文档库 最新最全的文档下载
当前位置:文档库 › 工程热力学(15-3)

工程热力学(15-3)

热工基础大作业

核电站在中国的兴起发展 能源是现代社会发展的重要物质基础,是实现经济增长最重要的生产要素之一。一个国家(或地区)经济增长率和生活水平与能源消耗、与当地人均用电量有直接的(正比)关系。世界各国的能源消费结构存在比较大的差异,主要取决于该国的资源构成、经济发展水平以及能源战略. 由于化石燃料对环境的污染及不可再生性,各国积极发展可再生能源,核电作为安全经济的清洁能源受到各国的普遍重视。 现代电力工业的发展状况是一个国家是否发达的重要标志之一,而核电技术的发展程度则在一定意义上反映了该国高新技术水平的高低。 核能发电的能量来自核反应堆中可裂变材料(核燃料)进行裂变反应所释放的裂变能。裂变反应指铀-235、钚-239、铀-233等重元素在中子作用下分裂为两个碎片,同时放出中子和大量能量的过程。反应中,可裂变物的原子核吸收一个中子后发生裂变并放出两三个中子。若这些中子除去消耗,至少有一个中子

能引起另一个原子核裂变,使裂变自持地进行,则这种反应称为链式裂变反应。实现链式反应是核能发电的前提。核电站由核岛(主要包括反应堆、蒸汽发生器)、常规岛(主要包括汽轮机、发电机)和配套设施组成。核电站与一般电厂的区别主要在于核岛部分。 核电之所以能成为重要的能源支柱之一,是由它的安全性、运行稳定、寿期长和对环境的影响小等优点所决定的。大部分核电发达国家的核能发电比常规能源发电更为经济。核电在我国也具有较强的潜在经济竞争力,目前它的经济性已可以与引进的脱硫煤电厂相比较。 据科学家分析,我国煤电燃料链温室气体的排放系数约为1302.3等效CO2克/千瓦时,水电燃料链为107.6等效CO2克/千瓦时。核电站自身不排放温室气体,考虑到它在建造和运行中所用的材料,其燃料链温室气体的排放系数约为13.7等效CO2克/千瓦时。可见,核电站向环境释放的温室气体,只是同等规模煤电厂的百分之一。而且世界上有比较丰富的核资源,核燃料有铀、钍氘、锂、硼等等,世界上铀的储量约为417万吨。地球上可供开发的核燃料资源,可提供的能量是矿石燃料的十多万倍。核能应用作为缓和世界能源危机的一种经济有效的措施有许多的优点,其一核燃料具有许多优点,如体积小而能量大,核能比化学能大几百万倍;1000克铀释放的能量相当于2400吨标准煤释放的能量;一座100万千瓦的大型烧煤电站,每年需原煤300~400万吨,运这些煤需要2760列火车,相当于每天8列火车,还要运走4000万吨灰渣。同功率的压水堆核电站,一年仅耗铀含量为3%的低浓缩铀燃料28吨;每一磅铀的成本,约为20美元,换算成1千瓦发电经费是0.001美元左右,这和目前的传统发电成本比较,便宜许多;而且,由于核燃料的运输量小,所以核电站就可建在最需要的工业区附近。核电站的基本建设投资一般是同等火电站的一倍半到两倍,不过它的核燃料费用却要比煤便宜得多,运行维修费用也比火电站少,如果掌握了核聚变反应技术,使用海水作燃料,则更是取之不尽,用之方便。各种能源向环境释放的放射性物质也相差很大。科学家调查证实,从对公众和工作人员产生的辐射照射看,煤电燃料链分别是核电燃料链的50倍和10倍。 我国在1971年建成第一艘核潜艇以后,立即转入了对核电站的研究和设计。经过几十年的努力,我国迄今已经建成核电机组8套,还有3套正在建设之中,到2005年将全部建成,届时我国的核电装机容量将达到870万千瓦。从我国的第一套核电机组———秦山30万千瓦核电机组并网发电以来,到目前为止,我 国核发电总量已超过为1500亿千瓦时。 秦山核电站是我国大陆第一座核电站。它 是我国自行设计建造的30万千瓦原型压水堆 核电站,于1985年开工建设,1991年12月15 日首次并网发电,1994年投入商业运行,已有 十多年安全运行的良好业绩,被誉为“国之光荣”。 我国自行设计、建造的秦山二期核电站,装有两台60万千瓦压水堆核电机组,于1996年6月2日开工建设。1号机组于2002年2月6日实现首次并网,2002年4月15日提前47天投入商业运行。它的建成为我国核电自主化事业的进一步发展奠定了坚实的基础。

