文档库 最新最全的文档下载
当前位置:文档库 › 实验五IIR数字滤波器设计及软件实现

实验五IIR数字滤波器设计及软件实现

实验五IIR数字滤波器设计及软件实现
实验五IIR数字滤波器设计及软件实现

实验四:IIR数字滤波器设计及软件实现

一、实验内容及步骤

1、调用信号产生函数mstg产生由三路抑制载波调幅信号相加构成的复合信号

st,三路信号在时域混叠无法在时域分离,但频域是可分离的,所以可以通过滤波的方法在频域分离。

2、要求将st中三路调幅信号分离,通过观察st的幅频特性曲线,分别确定可

以分离st中三路抑制载波单频调幅信号的三个滤波器(低通、高通、带通)的通带截止频率和阻带截止频率。要求滤波器的通带最大衰减为0.1db,阻带最小衰减为60db.

3、编程序调用MATLAB滤波器设计函数ellipord和ellip分别设计三个椭圆滤

波器,并绘图显示其损耗函数曲线。

4、调用滤波器实现函数filter,用三个滤波器分别对信号产生函数mstg产生

的信号st进行滤波,分离出st中的三路不同载波频率的调幅信号yn1、yn2、yn3的,并绘图显示其时域波形,观察分离效果。

二、实验结果显示

原信号图形:

高通滤波器

输出波形

带通滤波器输出波形

低通滤波器输出波形

带阻滤波器输出波形

数字图像处理实验三中值滤波和均值滤波实验报告

数字图像处理实验三中值滤波和均值滤波实验报告

数字图像处理实验三 均值滤波、中值滤波的计算机实现12281166 崔雪莹计科1202班 一、实验目的: 1)熟悉均值滤波、中值滤波处理的理论基础; 2)掌握均值滤波、中值滤波的计算机实现方法; 3)学习VC++ 6。0 的编程方法; 4)验证均值滤波、中值滤波处理理论; 5)观察均值滤波、中值滤波处理的结果。 二、实验的软、硬件平台: 硬件:微型图像处理系统,包括:主机, PC机;摄像机; 软件:操作系统:WINDOWS2000或WINDOWSXP应用软件:VC++ 6.0 三、实验内容: 1)握高级语言编程技术; 2)编制均值滤波、中值滤波处理程序的方法; 3)编译并生成可执行文件; 4)考察处理结果。 四、实验要求: 1)学习VC++确6。0 编程的步骤及流程; 2)编写均值滤波、中值滤波的程序;

3)编译并改错; 4)把该程序嵌入试验二给出的界面中(作适当修改); 5)提交程序及文档; 6)写出本次实验的体会。 五、实验结果截图 实验均值滤波采用的是3X3的方块,取周围的像素点取得其均值代替原像素点。边缘像素的处理方法是复制边缘的像素点,增加一个边框,计算里面的像素值得均值滤波。

六、实验体会 本次实验在前一次的实验基础上增加均值滤波和中值滤波,对于椒盐噪声的处理,发现中值滤波的效果更为好一点,而均值滤波是的整个图像变得模糊了一点,效果差异较大。本次实验更加增加了对数字图像处理的了解与学习。 七、实验程序代码注释及分析 // HistDemoADlg.h : 头文件 // #include "ImageWnd.h" #pragma once // CHistDemoADlg 对话框 class CHistDemoADlg : public CDialogEx { // 构造

滤波器主要参数与特性指标

滤波器的主要参数(Definitions): 中心频率(Center Frequency):滤波器通带的频率f0,一般取f0=(f1+f2)/2,f1、f2为带通或带阻滤波器左、右相对下降1dB或3dB边频点。窄带滤波器常以插损最小点为中心频率计算通带带宽。 截止频率(Cutoff Frequency):指低通滤波器的通带右边频点及高通滤波器的通带左边频点。通常以1dB或3dB相对损耗点来标准定义。相对损耗的参考基准为:低通以DC处插损为基准,高通则以未出现寄生阻带的足够高通带频率处插损为基准。 通带带宽(BWxdB):指需要通过的频谱宽度,BWxdB=(f2-f1)。f1、f2为以中心频率f0处插入损耗为基准,下降X(dB)处对应的左、右边频点。通常用X=3、1、0.5 即BW3dB、BW1dB、BW0.5dB 表征滤波器通带带宽参数。分数带宽(fractional bandwidth)=BW3dB/f0×100[%],也常用来表征滤波器通带带宽。 插入损耗(Insertion Loss):由于滤波器的引入对电路中原有信号带来的衰耗,以中心或截止频率处损耗表征,如要求全带内插损需强调。 纹波(Ripple):指1dB或3dB带宽(截止频率)范围内,插损随频率在损耗均值曲线基础上波动的峰-峰值。 带内波动(Passband Riplpe):通带内插入损耗随频率的变化量。1dB带宽内的带内波动是1dB。 带内驻波比(VSWR):衡量滤波器通带内信号是否良好匹配传输的一项重要指标。理想匹配VSWR=1:1,失配时VSWR<1。对于一个实际的滤波器而言,满足VSWR<1 BWdBBWdBdiv>

