文档库 最新最全的文档下载
当前位置:文档库 › 2006 2-micron Laser Developments for Wind and CO2 Lidar Applications (NASA LaRC)

2006 2-micron Laser Developments for Wind and CO2 Lidar Applications (NASA LaRC)

2006 2-micron Laser Developments for Wind and CO2 Lidar Applications (NASA LaRC)
2006 2-micron Laser Developments for Wind and CO2 Lidar Applications (NASA LaRC)

2-micron Laser Developments for Wind and CO2 Lidar Applications Jirong Yu a, Bo C. Trieu a, Mulugeta Petros b, Yingxin Bai c, Paul J. Petzar c, Grady J. Koch a, Upendra N. Singh a, Michael J Kavaya a

a NASA Langley Research Center, MS 468, Hampton, VA 23681

b Science and Technology Corporation, 10 Basil Sawyer Drive, Hampton, VA 23666

c SAIC, One Enterprise Parkway, Suite 370, Hampton, VA 23666

Abstract-Significant advancements in the 2-micron laser development have been made recently. The world record 2-micron laser energy is demonstrated with an oscillator and two amplifiers system. In addition to technology development and demonstration, a compact and engineering hardened 2-micron laser is under development. It is capable to produce 250 mJ at 10 Hz by an oscillator and one amplifier. This compact laser is expected to be integrated to a lidar system, and take field measurements. The recent achievements push forward the readiness of such a laser system for space lidar applications. This paper will review the developments of the state-of-the-art solid-state 2-micron laser.

I.I NTRODUCTION

Solid-state 2-micron laser is a key subsystem for a coherent Doppler lidar that measures the horizontal and vertical wind velocities with high precision and resolution. The same laser, after a few modifications, can also be used in a Differential Absorption Lidar (DIAL) system for measuring atmospheric CO2 concentration profiles. Development of a high energy, high efficiency, high beam quality, single frequency, compact and reliable solid state 2-micron laser is critically needed for such lidar systems. The recent achievements push forward the readiness of such a laser system for space lidar applications. This paper reviews the developments of the state-of-the-art solid-state 2-micron laser.

II. O NE-JOULE PER PULSE Q-SWITCHED 2-μm SOLID-STATE

LASER

Recently, significant advancements in the 2-micron laser development have been made in terms of high energy demonstrations. A 125 mJ injection seeded 2-micron Ho:Tm:YLF oscillator at room temperature was developed in 1998 [1]. A 400mJ Q-switched 2-micron laser system using a conductively cooled laser pump module was reported in 2004 [2]. A 600 mJ Q-switched diode-pumped Tm:Ho:LuLF using a MOPA system at double pulse format was published in 2003 [3]. A Joule level 2-micron laser MOPA system was reported in 2004, but it was operated in double-pulse format [4]. Here we describe a one-joule-per-pulse Q-switched 2-micron laser system.

The MOPA 2-micron laser system comprises an oscillator, a preamplifier and two power amplifiers. The MOPA system is a typical way to achieve high energy, and at the same time to preserve good beam quality required by the nature of coherent lidars. The laser and amplifiers are all designed in side-pumped rod configuration, pumped by back-cooled conductive packaged GaAlAs diode laser arrays. The efficiency of the diode laser arrays is in the range of 38% to 44%. The symmetry afforded with side-pumped rod geometry helps to produce a high quality, circularly symmetric Gaussian beam output. The laser oscillator was pumped by two banks of three, radially arranged, 792nm laser diode arrays, each capable of producing 600 mJ of optical power for a nominal total of 3.6 J of 1 ms pulses. The laser oscillator and amplifier modules are in monolithic design. The diode arrays were directly mounted on aluminum modules, cooled by flowing water at 15°C. The amplifier modules are similar to the oscillator module design, except using four banks of three, radially arranged laser pump diode arrays with total nominal pump energy of 7.2J of 1ms pulses. The preamplifier module is exactly the same as the oscillator module. The gain medium of the laser system is Tm:Ho:LuLF crystal with 6% Thulium and 0.5% Holmium doping concentration. A detail study of the Tm:Ho codoped crystals of YLF and the isomorphs LuLF and GdLF revealed that small changes in the thermal population of the lower laser level in ground state terminated lasers can significantly alter the laser performance [5]. The larger host ion size of Lu leads to larger crystal fields and, as a result, larger crystal field splitting of lanthanide series ions. Thus, the LuLF host crystals provide better laser performance compared with YLF or GdLF based lasers [6]. The pump diode arrays and the laser crystal rods are cooled in different chiller loop, so the temperatures of diodes and rods can be independently controlled.

The oscillator uses a stable ring resonator configuration to obtain a near Gaussian spatial profile beam. A stable resonator design is less sensitive to external vibrations and other mechanical perturbations in terms of laser performance. This is clearly desirable in an untended vibration and temperature–cycle prone environment. The total resonator length for this laser is 2.8 meters. The large resonator length is a simple way to obtain long laser pulse width that is desirable to achieve a Fourier transform limited narrow linewidth. An acoustic-optic Q-switch provides single or double Q-switched pulses. To obtain single longitudinal mode oscillation, injection seeding is required [7]. By injection seeding, not only a single longitudinal mode oscillator was obtained, unidirectional output of the ring resonator was achieved as well. However, for simplifying

this experiment, the injection seeding is not implemented. A retro reflector is used to obtain unidirectional output.

Two-micron Ho lasers are quasi four level lasers, so low temperature of the laser gain medium helps to reduce the threshold and to increase the slope effciency. The coolant temperature can not be lower than 8°C in the experiment, limited by the dew point constraint. Fig.1 depicts the oscillator performances for long pulse, single Q-switch and double Q-switch operations at a laser rod coolant temperature of 8°C. Long pulse is obtained at the free run mode with the pulse length typically several hundred microsecends. The laser slope efficiencies for the three operation formats are 16.5%, 11.9%, and 14.3%, respectively. The oscillator is capable of producing 150 mJ. However, due to the concern of optical damage by high intracavity fluence, the output is lowered to a 100mJ level by reducing the pump diode current. The full width half maximum of the oscillator pulse width is measured at 187 ns. Derating the pump diode power helps to extend the lifetime of the pump diodes as well.

O u t p u t e n e r g y (m J )

Oscillator pump energy (J)

Fig. 1. Oscillator output performance for normal mode, single Q-

switch, and double Q-switch pulses

The preamplifier increases the laser energy to 187 mJ. To maximize the extracted energy, the two amplifiers shall be operated near saturation. Under three-side pumping geometry, the gain profile peaked at the rod center and lower at edges. Some portion of the area around the edge of the rod where it did not directly face the diodes may not even reach the threshold of the population inversion, resulting in net loss in these areas. Thus, the optimal mode matching between the probe beam and the pump volume is an important factor. For oscillator, the optimum beam diameter at the laser rod position is ~2.2mm. Mode matching is realized by selecting the radius of curvatures of the reflect mirrors between the amplifier stages such that the beam sizes at amplifiers are little larger than 3.0mm.

The modified Frantz-Nodvik equation was used to simulate the performance of amplifier one for both the single and double pass amplification [8]

d(E(z, t)/E s )/dz = g 0[1-exp(-E(z, t)/ E s ] – αo E(z, t) (1)

where the g 0 is the small signal gain coefficient, E s is the saturation intensity, and the αo is the unsaturable loss. The small signal gain coefficient, g 0, and saturation intensity, E s , may be measured and derived from the gain measurements of the amplifier. The calculated data agrees with the experiment result with a small signal gain coefficient of 0.26 cm -1 and saturation energy of 0.492J.

