mm 或者1 mm),1h 是激光笔出光口到直尺表面的垂直距离, 1L 是激光笔出光口到直尺表面光斑中心的水平距离,k h 是观察屏上衍射斑到直尺表面的垂直距离,是2L 观察屏到直尺表面光斑中心的水平距离。上述物理量在实验上都是容易测量得到的。 三.实验主要步骤或操作要点

反射高能电子衍射

反射高能电子衍射Reflection high energy electron diffraction 反射高能电子衍射是高能电子衍射的一种工作模式。它将能量为10~50keV的单能电子掠射(1°~3°)到晶体表面,在向前散射方向收集电子束,或将衍射束显示于荧光屏。 简介 一幅反射高能衍射图只能给出倒易空间(见倒易点阵)某个二维截面,从衍射点之间的距离可确定相应的晶面间距。旋转样品,可以在荧光屏上得到不同方位角的二维倒易截

面,从而仍可获得表面结构的全部对称信息。 由于在晶体中电子散射截面远大于X 射线的散射截面,加之掠射角小,从而使反射高能衍射与低能电子衍射一样具有表面灵敏度(约10~40┱),但它不仅限于作单晶表面结构分析,也可用于多晶、孪晶、无定形表面及微粒样品的表面结构分析。反射高能电子衍射得到广泛运用是与分子束外延技术发展有关。它可用于原位观察外延膜生长情况,为改进生长条件提供依据。与低能电子的情况有所不同,高能电子束与晶体相

互作用中非弹性散射较弱,其强度分析的理论还处于探索之中 装置 最简单的电子衍射装置。从阴极K发出的电子被加速后经过阳极A的光阑孔和透镜L到达试样S上,被试样衍射后在荧光屏或照相底板P上形成电子衍射图样。由于物质(包括空气)对电子的吸收很强,故上述各部分均置于真空中。电子的加速电压一般为数万伏至十万伏左右,称高能电子衍射。为了研究表面结构,电子加速电压也可低达数千甚至数十伏,这种装置称低能电子衍射装置。

模式 电子衍射可用于研究厚度小于0.2微米的薄膜结构,或大块试样的表面结构。前一种情况称透射电子衍射,后一种称反射电子衍射。作反射电子衍射时,电子束与试样表面的夹角很小,一般在1゜~2゜以内,称掠射角。 自从60年代以来,商品透射电子显微镜都具有电子衍射功能(见电子显微镜),而且可以利用试样后面的透镜,选择小至1微米的区域进行衍射观察,称为选区电子衍射,而在试样之后不用任何透镜的情形称高分

