文档库 最新最全的文档下载
当前位置:文档库 › 定积分练习题

定积分练习题

定积分练习题
定积分练习题

#

题型

1.定积分与极限的计算

2.计算下列定积分

3.计算下列广义积分

内容

一.定积分的概念与性质

1.定积分的定义

2.定积分的性质

-

3.变上限函数及其导数

4.牛顿—莱布尼茨公式

5.换元积分公式与分部积分公式

6.广义积分

题型

题型I 利用定积分定义求极限

题型II比较定积分的大小

题型III利用积分估值定理解题

:

题型IV关于积分上限函数以及牛顿—

莱布尼茨公式问题

题型V 定积分的计算 题型VI 积分等式证明 题型VII 积分不等式证明 题型VIII 广义积分的计算

自测题五

1.根据极限计算定积分

2.根据定积分求导 :

3.求极限

4.求下列定积分

5.证明题

4月21日定积分练习题

基础题:

一.选择题、填空题

1.将和式的极限)0(.......321lim

1

>+++++∞→p n n P p

p p p n 表示成定积分 ( )

A .

dx x ?101

B .

dx x p ?

1

C .

dx x p ?1

0)1(

D .

dx n x p

?1

0)(

&

2.将和式)21

.........2111(

lim n

n n n +++++∞

→表示为定积分 .

3.下列等于1的积分是

( )

A .

dx x ?

1

B .dx x ?+10

)1(

C .dx ?

1

01

D .dx ?1

021

4.dx x |4|1

02

?

-=

( )

A .

321 B .322 C .323

D .3

25 5.曲线]2

3

,0[,cos π∈=x x y 与坐标周围成的面积

( )

A .4

B .2

C .2

5

D .3 6.

dx e e

x x

?-+1

)(=

( )

*

A .e e 1+

B .2e

C .e 2

D .e e 1

- 7.若10x

m e dx =?,11e n dx x

=?,则m 与n 的大小关系是( )

A .m n >

B .m n <

C .m n =

D .无法确定

8. 按万有引力定律,两质点间的吸引力2

2

1r

m m k

F =,k 为常数,21,m m 为两质点的质量,r 为两点间距离,若两质点起始距离为a ,质点1m 沿直线移动至离2m 的距离为b 处,试求

所作之功(b >a ) .

9.由曲线2

1y x =-和x 轴围成图形的面积等于S .给出下列结果: ①

1

21

(1)x dx --?

;②121

(1)x dx --?;③120

2(1)x dx -?;④0

21

2(1)x dx --?.

则S 等于( )

A .①③

B .③④

C .②③

D .②④

# 10.0

(sin cos sin )x

y t t t dt =+?

,则y 的最大值是( )

A .1

B .2

C .72

-

D .0

11. 若()f x 是一次函数,且1

()5f x dx =?

,1

017

()6xf x dx =?,那么21()f x dx x

?的值是

12.???????=≠?=0

,0,)()(2

x c

x x dt t tf x F x

,其中)(x f 在0=x 处连续,且0)0(=f 若)(x F 在 0=x 处连续,则=c ( )

。 (A).0=c ; (B).1=c ; (C).c 不存在;

(D).1-=c .

13.???????=≠?=0

,0,)()(2

x c

x x dt t tf x F x

,其中)(x f 在0=x 处连续,且0)0(=f 若)(x F 在 0=x 处连续,则=c ( )

。 (A).0=c ; (B).1=c ; (C).c 不存在; (D).1-=c .

14.设0)(=?b

a dx x f 且)(x f 在],[

b a 连续,则( )。

(A).0)(≡x f ;

?

(B).必存在x 使0)(=x f ;

(C).存在唯一的一点x 使0)(=x f ; (D).不一定存在点x 使 0)(=x f 。

15.设?????

π<≤π=其余0

x 3x

sin )x (f ,则=?π0

2cos )(xdx x f ( ) (A )

4

3 (B )4

3

-

(C )1 (D )-1

16.?20

2sin π

dx x dx d =________ 17. 定积分 dx x x ?

3sin sin 等于_______ 18. 定积分

dx x x ?

-π0

3cos cos 等于( )

;

(A ) 0 (B )

2

3

(C ) 3

4 (D ) 34

-

19. 定积分

?

-20

|cos sin |π

dx x x 等于( )

(A ) 0 (B ) 1 (C ) 12+ (D ) )12(2- 20.定积分

dx x x ?

-2

2

23}1,,max {等于( )

(A ) 0 (B ) 4 (C )

316 (D )12

97 ~

21.设,2arcsin )(,)1ln()(2

02

dt t x g dt t x f x

x ??=+=

则当0→x 时,)(x f 是)(x g 的( ) (A) 同阶无穷小,但不等价 (B) 等价无穷小 (C) 低价无穷小 (D) 高价无穷小

22. ?

-=x

t

tdt e x F 0

,cos )(则)(x F 在],0[π上有( )

(A) )2(πF 为极大值,)0(F 为最小值

(B) )2

F 为极大值,但无最小值 (C) `

(D)

)2

(πF 为极小值,但无极大值 (E) )2

F 为最小值,)0(F 为最大值

综合题:

1

1

2

52

2

2

(1)(2)ln(1)(3)(cos )2

x dx x dx

x x x dx x x -+---?

??

2

30

22

2

2220

2

(4)(5)(32)

(6)tan [sin 2ln((7)e dx x x x x x dx

π

π-+-++?

??

2

1

2

(8)()[0,2](2)1'(2)0()4''(2)f x f f f x dx x f x dx

===?

?已知函数在上二阶可导,且:,及

,求:

3212

131

1

2

arctan (9)(10)(11)x x

x

dx dx x

e e +∞

+∞

+-+?

?

?

1

210

1

(12)(1)

x dx --?

2

sin (13)lim(

)x

x tdt x

x

→+

??求极限

22222lim(

...)12n n n n n n n n

→∞

++++++(14)用定积分定义计算极限:

23

30

(15)()ln 40:

x

t dy

y y x x e dt y dx

-=-++=?设隐函数由方程所确定,求 220

2

(1)0(16)(),()00

'(0).

x t e dt x f x A f x x x A x f ?-?≠==??