实验五:FIR数字滤波器设计与软件实现

实验五:FIR数字滤波器设计与软件实现 一、实验指导 1.实验目的 (1)掌握用窗函数法设计FIR数字滤波器的原理和方法。 (2)掌握用等波纹最佳逼近法设计FIR数字滤波器的原理和方法。 (3)掌握FIR滤波器的快速卷积实现原理。 (4)学会调用MATLAB函数设计与实现FIR滤波器。 2.实验容及步骤 (1)认真复习第七章中用窗函数法和等波纹最佳逼近法设计FIR数字滤波器的原理; (2)调用信号产生函数xtg产生具有加性噪声的信号xt,并自动显示xt及其频谱,如图1所示; 图1 具有加性噪声的信号x(t)及其频谱如图 (3)请设计低通滤波器,从高频噪声中提取xt中的单频调幅信号,要求信号幅频失真小于0.1dB,将噪声频谱衰减60dB。先观察xt的频谱,确定滤波器指标参数。 (4)根据滤波器指标选择合适的窗函数,计算窗函数的长度N,调用MATLAB函数fir1设计一个FIR低通滤波器。并编写程序,调用MATLAB快速卷积函数fftfilt实现对xt的滤波。绘图显示滤波器的频响特性曲线、滤波器输出信号的幅频特性图和时域波形图。 (4)重复(3),滤波器指标不变,但改用等波纹最佳逼近法,调用MATLAB函数remezord 和remez设计FIR数字滤波器。并比较两种设计方法设计的滤波器阶数。 提示:○1MATLAB函数fir1的功能及其调用格式请查阅教材; ○2采样频率Fs=1000Hz,采样周期T=1/Fs; ○3根据图1(b)和实验要求,可选择滤波器指标参数:通带截止频率fp=120Hz,阻带截

至频率fs=150Hz ,换算成数字频率,通带截止频率p 20.24p f ωπ=T =π,通带最大衰为0.1dB ,阻带截至频率s 20.3s f ωπ=T =π,阻带最小衰为60dB 。 ○ 4实验程序框图如图2所示,供读者参考。 图2 实验程序框图 4.思考题 (1)如果给定通带截止频率和阻带截止频率以及阻带最小衰减,如何用窗函数法设计线性相位低通滤波器?请写出设计步骤. (2)如果要求用窗函数法设计带通滤波器,且给定通带上、下截止频率为pl ω和pu ω,阻带上、下截止频率为sl ω和su ω,试求理想带通滤波器的截止频率cl cu ωω和。 (3)解释为什么对同样的技术指标,用等波纹最佳逼近法设计的滤波器阶数低? 5.信号产生函数xtg 程序清单(见教材) 二、 滤波器参数及实验程序清单 1、滤波器参数选取 根据实验指导的提示③选择滤波器指标参数: 通带截止频率fp=120Hz ,阻带截至频率fs=150Hz 。代入采样频率Fs=1000Hz ,换算成数字频率,通带截止频率p 20.24p f ωπ=T =π,通带最大衰为0.1dB ,阻带截至频率

二阶带通滤波器课程设计.

一、制作一个1000Hz 的正弦波产生电路: 图1.1 正弦波产生电路 1.1 RC 桥式振荡电路 RC 桥式振荡电路如图(1.1)所示。这个电路由两部分组成,即放大电路和选频网络。其中,R1、C1和R2、C2为串、并联选频网络,接于运算放大器的输出与同相输入端之间,构成正反馈,以产生正弦自激振荡。R3、W R 及R4组成负反馈网络,调节W R 可改变负反馈的反馈系数,从而调节放大的电压增益,使电压增益满足振荡的幅度条件。RC 串并联网络与负反馈中的R3、W R 刚好组成一个四臂电桥,电桥的对角线顶点接到放大器A1的两个输入端,桥式振荡电路的名称即由此得来。 分析RC 串并联网络的选频特性,根椐正弦波振荡电路的振幅平衡条件,选择合适的放大指标,构成一个完整的振荡电路。 1.2 振荡电路的传递函数 由图(1.1)有 1111 Z R sC =+,2 2222 1Z 1R R C sC =+=2221R sC R + 其中,1Z 、2Z 分别为图1.1中RC 串、并联网络的阻值。 得到输入与输出的传递函数: F ν(s)= 21 2 1212221121()1 sR C R R C C s R C R C R C s ++++ =12 21122111212 11111()s R C s s R C R C R C R R C C ++++ (1.1) 由式(1.1)得 21212 R R 1 C C =ω 2 1210R R 1 C C = ?ω

取1R =2R =16k Ω,12C C ==0.01μF ,则有 1.3 振荡电路分析 就实际的频率而言,可用s j ω=替换,在0ωω=时,经RC 选频网络传输到运放同相端的电压与1o U 同相,这样,放大电路和由Z1和Z2组成的反馈网络刚好形成正反馈系统,可以满足相位平衡条件。 12 2 11221212 ()12v j C R F j j C R j C R C C R R ωωωωω= ++- (1.2) 令2 12101R R C C = ω,且R R R C C C ====2121,,则式(1.2)变为 ) (31 )(00ω ωωωω-+= j j F v (1.3) 由此可得RC 串并联选频网络的幅频响应 2 002)( 31ω ωωω-+= V F (1.4) 相频响应 3 )( arctan 0ω ωωω?--=f (1.5) 由此可知,当 2 12101R R C C = =ωω,或CR f f π21 0= = 时,幅频响应的幅度为最大,即 而相频响应的相位角为零,即 这说明,当2 12101R R C C = =ωω时,输出的电压的幅度最大(当输入电压的幅 度一定,而频率可调时),并且输出电压时输入电压的1/3,同时输出电压与输入

空间域滤波器(实验报告)

数字图像处理作业 ——空间域滤波器 摘要 在图像处理的过程中,消除图像的噪声干扰是一个非常重要的问题。本文利用matlab软件,采用空域滤波的方式,对图像进行平滑和锐化处理。平滑空间滤波器用于模糊处理和减小噪声,经常在图像的预处理中使用;锐化空间滤波器主要用于突出图像中的细节或者增强被模糊了的细节。本文使用的平滑滤波器有中值滤波器和高斯低通滤波器,其中,中值滤波器对去除椒盐噪声特别有效,高斯低通滤波器对去除高斯噪声效果比较好。使用的锐化滤波器有反锐化掩膜滤波、Sobel边缘检测、Laplacian边缘检测以及Canny算子边缘检测滤波器。不同的滤波方式,在特定的图像处理应用中有着不同的效果和各自的优势。