反射式衍射光栅

分光计是用来把光源激发出来的复合光展开成光谱的一种仪器,这种仪器的主要作用使复合光色散。使之成为各种不同波长的光叫做光的色散或叫分光。有棱镜和光栅二种,以棱镜为色散元件做成的分光仪,有水晶、玻璃、萤石等多种分光仪。以光栅为色散元件的分光仪又有平面衍射光栅或凹面衍射光栅分光仪之分。由于光栅刻划技术和复制技术进一步的提高,光栅已广泛应用于光电直读光谱仪中。光栅与棱镜比较具有一系列优点。首先棱镜的工作光谱区受到材料透过率的限制;在小于120nm真空紫外区和大于50微米的远红外区是不能采用的,而光栅不受材料透过率的限制,它可以在整个光谱区中应用。 光栅的角色率几乎与波长无关,光栅角色散在第一级光谱中比棱镜大,不过在紫外250nm 时石英角色散比光栅角色率大。光栅的分辨率比棱镜大;由于光栅具有上述优点将更进一步得到应用。 衍射光栅的制造 一般说来,任何一种具有空间周期性的衍屏的光学元件都可以称为光栅,如果在一块镀铝的光学玻璃毛胚上刻划一系列等宽,等距而平行的狭缝就是透射光栅。如在一块镀铝的光学玻璃毛胚上刻出一系列剖面结构象锯齿形状,等距而平行的刻线这就是一块反射光栅。 现代光栅是一系列刻划在铝膜上的平行性很好的划痕的总和,为了加强铝膜与玻璃板的结构的结合力,在它们之间镀一层铬膜或钛膜。在光学光谱区采用光栅刻划密度为0. 5—2400条/毫米。目前大量采用的600条/毫米,1200条/毫米,2400条/毫米。 为了保持划痕间距d无变化,因此对衍射光栅的刻划条件要求很严。经验证明,对光栅刻划室的温度要求保持0.01—0.0313变化范围,光栅刻划机工作 台的水平振动不超过1—3微米,光栅刻划室应该清洁,要 避免通风带来的灰尘,光栅刻划室的相对湿度不应超过60—70%。光栅毛胚大多应有学玻璃和熔融石英研磨制成,结构如图。 毛胚应该加工得很好,其表面形状和局部误差要求甚严。任何表面误差将使衍射光束的波前发生变形,从而影响成象质量和强度分布。 为了提高真空紫外区反射率,铝膜上还镀上一层氟化镁。 制造光栅的方法有机械刻划,光电刻划,复制方法和全息照相刻划四种。 机械刻划是古老方法,但可靠,间隙刻划技术比较成熟。但要刻划一块100X100mm的光栅(刻划机的刻划速度为15—25条/分)计算须要4个昼夜。因此要求机器、环境在长时间内保持精确恒定不变。 光电刻划就是利用光电控制的方法可以在某种程度上排除光栅刻划过程中机械变动和环境条件改变所产生的各种刻划误差。它一方面提高了光栅刻划质量,另方面也能在一定程度上简化机械结构、降低个别零件的精度和对周围环境的要求。 光栅复制 光栅刻划时间长和效率低,因此成本很高,不能满足光谱仪器的需求。目前复制法有二种:一次复制法就是真空镀膜法。二次复制法是明胶复制法。一次复制法是一次制成,而二次复制法是先复制母光栅的划痕,然后用该划痕印划在毛胚的明胶上。 二次复制的工艺比较烦琐,但需要设备和条件都比较简单,明胶法复制光栅质量是比母光栅差些。 右图是一次复制法的工艺过程图, 1和2是母光栅的基板和铝膜,涂上一层薄 的硅油d的清洁的母光栅水平地置于真空

光栅衍射实验的MATLAB仿真.

届.别.2012届 学号200814060106 毕业设计 光栅衍射实验的MATLAB仿真 姓名吴帅 系别、专业物理与电子信息工程系 应用物理专业 导师姓名、职称姚敏教授 完成时间2012年5月16日

目录 摘要................................................... I ABSTRACT................................................ II 1 引言 (1) 1.1 国内外研究动态 (1) 2理论依据 (2) 2.1 平面光栅衍射实验装置 (2) 2.2 原理分析 (3) 2.3 MATLAB主程序的编写 (6) 2.4 仿真图形的用户界面设计 (7) 3 光栅衍射现象的分析 (8) 3.1 缝数N对衍射条纹的影响 (8) 3.2 波长λ对衍射条纹的影响 (10) 3.3 光栅常数d对衍射光强的影响 (12) 3.4 条纹缺级现象 (13) 4 总结 (14) 参考文献 (16) 致谢 (17) 附录 (18)

摘要 平面光栅衍射实验是大学物理中非常重要的实验,实验装置虽然简单,但实验现象却是受很多因素的影响,例如波长λ,缝数N,以及光栅常数d。本文利用惠更斯一菲涅耳原理,获得了衍射光栅光强的解析表达式,再运用Matlab软件,将模拟的界面设计成实验参数可调gui界面,能够连续地改变波长λ,缝数N,光栅常数d,从而从这 3个层面对衍射光栅的光强分布和谱线特征进行了数值模拟,并讨论了光栅衍射的缺级现象,不仅有利于克服试验中物理仪器和其他偶然情况等因素给实验带来的限制和误差.并而且通过实验现象的对比,能够加深对光栅衍射特征及规律的理解,这些都很有意义。 关键词:平面光栅衍射;惠更斯-菲涅尔原理;gui;光强分布;Matlab