=??设问当为何值时,在点

处可导,并求出

4

20

(17)()cos 2(),():()f x x f x dx f x f x π

=+?设其中为连续函数,试求

2

410(18)lim()x x

x a

a x a xe dx a a x +∞-→-=+?设正整数,且满足关系,试求的值。

4月22日定积分练习题

基础题:

:

1.积分中值定理?-=b

a a

b f dx x f ))(()(ξ,其中( )。 (A) ξ是],[b a 内任一点;

(B). ξ是],[b a 内必定存在的某一点; (C). ξ是],[b a 内唯一的某一点;

(D). ξ是],[b a 的中点。

2.

=-+?

-11

21)1(dx x x ( )

(A )π

(B )

2

π (C )π2

(D )

4

π 3. 设]1,0[C f ∈,且

2)(10

=?dx x f ,则=?20

22sin )(cos π

xdx x f ( )

(A )2

(B )3

(C )4

(D )1

4. 设)(x f 在],[b a 上连续,且?

=b

a

dx x f 0)(,则( )。

(A )在],[b a 的某个子区间上,0)(=x f ; (B )在],[b a 上,0)(≡x f ;

(C )在],[b a 内至少有一点c ,0)(=c f ;

(D )在],[b a 内不一定有x ,使0)(=x f 。

5.

dx x x x ?

+-2

232=( ) (A)

)22(15

4

+ (B) *

(C)

)22(15

4

+-

(D)

52

8324- (D)5

2

8324+-

6.

?+x

x

dt t dx d

ln 2)1ln(=( ) (A)

)21ln(2)ln 1ln(1

x x x +-+ (B) )21ln()ln 1ln(1

x x x

+-+

(C) )21ln()ln 1ln(x x +-+ (D))21ln(2)ln 1ln(x x +-+

7. ?????????>=<-=?x

x dt t x x x x x

x f 0

2

20

cos 101

)cos 1(2

)(,则)(x f 在0=x 点( ) (A) '

(B)

连续,但不可导

(C) 可导,但导函数不连续 (D) 不连续 (E) 导函数连续

=+?-1

11dx e e x x

( )

(A) 1-

(B)

e e

+-11 (C) e

e

-+11

{

(D) 1- 填空、选择题

872200

(1)sin _______,

cos _______,

xdx xdx π

π

==??

0221

10

1

20051sin (2)lim

______;

ln(1)

(3)2_______;

(4)(1)_______;

(5)_______;

(6)()()sin ()()______;(7)(1)()______;

(8x

x x

x x t tdt

x x x dx y t t dt f x f x x f x dx f x x x e e dx π

π→----=+-==-==+=+-=????

??曲线的上凸区间是设是连续函数,且

,则:1

)lim ln(1_______;x

x dt =

2

2

(9)(1)_______;

1(10)()[,]()()()

(,)___()0()1()2()3

x t x x

a

b

y t e dt f x a b F x f t dt dt f t a b A B C D =-=+???

设函数的极大值点为设正值函数在上连续,则函数在上至少有个根

2

400(11)(),______;4()16()8()4()2

x

x f t dt f dx A B C D ==??

则:2

2

11

1

(12)_______311()()()()222

(13)________

()0()

()

()2

4

dx x A B C D dx A B C D π

π

-∞=--=-?

?不存在

发散

4月23日定积分练习题

.

一.计算下列定积分的值 (1)?

--3

1

2

)4(dx x x ;(2)?-2

1

5

)1(dx x ; (3)dx x x ?+20

)sin (π

;(4)dx x ?-

22

2cos π

π;

(5)π2

20

cos 2d θ

θ?

(6)?+10)32(dx x ; (7)?+-1

022

11dx x x ; (8)?2ln e e x x dx ;

(9)?--1

02dx e e x x ; (10)?302tan π

xdx (11)?+94;)1(dx x x (12)?+40

;1x

dx

(13)?e

e

dx x x 12)(ln 1 (14)?205;2sin cos πxdx x (15)?20;sin π

xdx e x (16)?+-102/32;)1(x x dx 、

(17)

?

+20

2;sin 1cos π

dx x

x (18)?-+10;x x e e dx

二.求下列极限:

(1)?→x x dt t x

2

0;cos 1lim (2).)(0

22

2

2

lim dt

e

dt e x t x

t x ?

?∞→

[

三.利用定积分求极限

(1);)(1)2(1)1(122

2lim ?????

?++++++∞→n n n n n n

(2));21

)2(111(

2

22lim n

n n n n +++++∞

)

四.证明题

1'()(,)(()'())()()x

a d f x x t f t dt f x f a dx

-∞+∞-=-?()设在上连续,证明:。

33

2200sin cos 2:,sin cos sin cos x x

dx dx x x x x

π

π=++??()证明并求出积分值。

12120(3)()[0,]()0,()cos 0(0,),,()()0

()(),(0,),x

f x f x dx f x xdx f f F x f t dt x Rolle ππ

ππξξξξπ=====∈???设函数在上连续,且试证明在内至少

存在两个不同的点使(作辅助函数再使用积分中值定理和定理)

1

20

4()[0,1](1)2(),01()

'()(f x f xf x dx f f Rolle ξξξξ

=∈=-

?()设在上可导,且满足证明:必存在点(,),

使得利用积分中值定理和定理证明)

|

4月24日定积分练习题

一、填空题:

1. 如果在区间[,]a b 上, ()1f x ≡,则()b a

f x dx =?

.

2.

10

(23)x dx +=?

.

3. 设20()sin x f x t dt =?,则()f x '= .

4. 设2

1

cos ()t x

f x e dt -=?

,则()f x '= .

5.

250

cos sin x xdx π=?

6. 21

22

sin

n xdx π

π--=? .

<

7.

31

1

dx x

+∞=?

. 8. 比较大小,

32

1

x dx ?

3

31

x dx ?.