1、分别用高斯滤波器和中值滤波器去平滑测试图像test1和2,模板大小分别 是3x3 , 5x5 ,7x7;利用固定方差 sigma=1.5产生高斯滤波器. 附件有产生高斯滤波器的方法。 实验原理分析: 空域滤波是直接对图像的数据做空间变换达到滤波的目的。它是一种邻域运算,其机理就是在待处理的图像中逐点地移动模板,滤波器在该点地响应通过事先定义的滤波器系数与滤波模板扫过区域的相应像素值的关系来计算。如果输出像素是输入像素邻域像素的线性组合则称为线性滤波(例如最常见的均值滤波和高斯滤波),否则为非线性滤波(中值滤波、边缘保持滤波等)。 空域滤波器从处理效果上可以平滑空间滤波器和锐化空间滤波器:平滑空间滤波器用于模糊处理和减小噪声,经常在图像的预处理中使用;锐化空间滤波器主要用于突出图像中的细节或者增强被模糊了的细节。 模板在源图像中移动的过程中,当模板的一条边与图像轮廓重合后,模板中心继续向图像边缘靠近,那么模板的某一行或列就会处于图像平面之外,此时最简单的方法就是将模板中心点的移动范围限制在距离图像边缘不小于(n-1)/2个像素处,单处理后的图像比原始图像稍小。如果要处理整幅图像,可以在图像轮廓边缘时用全部包含于图像中的模板部分来滤波所有图像,或者在图像边缘以外再补上一行和一列灰度为零的像素点(或者将边缘复制补在图像之外)。 ①中值滤波器的设计: 中值滤波器是一种非线性统计滤波器,它的响应基于图像滤波器包围的图像区域中像素的排序,然后由统计排序的中间值代替中心像素的值。它比小尺寸的线性平滑滤波器的模糊程度明显要低,对处理脉冲噪声(椒盐噪声)非常有效。中值滤波器的主要功能是使拥有不同灰度的点看起来更接近于它的邻近值,去除那些相对于其邻域像素更亮或更暗,并且其区域小于滤波器区域一半的孤立像素集。 在一维的情况下,中值滤波器是一个含有奇数个像素的窗口。在处理之后,位于窗口正中的像素的灰度值,用窗口内各像素灰度值的中值代替。例如若窗口长度为5,窗口中像素的灰度值为80、90、200、110、120,则中值为110,因为按小到大(或大到小)排序后,第三位的值是110。于是原理的窗口正中的灰度值200就由110取代。如果200是一个噪声的尖峰,则将被滤除。然而,如果它是一个信号,则滤波后就被消除,降低了分辨率。因此中值滤波在某些情况下抑制噪声,而在另一些情况下却会抑制信号。 将中值滤波推广到二维的情况。二维窗口的形式可以是正方形、近似圆形的或十字形等。本次作业使用正方形模板进行滤波,它的中心一般位于被处理点上。窗口的大小对滤波效果影响较大。 根据上述算法利用MATLAB软件编程,对源图像test1和test2进行滤波处理,结果如下图:

IIR数字滤波器的设计实验报告

IIR数字滤波器的设计 一、实验目的: 掌握冲激相应不变法和双线性变换法设计IIR数字滤波器的原理和方法; 观察冲激相应不变法和双线性变换法设计IIR数字滤波器的频率特性; 了解冲激相应不变法和双线性变换法的特点和区别。 二、实验原理: 无限长单位冲激响应(IIR)数字滤波器的设计思想: a)设计一个合适的模拟滤波器 b)利用一定的变换方法将模拟滤波器转换成满足预定指 标的数字滤波器 切贝雪夫I型:通带中是等波纹的,阻带是单调的

切贝雪夫II型:通带中是单调的,阻带是等波纹的 1.用冲击响应不变法设计一个低通切贝雪夫I型数字滤波器通带上限截止频率为400Hz 阻带截止频率为600Hz 通带最大衰减为0.3分贝 阻带最小衰减为60分贝 抽样频率1000Hz 2.用双线性变换法设计切贝雪夫II型高通滤波器 通带截止频率2000Hz 阻带截止频率1500Hz 通带最大衰减0.3分贝 阻带最小衰减50分贝 抽样频率20000Hz 四、实验程序:

1) Wp=2*pi*400; Ws=2*pi*600; Rp=0.3; Rs=60; Fs=1000; [N,Wn]=cheb1ord(Wp,Ws,Rp,Rs,'s'); [Z,P,K]=cheb1ap(N,Rp); [A,B,C,D]=zp2ss(Z,P,K); [At,Bt,Ct,Dt]=lp2lp(A,B,C,D,Wn); [num1,den1]=ss2tf(At,Bt,Ct,Dt); [num2,den2]=impinvar(num1,den1,Fs); [H,W1]=freqs(num1,den1); figure(1) subplot(2,1,1); semilogx(W1/pi/2,20*log10(abs(H)));grid; xlabel(' 频率/ Hz'); ylabel(' 模拟滤波器幅值(db)'); [H,W2]=freqz(num2,den2,512,'whole',Fs); subplot(2,1,2); plot(W2,20*log10(abs(H)));grid; xlabel(' 频率/ Hz');

二阶带通滤波器课程设计

目录 1 课程设计的目的与作用 (1) 2 设计任务及所用multisim软件环境介绍 (1) 2.1 设计任务 (1) 2.2 Multisim软件环境介绍 (1) 3 电路模型的建立 (2) 4 理论分析及计算 (3) 5 仿真结果分析 (4) 6 设计总结和体会 (4) 7 参考文献 (5)