Fig. 2 shows the MOPA system performance for long pulse, single Q-switch and double pulse Q-switch output. For total MOPA system pump energy of ~21.9J, 1.1 J single Q-switched output energy is achieved. The optical to optical conversion efficiency is 5%. In the double pulse Q-switch operation, the total output energy reaches 1.35 J, representing an optical to optical conversion efficiency of ~6.2 %. In double pulse operation, the second pulse energy comes from the free repopulating energy transfer process between the Tm and Ho ions after the Ho energy extraction by the first pulse [9].

O u t p u t p u l s e e n e r g y (J )

Total pump energy of MOPA system (J)

Fig. 2 Oscillator output performance for normal mode, single Q-switch, and double Q-switch pulses

This 2-micron laser system provides nearly transform limited beam quality. Table one listed the beam quality for each stage of the MOPA system. The beam quality of the MOPA system is characterized by scanning knife edge technique measuring the beam diameters at 11 planes on both sides of the focus point for a 500mm focal length lens under full power condition [10]. The curve fitting then applied to the data points with Least Squares curve fits Pearson’s parameter R 2 value of at least 0.97. The beam quality is directly derived from the fitting parameters. Except the last

amplifier, the beam qualities for oscillator, preamplifier and double pass amplifier one are excellent at the value of 1.1x transform limited. Even at the last amplifier stage, the beam quality is 1.4x transform limited.

III.E NGINEERING HARDENED COMPACT 2-MICRON LASER

DEVELOPMENT

Over the last few years, research in the area of the 2-μm laser technology for wind and carbon dioxide measurement has concentrated on primarily improving the efficiency, and increasing the energy. For applying this technology to ground field lidar measurements, to airborne and eventually space-borne missions, it is crucial to engineering package the state-of-the-art technology to meet the field mission requirements. We are developing a compact, engineered 2-micron coherent Doppler wind lidar transceiver to address the challenge. The packaged transceiver will certainly meet the requirements of the ground and airborne field missions, and it will be as close to perform UAV autonomous validation and to an envisioned spaced based Doppler wind lidar as possible. The design specifications of this engineered transceiver are listed in table 1. This engineered transceiver consists of four lasers; a continue wave solid state seed laser at wave length of 2.053μm with linewidth at kilo Hz range, a power oscillator capable producing ~100mJ/pulse energy, an amplifier operating at double pass configuration, and a alignment laser.

TABLE 1

Design specifications of the engineered transceiver Wave length 2.053μm

Pulse energy >250mJ

Pulse Repetition Rate 10 Hz

Pulse length >100ns

Beam transversal mode TEMoo, M2<1.3

Beam longitudinal mode Single frequency by injection

seeding

Heterodyne frequency offset 105MHz

Transceiver size 25”x7”x10.5”,LxWxH

One of the general design guidelines for space-qualifiable laser is to operating all the optical components at appropriately de-rated levels. It is particularly important for de-rating pump diode laser to have long operational lifetime. To reach the maximum population inversion of the Ho:Tm solid state lasers, the pumping duration for laser gain medium is as long as 1ms, thanks to the long life time of the laser up-level. Thus, even though the duty cycle of the pump diode arrays is as low as 1%, it still experiences significant heat during such a long pulse period. A pump diode array can produce 14.4w average power at 120A pump current. These diodes will be de-rated to 11w average power at lower pump current. Thus, the pump diodes are operated at 76% of their designed peak optical powers. In addition to de-rate the pump diodes operational current, the laser fluence is kept ~50% below the optical components damage level inside the oscillator cavity and in the amplifier optical pass. To obtain single longitudinal frequency, the power oscillator is injection seeded by a CW solid-state laser operating at 2.053μm. The

ramp and fire technique is used to lock the laser at the seed

laser frequency. The electronic control system has been updated that utilizes FPGA and digital filters to improve the control flexibility and injection seeding reliability and stability. The output of the power oscillator is amplified by a

laser amplifier, which operated at double pass configuration.

By double pass the amplifier, it increases the amplifier extraction efficiency, thus the entire transceiver efficiency.

Part of receiver is also included in this transceiver. Among

them are the transmit/receive (TR) switch, a quarter wave plate, a frequency modulator to shift the seed frequency by

105MHz and a dual channel signal receiver. The atmospheric returning signal is fiber coupled into the dual channel receiver, where it mixes with local oscillator, which is partially splitted from the seed laser. This transceiver did not include telescope and associated scanner. The transceiver

size is 25 by 7 by 10.5 inches, and it is sealed and purged

with nitrogen. This size of transceiver can be adapted to an airborne system in an airplane such as WB57.

Table 2 summarizes the transceiver system level operation requirements. For practical and economical reasons, the transceiver does not adapt the fully conductive cooled 2-micron laser technique, which is developed at separate task [11]. In stead, a partially conductive cooled laser and amplifier are utilized in the transceiver. The laser bench is temperature controlled to maintain the laser energy stability.

To achieve high laser efficiency, the laser is designed to operate at 5 °C, but it will work at the temperature range between 0°C and 30°C. The power consumption is less than

600W without considering the chiller power. Half of the power is used by pump diodes. The rest of the power is shared between the seed laser, Q-switch driver, frequency modulator, PZT mirror driver and electrical control system.

TABLE 2

System Level Requirements

Operational Temperature 0°C - 30°C

Storage temperature -25° C - +50°C

Humidity <50%

RH@25°C Vibration 2.0

g-rms Cooling method Partially conductive cooling

Optical bench Temperature controlled

Cooling temperature 5 °C

Power consumption 600w (not include Chiller

power requirement

The mechanical design of the transceiver is depicted in the Figure 3. Both side of the optical bench are designed to hold optical components. The power oscillator, laser amplifier and alignment laser are mounted at one side of the optical bench.

The seed laser, isolators, receiver detectors and fiber couplers

are at the other side of the optical bench. The two sides are optically coupled through a hole in the optical bench. All the optical mounts are custom designed to withstand at least 2.0 g-rms vibration, sufficient for an airborne field missions.

Fig. 3a Power oscillator and amplifier

Fig. 3b Seed laser and receiver components

Fig. 4 test-bed laser output energy performance

A test bed laser that is at exactly the same dimension of the designed compact laser is developed. The compact performance such as energy, pulse width, longitudinal and transversal beam quality, is characterized and validated by this test bed laser. This test bed laser is nearly perfect seeded to produce single frequency output. Figure 4 shows the laser energy output characteristics. At the probe energy of 101mJ, the double passed amplifier produces more than 300mJ/pulse energy, exceeding the design specifications. The beam quality of the power oscillator, single pass amplifier and double amplifier are also characterized, and they are all at M2 value of better than 1.2.

IV.C ONCLUSION

In summary, a larger than one-joule-per-pulse, diode pumped, Q-switched 2-micron MOPA system has been successfully demonstrated with excellent beam quality. This high energy 2-micron laser demonstration is one step closer for developing a space-borne coherent Doppler wind lidar with the required energy.