9. 由曲线sin y x =与x 轴,在区间[0,]π上所围成的曲边梯形的面积为 . 10. 曲线2

y x =在区间[0,1]上的弧长为 . 二、选择题:

1. 设函数 f(x)仅在区间[0,4]上可积,则必有

?

3

)(dx x f =[ ]

A .+?

2

0)(dx x f ?3

2)(dx x f B .+

?-1

)(dx x f ?

-3

1

)(dx x f C .

+

?

5

0)(dx x f ?

3

5

)(dx x f D .+

?10

)(dx x f ?

3

10

)(dx x f

2.设I 1=

?10

xdx ,I 2

=?

2

1

2dx x ,则[ ]

A . I 1≥I 2

B .I 1>I 2

C .I 1≤I 2

D .I 1

(1)(2)0x

dy

y t t dt x dx

=

--==?

A .2

B .-2

C .0

D .1 4.

[]0

(23)2,a

x x dx a -==?

A .2

B .-1

C .0

D .1

5. 设f (x )=???≤>)

0()

0(2x x x x 则?-11

)(dx x f =[ ]

A .2

?

-0

1

xdx B .2?1

2dx x

!

C .

?1

02

dx x

+?-01

xdx D .+

?1

xdx ?

-0

1

2dx x

6. []20

2

sin lim

x x t dt x

→=?

A .

21 B .3

1

C .0

D .1 7. ?

-=x

t

tdt e x F 0

,cos )(则)(x F 在],0[π上有( )

(F) )2(πF 为极大值,)0(F 为最小值

(G) )2(πF 为极大值,但无最小值 (H) )2(πF 为极小值,但无极大值 (I) )2

F 为最小值,)0(F 为最大值

$

8. 设方程组??

???==??t

x tdt y tdt

x 00

cos sin 确定了y 是x 的函数,则=dx dy ( ) (A)t cot (B)t tan (C)t sin (D)t cos 9. 设)(x f 是区间[]b a ,上的连续函数,且3)(2

1

2-=?

-x dt t f x ,则=)2(f ( )

(A) 2 (B) -2

(C)

41

(D)4

1-

:

10. 定积分

dx x x ?++1

021)

1ln( =( )

(A ) 1 (B )

(C ) 2ln (D ) 2ln 8

π

11. 定积分 dx e x

x ?--+44

21tan π

π

=( ) (A )

21 (B ) 2

41π

+ (C ) 2

1π+

(D ) 4

-

12.下述结论错误的是 ( ) (A ) dx x x ?+∞

+0

21 发散 ( B ) dx x ?+∞+0

211收敛

`

(C ) 012=?+∞

+∞

-dx x x ( D ) dx x x ?+∞+∞

-2

1发散

13. 设函数 ],[b a R f ∈, 则极限 ?+∞

→π

|sin |)(lim

dx nx x f n 等于( )

(A ) ?

π

)(2dx x f (B )

π

)(2

dx x f

(C )

π

)(1

dx x f (D ) 不存在

14. 设)(x f 为连续函数,且满足

12

)(2

-+-=--?

x x

e x dt x t

f ,则=)(x f ( )。

(A )x

e

x ---

(B )x

e x + (C )x

e

x -+-

(D )x e x -

15. 设正定函数),[b a C f ∈,?

?

+=

x b

x a

dt x f dt t f x F )

(1

)()(,则0)(=x F 在 ),(b a 内根的个数为 ( )

(A )0 (B )1 (C )2

(D )3

16.定积分的定义为

∑?

=→?=n

i i i b

a

x f dx x f 1

)(lim )(ξλ,以下哪些任意性是错误的( )

(A) 随然要求当0max →?=i i

x λ时,

i

i

i

x f ?∑)(ξ的极限存在且有限,但极限值仍是

任意的。

(B) 积分区间],[b a 所分成的分数n 是任意的。

(C) 对给定的份数n ,如何将],[b a 分成n 份的分法也是任意的,即除区间端点

n x b x a ==,0外,各个分点121-<<

(D) 对指定的一组分点,各个],[1i i i x x -∈ξ的取法也是任意的。

17. ?+x

x

dt t dx d ln 2)1ln(=( )

(D)

)21ln(2)ln 1ln(1

x x x +-+ (E) )21ln()ln 1ln(1

x x x

+-+

(F) )21ln()ln 1ln(x x +-+ (D))21ln(2)ln 1ln(x x +-+

18. ()1(2

12=+?dt t t dx

d x )

(A ) x x +12

(B ) 212-+x x (C ) 24

1x x

+ ( D ) 2512x x +

三.计算题:

1. 20x d dx

? 2. 20sin xdx π?

3.

1? 4. 2

2

2

20

()lim

x

t x

x t e dt te dt

→??

5.

(0)a a >?

6. 41

?

7. 212

t te

dt -

?

8. 1

?

定积分测试题及答案

定积分测试题及答案 班级: 姓名: 分数: 一、选择题:(每小题5分) 1.0=?( ) A.0 B.1 C.π D 4π 2(2010·山东日照模考)a =??02x d x ,b =??02e x d x ,c =??02sin x d x ,则a 、b 、c 的大小关系是( ) A .a

8.函数F (x )=??0 x t (t -4)d t 在[-1,5]上( ) A .有最大值0,无最小值 B .有最大值0和最小值-323 C .有最小值-323,无最大值 D .既无最大值也无最小值 9.已知等差数列{a n }的前n 项和S n =2n 2+n ,函数f (x )=??1 x 1t d t ,若f (x )

基本积分公式

§5.3基本积分公式 重点与难点提示 基本积分公式均直接由基本导数公式表得到,因此,导数运算的基础好坏直接影响积分的能力,应熟记一些常用的积分公式. 因为求不定积分是求导数的逆运算,所以由基本导数公式对应可以得到基本积分公式. (1) ( 5.6 ) (2) ( 5.7 ) (3) ( 5.8 ) (4) ( 5.9 ) (5) ( 5.10 ) (6) ( 5.11 ) (7) ( 5.12 ) (8) ( 5.13 ) (9) ( 5.14 )

(10) ( 5.15 ) (11) ( 5.16 ) 对这些公式应正确熟记.可根据它们的特点分类来记. 公式(1)为常量函数0的积分,等于积分常数. 公式(2)、(3)为幂函数的积分,应分为与. 当时,, 积分后的函数仍是幂函数,而且幂次升高一次. 特别当时,有. 当时, 公式(4)、(5)为指数函数的积分,积分后仍是指数函数,因为 ,故(,)式右边的是在分母,不在分子,应记清. 当时,有.