1 课程设计的目的与作用 目的:根据设计任务完成对二阶带通滤波器的设计,进一步加强对模拟电子技术的理解。了解二阶带通滤波器的工作原理,掌握对二阶带通滤波器频率特性的测试方法。 带通滤波器:其作用是允许某一段频带范围内的信号通过,而将此频带以外的信号阻断。常用于抗干扰设备中,以便接收某一段频带范围内的有效信号,而消除高频段和低频段的干扰和噪声。 2 设计任务及所用multisim软件环境介绍 2.1 设计任务 学会使用Multisim10软件设计二阶带通滤波器的电路,使学生初步了解和掌握二阶带通滤波器的设计、调试过程及其频率特性的测试方法,能进一步巩固课堂上学到的理论知识,了解带通滤波器的工作原理。 2.2 Multisim软件环境介绍 Multisim是美国国家仪器(NI)有限公司推出的以Windows为基础的仿真工具,适用于板级的模拟/数字电路板的设计工作。它包含了电路原理图的图形输入、电路硬件描述语言输入方式,具有丰富的仿真分析能力。 工程师们可以使用Multisim交互式地搭建电路原理图,并对电路进行仿真。Multisim 提炼了SPICE仿真的复杂内容,这样工程师无需懂得深入的SPICE技术就可以很快地进行捕获、仿真和分析新的设计,这也使其更适合电子学教育。通过Multisim和虚拟仪器技术,PCB设计工程师和电子学教育工作者可以完成从理论到原理图捕获与仿真再到原型设计和测试这样一个完整的综合设计流程。

数字图像处理实验报告[邻域平均法和中值滤波法]

数字图像处理实验报告 班级: 姓名: 学号: 日期: 邻域平均法和中值滤波处理

一、实验目的 图像变换是数字图像处理中的一种综合变换,如直方图变换、几何变换等。通过本实验,使得学生掌握两种变换的程序实现方法。 二、实验任务 请设计程序,分别用邻域平均法,其模板为:和中值滤波法对testnoise图像进行去噪处理(中值滤波的模板的大小也设为3×3)。 三、实验环境 本实验在Windows平台上进行,对内存及cpu主频无特别要求,使用VC或者MINGW(gcc)编译器均可。 四、设计思路 介绍代码的框架结构、所用的数据结构、各个类的介绍(类的功能、类中方法的功能、类的成员变量的作用)、各方法间的关系写。在此不进行赘述。 五、具体实现 实现设计思路中定义的所有的数据类型,对每个操作给出实际算法。对主程序和其他模块也都需要写出实际算法。 代码: <邻域平均法>(3*3) #include

#include #include #include "hdr.h" /*------定义结构指针------*/ struct bmphdr *hdr; //定义用于直方图变量 unsigned char *bitmap,*count,*new_color; /*------main() 函数编------*/ int main() { //定义整数i,j 用于函数循环时的,nr_pixels为图像中像素的个数 int i, j ,nr_pixels,nr_w,nr_h; //定义两个文件指针分别用于提取原图的数据和生成直方图均衡化后的图像 FILE *fp, *fpnew; //定义主函数的参数包括:输入的位图文件名和输出的位图文件名,此处内容可以不要,在DOS下执行命令的时候再临时输入也可,为了方便演示,我这里直接把函数的参数确定了。// argc=3; // argv[1]="test.bmp"; // argv[2]="testzf.bmp"; //参数输入出错显示 /* if (argc != 3) { printf("please input the name of input and out bitm ap files\n");

滤波器的主要参数

滤波器的主要参数 滤波器的主要参数(Definitions) 中心频率(Center Frequency):滤波器通带的中心频率f0,一般取f0=(f1+ f2)/2,f1、f2为带通或带阻滤波器左、右相对下降1dB或3dB边频点。窄带滤波器常以插损最小点为中心频率计算通带带宽。 截止频率(Cutoff Frequency):指低通滤波器的通带右边频点及高通滤波器的通带左边频点。通常以1dB或3dB相对损耗点来标准定义。相对损耗的参考基准为:低通以DC处插损为基准,高通则以未出现寄生阻带的足够高通带频率处插损为基准。 通带带宽(BWxdB):(下图)指需要通过的频谱宽度,BWxdB=(f2-f1)。f1、f2为以中心频率f0处插入损耗为基准,下降X(dB)处对应的左、右边频点。通常用X=3、1、0.5 即BW3dB、BW1dB、BW0.5dB 表征滤波器通带带宽参数。分数带宽(fractional bandwidth)=BW3dB/f0×100%,也常用来表征滤波器通带带宽。 插入损耗(Insertion Loss):由于滤波器的引入对电路中原有信号带来的衰耗,以中心或截止频率处损耗表征,如要求全带内插损需强调。 I=10lgPin/Pl

纹波(Ripple):指1dB或3dB带宽(截止频率)范围内,插损随频率在损耗均值曲线基础上波动的峰-峰值。 带内波动(Passband Riplpe):通带内插入损耗随频率的变化量。1dB带宽内的带内波动是1dB。 带内驻波比(VSWR):衡量滤波器通带内信号是否良好匹配传输的一项重要指标。理想匹配VSWR=1:1,失配时VSWR>1。对于一个实际的滤波器而言,满足VSWR <1.5:1的带宽一般小于BW3dB,其占BW3dB的比例与滤波器阶数和插损相关。 回波损耗(Return Loss):端口信号输入功率与反射功率之比的分贝(dB)数,也等于|20Log10ρ|,ρ为电压反射系数。输入功率被端口全部吸收时回波损耗为无穷大。 阻带抑制度:衡量滤波器选择性能好坏的重要指标。该指标越高说明对带外干扰信号抑制的越好。通常有两种提法:一种为要求对某一给定带外频率fs抑制多少dB,计算方法为fs处衰减量As-IL;另一种为提出表征滤波器幅频响应与理想矩形接近程度的指标——矩形系数(KxdB>1),KxdB=BWxdB/BW3dB,(X可

