文档库 最新最全的文档下载
当前位置:文档库 › V带传动多目标优化设计

V带传动多目标优化设计

V带传动多目标优化设计
V带传动多目标优化设计

V带传动多目标优化设计

09机制2班庄依杰 200930510231

1问题提出

设计带式输送机传动装置上的普通V带传动,已知电动机额定功率P=4Kw,转速=1440r/min,传动比i=3,采用A型V带,每天工作不超过10小时,设计带根数尽量少,带轮直径和中心距尽量小的方案。

2 问题分析

一般优化问题只有一个目标函数,但在工程实际问题中往往期望几项设计指标都同时达到最优,如本例要求带根数尽量少,带轮直径和中心距尽量小这3项设计最优化。在一组约束下,多个不同的目标函数进行优化设计,即称为多目标优化设计。

其数学模型的一般形式如下:(参考《机械零件与系统优化设计建模及应用》,周延美蓝悦明编著,化学工业出版社)

s.t j=1,2,…,m

k=1,2,…,l

一般情况下,各目标函数所表达的指标往往是相互矛盾的,在优化设计过程中相互影响,相互牵制。当目标函数处于冲突状态时,不存在最优解使所有目标函数同时达到最优,于是我们寻求有效解。

根据资料显示有如下几种求解方法:统一目标法、主目标法、分层序列法、极大—极小法。本文应用统一目标法中的线性加权法,其中统一目标法指把多目标问题转化为单目标问题求解。

线性加权法的基本思路是把多目标函数依其量级和在设

计中的重要程度分配其相应的加权因子,

。且

然后将q个分目标函数统一成一个目标函数,即

其中加权因子的选取办法如下:如果目标函数值的变动范围为

(j=1,2,3,…,q) ,则为各目标的容限,取加权因子为。

故求得单目标函数

在Matlab的优化工具箱中,fgoalattain函数用于解决此类问题。

其数学模型形式为:

min γ

F(x)-weight ·γ≤goal

c(x) ≤0

ceq(x)=0

A x≤b

Aeq x=beq

lb≤x≤ub

其中,x,weight,goal,b,beq,lb和ub为向量,A和Aeq为矩阵,c(x),ceq(x)和F(x)为函数,调用格式:

x=fgoalattain(F,x0,goal,weight)

x=fgoalattain(F,x0,goal,weight,A,b)

x=fgoalattain(F,x0,goal,weight,A,b,Aeq,beq)

x=fgoalattain(F,x0,goal,weight,A,b,Aeq,beq,lb,ub)

x=fgoalattain(F,x0,goal,weight,A,b,Aeq,beq,lb,ub,nonlcon)

x=fgoalattain(F,x0,goal,weight,A,b,Aeq,beq,lb,ub,nonlcon,options)

x=fgoalattain(F,x0,goal,weight,A,b,Aeq,beq,lb,ub,nonlcon,options,P1,P2)

[x,fval]=fgoalattain(…)

[x,fval,attainfactor]=fgoalattain(…)

[x,fval,attainfactor,exitflag,output]=fgoalattain(…)

[x,fval,attainfactor,exitflag,output,lambda]=fgoal attain(…)

说明:F 为目标函数;x0为初值;goal 为F 达到的指定目标;weight 为参数 指定权重;A 、b 为线性不等式约束的矩阵与向量;Aeq 、beq 为等式约束的矩阵与向量;lb 、ub 为变量x 的上、下界向量;nonlcon 为定义非线性不等式约束函数c(x)和等式约束函数ceq(x);options 中设置优化参数。

x 返回最优解;fval 返回解x 处的目标函数值;attainfactor 返回解x 处的目标达到因子;exitflag 描述计算的退出条件;output 返回包含优化信息的输出参数;lambda 返回包含拉格朗日乘子的参数。

3 模型建立

(1)设计变量

由已知条件,可知V 带传动的独立设计变量是小带轮直径和带的基准长度,

即 X=[1x ,2x T ]=[ 1d d ,d L T ]。

(2)目标函数

依上述分析可知目标函数包括三个分目标:

a .小带轮直径 min 1f (X )=1d d =1x

b .中心距 min 2f (X )=a=1a +221a a -

其中,1a =d L /4-π(i+1)1d d /8 ,2a =(i-12)21d d /8 ,传动比i=3 。

c .带的根数 min 3f (X )=z=A K P/(0P +0P ?)αK L K

其中,

经过查表,可知A 型带对应的K1,K2,K3分别是0.449,19.62,

K A 为工况系数。

(3)约束条件

根据机械设计手册中带轮设计计算办法,可列得如下:

小带轮直径不小于推荐的A 型带轮最小直径mm d 100min =,即 =)(1X g 11m i n 100x d d d -=-≤0 ;

带速不超过最大带速s m v /25max = ,即

02560000/60000/)(1max 12≤-=-=n d v n d X g d d ππ

小带轮包角大于。120max =α,即

0)/21(180120]/)1(1[180)(11max 1max 3≤--=---=-=ππαααa x a i d X g d 中心距大于)1(7.01+i d d ,即

7.0)(4=X g 08.2)1(11≤-=-+a x a i d d

(4)确定分目标的权重

小带轮基准直径在80—100mm 之间,中心距在320—400mm 之间,带的根数为1—4。

]5.1;40;10[}]2/)14([;]2/)320400([;]2/)80100({[]

;;[222222321------=---==w w w w

4 MATLAB 程序编制

4.1 主函数

% V 带传动多目标优化设计

P=4;i=3;n1=1440;KA=1.1; %已知条件

x0=[100;1250]; %初始点(小带轮直径,V 带基准长度) lb=[80;630]; %最小带轮直径和A 型V 带基准长度 ub=[100;4000]; %最大带轮直径和A 型V 带基准长度 goal=[75,280,2]; %分目标

w=[10^-2,40^-2,1.5^-2]; %分目标加权系数

[xopt,fopt]=fgoalattain(@VDCD_3mb_MB,x0,goal,w,[],[],[],[],lb,ub,@VDCD_3mb_YS)

4.2 目标函数

function f=VDCD_3mb_MB(x)

P=4;i=3;KA=1.1;

f(1)=x(1); %f1小带轮基准直径

a1=x(2)/4-pi*x(1)*(i+1)/8;

a2=x(1)^2*(i-1)^2/8;

a=a1+sqrt(a1^2-a2);

f(2)=a; %f2中心距

P0=0.02424*x(1)-1.112879; %单根带额定功率

DP0=0.17; %查表功率增量

alpha=180-180*x(1)*(i-1)/pi/a; %小带轮包角

Kalp=alpha/(0.549636*alpha+80.396114); %包角系数

KL=0.20639*x(2)^0.211806; %长度系数

f(3)=KA*P/(P0+DP0)/Kalp/KL; %V带根数

4.3 约束函数

%设置优化参数

function[g,ceq]=VDCD_3mb_YS(x)

i=3;n1=1440;

g(1)=100-x(1); %小带轮直径约束g(2)=pi*x(1)*n1/6e4-25; %带速约束

a1=x(2)/4-pi*x(1)*(i+1)/8;

a2=x(1)^2*(i-1)^2/8;

a=a1+sqrt(a1^2-a2);

g(3)=120-180*(1-x(1)*(i-1)/a/pi); %小带轮包角约束g(4)=0.7*x(1)*(i+1)-a; %中心距约束ceq=[];