是一个较特殊的函数,其导数与积分均不变. 应注意区分幂函数与指数函数的形式,幂函数是底为变量,幂为常数;指数函数是底为常数,幂为变量.要加以区别,不要混淆.它们的不定积分所采用的公式不同. 公式(6)、(7)、(8)、(9)为关于三角函数的积分,通过后面的学习还会增加其他三角函数公式. 公式(10)是一个关于无理函数的积分 公式(11)是一个关于有理函数的积分 下面结合恒等变化及不定积分线性运算性质,举例说明如何利用基本积分公式求不定积分. 例1 求不定积分. 分析:该不定积分应利用幂函数的积分公式. 解: (为任意常数)

不定积分练习题及答案

不定积分练习题 2 11sin )_________ 2 x d x -=?一、选择题、填空题:、( 2 2()(ln )_______x e f x x f x dx =?、若是的原函数,则: 3sin (ln )______x d x =?、 2 2 2 4()(tan )sec _________; 5(1,1)________; 6'()(),'()_________;1() 7(),_________;1 8()arcsin ,______() x x x e f x f x xd x d x y x x F x f x f a x b d x f e f x d x c d x x e xf x d x x c d x f x --===+== +==+=?? ??? ? ? 、已知是的一个原函数,则、在积分曲线族 中,过点的积分曲线是、则、设则、设 则____; 9'(ln )1,()________; 10()(,)(,)()______;()()()()11()sin sin ,()______; 12'()(),'()(),()_____()() ()() ()(f x x f x f x a b a b f x A B C D xf x d x x x xd x f x F x f x x f x f x d x A F x B x C x κ??=+== - = ===???、则、若在内连续,则在内必有导函数必有原函数必有界 必有极限 、若 则、若则)()()()c D F x x c ?+++ 13()[()]() ()[()]()() ()() () ()()d A d f x dx f x B f x dx f x dx d x C df x f x D df x f x c === = +????、下列各式中正确的是: (ln )14(),_______ 11() ()ln () () ln x f x f x e dx x A c B x c C c D x c x x -==++-+-+? 、设则:

定积分的性质与计算方法

定积分的性质与计算方法 摘要: 定积分是微积分学中的一个重要组成部分,其计算方法和技巧非常 丰富。本文主要给出定积分的定义及讨论定积分的性质和计算方法,并通过一些很有代表性的例题说明了其计算方法在简化定积分计算中的强大功能。 关键词:定积分 性质 计算方法 定积分的定义 设函数f(x) 在区间[a,b]上连续,将区间[a,b]分成n 个子区间[x 0,x 1], (x 1,x 2], (x 2,x 3], …, (x n-1,x n ],其中x 0=a ,x n =b 。可知各区间的长度依次是:△x 1=x 1-x 0, △x 2=x 2-x 1, …, △x n =x n -x n-1。在每个子区间(x i-1,x i ]中任取一点i ξ(1,2,...,n ),作和式1()n i i f x ι=ξ?∑。设λ=max{△x 1, △x 2, …, △x n }(即λ是 最大的区间长度),则当λ→0时,该和式无限接近于某个常数,这个常数叫做函数f(x) 在区间[a,b]的定积分,记为: ()b a f x dx ?。 其中:a 叫做积分下限,b 叫做积分上限,区间[a, b]叫做积分区间,函数f(x)叫做被积函数,x 叫做积分变量,f(x)dx 叫做被积表达式,∫ 叫做积分号。 对于定积分,有这样一个重要问题:函数()f x 在[a,b]上满足怎样的条件, ()f x 在[a,b]上一定可积?下面给出两个充分条件: 定理1: 设()f x 在区间[a,b]上连续,则()f x 在[a,b]上可积。 定理2: 设()f x 在区间[a,b]上有界,且只有有限个间断点,则 ()f x 在[a,b]上可积。 例:利用定义计算定积分1 20x dx ?. 解:因为被积函数2()f x x =在积分区间[0,1]上连续,而连续函数是可积的,所以积分与区间[0,1]的分法及点i ξ的取法无关。因此,为了 便于计算,不妨把区间[0,1]分成n 等份,分点为i i x n = ,1,2,,1i n =?-;这样,

积分公式表,常用积分公式表

积分公式表 1、基本积分公式: (1) (2) (3) (4) (5) (6) (7) (8) (8) (10) (11) 2、积分定理: (1)()()x f dt t f x a ='??????? (2)()()()()[]()()[]()x a x a f x b x b f dt t f x b x a '-'='??????? (3)若F (x )是f (x )的一个原函数,则)()()()(a F b F x F dx x f b a b a -==? 3、积分方法 ()()b ax x f +=1;设:t b ax =+

()()222x a x f -=;设:t a x sin = ()22a x x f -=;设:t a x s e c = ()22x a x f +=;设:t a x t a n = ()3分部积分法:??-=vdu uv udv 附:理解与记忆 对这些公式应正确熟记.可根据它们的特点分类来记. 公式(1)为常量函数0的积分,等于积分常数. 公式(2)、(3)为幂函数 的积分,应分为与 . 当 时, , 积分后的函数仍是幂函数,而且幂次升高一次. 特别当 时,有 . 当 时, 公式(4)、(5)为指数函数的积分,积分后仍是指数函数,因为 ,故 ( , )式右边的 是在分 母,不在分子,应记清. 当 时,有 . 是一个较特殊的函数,其导数与积分均不变.