实验四数字滤波器的设计实验报告

数字信号处理 实验报告 实验四 IIR数字滤波器的设计学生姓名张志翔 班级电子信息工程1203班 学号 指导教师 实验四 IIR数字滤波器的设计 一、实验目的: 1. 掌握双线性变换法及脉冲响应不变法设计IIR数字滤波器的具体设 计方法及其原理,熟悉用双线性变换法及脉冲响应不变法设计低通、高通和带通IIR数字滤波器的MATLAB编程。 2. 观察双线性变换及脉冲响应不变法设计的滤波器的频域特性,了解双线性变换法及脉冲响应不变法的特点。 3.熟悉Butterworth滤波器、切比雪夫滤波器和椭圆滤波器的频率特性。 二、实验原理: 1.脉冲响应不变法 用数字滤波器的单位脉冲响应序列模仿模拟滤波器的冲激响应 ,让正好等于的采样值,即,其中为采样间隔,如果以及分别表示的拉式变换及的Z变换,则 2.双线性变换法 S平面与z平面之间满足以下映射关系:

s平面的虚轴单值地映射于z平面的单位圆上,s平面的左半平面完全映射到z平面的单位圆内。 双线性变换不存在混叠问题。 双线性变换是一种非线性变换,这种非线性引起的幅频特性畸变可通过预畸而得到校正。 三、实验内容及步骤: 实验中有关变量的定义: fc 通带边界频率; fr阻带边界频率;δ通带波动;At 最小阻带衰减; fs采样频率; T采样周期 (1) =0.3KHz, δ=0.8Db, =0.2KHz, At =20Db,T=1ms; 设计一个切比雪夫高通滤波器,观察其通带损耗和阻带衰减是否满足要求。 MATLAB源程序: wp=2*1000*tan(2*pi*300/(2*1000)); ws=2*1000*tan(2*pi*200/(2*1000)); [N,wn]=cheb1ord(wp,ws,0.8,20,'s'); %给定通带(wp)和阻带(ws)边界角频率,通带波动波动0.8,阻带最小衰减20dB,求出最低阶数和通带滤波器的通带边界频率Wn [B,A]=cheby1(N,0.5,wn,'high','s');%给定通带(wp)和阻带(ws)边界角频率,通带波动 [num,den]=bilinear(B,A,1000); [h,w]=freqz(num,den); f=w/(2*pi)*1000; plot(f,20*log10(abs(h)));

IIR数字带通滤波器设计

课 程 设 计 报 告 课程名称: 数字带通滤波器设计 学生姓名: 学 号: 专业班级: 指导教师: 完成时间: 报告成绩: IIR 数字带通滤波器的设计

1课程设计目的 1掌握冲激响应不变法IIR 低通滤波器的设计。 2 通过对常用数字滤波器的设计和实现,掌握数字信号处理的工作原理及设计方法;熟悉用双线性变换法设计 IIR 数字滤波器的原理与方法,掌握利用数字滤波器对信号进行滤波的方法,掌握数字滤波器的计算机仿真方法,并能够对设计结果加以分析。 2.课程设计要求 采用双线性变换法设计一IIR 数字带通滤波器,抽样频率为 1s f kH z =,性能 要求为:通带范围从250Hz 到400Hz ,在此两频率处衰减不大于3dB , 在150Hz 和480Hz 频率处衰减不小于20dB ,采用巴特沃思型滤波器 3.设计原理 3.1用双线性变换法设计IIR 数字滤波器 脉冲响应不变法的主要缺点是产生频率响应的混叠失真。这是因为从S 平面到Z平面是多值的映射关系所造成的。为了克服这一缺点,可以采用非线性频率压缩方法,将整个频率轴上的频率范围压缩到-π/T ~π/T 之间,再用st e z =转 换到Z 平面上。也就是说,第一步先将整个S 平面压缩映射到S 1平面的-π/T ~π/T 一条横带里;第二步再通过标准变换关系z =e s 1T 将此横带变换到整个Z 平面上去。这样就使S 平面与Z 平面建立了一一对应的单值关系,消除了多值变换性,也就消除了频谱混叠现象,映射关系如图1-3所示。 图1双线性变换的映射关系 为了将s 平面的整个虚轴 Ω j 压缩到1s 平面1Ωj 轴上的-π/T 到π/T 段上, Z 平面 S 1 平面 S 平面

数字图像处理实验三中值滤波和均值滤波实验报告材料

数字图像处理实验三 均值滤波、中值滤波的计算机实现12281166 崔雪莹计科1202班 一、实验目的: 1)熟悉均值滤波、中值滤波处理的理论基础; 2)掌握均值滤波、中值滤波的计算机实现方法; 3)学习VC++ 6。0 的编程方法; 4)验证均值滤波、中值滤波处理理论; 5)观察均值滤波、中值滤波处理的结果。 二、实验的软、硬件平台: 硬件:微型图像处理系统,包括:主机, PC机;摄像机; 软件:操作系统:WINDOWS2000或WINDOWSXP应用软件:VC++ 6.0 三、实验内容: 1)握高级语言编程技术; 2)编制均值滤波、中值滤波处理程序的方法; 3)编译并生成可执行文件; 4)考察处理结果。 四、实验要求: 1)学习VC++确6。0 编程的步骤及流程; 2)编写均值滤波、中值滤波的程序;

3)编译并改错; 4)把该程序嵌入试验二给出的界面中(作适当修改); 5)提交程序及文档; 6)写出本次实验的体会。 五、实验结果截图 实验均值滤波采用的是3X3的方块,取周围的像素点取得其均值代替原像素点。边缘像素的处理方法是复制边缘的像素点,增加一个边框,计算里面的像素值得均值滤波。