4.4 运行结果

Active inequalities (to within options.TolCon = 1e-006):

lower upper ineqlin ineqnonlin

1 1

5

xopt =

1.0e+003 *

0.1000

1.2269

fopt =

100.0000 281.5295 3.5957

5 结果优化处理

(1)带轮直径优化

图A型V带轮的基准直径系列

由上文算得,小轮直径f(1)=100.0000mm,根据图A型V带轮的基准直径系列所示,f(1)优化结果取值100mm。

附:

x=[1:28];

y1=[75 80 85 90 95 100 106 112 118 125 132 140 150 160 180 200 224 250 280 315 355 400 450 500 560 630 710 800];

plot(x,y1,':ok')

title('A型V带轮的基准直径系列')

xlabel('序号')

ylabel('基准直径')

(2)中心距优化

由上文算得,中心距初步f(2)=281.5295mm。

首先计算带长

其中

算得。根据《机械设计手册》优化带长基准长度为

1250mm

由于带轮的制造误差、带长误差、带的弹性以及因带的松弛而产生的补充张紧的需要常给出中心距的变动范围

0.015

0.03

因此,中心距优化结果取300mm。

(3)带根数优化

由上文算得,带根数初步f(3)= 3.5957,优化结果取得4。

6 课程建议

本人学习课程一个学期以来,获益匪浅,特别是matlAB的函数处理模块,这将对本人以后的读研生涯有着极大潜在的帮助。谢谢老师!

建议:

(1)选择一本更加经典的教材。教材的内容和深度应该有助于将来在相关领域学习可以有更大参考价值和留存价值,而这本教材相对简单,内容少,上课完毕后很多同学直接把书压箱底,根本没有翻过,没有研究的兴趣。

(2)基础知识部分可在1~6周教完。原因:据我观察,没有强制的课程作业,本班有99%的同学不会在课下时候练习操作matlAB,都是上课时候去听老师讲,同时老师讲的很详细但速度慢。因此可提快速度,相应布置课堂作业让我们课下练习以巩固知识,大可不必担心我们的学习能力。

(3)7~11周建议课程教学内容与本专业联系更加密切,实例教学。对于理工科的学生,学习matlAB是为后续课程搭建好学习和实验研究的平台,可在课程教学过程中多引入专业例子来训练,可加深我们对matlAB的认识度。

(4)可涉及仿真Simulink教学。90后学生学习软件,有一个共同点就是喜欢认识和探究软件的难点和高级的地方,喜欢自主操控软件、驾驭软件。老师可在这方面拓展一下,让学生认识一下matlAB软件的高级内容,吸引我们去探究。

(5)可结合最新相关知识和例子以使课堂气氛更加生动。老师可在教学过程结合最新科研成果、例子、新闻来触发90后学生的新鲜感。

机械优化设计

《机械优化设计》实验教学大纲 湖南农业大学工学院 2007年11月

《机械优化设计》实验教学大纲 1、实验课程号:30179B1 2、课程属性:选修 3、实验属性:非独立设课 4、学时:总学时40,实验学时8 学分:2 5、实验应开学期:第5学期(秋季) 6、先修课程:理论力学、材料力学、机械原理、机械设计、Visual Basic语言或C语言 一、课程的性质和任务 《机械优化设计》课程是高等工科院校中机械类专业指导委员会指定的一门主干课程,是一门用以培养学生在机械设计中应用现代设计方法的专业课,其目的是使学生树立优化设计的思想,掌握优化设计的基本概念和基本方法, 并初步具有应用机械优化设计的基本理论和基本方法解决简单工程实际问题的初步能力。为学生的毕业设计及科学研究打下一定的基础,该课程是在高年级设置的专业选修课,可供机械类或近机类专业的学生选修。该课程在机械类或近机类专业的教学计划中占有重要的地位和作用。 二、实验的目的与基本要求 1、加深对机械优化设计方法的基本理论和算法步骤的理解。 2、掌握数学模型的建立方法 3、掌握几种常用的最优化计算方法。 4、能运用计算机语言来编程上机解答,培养学生独立编制、调试计算机程序的能力。 5、培养学生灵活运用优化设计方法解决工程实际问题的初步能力。 三、实验考核方式及办法 课程实验不单独考试,根据实验内容当场在计算机上查看实验结果运行情况,要求打印出实验程序、并结合学生实际动手能力和学习态度进行评分,计入课程考试,实验课成绩占课程总分成绩的15%。 四、实验项目一览表 序号实验项目实验 类型 实验方法 实验要 求 每组 人数 适用 专业 实 验 学 时 1 优化方法编程验证任选做 其中两 工科 类 4