工程热力学与传热学课程总结与体会

工程热力学与传热学课 程总结与体会 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

工程热力学与传热学 题目:工程热力学与传热学课程总结与体 会 院系:水利建筑工程学院给排水科学与工 程 班级:给排水科学与工程一班 姓名:张琦文 指导老师:姚雪东 日期:2016年5月1日 认识看法地位作用存在问题解决措施未来 发展展望 传热学在高新技术领域中的应用 摘要: 热传递现象无时无处不在【2】它的影响几乎遍及现代所有的工业部门【1】也渗透到农业、林业等许多技术部门中。本文介绍了航空航天、核能、微电子、材料、生物

医学工程、环境工程、新能源以及农业工程等诸多高新技术领域在不同程度上应用传热研究的最新成果。可以说除了极个别的情况以外,很难发现一个行业、部门或者工业过程和传热完全没有任何关系。不仅传统工业领域,像能源动力、冶金、化工、交通、建筑建材、机械以及食品、轻工、纺织、医药等要用到许多传热学的有关知识【1】而且诸如航空航天、核能、微电子、材料、生物医学工程、环境工程、新能源以及农业工程等很多高新技术领域也都在不同程度上有赖于应用传热研究的最新成果,并涌现出像相变与多相流传热、(超)低温传热、微尺度传热、生物传热等许多交叉分支学科。在某些环节上,传热技术及相关材料设备的研制开发甚至成为整个系统成败的关键因素。 前言:通过对传热学这门课程的学习,了解了传热的基本知识和理论。发现传热学是一门基础学科应用非常广泛,它会解决许许多多的实际问题更是与机械制造这门学科息息相关。传热学是研究由温度差异引起的热量传递过程的科学。传热现象在我们的日常生活中司空见惯。早在人类文明之初人们就学会了烧火取暖。随着工业革命的到来,蒸汽机、内燃机等热动力机械相继出现,传热研究更是得到了飞速的发展,被广泛地应用于工农业生产与人们的日常生活之中。当今世界国与国之间的竞争是经济竞争,而伴随着经济的高速发展也带来了资源、人口与环境等重大国

建筑物理2热工学大作业

班级建筑141 姓名钟诚 学号3140622027 指导老师Tony

建筑物理2热工学大作业 1.查资料得:宁波市冬季日平均气温在5℃~13℃之间,则取室外温度为t1=7℃,室内适宜温度取为t2=22℃,室内外温差15℃. 2.建筑维护结构材料的选取 ①墙体:墙体分外墙、保温层和内墙外墙(d1=240mm)和内墙(d2=140mm)材料 为灰砂石砌体,λ=1.10;保温层材料(d3=60mm)为矿棉板,λ=0.050 ②屋顶:钢筋混凝土(d1=30mm)λ=1.74;保温砂浆(d2=20mm)λ=0.29;油毡 防水层(d3=10mm)λ=0.17 ③楼地面:钢筋混凝土(d=150mm)λ=1.74 ④门:胶合板(d=50mm)λ=0.17 ⑤窗:单层玻璃材料取平板玻璃(d=5mm)λ=0.76 窗框窗洞面积比25%