六、实验体会 本次实验在前一次的实验基础上增加均值滤波和中值滤波,对于椒盐噪声的处理,发现中值滤波的效果更为好一点,而均值滤波是的整个图像变得模糊了一点,效果差异较大。本次实验更加增加了对数字图像处理的了解与学习。 七、实验程序代码注释及分析 // HistDemoADlg.h : 头文件 // #include "ImageWnd.h" #pragma once // CHistDemoADlg 对话框 class CHistDemoADlg : public CDialogEx { // 构造

滤波器的主要参数概念介绍

滤波器的主要参数概念介绍 滤波器的主要参数(DefiniTIons) 1. 中心频率(Center Frequency):滤波器通带的中心频率f0,一般取f0=(f1+f2)/2,f1、f2为带通或带阻滤波器左、右相对下降1dB或3dB边频点。窄带滤波器常以插损最小点为中心频率计算通带带宽。 2. 截止频率(Cutoff Frequency):指低通滤波器的通带右边频点及高通滤波器的通带左边频点。通常以1dB或3dB相对损耗点来标准定义。相对损耗的参考基准为:低通以DC 处插损为基准,高通则以未出现寄生阻带的足够高通带频率处插损为基准。 3. 通带带宽(BWxdB):(下图)指需要通过的频谱宽度,BWxdB=(f2-f1)。f1、f2为以中心频率f0处插入损耗为基准,下降X(dB)处对应的左、右边频点。通常用X=3、1、0.5 即BW3dB、BW1dB、BW0.5dB 表征滤波器通带带宽参数。分数带宽(fracTIonal bandwidth)=BW3dB/f0100%,也常用来表征滤波器通带带宽。 4. 插入损耗(InserTIon Loss):由于滤波器的引入对电路中原有信号带来的衰耗,以中心或截止频率处损耗表征,如要求全带内插损需强调。 5. 纹波(Ripple):指1dB或3dB带宽(截止频率)范围内,插损随频率在损耗均值曲线基础上波动的峰- 峰值。 6. 带内波动(Passband Riplpe):通带内插入损耗随频率的变化量。1dB带宽内的带内波动是1dB。 7. 带内驻波比(VSWR):衡量滤波器通带内信号是否良好匹配传输的一项重要指标。理想匹配VSWR=1:1,失配时VSWR>1。对于一个实际的滤波器而言,满足VSWR<1.5:1的带宽一般小于BW3dB,其占BW3dB的比例与滤波器阶数和插损相关。 8. 回波损耗(Return Loss):端口信号输入功率与反射功率之比的分贝(dB)数,也等于|20Log10|,为电压反射系数。输入功率被端口全部吸收时回波损耗为无穷大。 9. 阻带抑制度:衡量滤波器选择性能好坏的重要指标。该指标越高说明对带外干扰信号抑制的越好。通常有两种提法:一种为要求对某一给定带外频率fs抑制多少dB,计算方法

实验五FIR数字滤波器的设计

实验六 FIR 数字滤波器的设计 一、实验目的 1.熟悉FIR 滤波器的设计基本方法 2.掌握用窗函数设计FIR 数字滤波器的原理与方法。 二、实验内容 1.FIR 数字滤波器的设计方法 FIR 滤波器的设计问题在于寻求一系统函数)(z H ,使其频率响应)(ωj e H 逼近滤波器要求的理想频率响应)(ωj d e H ,其对应的单位脉冲响应为)(n h d 。 (1)用窗函数设计FIR 滤波器的基本原理 设计思想:从时域从发,设计)(n h 逼近理想)(n h d 。设理想滤波器)(ωj d e H 的单位脉 冲响应为)(n h d 。以低通线性相位FIR 数字滤波器为例。 ?∑--∞-∞=== ππωωωωω πd e e H n h e n h e H jn j d d jn n d j d )(21)()()( (6-1) )(n h d 一般是无限长的,且是非因果的,不能直接作为FIR 滤波器的单位脉冲响应。要想得到一个因果的有限长的滤波器h(n),最直接的方法是截断)()()(n w n h n h d =,即截取为有限长因果序列,并用合适的窗函数进行加权作为FIR 滤波器的单位脉冲响应。按照线性相位滤波器的要求,h(n)必须是偶对称的。对称中心必须等于滤波器的延时常数,即 ???-==2 /)1()()()(N a n w n h n h d (6-2) 用矩形窗设计的FIR 低通滤波器,所设计滤波器的幅度函数在通带和阻带都呈现出振荡现象,且最大波纹大约为幅度的9%,这个现象称为吉布斯(Gibbs )效应。为了消除吉布斯效应,一般采用其他类型的窗函数。 (2) 典型的窗函数 ① 矩形窗(Rectangle Window) )()(n R n w N = (6-3)

基于MATLAB的数字带通滤波器课程设计报告.doc

基于MATLAB的数字带通滤波器课程设计报告1 西安文理学院机械电子工程系 课程设计报告 专业班级08级电子信息工程1班 题目基于MATLAB的数字带通滤波器 学号 学生姓名 指导教师 2011 年12 月 西安文理学院机械电子工程系 课程设计任务书 学生姓名_______专业班级________ 学号______ 指导教师______ 职称副教授教研室电子信息工程课程数字信号处理题目 基于MATLAB 的数字带通滤波器设计任务与要求 设计任务:

要求设计一个IIR 带通滤波器,其中通带的中心频率为πω5.0=po ,通 带的截止频率πω4.01=p ,πω6.02=p ,通带最大衰减dB p 3=α;阻带最小 衰减dB s 15=α,阻带截止频率πω3.01=s ,πω7.02=s 。 设计要求: 1. 根据设计任务要求给出实现方案及实现过程。 2. 给出所实现的滤波器幅频特性及相频特性曲线并加以分析。 3. 论文要求思路清晰,结构合理,语言流畅,书写格式符合要求。 开始日期2011.12.19 完成日期2011.12.30 2011年12月18 日 一、设计任务 设计一数字带通滤波器,用IIR 来实现,其主要技术指标: 通带边缘频率:wp 1=0.4π,wp2=0.6π 通带最大衰减:Ap=3dB 阻带边缘频率:ws 1=0.3π,ws2=0.7π 阻带最小衰减:As=15dB 设计总体要求:用MATLAB 语言编程进行设计,给出IIR 数字滤波器 的参数,给出幅度和相位响应曲线,对IIR 实现形式和特点等方面进行讨