浅谈机械设计中链传动的类型和特点

浅谈机械设计中链传动的类型和特点 发表时间:2018-05-07T10:59:53.773Z 来源:《知识-力量》2018年2月下作者:刘星 [导读] 在我们进行机械设计过程中,永远少不了传动的问题。譬如:链传动、齿轮传动、带传动、蜗轮蜗杆传动等等。本文主要介绍链传动 刘星 (西华大学,四川成都 610039) 摘要:在我们进行机械设计过程中,永远少不了传动的问题。譬如:链传动、齿轮传动、带传动、蜗轮蜗杆传动等等。本文主要介绍链传动,链传动是通过链条将具有特殊齿形的主动链轮的运动和动力传递到具有特殊齿形的从动链轮的一种传动方式。链传动有许多优点,与带传动相比,无弹性滑动和打滑现象,平均传动比准确,工作可靠,效率高;传递功率大,过载能力强,相同工况下的传动尺寸小;所需张紧力小,作用于轴上的压力小;能在高温、潮湿、多尘、有污染等恶劣环境中工作。链传动的缺点主要有:仅能用于两平行轴间的传动;成本高,易磨损,易伸长,传动平稳性差,运转时会产生附加动载荷、振动、冲击和噪声,不宜用在急速反向的传动中。本文主要介绍链传动的主要类型以及相应的特点。 关键词:机械设计链传动类型特点 一、链传动的分类 链传动由主动轮、从动轮和绕在链轮上并与链轮啮合的链条组成。按照工作特性分可以分为:起重链、牵引链、传动链。按照传动链接形式可以分为:套筒链、滚子链、齿形链、成型链等。当然,各种形式的链条其工作速度是不相同的,每一种链条都有其相适应的工作速度范围。 二、链传动的特点 (一)和带传动相比。链传动能保持平均传动比不变;传动效率高;张紧力小,因此作用在轴上的压力较小;能在低速重载和高温条件下及尘土飞扬的不良环境中工作。 (二)和齿轮传动相比。链传动可用于中心距较大的场合且制造精度较低。 (三)只能传递平行轴之间的同向运动,不能保持恒定的瞬时传动比,运动平稳性差,工作时有噪声。通常链传动传递的功率P小于100KW,广泛应用于农业机械、建筑工程机械、轻纺机械、石油机械等各种机械传动中。 三、滚子链传动 滚子链由内链板、套筒、销轴、外链板和滚子组成,内链板和套筒、外链板和销轴用过盈配合固定,构成内链节和外链节。销轴和套筒之间为间隙配合,构成铰链,将若干内外链节依次铰接形成链条。滚子松套在套筒上可自由转动,链轮轮齿与滚子之间的摩擦主要是滚动摩擦。链条上相邻两销轴中心的距离称为节距, 用p表示,节距是链传动的重要参数。节距p越大,链的各部分尺寸和重量也越大,承载能力越高,且在链轮齿数一定时,链轮尺寸和重量随之增大。因此,设计时在保证承载能力的前提下,应尽量采取较小的节距。载荷较大时可选用双排链或多排链,但排数一般不超过三排或四排,以免由于制造和安装误差的影响使各排链受载不均。链条的长度用链节数表示,一般选用偶数链节,这样链的接头处可采用开口销或弹簧卡片来固定。当链节为奇数时,需采用过渡链节,由于过渡链节的链板受附加弯矩的作用,一般应避免采用。GB/T1243-97规定滚子链分为A、B系列,其中A系列较为常用。链速和传动比的变化使链传动中产生加速度,从而产生附加动载荷、引起冲击振动,故链传动不适合高速传动。为减小动载荷和运动的不均匀性,链传动应尽量选取较多的齿数z 和较小的节距p(这样可使减小),并使链速在允许的范围内变化。 四、链传动的失效形式 由于链条的强度比链轮的强度低,故一般链传动的失效主要是链条失效,其失效形式主要有以下几种: (一)链条铰链磨损。链条铰链的销轴与套筒之间承受较大的压力且又有相对滑动,故在承压面上将产生磨损。磨损使链条节距增加,极易产生跳齿和脱链。 (二) 链板疲劳破坏。链传动紧边和松边拉力不等,因此链条工作时,拉力在不断地发生变化,经一定的应力循环后,链板发生疲劳断裂。 (三)多次冲击破断。链传动在启动、制动、反转或重复冲击载荷作用下,链条、销轴、套筒发生疲劳断裂。 (四)链条铰链的胶合。链速过高时销轴和套筒的工作表面由于摩擦产生瞬时高温使两摩擦表面相互粘结,并在相对运动中将较软的金属撕下,这种现象称为胶合。链传动的极限速度受到胶合的限制。 (五)链条的静力拉断。在低速(v < 0.6m/s)重载或突然过载时,载荷超过链条的静强度,链条将被拉断。 五、链传动的润滑方式有四种: (一)人工定期用油壶或油刷给油; (二)用油杯通过油管向松边内外链板间隙处滴油; (三)油浴润滑或用甩油盘将油甩起,以进行飞溅润滑; (四)用油泵经油管向链条连续供油,循环油可起润滑和冷却的作用。 封闭于壳体内的链传动,可以防尘、减轻噪声及保护人身安全。润滑油可选用L-AN32、L-AN46、L-AN68全损耗系统用油,环境温度高或载荷大时宜取粘度高者;反之粘度宜低。 六、总结 链传动具有各种各样的优点,而且在实际应用当中十分的广泛。所以我们在使用的过程当中,必须了解到每一种链条的适用范围,合理的选择相应的链条,并且有效的避免它失效的产生。这样子对我们实际生活中的应用相当有效。

同步带传动类型及及设计计算标准

同步带传动类型及及设计计算标准 (GB-T10414?2-2002同步带轮设计标准) 圆弧齿同步带轮轮齿ArctoothTimingtooth 直边齿廓尺寸Dimensionoflineartypepulley

1、同步带轮的型式 2、齿型尺寸、公差及技术参数 3、各种型号同步带轮齿面宽度尺寸表 4、订购须知 圆弧齿轮传动类型: 1)圆弧圆柱齿轮分单圆弧齿轮和双圆弧齿轮。 2)单圆弧齿轮的接触线强度比同等条件下渐开线齿轮高,但弯曲强度比渐开线低。 3)圆弧齿轮主要采用软齿面或中硬齿面,采用硬齿面时一般用矮形齿。圆弧齿轮传动设计步骤: 1)简化设计:根据齿轮传动的传动功率、输入转速、传动比等条件,确定中心距、模数等主要参数。如果中心距、模数已知,可跳过这一

步。 2)几何设计计算:设计和计算齿轮的基本参数,并进行几何尺寸计算。 3)强度校核:在基本参数确定后,进行精确的齿面接触强度和齿根弯曲强度校核。 4)如果校核不满足强度要求,可以返回 圆弧齿轮传动的特点: 1)圆弧齿轮传动试点啮合传动,值适用于斜齿轮,不能用于直齿轮。 2)相对曲率半径比渐开线大,接触强度比渐开线高。 3)对中心距变动的敏感性比渐开线大。加工时,对切齿深度要求较高,不允许径向变位切削,并严格控制装配误差。 单圆弧齿轮传动 小齿轮的凸齿工作齿廓在节圆以外,齿廓圆心在节圆上;大齿轮的凹齿工作齿廓在节圆内,齿廓圆心略偏於节圆以外(图2单圆弧齿轮传动的嚙合情况)。由於大齿轮的齿廓圆弧半径p2略大於小齿轮的齿廓半径p1,故当两齿廓转到K点,其公法线通过节点c时,齿便接触,旋即分离,但与它相邻的另一端面的齿廓随即接触,即两轮齿K1﹑K'1、K2﹑K'2﹑K3﹑K'3……各点依次沿嚙合线接触。因此,圆弧齿轮任一端面上凹﹑凸齿廓仅作瞬时嚙合。一对新圆弧齿轮在理论上是瞬时点嚙合,故圆弧齿轮传动又常称为圆弧点嚙合齿轮传动。轮齿经过磨合后,实际上齿廓能沿齿高有相当长的一段线接触。圆弧齿轮传动的特点是:(1)综合曲率半径比渐开线齿轮传动大很多,其接触强度比渐开线齿轮传动约高0.5~1.5倍;