应注意区分幂函数与指数函数的形式,幂函数是底为变量,幂为常数;指数函数是底为常数,幂为变量.要加以区别,不要混淆.它们的不定积分所采用的公式不同. 公式(6)、(7)、(8)、(9)为关于三角函数的积分,通过后面的学习还会增加其他三角函数公式. 公式(10)是一个关于无理函数的积分 公式(11)是一个关于有理函数的积分 下面结合恒等变化及不定积分线性运算性质,举例说明如何利用基本积分公式求不定积分. 例1 求不定积分. 分析:该不定积分应利用幂函数的积分公式. 解: (为任意常数) 例2 求不定积分. 分析:先利用恒等变换“加一减一”,将被积函数化为可利用基本积分公式求积分的形式.

定积分及微积分基本定理练习题及答案

定积分与微积分基本定理练习题及答案 1.(2011·宁夏银川一中月考)求曲线y =x2与y =x 所围成图形的面积,其中正确的是( ) A .S =??01(x2-x)dx B .S =??01(x -x2)dx C .S =??01(y2-y)dy D .S =??01(y -y)dy [答案] B [分析] 根据定积分的几何意义,确定积分上、下限和被积函数. [解读] 两函数图象的交点坐标是(0,0),(1,1),故积分上限是1,下限是0,由于在[0,1]上,x≥x2,故函数y =x2与y =x 所围成图形的面积S =??0 1(x -x2)dx. 2.(2010·山东日照模考)a =??02xdx ,b =??02exdx ,c =??02sinxdx ,则a 、b 、c 的大小关系 是( ) A .a2,c =??0 2sinxdx =-cosx|02 =1-cos2∈(1,2), ∴c

高等数学积分公式大全

常 用 积 分 公 式 (一)含有ax b +的积分(0a ≠) 1.d x ax b +? = 1ln ax b C a ++ 2.()d ax b x μ+?=1 1() (1) ax b C a μμ++++(1μ≠-) 3.d x x ax b +?= 2 1(ln )ax b b ax b C a +-++ 4.2 d x x ax b +? = 22 311()2()ln 2ax b b ax b b ax b C a ??+-++++???? 5.d () x x ax b +? =1ln ax b C b x +-+ 6.2 d () x x ax b +? =2 1ln a ax b C bx b x +- ++ 7.2 d () x x ax b +? =2 1(ln )b ax b C a ax b ++ ++ 8.2 2 d () x x ax b +? = 2 3 1(2ln )b ax b b ax b C a ax b +-+- ++ 9.2 d () x x ax b +? = 2 11ln () ax b C b ax b b x +- ++ 的积分 10.x ? = C 11.x ?=2 2(3215ax b C a -+ 12.x x ?= 2 2 2 3 2(15128105a x abx b C a -+ 13.x ? = 2 2(23ax b C a -+

14 .2 x ? = 222 3 2(34815a x abx b C a -+ 15 .? (0) (0) C b C b ?+>?的积分 22.2 d x ax b +? =(0) (0) C b C b ? +>? ? ?+< 23.2 d x x ax b +? = 2 1 ln 2ax b C a ++

定积分计算公式和性质

第二节 定积分计算公式和性质 一、变上限函数 设函数在区间上连续,并且设x 为上的任一点, 于是, 在区间 上的定积分为 这里x 既是积分上限,又是积分变量,由于定积分与积分变量无关,故可将此改为 如果上限x 在区 间上任意变动,则对 于每一个取定的x 值,定积分有一个确定值与之对应,所以定积分在 上定义了一个以x 为自变量的函数,我们把 称为函数 在区间 上 变上限函数 记为 从几何上看,也很显然。因为X 是上一个动点, 从而以线段 为底的曲边梯形的面积,必然随着底数 端点的变化而变化,所以阴影部分的面积是端点x 的函数(见图5-10) 图 5-10

定积分计算公式 利用定义计算定积分的值是十分麻烦的,有时甚至无法计算。因此,必须寻求计算定积分的简便方法。 我们知道:如果物体以速度作直线运动,那么在时间区间上所经过的路程s 为 另一方面,如果物体经过的路程s 是时间t 的函数,那么物体 从t=a 到t=b 所经过的路程应该是(见图5-11) 即 由导数的物理意义可知:即 是 一个原函数,因此,为了求出定积分,应先求出被积函数 的原函数 , 再求 在区间 上的增量 即可。 如果抛开上面物理意义,便可得出计算定积分的一般 方法: 设函数在闭区间上连续, 是 的一个原函数, 即 ,则 图 5-11

这个公式叫做牛顿-莱布尼兹公式。 为了使用方便,将公式写成 牛顿-莱布尼兹公式通常也叫做微积分基本公式。它表示一个函数定积分等于这个函数的原函数在积分上、下限处函数值之差。它揭示了定积分和不定积分的内在联系,提供了计算定积分有效而简便的方法,从而使定积分得到了广泛的应用。 例1 计算 因为是的一个原函数所以 例 2 求曲线 和直线x=0、x= 及y=0所围成图形面积A(5-12) 解 这个图形的面积为 二、定积分的性质 设 、 在相应区间上连续,利用前面学过的知识,可以 得到定积分以下几个简单性质: 图 5-12

积分常用公式

积分常用公式 一.基本不定积分公式: 1.C x dx +=? 2.111++= ? αα αx dx x 1(-≠α) 3.C x dx x +=?ln 1 4.C a a dx a x x +=?ln )1,0(≠>a a 5.C e dx e x x +=? 6.C x xdx +-=? cos sin 7.C x xdx +=? sin cos 8.C x dx x xdx +== ?? tan cos 1sec 22 9.C x dx x xdx +-==??cot sin 1csc 22 10.C x xdx x +=??sec tan sec 11.C x xdx x +-=?? csc cot csc 12. C x dx x +=-? arcsin 112 (或12 arccos 11C x dx x +-=-? ) 13. C x dx x +=+?arctan 112 (或12cot 11 C x arc dx x +-=+?) 14.C x xdx +=?cosh sinh 15.C x xdx +=? sinh cosh 二.常用不定积分公式和积分方法: 1.C x xdx +-=?cos ln tan 2.C x xdx +=? sin ln cot 3. C a x a x a dx +=+?arctan 122 4.C a x a x a a x dx ++-=-?ln 2122 5.C x x xdx ++=?tan sec ln sec 6.C x x xdx +-=? cot csc ln csc 7. C a x x a dx +=-? arcsin 2 2 8.C a x x a x dx +±+=±?222 2ln 9. C a x a x a x dx x a ++-=-?arcsin 2222 22 2 10. C a x x a a x x dx a x +±+ ±±= ±? 222 2 2 2 2 ln 2 2 11.第一类换元积分法(凑微分法):