An engineering hardened, compact 2-micron transceiver, specifically designed for coherent wind lidar, is also designed. Its performance has been characterized and validated by a test-bed laser. This development advances the TRL of the coherent wind lidar, and makes significant milestone towards the space wind lidar mission.

A CKOWLEDGMENT

This work was supported by Laser Risk Reduction Program, funded by NASA Science Mission Directorates.

R EFERENCES

1.Jirong Yu, U.N.Singh, N.P.Barnes and M.Petros, Opt. Lett.

23,780 (1998)

2.M. W. Phillips and J. P. Tucker, Proc. SPIE, 5653, 146, (2004)

3.Jirong Yu, Alain Braud and Mulugeta Petros, Opt. Lett. 28, 540

(2003)

4.S. Chen, J. Yu, M. Petros, Y. Bai, B. C. Trieu, U. N. Singh and

M. J. Kavaya, Proc. SPIE, 5653, 175 (2004)

5. B. M. Walsh, N. P. Barnes, M. Petros, Jirong Yu and U. N.

Singh, Journal of Applied Physics, 95, 3255 (2004)

6.V. sudesh, K Asai, K. Shimamura, T. Fukuda, IEEE J. Quant.

Electronics, 38, 1102 (2002)

7.S.W. Henderson, E.Y. Yuen, and E.S. Fry, Opt. Lett. 11, 715

(1986).

8.J. T. Verdeyen, Laser Electronics, 3rd edition, p312 (Prentice-

Hall, 1995)

9. D. Bruneau, S. Delmonte, and J. Pelon, Appl. Opts, 37, 8406

(1998)

10.L. Deroff, P. Salieres and B. Carre, Opt. Lett. 23, 1544 (1998)

11. B. C. Trieu, Jirong Yu, M. Petros, Luisramos-Izquierdo,

Glenn Byron, Perk Sohn, Yingxin Bai, S. Chen, U. N.

Singh, M. J. Kavaya, Proc. SPIE 5887, p. 5887OM-1

脉冲激光器

收稿日期:2004-09-20;收到修改稿日期:2005-10-28 作者简介:姜本学(1980-),男,山东青州人,博士研究生,主要从事高平均功率激光晶体生长、光谱和激光性能的研究。E-mail:jiangbx@https://www.wendangku.net/doc/c614472530.html, 摘要介绍了能够实现高平均功率的两种固体激光器:固体薄片激光器和固体热容激光器。给出了它们的工作原理和 理论上的工作参数。综述了固体薄片激光器和固体热容激光器的研究历史和现状,指出了高平均功率固体激光器未来的发展方向。关键词 固体薄片激光器;固体热容激光器;高平均功率固体激光器 中图分类号:TN248 Thin Disk Solid State Lasers and Heat Capacity Solid State Lasers JIANG Benxue 1,2ZHAO Zhiwei 1ZHAO Guangjun 1XU Jun 1 1Shanghai Institute of Optics and Fine Mechanics,The Chinese Academy of Sciences,Shanghai 201800 2Graduate School of the Chinese Academy of Science,Beijing 100200 ()Abstract The working principles and the working parameters calculated theoretically of two types of solid state lasers,thin disk lasers and heat capacity lasers,which can realize high average power,are introduced.Their research history and the present status are described,the adoption of Nb:YAG,Nd:GGG,and Nd:YAG crystals in the solid state lasers are summarized,and the prospect and the development trends of high average power solid state lasers are pre 原sented.Key words thin disk solid state laser;heat capacity laser;high average power solid state laser 固体薄片激光器和固体热容激光器 姜本学1,2赵志伟1赵广军1徐军1 1中国科学院上海光学精密机械研究所,上海2018002中国科学院研究生院,北京100200 ()1引言 高平均功率(HAP)输出的固体 激光器(SSL)在工业、科学和军事等领域都有着非常诱人的应用前景[1~4]。设计高功率固体激光器的主要的困难有两个[5]:对抽运过程中无法避免的废热进行处理以及消除由于将废热去除而导致的后果。在激光工作过程中如果不对增益介质冷却,就会导致其温度升高,使得增益系数降低,最终导致不能工作。对增益介质冷却就会引起热透镜、机械应力及其它许多问题的产生,进而可能使激光光束质量下 降、降低激光输出功率、甚至可能导致固体激光增益介质的破裂。 针对高功率固体激光器上述两个发展瓶颈,解决的方法有两个:一是由于产生废热是不可避免 的, 所以要尽量消除由于消除废热而引起的后果。必须要减少热量和热流密度,减小热流的传导路程和 对激光场的影响[6~19]。几年来, 关于这方面的研究有很多的设计模型,比较理想的模型是盘片激光器。二是在激光工作过程中不对增益介质冷却,即固体热容激光器。这样就要求选择增益介质的热容和密度要尽可能的大, 从而在相同的激光输出的情况下,增益介质的温度升高尽量小[20~32]。 Yb 掺杂离子体系和Nd 掺杂离子体系的发展为高功率固体激光器的研究提供了好的方向[5,6]。由于Yb 离子的量子缺陷比Nd 离子低的多,大约仅为1/3,这在很大的程度上降低了废热的产生。但是由于Yb 离子是准三能级结构,激光下能级低,所以受温度影响大,抽运阈值高。本文重点介绍Yb 掺杂离子体系和Nd 掺杂离子体系的盘片激光器和固体热容激光器的研

国外选区激光熔化成形技术在航空航天领域应用现状_董鹏

1 铺粉 国外选区激光熔化成形技术在航空航天领域应用现状 董鹏 陈济轮 (首都航天机械公司,北京100076) 摘要:选区激光熔化成形技术具有制造精度高、表面质量好以及能够实现悬空、复杂内腔和型面等复杂构件的整体制造等特点,是满足航空航天领域中复杂薄壁精密构件高精度、高性能、高柔性与快速反应的理想制造方法。本文对国外选区激光熔化成形技术在航空航天领域的应用以及技术发展方向进行了分析。 关键词:选区激光熔化成形;航空航天;应用现状 Current Status of Selective Laser Melting for Aerospace Applications Abroad Dong Peng Chen Jilun (Capital Aerospace Machinery Company,Beijing 100076) Abstract :Selective laser melting can manufacture complex geometries structures with thin walls and hidden voids or channels without tools or mould,for difficult-to-machine materials.It provides a high efficiency,high-quality,flexible manufacturing technique for manufacturing components in aerosapce fields.The current status and the trends of of selective laser melting for aerospace applications in abroad were analysed. Key words :selective laser melting ;aerospace ;current status of applications 1 引言 金属材料增材制造技术是在航空航天领域关键件研制需求的牵引下诞生的,由于其特有的技术优势,使得各国政府和研究结构投入大量的人力、物力、 财力进行该项技术的研究。近些年在航空航天领域迫切需求的牵引以及计算机技术、激光技术以及材料科学等相关基础技术快速发展的推动下,增材制造技术发展十分迅速。 图1选区激光熔化成形基本流程[4] 作者简介:董鹏(1983-),工程师,光学工程专业;研究方向:激光焊接与增才制造。 收稿日期:2014-03-06 CAD 模型 分层切片 铺粉 激光按分层形状熔化金属粉末 基板下降 完成零件制备