偏心齿轮传动的快速优化设计_吕新生

文章编号:1004-2539(2004)02-0021-04 偏心齿轮传动的快速优化设计 吕新生1高洪2张晔1 (1.合肥工业大学,安徽合肥230009) (2.安徽工程科技学院,安徽芜湖241000) 摘要偏心齿轮虽然在制造上与普通渐开线齿轮无异,却属于变传动比的非圆齿轮传动,设计计算十分复杂。本文将优化设计概念引入非圆齿轮设计,使非圆齿轮设计方法从传统的基于分析的设计发展为基于综合的设计,避免了带有较大盲目性的参数试凑和反复校验过程,提高了非圆齿轮传动设计的科学性和一次成功率。 关键词偏心齿轮非圆齿轮优化目标规划 引言 齿轮机构是应用最为广泛的机械传动机构,具有传递功率大、效率高、传动准确可靠、寿命长、结构紧凑等优点。通常所说的齿轮传动是指传动比为常数的齿轮传动,其主要功能是传递匀速运动和恒定的动力(功率),而非圆齿轮则更多地作为运动控制元件使用,广泛应用于轻工、纺织、烟草、食品等机械中[1~5],在机构创新设计中具有重要作用。 非圆齿轮传动20世纪30年代就已出现,20世纪50年代原苏联学者李特文在文献[1]中首次建立了非圆齿轮传动的系统理论,20世纪70年代起这项技术被介绍到国内,并开始进行系统研究,但至今应用有限,甚至在我国机械专业的本科生教材中都未包含这部分内容。其重要原因在于,非圆齿轮设计计算复杂,制造也很困难。进入20世纪70年代以后,由于计算机技术和数控技术的发展和广泛应用,使制约非圆齿轮应用的两大难点都有了得以克服的可能,因而掀起了新的一轮非圆齿轮研究及应用热潮,国外甚至有人将其称为非圆齿轮的/再发明(Rediscovering)0,不仅开展非圆齿轮传动的研究,而且开展了非圆带、链传动的研究,形成一个内容丰富的非匀速比传动研究领域[4]。由于齿轮数控技术的发展,非圆齿轮的制造已不再困难,但是,非圆齿轮设计计算复杂这一难点尚未得到根本克服,具体表现在以下两点。 1)现有文献中给出的某些计算公式作为分析计算工具无疑是正确的,但是如果将其用于设计计算,则缺乏可操作性,例如,文献[4]中给出的偏心齿轮计算公式以瞬时啮合角作为基本变量,要求计算时首先设定A值,其/缺点是A角的设定范围不易掌握,而且几何中心距的变化情况、特别是它的最小值l mi n不能直接求出0。[4] 2)现有文献中给出的设计方法(包括计算机辅助设计方法)均属于基于分析的设计方法,即,给定一组参数,得到分析计算(校核计算)结果,如发现不妥,则修改给定参数,再作分析与校核,具有较大的盲目性。 本文将优化设计概念引入非圆齿轮设计,使非圆齿轮设计方法从传统的基于分析的设计发展为基于综合的设计,避免了带有较大盲目性的参数试凑和反复校验过程,提高了非圆齿轮传动设计的科学性和一次成功率,力求从根本上扭转由于非圆齿轮设计计算复杂困难而限制其广泛应用的局面。 1偏心齿轮简介 非圆齿轮种类繁多,包括内、外啮合的直齿、斜齿偏心齿轮、椭圆齿轮,变性椭圆齿轮,以及多圈非圆齿轮等非封闭形非圆齿轮。其中偏心齿轮是指一对普通渐开线直齿圆柱齿轮,但其回转中心与几何中心不重合,形成一偏心距,从而实现变速比传动,具有制造上与普通渐开线齿轮无异、可在一定范围内代替制造复杂的其它非圆齿轮的诱人特点。 吴序堂、王贵海于20世纪90年代出版的5非圆齿轮与特种齿轮传动设计6一书中[4]首先系统地提出偏心齿轮的设计方法(注:在文献[1]、[2]中也曾提到偏心圆齿轮,但那是指瞬心线为偏心圆的齿轮,而不是文献[4]5~7节中所说的回转中心与几何中心不重合的普通渐开线圆柱齿轮,后者可以同一般齿轮一样加工,却能获得非圆齿轮的传动效果),并首次提出非圆齿轮的CAD/C AM。 虽然偏心齿轮在制造时与普通渐开线齿轮没有什么区别,但在设计时却与定传动比齿轮传动迥然不同,这是因为非圆齿轮传动中很多参数是瞬时变化的,例 21 第28卷第2期偏心齿轮传动的快速优化设计

多目标规划

ricanxinghuji实习小编一级|消息 | 我的百科 | 我的知道 | 百度首页 | 退出我的贡献草稿箱我的任务为我推荐 新闻网页贴吧知道MP3图片视频百科文库 帮助设置 ? ? ? ? ? ? ? ? ? ? ? ? ? ? 多目标规划 科技名词定义 中文名称:多目标规划 英文名称:multiple objective program 定义:生态系统管理中,为了同时达到两个或两个以上的目标,需要在许多可行性方案中进行选择的整个过程。 所属学科:

生态学(一级学科);生态系统生态学(二级学科) 本内容由全国科学技术名词审定委员会审定公布 多目标规划是数学规划的一个分支。研究多于一个的目标函数在给定区域上的最优化。又称多目标最优化。通常记为 MOP(multi-objective programming)。 目录 编辑本段 多目标规划 multiple objectives programming 数学规划的一个分支。研究多于一个目标函数在给定区域上的最优化。又称多目标最优化。通常记为 VMP。在很多实际问题中,例如经济、管理、军事、科学和工程设计等领域,衡量 多目标规划

一个方案的好坏往往难以用一个指标来判断,而需要用多个目标来比较,而这些目标有时不甚协调,甚至是矛盾的。因此有许多学者致力于这方面的研究。1896年法国经济学家 V. 帕雷托最早研究不可比较目标的优化问题,之后,J.冯·诺伊曼、H.W.库恩、A.W.塔克尔、A.M.日夫里翁等数学家做了深入的探讨,但是尚未有一个完全令人满意的定义。求解多目标规划的方法大体上有以下几种:一种是化多为少的方法,即把多目标化为比较容易求解的单目标或双目标,如主要目标法、线性加权法、理想点法等;另一种叫分层序列法,即把目标按其重要性给出一个序列,每次都在前一目标最优解集内求下一个目标最优解,直到求出共同的最优解。对多目标的线性规划除以上方法外还可以适当修正单纯形法来求解;还有一种称为层次分析法,是由美国运筹学家沙旦于70年代提出的,这是一种定性与定量相结合的多目标决策与分析方法,对于目标结构复杂且缺乏必要的数据的情况更为实用。 编辑本段 规划简史 多目标最优化思想,最早是在1896年由法国经济学家V.帕雷托提出来的。他从政治 数学规划 经济学的角度考虑把本质上是不可比较的许多目标化成单个目标的最优 化问题,从而涉及了多目标规划问题和多目标的概念。1947年,J.冯·诺伊曼和O.莫根施特恩从对策论的角度提出了有多个决策者在彼此有矛盾的情 况下的多目标问题。1951年,T.C.库普曼斯从生产和分配的活动中提出多目标最优化问题,引入有效解的概念,并得到一些基本结果。同年,H.W.库恩和 A.W.塔克尔从研究数学规划的角度提出向量极值问题,引入库恩-塔克尔有效解概念,并研究了它的必要和充分条件。1963年,L.A.扎德从控制论方面提出多指标最优化问题,也给出了一些基本结果。1968年,A.M.日夫里翁为了排除变态的有效解,引进了真有效解概念,并得到了有关的结果。自70年代以来,多目标规划的研究越来越受到人们的重视。至今关于多目标最优解尚无一种完全令人满意的定义,所以在理论上多目标规划仍处于发展阶段。 编辑本段 求解方法 化多为少的方法 即

matlab链传动的优化设计

《链传动的优化设计》 题目 电动机通过链传动带动运输机,传动功率P=10kW,电动机转速n1=970r/min,从动轮转速n2=330r/min,希望链节距t<=12.7mm,中心距α≤60t。原设计方案用三排链,链节距t=12.7mm,中心距α=55t,小链轮z1=25.为发挥链的最大传动能力,试改良原设计方案。 解:取kA=1.3 19≤z1≤25 9.5≤t≤12.7 50≤α≤60 0.6≤v≤15 z 1 x 1 (1)设计变量X= t = x 2 αx 3 (2)寻优数学模型minf(X)=(kA*P)/(P0*kx*kα*ki) 约束条件 g1(x)=19-x1≤0 g2(x)=x1-25≤0 g3(x)=9.5-x2≤0 g4(x)=x2-12.7≤0 g5(x)=50*x2-x3≤0 g6(x)=x3-60*x2≤0 g7(x)=37.1134-x1*x2≤0 g8(x)=x1*x2-972.835≦0 (3)优化程序 首先编写目标函数M文件myfun.m:

再编写非线性约束函数M文件mycon.m: 主程序: 运行结果

即最少的链排数为1.1619 所以得到较好的设计方案为(最优解) z1=23,z2=67;t=12, α=762;zp(排数)=2 源程序分析:我们在处理链传动问题上,应用了Matlab优化工具箱进行优化 问题求解,调用了fmincon函数来求解,fmincon函数是优化工具箱中较为通用的一个函数,基本上可以解决单目标优化的各种问题。在这过程中,不用编写大量的优化算法程序,提高了设计效率,同时优化工具箱选用较可靠的优化算法,设计精度也得到较好的提高。 程序框图

基于Solidworks/Simulation的链板结构尺寸优化设计

基于Solidworks/Simulation的链板结构尺寸优化设计 链条是重要的基础零部件,其中滚子链链板结构为“8”字形机构合理,在国家标准中并未对影响链板应力分布的胯部尺寸进行规定。文章以ISO 08A型滚子链为例,利用Solidworks软件创建了08A型链条链节的三维模型,并利用Solidworks/Simulaiton对链板结构进行了应力分析,且根据其应力分布特点对其胯部尺寸进行了优化。结果显示:链板最大应力发生在销轴孔处,胯部应力次之,二者应力差值高达59MPa,分布极不合理,优化链板胯部尺寸得到,当胯部尺寸取值为0.4375倍节距时,销轴孔与胯部应力基本相等,差值为2MPa,应力分布合理,为链板结构设计提供理论指导。 标签:滚子链;链板;应力分布;尺寸优化 滚子链作为重要的机械基础零部件,作为牵引件被广泛的应用于机械传动、输送、农机、化工等行业领域[1]。链板是其重要的组成部分,其工作能力的优劣直接影响了链传动系统的整体性能。文献研究表明:“8”字形结构滚子链链板结构应力分布合理,是滚子链链板的最佳结构形式[2,3,4],但是并未对最佳的“8”字形轮廓尺寸进行深入探讨。 文章以ISO 08A型滚子链为例,利用Solidworks软件创建了链节三维模型,并且利用Solidworks/simulaiton分析了链板的结构应力,并以其胯部宽度尺寸为设计变量,链板销轴孔与胯部最大应力为约束,对其胯部尺寸进行了优化,使得链板应力分布更为合理,为链板结构设计提供理论指导。 1 链节三维模型 滚子链包括A系列滚子链与B系列滚子链两类,其中A系类滚子链基本结构参数与节距P成一定比例关系[5]。因此,文章选择ISO 08A型滚子链对链板结构应力进行分析,优化胯部宽度尺寸,得到其与节距P尺寸比例关系具有一般意义。 滚子链主要由外链板、销轴、内链板、套筒以及滚子5部分构成,其中外链板与销轴过盈配合,套筒与内链板过盈配合,滚子与套筒间隙配合,如图1所示。 2 有限元模型的创建 文章利用Solidworks Simulaiton有限元设计与分析软件对链板的应力分布进行分析。 2.1 模型简化 对链节整体进行计算分析,工作量大,时间长,且数据精确程度难以保障,利用模型的对称性,选择模型结构的1/2、1/4甚至1/8部分,进行计算分析,可

普通V带传动设计

普通V 带传动设计 已知条件:P=15KW ,小带轮转速n=960r/min,传动比i=2,传动比允许误差≤±5%,轻度冲击;两班工作制。 一.V 带传动的设计计算: 1. 确定计算功率: 查P156表8-7得工作情况系数:A K =1.1 ca P =A K P=1.1×15=16.5Kw 2. 选择V 带的带型: 根据计算功率ca P 和小带轮转速1 n ,由P157图8-11选择V 带的带 型为:B 型 3. 初选小带轮的基准直径1 d d : 查P155表8-6得:min )(d d =125 根据1 d d ≥min )(d d 查P157表8-8取:1 d d =200㎜ 验算带速v :根据P150公式8-13得: v= = ???= ???m/s 1000 60960 20014.31000 6011n d d π10.05m/s 计算大带轮直径,由公式2 d d =i 1 d d 并根据P157表8-8加以适当圆整 取2 d d =400㎜ 4.确定中心距a ,并选择V 带的基准长度d L 根据P152公式8-20初定中心距0 a :0.7(1 d d +2 d d )≤0a ≤2(1d d +2 d d ) 得420≤0 a ≤1200 于是初定0 a =1000 计算相应的带长0Ld :

据式0 d L ≈0 2a + + +)(2 21d d d d π0 2 124) (a d d d d - =1000 4)200400()400200(2 14.31000 22 ?-+ +?+ ?=2952 再根据P146表8-2选取:d L =3150 5.按P158式8-23计算实际中心距a : a ≈0 a + 2 d d L L -=1000+ 2 2952 3150-=1049 并根据公式 d d L a a L a a 03.0015.0max min +=-=】;的中心距的变化范围为1001.8~1143.5 6.验算小带轮上的包角1 a : 1α≈180°-(12d d d d -) a 3.57=180°-(400-200)1049 3.57 ? ≈169° 7.计算带的根数z: 由1 d d =200㎜和1n =960r/min,查P152表8-4a 取:0 P =3.77Kw ; 根据1 n =960r/min,i=2和B 型带,查P154表8-4b 取2:0 P ?=0.3; 查P155表8-5取:αK =0.98;查P146表8-2取:L K =1.07于是: = r P (0 P P ?+)α K L K 所以:Z== ??+?= ?+= 98 .007.1)3.077.3(15 1.1)(00L A r ca K K P P P K P P α 3.87 取Z=4根。 8.确定单根V 带得初拉力0 F : 查P149表8-3得B 型带的单位长度质量q=0.18kg/m,所以 根据P158式8-27得: min 0)(F =2 2 05 .1018.005 .10407.15.16)07.15.2(500)5.2(500 ?+???-? =+-qv zv K P K ca a α