2.单缝、平面光栅和空间光栅

2.单缝、平面光栅和空间光栅 1. 如图所示,将波长为λ的平行单色光垂直投射于一宽度为b 的狭缝,若对应于衍 射图样的第一最小值位置的衍射角θ为π/6, 试问缝宽b 的大小等于多少? (A)λ/2 (B) λ (C) 2λ (D) 3λ (E) 4λ 答案: (C) 2. 波长为λ的单色光垂直投射于缝宽为b ,总缝数为N ,光栅常数为d 的光栅上,其光栅方程为 答案:(C) 3. 一光束通过衍射光栅构成夫琅和费衍射,当光栅在光栅所在平面上沿刻线的垂直方向上作微小移动。则衍射图样 (A) 作与光栅移动方向相同方向的移动 (B) 作与光栅移动方向相反方向的移动 (c) 中心不变,衍射图样变化 (D) 没有变化 (E) 强度发生变化 答案:(D) 4. 如图所示,以波长400一800nm 的白光照射光栅,在它的衍射光谱中,第二级和第三级发生重迭。试问第二级光谱被重迭部分的光谱范围为多少A? (A)5333—8000 〔B)4000--5333 (C)6000--8000 (D)5333--6000 (E)4000—6000 答案:(C)

5. 波长为5200A的单色光垂直投射到2000线/cm的平面衍射光栅上,试求第一级衍射最大所对应的衍射角近似为多少度? (A) 3 (B) 6 (C) 9 (D)12 (E) 15 答案:(B) 6. 光栅光谱谱线的半角宽度少与下列哪一项无关? 答案:(B) (A)谱线的衍射角(B)光谱的级次j (C)光栅常数d (D)光的波长L (E)光栅总缝数N 解:(B) 由光栅光谱谱线的半宽度公式分析即得。 7. X射线投射到间距为d的平行点阵平面的晶体上,试问发生布喇格晶体衍射的最大波长为多少? 答案:(D) (A) d/4 (B) d/2 (C) d (D) 2d (E) 4d

光栅衍射实验

一、 实验名称:光栅衍射实验 核51 粟鹏文 2015011744 二、实验目的: (1)进一步熟悉分光计的调整与使用; (2)学习利用衍射光栅测定光波波长及光栅常数的原理和方法; (3)加深理解光栅衍射公式及其成立条件。 三、 实验原理: 衍射光栅简称光栅,是利用多缝衍射原理使光发生色散的一种光学元件。它实际上是一组数目极多、平行等距、紧密排列的等宽狭缝,通常分为透射光栅和平面反射光栅。透射光栅是用金刚石刻刀在平面玻璃上刻许多平行线制成的,被刻划的线是光栅中不透光的间隙。而平面反射光栅则是在磨光的硬质合金上刻许多平行线。实验室中通常使用的光栅是由上述原刻光栅复制而成的,一般每毫米约250~600条线。由于光栅衍射条纹狭窄细锐,分辨本领比棱镜高,所以常用光栅作摄谱仪、单色仪等光学仪器的分光元件,用来测定谱线波长、研究光谱的结构和强度等。另外,光栅还应用于光学计量、光通信及信息处理。 1.测定光栅常数和光波波长 光栅上的刻痕起着不透光的作用,当一束单色光垂直照射在光栅上时,各狭缝的光线因衍射而向各方向传播,经透镜会聚相互产生干涉,并在透镜的焦平面上形成一系列明暗条纹。 如图1所示,设光栅常数d=AB 的光栅G ,有一束平行光与光栅的法线成i 角的方向,入射到光栅上产生衍射。从B 点作BC 垂直于入射光CA ,再作BD 垂直于衍射光AD ,AD 与光栅法线所成的夹角为?。如果在这方向上由于光振动的加强而在F 处产生了一个明条纹,其光程差CA +AD 必等于波长的整数倍,即: ()sin sin d i m ?λ±= (1) 式中,?为入射光的波长。当入射光和衍射光都在光栅法线同侧时,(1)式括号内取正号, 在光栅法线两侧时,(1)式括号内取负号。 如果入射光垂直入射到光栅上,即i=0,则(1)式变成: sin m d m ?λ= (2) 这里,m =0,±1,±2,±3,…,m 为衍射级次,?m 第m 级谱线的衍射角。 图1 光栅的衍射

相关文档