金属零件激光选区熔化3D打印装备与技术

金属零件激光选区熔化3D打印装备与技术随着科学技术日新月异的进步,机械加工行业不断发展。而快速成型技术,尤其是激光3D打印技术在机械加工行业中起到了越来越大的作用,并渐渐在制造业得到了广泛应用,成为了如今机械制造业中不可或缺的一部分。3D打印技术正在快速改变我们传统的生产方式和生活方式,不少专家认为,以数字化、网络化、个性化、定制化为特点的3D打印制造技术将推动第三次工业革命。 金属零件3D打印技术作为整个3D打印体系中最前沿和最有潜力的技术,是先进制造技术的重要发展方向。按照金属粉末的添置方式将金属3D打印技术分为三类:(1)使用激光照射预先铺展好的金属粉末,即金属零件成型完毕后将完全被粉末覆盖。这种方法目前被设备厂家及各科研院所广泛采用,包括直接金 属激光烧结成型(Direct Metal Laser Sintering,DMLS)、激光选区熔化(Selective laser melting,SLM)和LC(Laser Cusing)等;(2)使用激光照射喷嘴输送的粉末流,激光与输送粉末同时工作(Laser Engineered Net Shaping,LENS)。该方法目前在国内使用比较多;(3)采用电子束熔化预先铺展好的金属粉末(Electron Beam Melting,EBM),此方法与第1类原理相似,只是采用热源不同。 激光选区熔化技术是金属3D打印领域的重要部分,其采用精细聚焦光斑快速熔化300-500目的预置粉末材料,几乎可以直接获得任意形状以及具有完全冶金结合的功能零件。致密度可达到近乎100%,尺寸精度达20-50微米,表面粗糙度达20-30微米,是一种极具发展前景的快速成型技术,而且其应用范围已拓展到航空航天、医疗、汽车、模具等领域。 目前SLM设备的研究和开发也成为了国内外快速成型领域的热点。本文对SLM设备的组成和成型原理进行了一个概述性的介绍,对比了国内外SLM设备的参数,并对SLM设备和技术的发展进行了展望。 SLM成型设备 SLM设备一般由光路单元、机械单元、控制单元、工艺软件和保护气密封单元几个部分组成。 光路单元主要包括光纤激光器、扩束镜、反射镜、扫描振镜和F-?聚焦透镜等。激光器是SLM设备中最核心的组成部分,直接决定了整个设备的成型质量。近年来几乎所有的SLM 设备都采用光纤激光器,因光纤激光器具有转换效率高、性能可靠、寿命长、光束模式接近基模等优点。由于激光光束质量很好,激光束能被聚集成极细微的光束,并且其输出波长短,因而光纤激光器在精密金属零件的激光选区熔化快速成型中有着极为明显的优势。扩束镜是对光束质量调整必不可少的光学部件,光路中采用扩束镜是为了扩大光束直径,减小光束发散角,减小能量损耗。扫描振镜由电机驱动,通过计算机进行控制,可以使激光光斑精确定位在加工面的任一位置。为了克服扫描振镜单元的畸变,须用专用平场F-?扫描透镜,使得聚焦光斑在扫描范围内得到一致的聚焦特性。

激光脉冲的平均功率和功率

激光脉冲的平均功率和功率, 设脉冲激光器输出的单个脉冲持续时间(脉冲宽度)为:t,(实际为FWHM宽度) 单个脉冲的能量:E, 输出激光的脉冲重复周期为:T, 那么,激光脉冲的平均功率Pav = E/T,(即在一个重复周期内的单位时间输出的能量) 脉冲激光讲峰值功率(peak power)Ppk = E/t 能量密度=(单脉冲能量*所用频率)/光斑面积算 通常也用单位时间内的总能量除以光斑面积 峰值功率=脉冲能量除以脉宽 平均功率=脉冲能量*重复频率(每秒钟脉冲的个数) 脉冲激光器的能量换算 脉冲激光器的发射激光是不连续,一般以高重频脉冲间隔发射。发射能量以功的单位焦耳J) 计,即每次脉冲做功多少焦耳。 连续激光器发射的能量以功率单位瓦特(W)计量,即每秒钟做功多少焦耳,表示单位时间内 做功多少。 瓦和焦耳的关系:1W=1J/秒。 一台脉冲激光器,脉冲发射能量是1焦耳/次,脉冲频率是50Hz,则每秒钟发射激光50次,每秒钟内做功的平均功率为:50X 1焦耳=50焦耳,所以,平均功率就换算为50瓦。再举例 说明峰值功率的计算,一台绿光脉冲激光器,脉冲能量是0.14mJ/次,每次脉宽20 ns,脉冲 频率100kHz, 平均功率为:0.14mJ X 100k=14J/s=14W,即平均功率为14瓦;峰值功率是每次脉冲能量与脉宽之比,即 峰值功率:0.14mJ/20ns=7000W=7kW,峰值功率为7千瓦。 要想知道镜片的脉冲激光损伤阈值是否在承受极限内,既要计算脉冲激光的峰值功率,也要计算脉冲激光的平均功率,综合考虑。 如某ZnSe镜片的激光损伤阈值时是500MW/cm2,使用在一台脉冲激光器中,脉冲激光器的 脉冲能量是10J/cm2,脉宽10ns,频率50kHz。首先,计算平均功率:10J/cm2 X 50kHz =0.5MW/cm2 其次,再计算峰值功率:10J/cm2 / 10ns = 1000MW/cm2 从脉冲激光器的平均功率看,该镜片是能承受不被损伤的,但从脉冲激光器的峰值功率看, 是大于该镜片的激光损伤阈值的。所以,综合判断,该ZnSe镜片不宜用于此脉冲激光器。如果有条件,对脉冲激光器镜片,应当分别测试平均功率和峰值功率的激光损伤阈值。 Ave. Power :平均功率Pulse energy :脉冲能量Pulse Width :脉宽Peak Power:峰值功率Rep. Rate :脉冲频率ps:皮秒,10-12 S ns:纳秒,10-9S M: 兆, 106 J:焦耳W:瓦 氙灯作为激光设备一个常用光源,通常被人们也叫做激光氙灯、脉冲氙灯。氙灯是一 种填充氙气的光电管或闪光电灯。氙气化学性质不活泼,不能燃烧,也不助燃。是天然的稀

针对激光选区熔化表面粗糙度分析LZT

《快速成型技术Ⅰ》课程论文 针对熔融挤出成型(FDM)技术的表面粗糙度分析讨论 学院机械与汽车工程 专业机械一 学生姓名廖政泰 指导教师杨永强王迪 提交日期年月日