同步带的设计计算

同步带的设计计算 一、同步带概述 1.1.1同步带介绍 同步带是综合了带传动、链条传动和齿轮传动的优点而发展起来的新塑传动带。它由带齿形的一工作面与齿形带轮的齿槽啮合进行传动,其强力层是由拉伸强度高、伸长小的纤维材料或金属材料组成,以使同步带在传动过程中节线长度基本保持不变,带与带轮之间在传动过程中投有滑动,从而保证主、从动轮间呈无滑差的间步传动。 同步带传动(见图4-1)时,传动比准确,对轴作用力小,结构紧凑,耐油,耐磨性好,抗老化性能好,一般使用温度-20℃―80℃,v<50m/s,P<300kw,i<10,对于要求同步的传动也可用于低速传动。 图4-1 同步带传统 同步带传动是由一根内周表面设有等间距齿形的环行带及具有相应吻合的轮所组成。它综合了带传动、链传动和齿轮传动各自的优点。转动时,通过带齿与轮的齿槽相啮合来传递动力。同步带传动具有准确的传动比,无滑差,可获得恒定的速比,传动平稳,能吸振,噪音小,传动比范围大,一般可达1:10。允许线速度可达50M/S,传递功率从几瓦到百千瓦。传动效率高,一般可达98%,结构紧凑,适宜于多轴传动,不需润滑,无污染,因此可在不允许有污染和工作环境较为恶劣的场所下正常工作。本产品广泛用于纺织、机床、烟草、通讯电缆、轻工、化工、冶金、仪表仪器、食品、矿山、石油、汽车等各行业各种类型的机械传动中。同步带的使用,改变了带传动单纯为摩擦传动的概念,扩展了带传动的范围,从而成为带传动中具有相对独立性的研究对象,给带传动的发展开辟了新的途径。 1.1.2同步带的特点

(1)、传动准确,工作时无滑动,具有恒定的传动比; (2)、传动平稳,具有缓冲、减振能力,噪声低; (3)、传动效率高,可达0.98,节能效果明显; (4)、维护保养方便,不需润滑,维护费用低; (5)、速比范围大,一般可达10,线速度可达50m/s,具有较大的功率传递范围,可达几瓦到几百千瓦; (6)、可用于长距离传动,中心距可达10m以上。 1.1.3同步带传动的主要失效形式 在同步带传动中常见的失效形式有如下几种: (1)、同步带的承载绳断裂破坏 同步带在运转过程中承载绳断裂损坏是常见的失效形式。失效原因是带在传递动力过程中,在承载绳作用有过大的拉力,而使承载绳被拉断。此外当选用的主动捞轮直径过小,使承载绳在进入和退出带抡中承受较大的周期性的弯曲疲劳应力作用,也会产生弯曲疲劳折断(见图4-2)。 图4-2 同步带承载绳断裂损坏 (2)、同步带的爬齿和跳齿

一级齿轮减速器带传动设计计算说明书

目录 一、设计任务书---------------------------------------------------2 二、传动方案的分析与拟定-----------------------------------3 三、电动机的选择计算------------------------------------------4 四、传动装置的运动及动力参数的选择和计算---------6 五、传动零件的设计计算--------------------------------------8 六、轴的设计计算------------------------------------------------16 七、滚动轴承的选择和计算-----------------------------------25 八、键连接的选择和计算--------------------------------------28 九、联轴器的选择------------------------------------------------29 十、减速器的润滑方式和密封类型的选择 润滑油的牌号选择和装油量计算----------------------30 十一、铸造减速器箱体的主要结构尺寸-------------------31 十二、设计小结----------------------------------------------------32 十三、参考文献----------------------------------------------------33

一、设计任务书 1.1机械课程设计的目的 课程设计是机械设计课程中的最后一个教学环节,也是第一次对学生进行较全面的机械设计训练。其目的是: 1.通过课程设计,综合运用机械设计课程和其他先修课程的理论和实际知识, 来解决工程实际中的具体设计问题。通过设计实践,掌握机械设计的一般规律,培养分析和解决实际问题的能力。 2.培养机械设计的能力,通过传动方案的拟定,设计计算,结构设计,查阅有 关标准和规及编写设计计算说明书等各个环节,要求学生掌握一般机械传动装置的设计容、步骤和方法,并在设计构思设计技能等方面得到相应的锻炼。 1.2设计题目 设计运送原料的带式运输机用的圆柱齿轮一级减速器。 1.3工作与生产条件 两班制工作,常温下连续单向运转,空载起动,载荷平稳,室工作,环境有轻度粉尘,每年工作300 天,减速器设计寿命10 年,电压为三相交流电 (220V/380V). 运输带允许速度误差:± 5% 1.4设计要求 根据给定的工况参数,选择适当的电动机、选取联轴器、设计V带传动、设计一级齿轮减速器(所有的轴、齿轮、轴承、减速箱体、箱盖以及其他附件)和与输送带连接的联轴器。滚筒及运输带效率 =0.96,工作时,载荷有轻微冲击。室工作,水分和颗粒为正常状态,产品生产批量为成批生产。 1.5原始数据 见下表 表1 原始数据

基于VB6.0链传动的优化设计与编程

届本科毕业论文(设计) 论文题目:基于VB6.0链传动的优化设计与编程 学生姓名: 所在院系: 所学专业: 导师姓名: 完成时

摘要 链传动被广泛应用于动力传递中,几乎所以的车辆和机床,还有其它机械均应用了链传动传动装臵。因此,对链传动的设计是十分重要和必要的。 这篇文章主要介绍了运用优化设计对链传动进行设计的一般方法和具体过程,优化设计是20世纪60年代发展起来的一门新学科,它是基于计算机技术的一种相当有效的、能寻找出最优结果的设计方法。该设计仍然运用了传统的机械设计方法,但是它又不同于传统的设计方法,它采用了名为visual basic 的软件,该软件能极大地提高工作效率和设计精度,并能很大程度地减少工作时间。 关键词链传动,visual basic,设计

Abstract The chain trasmission are widely used for power transmission, almost all the vehicles and machine tools and other machines employ the chain transmission drive. so the design of chain transmission drive is very important and necessary. The article mainly introduce the method and the detailed process of the designing of the chain transmission drive by using Optimal Design which is a new subject developed from the 1960s,and it is a fairly good way to search for the best result of the design based on the computer technology. The design still use the traditional means of machinery design, but it is very different from the traditional means, because it also adopt a soft ware named Visual Basic ,which can greatly improve the work efficiency and accuracy and cut short the work time. Keywords chain transmission ;visual basic ; design

LINGO在多目标规划和最大最小化模型中的应用

LINGO 在多目标规划和最大最小化模型中的应用 在许多实际问题中,决策者所期望的目标往往不止一个,如电力网络管理部门在制定发电计划时即希望安全系数要大,也希望发电成本要小,这一类问题称为多目标最优化问题或多目标规划问题。 一、多目标规划的常用解法 多目标规划的解法通常是根据问题的实际背景和特征,设法将多目标规划转化为单目标规划,从而获得满意解,常用的解法有: 1.主要目标法 确定一个主要目标,把次要目标作为约束条件并设定适当的界限值。 2.线性加权求和法 对每个目标按其重要程度赋适当权重0≥i ω,且1=∑i i ω,然后把) (x f i i i ∑ω作为新的目标函数(其中p i x f i ,,2,1),( =是原来的p 个目标)。 3.指数加权乘积法 设p i x f i ,,2,1),( =是原来的p 个目标,令 … ∏==p i a i i x f Z 1 )]([ 其中i a 为指数权重,把Z 作为新的目标函数。 4.理想点法 先分别求出p 个单目标规划的最优解*i f ,令 ∑-= 2*))(()(i i f x f x h 然后把它作为新的目标函数。 5.分层序列法 将所有p 个目标按其重要程度排序,先求出第一个最重要的目标的最优解,然后在保证前一个目标最优解的前提条件下依次求下一个目标的最优解,一直求到最后一个目标为止。