定积分的基本公式

第三讲 定积分的基本公式 【教学内容】 1.变上限积分函数 2.牛顿-莱布尼兹公式 【教学目标】 1.掌握变上限积分函数 2.掌握牛顿-莱布尼兹公式 【教学重点与难点】 牛顿-莱布尼兹公式 【教学过程】 一、引例 一物体作变速直线运动时,其速度)(t v v =,则它从时刻a t =到时刻b t =所经过的路程S : dt t v S b a ? = )( 另一方面,如果物体运动时的路程函数)(t S S =,则它从时刻a t =到时刻b t =所经过的路程 S 等于函数)(t S S =在],[b a 上的增量 )()(a S b S - 同一物理量(路程)的两种不同数学表达式应该是相等的, ∴ dt t v S b a ? = )()()(a S b S -= ∵ )()(/ t v t S = ∴ ? ? = = b a b a dt t S dt t v S )()(/)()(a S b S -= 二、变上限积分函数 1.定义:如果函数)(x f 在区间],[b a 上连续,那么对于区间],[b a 上的任一点x 来说,)(x f 在区间],[x a 上仍连续,所以函数)(x f 在],[x a 上的定积分 ? x a dx x f )( 存在。也就是说,对于每一个确定的x 值,这个积分将有一个确定的值与之对应,因此它是积分上限x 的函数,此函数定义在区间],[b a 上,把它叫做变上限积分函数,记为)(x Φ。即 )()()()(b x a dt t f dx x f x x a x a ≤≤==Φ?? 2.定理1 如果函数)(x f y =在区间],[b a 上连续,则变上限积分函数 )()()(b x a dt t f x x a ≤≤=Φ? 是函数)(x f y =的原函数,即

定积分公式

二、基本积分表(188页1—15,205页16—24) (1)kdx kx C =+? (k 是常数) (2)1 ,1 x x dx C μμ μ+=++? (1)u ≠- (3)1ln ||dx x C x =+? (4)2 tan 1dx arl x C x =++? (5) arcsin x C =+? (6)cos sin xdx x C =+? (7)sin cos xdx x C =-+? (8)2 1 tan cos dx x C x =+? (9)2 1 cot sin dx x C x =-+? (10)sec tan sec x xdx x C =+? (11)csc cot csc x xdx x C =-+? (12)x x e dx e C =+? (13)ln x x a a dx C a = +?,(0,1)a a >≠且 (14)shxdx chx C =+? (15)chxdx shx C =+? (16)2 2 11tan x dx arc C a x a a = ++?

(17)2 2 11ln | |2x a dx C x a a x a -= +-+? (18) sin x arc C a =+? (19) ln(x C =++? (20) ln |x C =++? (21)tan ln |cos |xdx x C =-+? (22)cot ln |sin |xdx x C =+? (23)sec ln |sec tan |xdx x x C =++? (24)csc ln |csc cot |xdx x x C =-+? 注:1、从导数基本公式可得前15个积分公式,(16)-(24)式后几节证。 2、以上公式把x 换成u 仍成立,u 是以x 为自变量的函数。 3、复习三角函数公式: 2 2 2 2 sin cos 1,tan 1sec ,sin 22sin cos ,x x x x x x x +=+==2 1cos 2cos 2 x x += , 2 1cos 2sin 2 x x -= 。 注:由[()]'()[()]() f x x dx f x d x ????= ?? ,此步为凑微分过程,所以第一 类换元法也叫凑微分法。此方法是非常重要的一种积分法,要运用自如,务必熟记基本积分表,并掌握常见的凑微分形式及“凑”的技巧。

定积分基本公式

定积分基本公式 定积分是高等数学中一个重要的基本概念,在几何、物理、经济学等各个领域中都有广泛的应用.本章将由典型实例引入定积分概念,讨论定积分性质和计算方法,举例说明定积分在实际问题中的具体运用等. 第二节 微积分基本公式 一、变上限的定积分 设函数()f x 在[[,]a b ] 上连续,x ∈[,]a b ,于是积分()d x a f x x ?是一个定数, 这种写法有一个不方便之处,就是 x 既表示积分上限,又表示积分变量.为避免 t ,于是这个积分就写成了 ()d x a f t t ? . x 值,积分()d x a f t t ?就有一个确定的的一个函数,记作 ()Φx =()d x a f t t ? ( a ≤x ≤ b )通常称函数 ()Φx 为变上限积分函数或变上限积分,其几何意义如图所示. 定理1 如果函数()f x 在区间[,]a b 上连续,则变上限积分 ()Φx =()d x a f t t ?在[,]a b 上可导,且其导数是 d ()()d ()d x a Φx f t t f x x '= =?( a ≤x ≤ b ). 推论 连续函数的原函数一定存在. 且函数()Φx =()d x a f t t ?即为其原函数.

例1 计算()Φx =2 0sin d x t t ?在x =0 ,处的导数. 解 因为2 d sin d d x t t x ?=2sin x ,故 2 (0)sin 00Φ'==; πsin 242Φ'==. 例2 求下列函数的导数: (1) e ln ()d (0)x a t Φx t a t =>? ; 解 这里()Φx 是x 的复合函数,其中中间变量e x u =,所以按复合函数求导 法则,有 d d ln d(e )ln e (d )e d d d e x x u x x a Φt t x x u t x ===?. (2) 2 1()(0) x Φx x θ=>? . 解 21d d d d x Φx x θ=-?2 2()x x ='=2sin 2sin 2x x x x x =- ?=-. 二、牛顿-莱布尼茨(Newton-Leibniz )公式 定理2 设函数()f x 在闭区间[,]a b 上连续,又 ()F x 是()f x 的任一个原函数,则有()d ()() b a f x x F b F a =-? . 证 由定理1知,变上限积分 ()()d x a Φx f t t =?也是()f x 的一个原函数,于 是知0()()Φx F x C -=, 0C 为一常数, 即 0 ()d ()x a f t t F x C =+?.