表面粗糙度及影响因素 表面粗糙度影响零件的耐磨性。表面越粗糙,配合表面间的有效接触面积越小,压强越大,磨损就越快。 2)表面粗糙度影响配合性质的稳定性。对间隙配合来说,表面越粗糙,就越易磨损,使工作过程中间隙逐渐增大;对过盈配合来说,由于装配时将微观凸峰挤平,减小了实际有效过盈,降低了联结强度。 表面粗糙度 表面粗糙度 3)表面粗糙度影响零件的疲劳强度。粗糙零件的表面存在较大的波谷,它们像尖角缺口和裂纹一样,对应力集中很敏感,从而影响零件的疲劳强度。 4)表面粗糙度影响零件的抗腐蚀性。粗糙的表面,易使腐蚀性气体或液体通过表面的微观凹谷渗入到金属内层,造成表面腐蚀。 5)表面粗糙度影响零件的密封性。粗糙的表面之间无法严密地贴合,气体或液体通过接触面间的缝隙渗漏。 表面粗糙度 表面粗糙度 6)表面粗糙度影响零件的接触刚度。接触刚度是零件结合面在外力作用下,抵抗接触变形的能力。机器的刚度在很大程度上取决于各零件之间的接触刚度。 7)影响零件的测量精度。零件被测表面和测量工具测量面的表面粗糙度都会直接影响测量的精度,尤其是在精密测量时。 此外,表面粗糙度对零件的镀涂层、导热性和接触电阻、反射能力和辐射性能、液体和气体流动的阻力、导体表面电流的流通等都会有不同程度的影响。 选择性激光熔化技术的基本原理 SLM技术是利用金属粉末在激光束的热作用下完全熔化、经冷却凝固而成型的一种技术。为了完全熔化金属粉末,要求激光能量密度超过106W/Cm2。目前用SLM技术的激光器主要有Nd-YAG激光器、Co2激光器、光纤(Fiber)激光器。这些激光器产生的激光波长分别为1064nm、10640nm、1090nm。金属粉末对1064nm等较短波长激光的吸收率比较高,而对10640nm等较长波长激光的吸收率较低。因此在成型金属零件过程中具有较短波长激光器的激光能量利用率高,但是采用较长波长的Co2激光器,其激光能量利用率低。在高激光能量密度作用下,金属粉末完全熔化,经散热冷却后可实现与固体金属冶金焊合成型。SLM 技术正是通过此过程,层层累积成型出三维实体的快速成型技术。根据成型件三维CAD 模型的分层切片信息,扫描系统(振镜)控制激光束作用于待成型区域内的粉末。一层扫描完毕后,活塞缸内的活塞会下降一个层厚的距离;接着送粉系统输送一定量的粉末,铺粉系统的辊子铺展一层厚的粉末沉积于已成型层之上。然后,重复上述2个成型过程,直至所有三维CAD模型的切片层全部扫描完毕。这样,三维CAD模型通过逐层累积方式直接成型金属零件。最后,活塞上推,从成型装备中取出零件。至此,SLM金属粉末直接成型金属零件的全部过程结束. 在制造过程中,铺粉装置按设定的层厚将金属粉末均匀地铺设在基板上,激光在振镜控制下对需要熔化的区域进行扫描熔化;然后,基板下降一个层厚,重复下层的加工,如此往复,金属零件一层层地被加工出来。SLM激光快速成型技术非常适用于复杂零件的快速制造,它可以极大地缩减产品开发周期,降低设计与制造成本,具有广阔的研究与应用前景[1~8]。在这种逐层加工过程中,前一层水平面的表面质量直接影响到下一层的铺粉均匀性,如果前一层的表面粗糙度值很大,甚至存在球化现象,则可能导致下一层的铺粉过程无法完成,从而使得成型加工无法继续;另外,垂直面、倾斜面的表面粗糙度作为成型零件表面粗糙

GH3536合金选区激光熔化成形行为及高温性能研究

GH3536合金选区激光熔化成形行为及高温性能研究 GH3536合金是一种典型的固溶强化型镍基高温合金,具有良好的高温强度以及抗氧化性能,主要用于制作航空发动机燃烧室部件和其他在高温环境下服役的零部件。出于轻量化要求,高性能航空发动机对零部件结构的复杂程度要求越来越高,这给传统制造工艺带来了很大的困难。选区激光熔化(Selective Laser Melting,SLM)技术作为一种典型的金属3D打印技术,在难加工、结构复杂高温合金零部件的加工成形方面具有极大的优势,因此被广泛地应用于航空航天领域。SLM成形过程中,粉末层局部区域经历快速升温/降温过程,存在较高的温度梯度和热应力,容易产生孔隙和微裂纹等缺陷,制约了材料的成形效果和服役性能。同时SLM成形过程中凝固冷却速率极快,区别于传统工艺零部件,SLM成形件晶粒更为细小均匀,残余应力更高。因此有必要对SLM成形件内部孔隙、微裂纹缺陷控制以及组织性能进行研究。为研究GH3536合金SLM成形过程、优化成形工艺、减少成形件内部孔隙和微裂纹缺陷、评估SLM成形GH3536合金服役性能,本课题基于体能量密度研究不同工艺的成形效果,并选择致密度、孔隙和微裂纹数量作为衡量标准;分析薄壁管状成形件显微组织、微裂纹和维氏硬度分布;测试成形件常温力学性能以及高温力学性能,分析高温蠕变行为,并与热轧GH3536合金棒材相应性能进行对比;同时采用有限元方法模拟成形过程温度场、熔池形貌尺寸以及凝固组织。主要结论为:SLM成形件内部孔隙随体能量密度的增加逐渐减少并消失,微裂纹随体能量密度的增加出现并逐渐增加,微裂纹沿晶扩展,整体扩

展方向垂直于扫描线方向和平行于成形方向,并同时跨越相邻扫描线和多个沉积层;SLM成形件显微组织形貌呈现为熔池组成的鱼鳞状形貌,熔池内部存在跨越多个沉积层的柱状晶,晶粒间距约为0.6~1.5μm;SLM成形件硬度和强度高于棒材,塑形低于后者;SLM成形件的蠕变抗力高于棒材,其蠕变裂纹沿熔合线及柱状晶晶界形成并扩展,断口 可见明显扫描线痕迹,SLM成形件和棒材具有相近的蠕变应力指数 6.4~ 7.4;ANSYS模拟熔池形貌尺寸、凝固组织与试验结果吻合较好。

【CN110064756A】一种选区激光熔化成型的方法【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910326782.0 (22)申请日 2019.04.23 (71)申请人 阳江市五金刀剪产业技术研究院 地址 529533 广东省阳江市高新区福冈工 业园科技五路科技企业孵化中心大楼 首层 申请人 阳江市高功率激光应用实验室有限 公司 (72)发明人 路超 张瑞华 屈岳波 肖梦智  赵超 栗子林 康平 刘燕红  邱桥  (74)专利代理机构 北京市邦道律师事务所 11437 代理人 薛艳 温雷 (51)Int.Cl.B22F 3/105(2006.01)B33Y 10/00(2015.01)B33Y 30/00(2015.01)B33Y 40/00(2015.01) (54)发明名称一种选区激光熔化成型的方法(57)摘要本发明属于选区激光熔化成型技术领域。为了解决采用现有选区激光熔化成型方法获得的成型件存在内部有气孔以及表面精度差的问题,本发明公开了一种选区激光熔化成型的方法。该方法具体包括以下步骤:步骤S1,进行铺粉操作;步骤S2,采用第一热源对粉末层进行扫描处理;步骤S3,采用第二热源对粉末固态层进行扫描处理;步骤S4,重复步骤S1至步骤S3,进行逐层的粉末铺设和扫描操作,直至完成零部件的制备;其中,第一热源的能量密度小于第二热源的能量密度。采用本发明的方法进行选区激光熔化成型操作,可以避免成型件内部出现气孔,提升表面精度, 获得高质量的成型件。权利要求书1页 说明书5页 附图5页CN 110064756 A 2019.07.30 C N 110064756 A