这些方法各有其优点和适用的场合,但并非总是有效,有些方法存在一些不足之处。例如,线性加权求和法确定权重系数时有一定主观性,权重系数取值不同,结果也就不一样。线性加权求和法、指数加权乘积法和理想点法通常只能用于两个目标的单位(量纲)相同的情况,如果两个目标是不同的物理量,它们的量纲不相同,数量级相差很大,则将它们相加或比较是不合适的。 二、最大最小化模型 在一些实际问题中,决策者所期望的目标是使若干目标函数中最大的一个达到最小(或多个目标函数中最小的一个达到最大)。例如,城市规划中需确定急救中心的位置,希望该中心到服务区域内所有居民点的距离中的最大值达到最小,称为最大最小化模型,这种确定目标函数的准则称为最大最小化原则,在控制论,逼近论和决策论中也有使用。 》 最大最小化模型的目标函数可写成 )}(,),(),(max{min 21X f X f X f p X 或 )}(,),(),(min{max 21X f X f X f p X 式中T n x x x X ),,,(21 是决策变量。模型的约束条件可以包含线性、非线性的等式和不等式约束。这一模型的求解可视具体情况采用适当的方法。 三、用LINGO 求解多目标规划和最大最小化模型 1.解多目标规划 用LINGO 求解多目标规划的基本方法是先确定一个目标函数,求出它的最优解,然后把此最优值作为约束条件,求其他目标函数的最优解。如果将所有目标函数都改成约束条件,则此时的优化问题退化为一个含等式和不等式的方程组。LINGO 能够求解像这样没有目标函数只有约束条件的混合组的可行解。有些组合优化问题和网络优化问题,因为变量多,需要很长运算时间才能算出结果,如果设定一个期望的目标值,把目标函数改成约束条件,则几分钟就能得到一个可行解,多试几个目标值,很快就能找到最优解。对于多目标规划,同样可以把多个目标中的一部分乃至全部改成约束条件,取适当的限制值,然后用LINGO 求解,

同步带传动受力情况的分析(压轴力与张紧力的计算)

同步带受力情况的分析 1 张紧力 同步带安装时必须进行适当的张紧,以使带具有一定的初拉力(张紧力)。初拉力过小会使同步带在运转中因齿合不良而发生跳齿现象,在跳齿的瞬间,可能因拉力过大而使带断裂或带齿断裂;初拉力过小还会使同步带传递运动的精度降低,带的振动噪音变大。而初拉力过大则会使带的寿命降低,传动噪音增大,轴和轴承上的载荷增大,加剧轴承的发热和使轴承寿命降低。故控制同步带传动合宜的张紧力是保证同步带传动正常工作的重要条件。 设0F 为同步带传动时带的张紧力,1F 、2F 、F 分别为带传动工作时带的紧边拉力、松边拉力、和有效拉力。为了保证同步带在带轮上齿合可靠、不跳齿,同步带运转时紧边带的弹性伸长量与松边带的弹性收缩量应保持近似相等。因此,紧边拉力的增加量应等于松边拉力的减少量,即 1F -0F =0F -2F 或 1F +2F =20F 、0F =0.5(1F +2F ) 式1-1 2 压轴力 压轴力即为同步带作用在轴上的力,是紧边拉力与松边拉力的矢量和,如图2-1所示: 图2-1同步带的压轴力、紧边拉力、松边拉力 据机械标准JB/T 7512.3-1994压轴力Q 计算如下所示: Q=12()F K F F + N 式2-1 当工况系数A K ≥1.3时: Q=0.7712()F K F F + N 式2-2

式中: F K ――矢量相加修正系数,如图2-2: 图2-2 矢量相加修正系数 上图中1α为小带轮包角,21118057.3d d a α-≈?-??。 A K 为工况系数,对于医疗机械,其值如图2-3所示: 图2-3 医疗机械的工况系数 对于医疗机械,取A K =1.2,所以有压轴力Q=12()F K F F + N ,其中F K 值大于0.5。 另外由式1-1有张紧力0F =0.5(1F +2F )。 由此可看出压轴力大于张紧力,故设计时只需计算传动中所受的压轴力,Q=12()F K F F + N 。 而带的紧边张力与松边张力分别由下面公式所得: 11250/d F P V = N 式2-3 2250/d F P V = N 式2-4

同步带的设计计算

一、同步带概述 同步带介绍 同步带是综合了带传动、链条传动和齿轮传动的优点而发展起来的新塑传动带。它由带齿形的一工作面与齿形带轮的齿槽啮合进行传动,其强力层是由拉伸强度高、伸长小的纤维材料或金属材料组成,以使同步带在传动过程中节线长度基本保持不变,带与带轮之间在传动过程中投有滑动,从而保证主、从动轮间呈无滑差的间步传动。 同步带传动(见图4-1)时,传动比准确,对轴作用力小,结构紧凑,耐油,耐磨性好,抗老化性能好,一般使用温度-20℃―80℃,v<50m/s,P<300kw,i<10,对于要求同步的传动也可用于低速传动。 图4-1 同步带传统 同步带传动是由一根内周表面设有等间距齿形的环行带及具有相应吻合的轮所组成。它综合了带传动、链传动和齿轮传动各自的优点。转动时,通过带齿与轮的齿槽相啮合来传递动力。同步带传动具有准确的传动比,无滑差,可获得恒定的速比,传动平稳,能吸振,噪音小,传动比范围大,一般可达1:10。允许线速度可达50M/S,传递功率从几瓦到百千瓦。传动效率高,一般可达98%,结构紧凑,适宜于多轴传动,不需润滑,无污染,因此可在不允许有污染和工作环境较为恶劣的场所下正常工作。本产品广泛用于纺织、机床、烟草、通讯电缆、轻工、化工、冶金、仪表仪器、食品、矿山、石油、汽车等各行业各种类型的机械传动中。同步带的使用,改变了带传动单纯为摩擦传动的概念,扩展了带传动的范围,从而成为带传动中具有相对独立性的研究对象,给带传动的发展开辟了新的途径。 同步带的特点 (1)、传动准确,工作时无滑动,具有恒定的传动比; (2)、传动平稳,具有缓冲、减振能力,噪声低; (3)、传动效率高,可达,节能效果明显; (4)、维护保养方便,不需润滑,维护费用低; (5)、速比范围大,一般可达10,线速度可达50m/s,具有较大的功率传递范围,可达几瓦到几百千瓦; (6)、可用于长距离传动,中心距可达10m以上。 同步带传动的主要失效形式 在同步带传动中常见的失效形式有如下几种: (1)、同步带的承载绳断裂破坏