论。 二、设计方法 IIR 数字滤波器具有无限宽的冲激响应,与模拟滤波器相匹配,所以 IIR 滤波器的设计可以采取在模拟滤波器设计的基础上进一步变换的方法。比较常用的原型滤波器有巴特沃什滤波器(Butterworth )、切比雪夫滤波 器(Chebyshev )、椭圆滤波器(Ellipse )和贝塞尔滤波器(Bessel )等。他们有各自的特点,巴特沃什滤波器具有单调下降的幅频特性;切比雪夫 滤波器的幅频特性在通带和阻带里有波动,可以提高选择性;贝塞尔滤波 器通带内有较好的线性相位特性;椭圆滤波器的选择性最好。本设计IIR 数字滤波器采用巴特沃什滤波器[3]。 设计巴特沃什数字滤波器时,首先应根据参数要求设计出相应的模拟 滤波器,其步骤如下: (1)由模拟滤波器的设计指标wp ,ws ,Ap ,As 和式(1)确定滤波器 阶数N 。 )lg(2)110110lg(1.01.0w w s p As Ap N --≥ (1) (2)由式(2)确定wc 。

数字图像处理实验报告:灰度变换与空间滤波(附带程序,不看后悔)

1.灰度变换与空间滤波 一种成熟的医学技术被用于检测电子显微镜生成的某类图像。为简化检测任务,技术决定采用数字图像处理技术。发现了如下问题:(1)明亮且孤立的点是不感兴趣的点;(2)清晰度不够,特别是边缘区域不明显;(3)一些图像的对比度不够;(4)技术人员发现某些关键的信息只在灰度值为I1-I2 的范围,因此,技术人员想保留I1-I2 区间范围的图像,将其余灰度值显示为黑色。(5)将处理后的I1-I2 范围内的图像,线性扩展到0-255 灰度,以适应于液晶显示器的显示。请结合本章的数字图像处理处理,帮助技术人员解决这些问题。 1.1 问题分析及多种方法提出 (1)明亮且孤立的点是不够感兴趣的点 对于明亮且孤立的点,其应为脉冲且灰度值为255(uint8)噪声,即盐噪声,为此,首先对下载的细胞图像增加盐噪声,再选择不同滤波方式进行滤除。 均值滤波:均值滤波是典型的线性滤波算法,它是指在图像上对目标像素给一个模板,该模板包括了其周围的临近像素(以目标像素为中心的周围8 个像素,构成一个滤波模板,即去掉目标像素本身),再用模板中的全体像素的平均值来代替原来像素值。 优点:速度快,实现简单; 缺点:均值滤波本身存在着固有的缺陷,即它不能很好地保护图像细节,在图像去噪的同时也破坏了图像的细节部分,从而使图像变得模糊,不能很好地去除噪声点。 其公式如下: 使用矩阵表示该滤波器则为: 中值滤波:

滤除盐噪声首选的方法应为中值滤波,中值滤波法是一种非线性平滑技术,它将每一像素点的灰度值设置为该点某邻域窗口内的所有像素点灰度值的中值。 其过程为: a、存储像素1,像素2 ....... 像素9 的值; b、对像素值进行排序操作; c、像素5 的值即为数组排序后的中值。优点:由于中值滤波本身为一种利用统计排序方法进行的非线性滤波方法,故可以滤除在排列矩阵两边分布的脉冲噪声,并较好的保留图像的细节信息。 缺点:当噪声密度较大时,使用中值滤波后,仍然会有较多的噪声点出现。自适应中值滤波: 自适应的中值滤波器也需要一个矩形的窗口S xy ,和常规中值滤波器不同的是这个窗口的大小会在滤波处理的过程中进行改变(增大)。需要注意的是,滤波器的输出是一个像素值,该值用来替换点(x, y)处的像素值,点(x, y)是滤波窗口的中心位置。 其涉及到以下几个参数: 其计算过程如下:

ADS低通滤波器的设计与仿真

电磁场与微波技术 课程设计报告 课程题目:低通滤波器的设计与仿真姓名: 指导老师: 系别:电子信息与电气工程系专业:通信工程 班级: 学号: 完成时间:

低通滤波器的设计与仿真 摘要:微波滤波器是用来分离不同频率微波信号的一种器件。它的主要作用是抑制不需要的信号, 使其不能通过滤波器, 只让需要的信号通过。在微波电路系统中,滤波器的性能对电路的性能指标有很大的影响,因此如何设计出一个具有高性能的滤波器,对设计微波电路系统具有很重要的意义。微带电路具有体积小,重量轻、频带宽等诸多优点,近年来在微波电路系统应用广泛,其中用微带做滤波器是其主要应用之一。 关键词:ads;微带线;低通滤波器