基于选区激光熔化快速成型的自由设计与制造进展_宋长辉

50,080025激光与光电子学进展www.opticsj ournal.net基于选区激光熔化快速成型的自由设计与制造进展 宋长辉1,2 杨永强1,2 叶梓恒1 王 迪 1(1华南理工大学机械与汽车工程学院,广东广州510640;2广州有色金属研究院,广东广州510641 )摘要 随着机械系统复杂性的不断增加,在现代结构理论模型的设计中,设计者需要统筹考虑结构新颖性、性能优 良性和制造可行性,但传统的制造方式对设计约束很大。选区激光熔化(SLM)是快速制造中最有发展潜力的技术之一,在理论上可以实现任意复杂的计算机辅助设计(CAD)理论模型到金属功能件的直接制造。针对SLM自由 制造的特点,结合华南理工大学在该技术方面的研究基础,研究了具有免组装、功能集成和轻量化特点的复杂金属 功能件自由设计与直接制造的工艺,为航空航天、医疗、汽车等领域的产品创新设计与个性化制造提供参考。 关键词 光学制造;选区激光熔化;自由设计与制造;免组装机构;轻量化构件 中图分类号 O436 文献标识码 A doi:10.3788/LOP50.080026 Development of Freeform Design and Manufacturing  Basedon Selective Laser Melting Song Changhui 1,2 Yang Yongqiang1, 2 Ye Ziheng1 Wang  Di 11 School of Mechanical and Automotive Engineering,South China University of Technology,Guanghzou,Guangdong5 10640,China2  Guangzhou Research Institute of Non-Ferrous Metals Guangzhou,Guangdong510641,烄烆烌烎ChinaAbstract As the complexity  of the mechanical system is increasing,designers need to give comprehensiveconsideration to the novelty,excellent performance and manufacturing feasibility  of the structure in the design of thetheoretical model of modern mechanism.However,the traditional manufacturing  methods impose great restrictionon the design.Selective laser melting(SLM)is one of the technologies that have most development p otential,whichcan achieve direct manufacturing of metal functional parts from any  complex computer-aided design(CAD)theoretical models in theory.Based on the characteristics of the freeform manufacturing of SLM,combining  with therelated research of South China University of Technology,we study  the freeform design and direct manufacturingprocess of complex metal pieces with non-assembly,functional integration and lightweig ht characteristics,whichprovides effective reference for the innovative design and personalized manufacturing  of products in the fields ofaerosp ace,medical treatment and automobile.Key  words optical fabrication;selective laser melting;freeform design and manufacturing;non-assemblymechanism;lightweig ht structureOCIS codes 1 40.3390;350.3850;230.4000 收稿日期:2013-03-08;收到修改稿日期:2013-04-01;网络出版日期:2013-07- 11基金项目:国家自然科学基金(51275179 )作者简介:宋长辉(1986—) ,男,博士研究生,主要从事激光加工与激光快速成型等方面的研究。E-mail:song_chang hui@163.com导师简介:杨永强(1961—) ,男,博士,教授,博士生导师,主要从事激光材料加工、快速成型制造等方面的研究。E-mail:meyqyang @scut.edu.cn(通信联系人)1 引 言 随着机械系统复杂性的不断增加,在现代结构理论模型的设计中,设计者需要统筹考虑结构新颖性、性能优良性和制造可行性。其中制造可行性强调在设计阶段就要充分考虑制造中的问题,其基本思想是从产品设计参数中提取与制造过程相关的信息进行分析,以改善设计。传统制造对于产品的形状与结构设计约 080026- 1

选区激光熔化成形温度场模拟与工艺优化

3 基金项目:国家科技型中小企业创新基金(项目编号:05C26214201059) 收稿日期:2007212214  第28卷第3期 应 用 激 光 Vol.28,No.32008年6月 A P PL I ED LAS ER J une 2008 选区激光熔化成形温度场模拟与工艺优化 3 章文献, 史玉升, 李佳桂, 伍志刚 (华中科技大学材料成形与模具技术国家重点实验室,湖北武汉430074) 提要 在金属粉末的选择性激光熔化成形过程中,需要解决球化、翘曲、变形等难题。对于一定的金属粉末,通过优化成形工艺参数可以克服以上难题。为此,利用ANSYS 有限元法对成形过程的熔池及温度场模拟,建立有限元模型,分析得出成形过程熔池的深度和宽度,预测并优化成形过程的工艺参数。通过实验验证,应用有限元法优化后的成形工艺参数能够成形出复杂金属零件。 关键词 选择性激光熔化; 有限元模型; 熔池; 温度场 Simulation of T emperature Field for Optimization of Processing P arameters of Selective Laser Melting Metal Powders Zhang Wenxian , Shi Yusheng , Li Jiagui , Wu Zhigang (S tate Key L aboratory of M aterial Processing and Die and Moul d Technology ,H uaz hong Universit y of Science and Technology ,W uhan ,H ubei 430074,China ) Abstract The phenomena such as balling effect ,warp ,and distortion may occur in the process of selective laser melting (SL M )metal powders.These difficulties can be solved by optimizing the processing parameters during the process for a special metal powders.To optimize the parameters ,the temperature field and molten pool dimensions during the SL M process are modeled and simulated with ANSYS finite element method.The analysis results are given and optimum processing parameters are verified by forming complex structure lattice iron parts with the SL M technology.K ey w ords Selective laser melting ; finite element model ; molten pool ; temperature field 选择性激光熔化(selective laser melting ,SL M )快速成形技术可以直接成形出高精度、综合机械性能好的金属零件。该技术基于离散-堆积成形原理,根据零件CAD 模型直接成形三维实体,成形过程中扫描选区内的金属粉末在激光辐照下完全熔化而获得近100%致密的金属零件[1]。目前,国外应用SL M 快速成形技术可直接制造模具、工具、生物移植物等,它们涉及机械制造、航空航天、生物医学等领域,具有很好的应用前景。 对于特定粉末材料的选择性激光熔化快速成形过程,其成形参数直接影响成形过程的顺利进行及成形零件的致密度、表面质量、成形精度等性能。因此,在成形工艺研究过程中要对成形工艺参数进行优化。然而,目前SLM 快速成形技术的成形工艺参数的优化主要在实验及经验的基础上进行总结,缺少系统科 学的优化理论来指导,不利于SLM 快速成形技术的机理及工艺研究。为此开展了有限元模拟SLM 快速成形过程的相关研究,目前主要有以下人员从事这方面的研究。Childs T.H.C 等人对无基板情况下的粉末单扫描成形截面形状以及面扫描成形层质量进行有限元模拟[2-5]。Shiomi M.等人应用有限元法模拟分析了无基板情况下的粉末面扫描成形层的二维温度场与残余应力[6]。Osakada K 等人也对无基板情况下的粉末面扫描时单层固化成形的应力分布应用有限元模拟进行分析,并提出解决单层固化成形时缺陷的方法[7,8]。因为以上研究主要是针对无基板情况下激光熔化过程中的单线扫描和单面扫描的粉床温度场和应力场的有限元模拟,其主要目的是向无基板下的选择性激光熔化快速成形技术方向发展。然而对于在基板上粉末的选择性激光成形过程的熔池及 — 581—