偏心齿轮传动的快速优化设计要点

机械设计课程设计 设计题目:偏心齿轮传动的快速优化设计学校: 专业:机械设计与制造2012级秋 姓名: 指导老师: 完成设计时间:

目录 摘要 (2) 绪论 (3) 1 偏心齿轮简介化原理 (4) 2 偏心齿轮快速优化设计 (5) 2.1 偏心齿轮传动设计计算公式推导 (5) 2.2 偏心齿轮优化设计模型的建立 (6) 2.3偏心齿轮优化设计的程序实现 (8) 2.4偏心齿轮优化设计示例 (9) 结论 (10) 参考文献 (11)

摘要 偏心齿轮虽然在制造上与普通渐开线齿轮无异,却属于变传动比的非圆齿轮传动,设计计算十分复杂。本文将优化设计概念引入非圆齿轮设计,使非圆齿轮设计方法从传统的基于分析的设计发展为基于综合的设计,避免了带有较大盲目性的参数试凑和反复校验过程, 提高了非圆齿轮传动设计的科学性和一次成功率。 关键词:偏心齿轮非圆齿轮优化目标规划

绪论 齿轮机构是应用最为广泛的机械传动机构, 具有传递功率大、效率高、传动准确可靠、寿命长、结构紧凑等优点。通常所说的齿轮传动是指传动比为常数的齿轮传动, 其主要功能是传递匀速运动和恒定的动力(功率), 而非圆齿轮则更多地作为运动控制元件使用, 广泛应用于轻工、纺织、烟草、食品等机械中[1~ 5 ], 在机构创新设计中具有重要作用。 非圆齿轮传动20世纪30年代就已出现, 20世纪50年代原苏联学者李特文在文献[1]中首次建立了非圆齿轮传动的系统理论, 20世纪70年代起这项技术被介绍到国内, 并开始进行系统研究, 但至今应用有限, 甚至在我国机械专业的本科生教材中都未包含这部分内容。其重要原因在于, 非圆齿轮设计计算复杂, 制造也很困难。进入20世纪70年代以后, 由于计算机技术和数控技术的发展和广泛应用, 使制约非圆齿轮应用的两大难点都有了得以克服的可能, 因而掀起了新的一轮非圆齿轮研究及应用热潮, 国外甚至有人将其称为非圆齿轮的“再发明( Rediscovering)”, 不仅开展非圆齿轮传动的研究, 而且开展了非圆带、链传动的研究, 形成一个内容丰富的非匀速比传动研究领域[ 4 ]。由于齿轮数控技术的发展, 非圆齿轮的制造已不再困难, 但是, 非圆齿轮设计计算复杂这一难点尚未得到根本克服, 具体表现在以下两点。 1)现有文献中给出的某些计算公式作为分析计算工具无疑是正确的, 但是如果将其用于设计计算, 则缺乏可操作性, 例如, 文献[ 4 ]中给出的偏心齿轮计算公式以瞬时啮合角作为基本变量, 要求计算时首先设定α值, 其“缺点是α角的设定范围不易掌握, 而且几何中心距的变化情况、特别是它的最小值l min不能直接求出”。[ 4 ] 2)现有文献中给出的设计方法( 包括计算机辅助设计方法) 均属于基于分析的设计方法, 即, 给定一组参数, 得到分析计算(校核计算)结果, 如发现不妥, 则修改给定参数, 再作分析与校核, 具有较大的盲目性。 本文将优化设计概念引入非圆齿轮设计, 使非圆齿轮设计方法从传统的基于分析的设计发展为基于综合的设计, 避免了带有较大盲目性的参数试凑和反复校验过程, 提高了非圆齿轮传动设计的科学性和一次成功率, 力求从根本上扭转由于非圆齿轮设计计算复杂困难而限制其广泛应用的局面。

链传动工作原理与特点

套筒链条尺寸 链传动工作原理与特点 1、工作原理:(至少)两轮间以链条为中间挠性元件的啮合来传递动力和运动。但非共轭曲线啮合,靠三段圆弧()一直线啮合。其磨损、接触应力冲击均小,且易加工。 2、组成;主、从动链轮、链条、封闭装置、润滑系统和张紧装置等。 3、特点(与带、齿轮传动比较) 准确,无滑动;②结构紧凑,轴上压力Q小;③传动效率优点:①平均速比i m 高η=98%;④承载能力高P=100KW;⑤可传递远距离传动a =8mm;⑥成本低。 max 缺点:①瞬时传动比不恒定i;②传动不平衡;③传动时有噪音、冲击;④对安装粗度要求较高。 4、应用: 适于两轴相距较远,工作条件恶劣等,如农业机械、建筑机械、石油机械、采矿、起重、金属切削机床、摩托车、自行车等。中低速传动:i≤8(I=2~4),P≤100KW, =40m/s。(不适于在冲击与急促反向等情况下采用) V≤12-15m/s,无声链V max §2 传动链的结构特点 链传动的主要类型 1)按工作特性分: 起重链——用于提升重物——V≤0.25m/s; 牵(线)引链——运输机械——V≤2~4m/s; 传动链——用于传递运动和动力——V≤12~15m/s。 优点:结构简单、重量轻、价廉、适于低速、寿命长、噪音小、应用广。 2)传动链接形式分: 套筒链; (套筒)滚子链—属标准件选用、合理确定链轮与链条尺寸,—短节距精密滚子链;

齿形链;成型链四种。 1、套筒滚子链(结构与特点) 动配合,可相对运动,相当于活动铰链,承压面积A(投影)——宽×长投影组成: 5滚子;4套筒;3销轴;2外链板;1内链板 当链节进入、退出啮合时,滚子沿齿滚动,实现滚动摩擦,减小磨损。 套筒与内链板、销轴与外链板分别用过盈配合(压配)固联,使内、外链板可相对回转。 为减轻重量、制成“8”字形,亦有弯板。这样质量小,惯性小,具有等强度。 磨损:——主要指滚子与销轴截面之间磨损。而内、外板之间留有间隙,保证润滑油进入,此润滑可降低磨损。 P越大,承载能力越高。 参数:P—节距,b 1—内链板间距,C—板厚,d 1 —滚子直径,d 2 —销轴直径,P— 排距 当低速时也可以不用滚子——称套筒链 多排链——单排链用销轴并联——称多排链(或双排链) 排数↑→承载能力↑ 但排数↑→制造误差↑→受力不均↑一般不超过3~4列为宜 链接头型式: 链节数为偶数(常用)——内链板与外链板相接——弹性锁片(称弹簧卡)或大节距(称开口销)——受力较好 弹性锁片——端外链板与错轴为间隙配合 链节数为奇数——用过渡链节固联产生附加弯矩——受力不利,尽量不用。 固联——内(外)链板与内(外)链板相接 板链—弹性好、缓冲、吸振在低速、重载、冲击和经常正反转工作情况。 安全过渡链节——弯板与销

相关文档