一、设计思路 1、设计要求:截止频率:1.1GHz,通带内波纹小于0.2dB,在 1.21GHz 处具有不小于 25dB 的带外衰减。 2、方案选择 利用椭圆函数滤波器设计并仿真,经过优化后,结果调出来的波形能达到指标,但波形会形成带阻波形,只能实现在一定范围内低通。所以不选。 利用切比雪夫滤波器设计并仿真,经过优化调试后可用。 3、设计法案 首先用 LC 设计低通滤波器集总参数模型当频率工作在高频时,要用微带线代替 LC 元件。高阻抗微带线代替串联电感,低阻抗微带线代替并联电容。一般取 Zhigh=120Ω,Zlow=20Ω。在输入和输出加上 50Ω微带线。然后根据设计要求通过 ADS 自带的Linecalc 计算转换过来的微带线长和宽。在进行设计时,主要以滤波器的 S 参数作为优化目标进行优化仿真。 S21(S12) S(表示传输参数,滤波器的通带,阻带的位置以及衰减,起伏全部表现在 S21(S12)随频率变化的曲线上。S11(S22)参数是输入、输出端口的反射系数,由它可以换算输入输出的电压驻波比。如果反射系数过大,就会导致反射损耗过大,影响系统的后级匹配,使系统性能下降。 板材设置:H(基板厚度)=0.8mm,Er(基板相对介电常数)=2.2,Mur (磁导率)=1,Cond(金属电导率)=1E+50,Hu(封装高度)=1E+033mm,T (金属层厚度)=0.01mm,TanD (损耗角正切)=0。 二、仿真过程及电路原理图、版图、S 参数等 经过ADS软件的仿真和折中,以下就以相对比较好的方案为例介绍详细过程以及电路和版图仿真的情况。

FIR数字滤波器设计实验_完整版

班级: 姓名: 学号: FIR 数字滤波器设计实验报告 一、实验目的 1.掌握FIR 数字滤波器的设计方法; 2.熟悉MATLAB 信号处理工具箱的使用; 3.熟悉利用MATLAB 软件进行FIR 数字滤波器设计,以及对所设计的滤波器 进行分析; 4.了解FIR 滤波器可实现严格线性相位的条件和特点; 5.熟悉FIR 数字滤波器窗函数设计法的MATLAB 设计,并了解利用窗函数法 设计FIR 滤波器的优缺点; 6.熟悉FIR 数字滤波器频率采样设计法的MATLAB 设计,并了解利用频率采 样法设计FIR 滤波器的优缺点; 7.熟悉FIR 数字滤波器切比雪夫逼近设计法的MATLAB 设计,并了解利用切 比雪夫逼近法设计FIR 滤波器的优缺点。 二、实验设备及环境 1.硬件:PC 机一台; 2.软件:MATLAB (6.0版以上)软件环境。 三、实验内容及要求 1.实验内容:基于窗函数设计法、频率采样设计法和切比雪夫逼近设计法,利用MATLAB 软件设计满足各自设计要求的FIR 数字低通滤波器,并对采用不同设计法设计的低滤波器进行比较。 2.实验要求: (1)要求利用窗函数设计法和频率采样法分别设计FIR 数字低通滤波 器,滤波器参数要求均为:0.3c w π=。其中,窗函数设计法要求分别利用矩形窗、汉宁窗和布莱克曼窗来设计数字低通滤波器,且 21N ≥,同时要求给出滤波器的幅频特性和对数幅频特性; 频率

采样法要求分别利用采样点数21N =和63N =设计数字低通滤波器,同时要求给出滤波器采样前后的幅频特性,以及脉冲响应及对数幅频特性。 (2)要求利用窗函数设计法和切比雪夫逼近法分别设计FIR 数字低通 滤波器,滤波器参数要求均为: 0.2π, 0.25dB, 0.3π, 50dB p p s s ωαωα==== 其中,窗函数设计法要求利用汉明窗来设计数字低通滤波器,且 66N ≥,同时要求给出滤波器理想脉冲响应和实际脉冲响应,汉 名窗和对数幅频特性; 切比雪夫逼近法要求采用切比雪夫Ⅰ型,同时要求给出滤波器的脉冲响应、幅频特性和误差特性。 (3)将要求(1)和(2)中设计的具有相同参数要求,但采用不同设 计方法的滤波器进行比较,并以图的形式直观显示不同设计设计方法得到的数字低通滤波器的幅频特性的区别。 四、实验步骤 1.熟悉MATLAB 运行环境,命令窗口、工作变量窗口、命令历史记录窗口,FIR 常用基本函数; 2.熟悉MATLAB 文件格式,m 文件建立、编辑、调试; 3.根据要求(1)的内容,设计FIR 数字低通滤波器,建立M 文件,编写、调试、运行程序; 4.根据要求(2)的内容,设计FIR 数字低通滤波器,建立M 文件,编写、调试、运行程序; 5.将要求(1)和(2)中设计的具有相同参数要求,但采用不同设计方法的滤波器进行比较分析; 6.记录实验结果; 7.分析实验结果; 8.书写实验报告。 五、实验预习思考题 1.FIR 滤波器有几种常用设计方法?这些方法各有什么特点?

带通滤波器设计模拟电子技术课程设计报告大学论文

模拟电子技术课程设计报告带通滤波器设计 班级:自动化1202 姓名:杨益伟 学号:120900321 日期:2014年7月2日 信息科学与技术学院

目录 第一章设计任务及要求 1、1设计概述------------------------------------3 1、2设计任务及要求------------------------------3 第二章总体电路设计方案 2、1设计思想-----------------------------------4 2、2各功能的组成-------------------------------5 2、3总体工作过程及方案框图---------------------5 第三章单元电路设计与分析 3、1各单元电路的选择---------------------------6 3、2单元电路软件仿真---------------------------8 第四章总体电路工作原理图及电路仿真结果 4、1总体电路工作原理图及元件参数的确定---------9 4、2总体电路软件仿真---------------------------11 第五章电路的组构与调试 5、1使用的主要仪器、仪表-----------------------12 5、2测试的数据与波形---------------------------12 5、3组装与调试---------------------------------14 5、4调试出现的故障及解决方法-------------------14 第六章设计电路的特点及改进方向 6、1设计电路的特点及改进方向-------------------14 第七章电路元件参数列表 7、1 电路元件一览表---------------------------15 第八章结束语 8、1 对设计题目的结论性意见及改进的意向说明----16 8、2 总结设计的收获与体会----------------------16 附图(电路仿真总图、电路图) 参考文献

相关文档
相关文档 最新文档