[其他论文文档]分析脉冲激光技术在高分子材料加工中的应用

分析脉冲激光技术在高分子材料加工中的应用 近年来,脉冲激光技术已经得到了相对比较广泛的应用,并且该种精密的加工技术越来越受到社会与人们的关注,主要原因在于脉冲激光技术能够在加工高分子材料的过程中得到比较高的加工精度,并且能够进行材料表面的加工,使得材料的表面形成多孔结构与周期结构等。更加能够实现对块体材料、透明材料的内部加工与改性等。可以说,脉冲激光技术比较适用于其他加工技术无法实现的复杂形状元器件的加工以及高精度元器件的加工。脉冲激光技术在高分子材料加工的过程中所产生的瞬间功率比较大,几乎能够与任何材料产生相互的作用,本文对脉冲激光技术在高分子材料加工中的应用进行研究,希望能够促使高分子材料加工更加良好的依据脉冲激光技术获得发展。 1 脉冲激光及其折射率改性 所谓脉冲主要便是指隔一段相同的是假案发出的电波、光波等机械形式。脉冲激光则主要是指脉冲工作方式的激光器发出的光脉冲,脉冲激光具有其独特的工作必要性,其能够进行信号的发送并且减少热量的产生。一般情况下,脉冲激光比较短,其时间几乎已经达到了皮秒的级别。脉冲激光器在工作中需要由激光泵浦源持续性的提供能量,由此方能够长期间产生并且输出脉冲激光。高分子材料加工领域目前对脉冲激光技术有所应用。就高分子材料而言,其材料的折射率与其密度之间呈现正比关系,并且包括末端基、添加剂与杂志等化学组成、分子趋向、链间结合力等均与热历史存在关系。在高分子材料加工应用脉冲激光技术时,与其他改性技术相比较而言,脉冲激光技术能够诱导高分子材料改性技术对其财力下性能产生最小的影响,并且脉冲激光技术能够在高分子材料的表面将原有的化学键打破,并且能够形成全新的化学键,以此改变高分子材料的特性。 2 高分子材料加工对脉冲激光技术的应用 2.1 激光烧烛产生表面多孔结构 激光烧烛产生表面多孔结构能够有效的促进高分子材料与生物组织交界面上的细胞黏附与增殖,使得生物医学领域的众多学者均对其予以了较高的关注。 高分子材料表面的孔洞会在材料表面热化的情况下形成,并且应力在整个孔洞形成的过程中发挥着极为重要的作400nm,1.5J/cm2图1 脉冲激光在高分子材料表面形成的纳米泡沫表面多孔结构用。受应力波的影响,高分子材料的黏度会下降,而高分子材料本身又存在着因应力波作用而产生的孔洞长大的核,即自由体积孔洞,该自由体积孔洞的总体积会在温度上升的情况随着应力的下降而增加。就该方面高分子材料对脉冲激光技术的应用情况已经有部分学者展开了研究,并且认为在248nm的脉冲激光辐照下高分子材料胶原薄膜的链结构稳定性会发生一定改变,其能够将原有的氢键网络打破,并且经过红外吸收光谱、拉曼光谱、荧光分析等发现高分子材料胶原主链的部分会出现光热分解现象,在激光烧烛时会将光机械作为主要作用力,而后发生光化学转变。该种状态下生物的相容性会发生改善,即细胞黏着与细胞生长会发生改变。 2.2 激光烧烛产生表面周期结构

中科煜宸激光选区熔化技术及其应用

激光选区熔化(SLM)作为具有发展前景的金属零件3D打印技术,其成型材料多为单一组分金属粉末,包括奥氏体不锈钢、镍基合金、钛基合金、钴-铬合金和贵重金属等。通过激光束快速熔化金属粉末并获得连续的熔道,可以直接获得几乎任意形状、具有完全冶金结合、高精度的近乎致密金属零件。因此,其应用范围已经扩展到航空航天、汽车、微电子、医疗、珠宝首饰等行业。 SLM技术主要优势有:更好的表面质量、更好的性能、更宽泛的材料选择;主要待解决的问题:打印粉末成本高、成型速度慢、打印件受设备成型仓尺寸限制、需要添加支撑、需要后处理。 国内外对SLM技术研究热情较高。国外对SLM工艺进行开展研究的国家主要集中在德国、英国、日本、法国等。其中,德国是从事SLM技术研究最早与最深入的国家。第一台SLM系统是1999年由德国Fockele和Schwarze(F&S)与德国弗朗霍夫研究所一起研发的基于不锈钢粉末SLM成型设备。目前国外已有多家SLM设备制造商,例如德国EOS 公司、SLMSolutions公司、ConceptLaser公司和英国Renishaw公司等。华南理工大学于2003年开发出国内的第一套选区激光熔化设备DiMetal-240。发展至今,国内选区激光熔化设备主要研发及生产商有南京中科煜宸、湖南华曙高科、西安铂利特、无锡飞而康、北京隆源等。

航空航天零部件打印: 图1.涡轮增压器压缩机叶轮图2.叶轮图3.燃烧室机匣航空工业应用的3D打印主要集中在钛合金,铝锂合金,超高强度钢,高温合金等材料方面,这些材料基本都是强度高,化学性质稳定,不易成型加工,传统加工工艺成本高昂的类型,并且存在部分如下图所示的结构复杂的薄壁结构件。 汽车零部件打印: 近些年来,新能源汽车行业受到大力扶持与发展,其中零件的轻量化设计是减少能量损耗,提高汽车续航能力的一个重要因素。然而一些内部复杂的薄壁件采用传统制造工艺研发周期较长、加工难度较高。因此,3D打印技术逐渐走入研发人员的视野。图4为某汽车厂家打印的一个薄壁内流道结构件,该件使用过程中内壁需要承受一定的水压,因此,需要零件成型后致密性好。而SLM 3D打印零件通过工艺参数的优化,其致密度可以达到99%。 牙齿的打印: 市场现有的3D打印设备和生物相容性材料能够满足牙科产品的制造需求,例如SLM 技术打印的烤瓷牙金属冠的钴铬合金。目前,在牙科领域,3D打印不仅可以制造最终产品,还可以打印定制化的间接产品,例如牙科模型。这些产品往往对力学性能没有太高的要求,但确是最终产品制造和牙齿修复过程中的有力工具。这些直接亦或是间接应用产品需求将长期推动3D打印技术在牙科行业的增长与发展。

超短脉冲激光技术(钱列加老师)

5.6 (3) 一.概述 (3) 1.飞秒激光脉冲的特性 (3) 2.飞秒脉冲的传输 (5) 3.光束空间传输 (6) 4.脉冲传输的数值模拟 (6) 5.时空效应 (9) 5.1自相位调制 (10) 5.2相位调制对有限光束的影响——自聚焦 (11) 二.飞秒光学 (13) 1.简介 (13) 2.色散元件 (13) 2.1 膜层色散 (13) 2.2 材料体色散 (13) 2.3 角色散元件 (14) 3.群速度色散的补偿及控制 (14) 4.聚焦元件 (16) 4.1 透镜的色差 (16) 4.2 脉冲畸变与PTD效应 (16) 三.飞秒激光器 (18) 1.锁模简介 (18) 2.克尔透镜锁模 (18) 3.飞秒激光振荡器 (20) 4.光纤孤子激光器 (21) 四.飞秒脉冲的放大与压缩 (23) 1.简介 (23) 2.飞秒脉冲放大的困难 (25) 3.啁啾脉冲放大技术 (26) 4.CP A放大器的设计 (27) 4.1 CP A激光系统的工作脉宽 (27) 4.2 高增益的前置放大器 (27) 4.3 装置的色散控制 (28) 4.4 设计多程CP A放大器的理论模型 (31) 五.脉冲整形 (34) 1.脉冲整形 (34) 2.飞秒光脉冲整形的物理基础 (34) (1)线性滤波 (34) (2)脉冲整形装置 (35) (3)脉冲整形的控制 (38) 3.几种典型的空间光调制器 (39) (1)可编程液晶空间光调制器(LC SLM) (39) A.电寻址方式 (39) B.光寻址方式 (40) (2)声光调制器 (41)