定积分练习题及答案(基础)

第六章 定积分练习题及答案 一、填空题 (1) 根据定积分的几何意义,?-=+2 1)32(dx x 12 =-?dx x 2 024π ,=?π0 cos xdx ____0____ (2)设?-=1110)(2dx x f ,则?-=1 1)(dx x f _____5____, ?-=1 1)(dx x f ____-5___,?-=+1 1]1)(2[51dx x f 512 . (3) =?102sin dx x dx d 0 (4) =?2 2sin x dt t dx d 4sin 2x x 二、选择题 (1) 定积分?12 21ln xdx x 值的符号为 (B ) .A 大于零 .B 小于零 .C 等于零 .D 不能确定

三、计算题 1.估计积分的值:dx x x ?-+3 121 解:设1)(2+=x x x f ,先求)(x f 在]3,1[-上的最大、最小值, ,) 1()1)(1()1(21)(222222++-=+-+='x x x x x x x f 由0)(='x f 得)3,1(-内驻点1=x ,由3.0)3(,5.0)1(,5.0)1(==-=-f f f 知,2 1)(21≤≤- x f 由定积分性质得 221)()21(2313131=≤≤-=-???---dx dx x f dx 2.已知函数)(x f 连续,且?- =10)()(dx x f x x f ,求函数)(x f . 解:设 a dx x f =?10)(,则a x x f -=)(,于是 a adx xdx dx a x dx x f a -=-=-==????2 1)()(1 0101010, 得41=a ,所以4 1)(+=x x f . 3. dx x x x ?++1 31 222) 1(21 解:原式=dx x x dx x x x x )111()1(1213 121312222++=+++?? 3112+-= π 4. ?--1 12d x x x 解:原式=dx x x dx x x )()(1 020 12??-+-- 16 165]3121[]2131[10320123=+=-+-=-x x x x 5. ?--1 12d x x x 解:原式=dx x x dx x x )()(1 020 12??-+-- 16 165]3121[]2131[10320123=+=-+-=-x x x x 6. ?-1 02dx xe x

定积分常用公式

定积分常用公式 二、基本积分表(188页1—15,205页16—24) (1) (k是常数) kdxkxC,,, ,,1x,(2) xdxC,,,(1)u,,,,,1 1(3) dxxC,,ln||,x dx(4) ,,arlxCtan2,1,x dx(5) ,,arcsinxC,21,x (6)cossinxdxxC,, , (7)sincosxdxxC,,, , 1(8) dxxC,,tan2,cosx 1(9) dxxC,,,cot2,sinx sectansecxxdxxC,,(10) , csccotcscxxdxxC,,,(11) , xxedxeC,,(12) , xax(13), (0,1)aa,,且adxC,,,lna shxdxchxC,,(14) , chxdxshxC,,(15) , 11x(16) dxarcC,,tan22,axaa, 1 11xa,(17) dxC,,ln||22,xaaxa,,2 1x(18) dxarcC,,sin,22aax, 122(19) dxxaxC,,,,ln(),22ax, dx22(20) ,,,,ln||xxaC,22xa,

(21)tanln|cos|xdxxC,,, , (22)cotln|sin|xdxxC,, , )secln|sectan|xdxxxC,,, (23, cscln|csccot|xdxxxC,,,(24) , 注:1、从导数基本公式可得前15个积分公式,(16)-(24)式后几节证。 2、以上公式把换成仍成立,是以为自变量的函数。 xuux 3、复习三角函数公式: 1cos2,x22222, sincos1,tan1sec,sin22sincos,xxxxxxx,,,,,cosx,2 1cos2,x2。 sinx,2 fxxdxfxdx[()]'()[()](),,,,,注:由,此步为凑微分过程,所以第一,, 类换元法也叫凑微分法。此方法是非常重要的一种积分法,要运用自如,务必熟记基本积分表,并掌握常见的凑微分形式及“凑”的技巧。 2 小结: 1常用凑微分公式 积分类型换元公式11.f(ax,b)dx,f(ax,b)d(ax,b)(a,0)u,ax,b,,a u,x11,2.f(x)xdx,f(x)d(x)(,0),,,,,,,,,1u,lnx3.f(lnx),dx,f(lnx)d(lnx), ,x 4..f(e),edx,f(e)dexxxxu,ex,,第 1一5.f(a),adx,f(a)daxxxx,,lnau,ax换 6.f(sinx),cosxdx,f(sinx)dsinxu,sinx元,, u,cosx积7.f(cosx),sinxdx,,f(cosx)dcosx,,分 28.f(tanx)secxdx,f(tanx)dtanxu,tanx,,法 u,cotx29.f(cotx)cscxdx,,f(cotx)dcotx,,

积分公式表,常用积分公式表

积分公式表 1、基本积分公式: (1) (2) (3) (4) (5) (6) (7) (8) (8) (10) (11) 2、积分定理: (1)()()x f dt t f x a ='??????? (2)()()()()[]()()[]()x a x a f x b x b f dt t f x b x a '-'='??????? (3)若F (x )是f (x )的一个原函数,则)()()()(a F b F x F dx x f b a b a -==? 3、积分方法 ()()b ax x f +=1;设:t b ax =+ ()()222x a x f -=;设:t a x sin = ()22a x x f -=;设:t a x sec = ()22x a x f +=;设:t a x tan = ()3分部积分法:??-=vdu uv udv

附:理解与记忆 对这些公式应正确熟记.可根据它们的特点分类来记. 公式(1)为常量函数0的积分,等于积分常数. 公式(2)、(3)为幂函数的积分,应分为与. 当时,, 积分后的函数仍是幂函数,而且幂次升高一次. 特别当时,有. 当时, 公式(4)、(5)为指数函数的积分,积分后仍是指数函数,因为 ,故(,)式右边的是在分母,不在分子,应记清. 当时,有. 是一个较特殊的函数,其导数与积分均不变. 应注意区分幂函数与指数函数的形式,幂函数是底为变量,幂为常数;指数函数是底为常数,幂为变量.要加以区别,不要混淆.它们的不定积分所采用的公式不同.