(3)变形镜 (41) 4.脉冲压缩 (42) 2.1 波导介质中的SPM (42) 2.2 级联非线性压缩脉冲 (43) 六.脉冲时间诊断技术 (45) 1.强度相关 (45) (1) 多次平均测量 (45) (2) 单次工作方式 (47) (3) 三次相关法 (48) 2.干涉相关 (49) 3.脉冲振幅与位相的重建 (50) 七.大口径高功率激光装置 (53) 1.高能量的PW钛宝石/钕玻璃混合系统 (55) 2.关键技术问题 (56) 2.1 高阶色散 (57) 2.2 光谱窄化和漂移引起的光谱畸变 (57) 2.3 非线性自位相调制SPM (58) 2.4 自发辐射放大ASE (58) 3.光参量啁啾脉冲放大(OPCPA) (58) 3.1 大口径高能钕玻璃泵浦的OPCPA 系统 (62) 3.2 小口径低能量高重复率OPCPA 系统 (63) 4.展望 (64) 4.1 峰值功率的理论极限 (64) 4.2 光学元件的限制 (65) 4.3 非线性B积分的限制 (65)

脉冲激光器的能量换算

脉冲激光器的能量换算 脉冲激光器的发射激光是不连续,一般以高重频脉冲间隔发射。发射能量以功的单位焦耳(J)计,即每次脉冲做功多少焦耳。 连续激光器发射的能量以功率单位瓦特(W)计量,即每秒钟做功多少焦耳,表示单位时间内做功多少。 瓦和焦耳的关系:1W=1J/秒。 一台脉冲激光器,脉冲发射能量是1焦耳/次,脉冲频率是50Hz,则每秒钟发射激光50次,每秒钟内做功的平均功率为:50X 1焦耳=50焦耳,所以,平均功率就换算为50瓦。 再举例说明峰值功率的计算,一台绿光脉冲激光器,脉冲能量是0.14mJ/次,每次脉宽20ns, 脉冲频率100kHz, 平均功率为:0.14mJ X 100k=14J/s=14W,即平均功率为14瓦; 峰值功率是每次脉冲能量与脉宽之比,即 峰值功率:0.14mJ/20ns=7000W=7kW, 峰值功率为7千瓦。 要想知道镜片的脉冲激光损伤阈值是否在承受极限内,既要计算脉冲激光的峰值功率,也要计算脉冲激光的平均功率,综合考虑。 如某ZnSe镜片的激光损伤阈值时是500MW/cm2, 使用在一台脉冲激光器中,脉冲激光器的脉冲能量是10J/cm2,脉宽10ns,频率50kHz。 首先,计算平均功率:10J/cm2 X 50kHz =0.5MW/cm2 其次,再计算峰值功率:10J/cm2 / 10ns = 1000MW/cm2 从脉冲激光器的平均功率看,该镜片是能承受不被损伤的,但从脉冲激光器的峰值功率看,是大于该镜片的激光损伤阈值的。所以,综合判断,该ZnSe镜片不宜用于此脉冲激光器。如果有条件,对脉冲激光器镜片,应当分别测试平均功率和峰值功率的激光损伤阈值。 ?Ave. Power :平均功率 ?Pulse energy :脉冲能量 ?Pulse Width:脉宽 ?Peak Power: 峰值功率 ?Rep. Rate :脉冲频率 ?ps:皮秒,10-12 S ?ns:纳秒,10-9S ?M: 兆,106 ?J: 焦耳 ?W: 瓦

脉冲激光电源电路原理图

脉冲激光电源电路原理图 脉冲激光电源的原理方框图如图1所示。它由触发电路、主变换器电路和高压充放电电路等三大部分组成。其电路原理图如图2所示。 图1 脉冲激光电源的原理方框图 图2 脉冲激光电源电路原理图 3 电路的工作原理 3.1 触发电路的工作原理 从图2可以看出,触发电路部分主要是由触发指示电路和触发电路组成,具体由IC1的LBI和LBO端,V1、LED、VD1以及K1和K2来完成,当变换器通过变压器T1、二极管VD2和VD3向电容器充电时,取样电路(由R10、R9、W1、W2、W3、R1组成)将其充电电压值反馈给IC1的LBI与VFB端,一旦电压充到所需的电压值时(大约为1kV左右),这时LBI 端的电压值将大于1.3V,LBO端就会变为高电平,V1导通,LED变亮,指示出电压已充到可以触发的状态。另外取样电路将反馈信号还送入IC1的VFB端,若反馈信号的电压值≥1.3V

时,即刻关断变换器,使高压维持到所需的值上,触发器件由高耐压、大电流的汽车级的晶闸管BT151/800R来担任。 3.2 主变换器的工作原理 主变换器电路主要是由IC1(MAX641/642/643)、变压器T1以及V2等元器件组成的单端反激式升压电路。其电路的核心部分为MAX641/642/643,所以这部分电路的工作原理分析以及MAX641/642/643的技术参数及其应用请查阅文献[1]。这里只给出高频自耦升压变压器的技术资料,以供同行们在制作时参考。铁芯选用4kBEE型铁氧体,骨架选用与铁芯对应配套的EE19型立式骨架,其技术参数如图3所示。 图3 T1变压器的技术参数 3.3 充放电电路的工作原理 充放电电路主要是由电容C7∥C10、C8∥C11、C9∥C12、C13、R14、升压变压器T2等组成。当电容C7∥C10、C8∥C11、C9∥C12被充到所设定的高压值时,电容C13中的电压也同时被充到所要求的电压值(300V左右),这时闭合K1或K2,晶闸管V3被触发导通,电容C13中所储存的能量通过变压器T2的初级绕组放电,使次级绕组感应出约10kV左右的高压,将激光器中的气体电离。在电离的同时,电容器C7∥C10、C8∥C11、C9∥C12中所储存的能量将这个电离的过程维持到一定的时间,从而就得了所需的激光脉冲。 4 重要元器件的选择及技术要求 1)储能电容由于储能电容C7∥C10、C8∥C11、C9∥C12要在很短的时间内为激光器提供足够大的能量,所以在选择该电容时,除了要求其具有足够高的耐压值(≥350V)以外,还必须要求其具有快速充电和放电的特性,即应选择印有“PHOTOFLASH”的光闪电容。 2)升压变压器升压变压器除了其初级绕组供电容C13放电,以使次级电压升高到10kV 以上外,还要满足当气体被电离以后,通过次级绕组将电容C7∥C10、C8∥C11、C9∥C12 中的能量全部释放给激光器,以便能够激发出很强的激光束来。所以次级绕组既要匝数多,又要电阻很小,同时还要满足耐高压的要求。变压器磁芯选择环形3kB的铁氧体材料,初级绕组选用?1.0的聚四氟乙烯镀银高压线绕制,次级绕组选用?0.32的聚四氟乙烯镀银高压线绕制,铁芯磁环选用外径35,内径12,厚度10的软磁铁氧体。其技术参数如图4所示。

相关文档