公式(6)、(7)、(8)、(9)为关于三角函数的积分,通过后面的学习还会增加其他三角函数公式. 公式(10)是一个关于无理函数的积分 公式(11)是一个关于有理函数的积分 下面结合恒等变化及不定积分线性运算性质,举例说明如何利用基本积分公式求不定积分. 例1 求不定积分. 分析:该不定积分应利用幂函数的积分公式. 解: (为任意常数) 例2 求不定积分.

定积分及微积分基本定理练习题及答案

1.4定积分与微积分基本定理练习题及答案 1.(2011·一中月考)求曲线y =x2与y =x 所围成图形的面积,其中正确的是( ) A .S =??01(x2-x)dx B .S =??01(x -x2)dx C .S =??01(y2-y)dy D .S =??01(y -y)dy [答案] B [分析] 根据定积分的几何意义,确定积分上、下限和被积函数. [解读] 两函数图象的交点坐标是(0,0),(1,1),故积分上限是1,下限是0,由于在[0,1]上,x ≥x2,故函数y =x2与y =x 所围成图形的面积S =??0 1(x -x2)dx. 2.(2010·日照模考)a =??02xdx ,b =??02exdx ,c =??02sinxdx ,则a 、b 、c 的大小关系是 ( ) A .a2,c =??02sinxdx =- cosx|02=1-cos2∈(1,2), ∴c

定积分计算的总结论文

定积分计算的总结 闫佳丽 摘 要:本文主要考虑定积分的计算,对一些常用的方法和技巧进行了归纳和总结.在定积分的计算中,常用的计算方法有四种:(1)定义法、(2)牛顿—莱布尼茨公式、(3)定积分的分部积分法、(4)定积分的换元积分法. 关键词:定义、牛顿—莱布尼茨公式、分部积分、换元. 1前言 17世纪后期,出现了一个崭新的数学分支—数学分析.它在数学领域中占据着主导地位.这种新数学思想的特点是非常成功地运用了无限过程的运算即极限运算.而其中的微分和积分这两个过程,则构成系统微积分的核心.并奠定了全部分析学的基础.而定积分是微积分学中的一个重要组成部分. 2正文 那么,究竟什么是定积分呢?我们给定积分下一个定义:设函数()f x 在[],a b 有定义,任给[],a b 一个分法T 和一组{}k ξξ=,有积分和 1 (,)()n k k k T f x σξξ==?∑,若当()0l T →时,积分和(,)T σξ存在有限极限,设 ()0 ()0 1 lim (,)lim ()n k k l T l T k T f x I σξξ→→==?=∑,且数I 与分法T 无关,也与k ξ在[] 1,k k x x -的取法无关,即{}0,0,:(),k T l T εδδξξ?>?>?

定积分测试题及答案(可编辑修改word版)

1 D , 3 9 , 5 9 , 3 7 , 5 7 4 定积分测试题及答案 班级:姓名:分数: 一、选择题:(每小题5 分) 1. ? 1-x2dx =() A.0 B.1 C. 2 2(2010·ft东日照模考)a=∫0的大小关系是( ) 2 x d x,b=∫0 2 e x d x,c=∫0sin x d x,则a、b、c A.a

1 6 6.(2010·湖南省考试院调研) -1 (sin x +1)d x 的值为( ) A .0 B .2 C .2+2cos1 D .2-2cos1 7. 曲线 y =cos x (0≤x ≤2π)与直线 y =1 所围成的图形面积是( ) A .2π B .3π C.3π 2 D .π x 8.函数 F (x )= ∫0 t (t -4)d t 在[-1,5]上( ) A .有最大值 0,无最小值 B .有最大值 0 和最小值-32 3 32 C .有最小值- ,无最大值 D .既无最大值也无最小值 3 x 9.已知等差数列{a }的前 n 项和 S =2n 2+n ,函数 f (x )= 1 ,若 n n f (x )

(完整版)【经典】常用的求导和定积分公式(完美)

一.基本初等函数求导公式 (1) 0)(='C (2) 1 )(-='μμμx x (3) x x cos )(sin =' (4) x x sin )(cos -=' (5) x x 2 sec )(tan =' (6) x x 2 csc )(cot -=' (7) x x x tan sec )(sec =' (8) x x x cot csc )(csc -=' (9) a a a x x ln )(=' (10) (e )e x x '= (11) a x x a ln 1 )(log = ' (12) x x 1)(ln = ', (13) 211)(arcsin x x -= ' (14) 211)(arccos x x -- =' (15) 21(arctan )1x x '= + (16) 21(arccot )1x x '=- + 函数的和、差、积、商的求导法则 设)(x u u =,)(x v v =都可导,则 (1) v u v u '±'='±)( (2) u C Cu '=')((C 是常数) (3) v u v u uv '+'=')( (4) 2 v v u v u v u '-'= ' ??? ?? 反函数求导法则 若函数 )(y x ?=在某区间y I 内可导、单调且0)(≠'y ?,则它的反函数)(x f y =在对应区间x I 内也可导,且

)(1)(y x f ?'= ' 或 dy dx dx dy 1= 复合函数求导法则 设)(u f y =,而)(x u ?=且)(u f 及)(x ?都可导,则复合函数)]([x f y ?=的导数为 dy dy du dx du dx =g 或()()y f u x ?'''=g 二、基本积分表 (1)kdx kx C =+? (k 是常数) (2)1 ,1 x x dx C μμ μ+= ++? (1)u ≠- (3)1 ln ||dx x C x =+? (4)2 tan 1dx arl x C x =++? (5) arcsin x C =+ (6)cos sin xdx x C =+? (7)sin cos xdx x C =-+? (8)21 tan cos dx x C x =+? (9)21 cot sin dx x C x =-+? (10)sec tan sec x xdx x C =+? (11)csc cot csc x xdx x C =-+?

相关文档