3.传热阻计算 ①墙体:R1=0.24/1.10=0.218(㎡·K/W) R2=0.14/1.10=0.127(㎡·K/W) R3=0.06/0.05=1.2(㎡·K/W) R(wall)=Ri+R1+R2+R3+Re=0.11+0.218+0.127+1.2+0.04=1.695(㎡·K/W) ②屋顶:R1=0.03/1.74=0.017(㎡·K/W) R2=0.02/0.29=0.069(㎡·K/W) R3=0.01/0.17=0.059(㎡·K/W) R(roof)=Ri+R1+R2+R3+Re=0.11+0.017+0.069+0.059+0.04=0.295(㎡·K/ W) ③楼地面: R1=0.150/1.74=0.086(㎡·K/W) R(floor)=Ri+R1+Re=0.11+0.086+0.08=0.276(㎡·K/W) ④门: R1=0.05/0.17=0.294(㎡·K/W) R(door)=Ri+R1+Re=0.11+0.294+0.04=0.444(㎡·K/W) ⑤窗:R1=0.005/0 .76=0.0066(㎡·K/W) R(window)=Ri+R1+Re=0.11+0.0066+0.04=0.1566(㎡·K/W)

工程热力学答案

第一章 1. 平衡状态与稳定状态有何区别?热力学中为什幺要引入平衡态的概念? 答:平衡状态是在不受外界影响的条件下,系统的状态参数不随时间而变化的状态。而稳定状态则是不论有无外界影响,系统的状态参数不随时间而变化的状态。可见平衡必稳定,而稳定未必平衡。热力学中引入平衡态的概念,是为了能对系统的宏观性质用状态参数来进行描述。 2. 表压力或真空度能否作为状态参数进行热力计算?若工质的压力不变,问测量其压力的压力表或真空计的读数是否可能变 化? 答:不能,因为表压力或真空度只是一个相对压力。若工质的压力不变,测量其压力的压力表或真空计的读数可能变化,因为测量所处的环境压力可能发生变化。 3. 当真空表指示数值愈大时,表明被测对象的实际压力愈大还是愈小? 答:真空表指示数值愈大时,表明被测对象的实际压力愈小。 4. 准平衡过程与可逆过程有何区别? 答:无耗散的准平衡过程才是可逆过程,所以可逆过程一定是准平衡过程,而准平衡过程不一定是可逆过程。 5. 不可逆过程是无法回复到初态的过程,这种说法是否正确? 答:不正确。不可逆过程是指不论用任何曲折复杂的方法都不能在外界不遗留任何变化的情况下使系统回复到初态,并不是不能回复到初态。 6. 没有盛满水的热水瓶,其瓶塞有时被自动顶开,有时被自动吸紧,这是什幺原因? 答:水温较高时,水对热水瓶中的空气进行加热,空气压力升高,大于环境压力,瓶塞被自动顶开。而水温较低时,热水瓶中的空气受冷,压力降低,小于环境压力,瓶塞被自动吸紧。 7. 用U 形管压力表测定工质的压力时,压力表液柱直径的大小对读数有无影响? 答:严格说来,是有影响的,因为U 型管越粗,就有越多的被测工质进入U 型管中,这部分工质越多,它对读数的准确性影响越大。 1-3解: bar p p p a b 07.210.197.01=+=+= bar p p p b 32.005.107.212=-=-= bar p p p b C 65.032.097.02=-=-= 第二章 1.绝热刚性容器,中间用隔板分为两部分,左边盛有空气,右边为真空,抽掉隔板,空气将充满整个容器。问:⑴ 空气的热力学能如何变化? ⑵ 空气是否作出了功? ⑶ 能否在坐标图上表示此过程?为什么?答:(1)空气向真空的绝热自由膨胀过程 的热力学能不变。(2)空气对外不做功。 (3)不能在坐标图上表示此过程,因为不是准静态过程。 2. 下列说法是否正确? ⑴ 气体膨胀时一定对外作功。 错,比如气体向真空中的绝热自由膨胀,对外不作功。 ⑵ 气体被压缩时一定消耗外功。 对,因为根据热力学第二定律,气体是不可能自压缩的,要想压缩体积,必须借助于外功。 ⑶ 气体膨胀时必须对其加热。 错,比如气体向真空中的绝热自由膨胀,不用对其加热。 ⑷ 气体边膨胀边放热是可能的。 对,比如多变过程,当n 大于k 时,可以实现边膨胀边放热。 ⑸ 气体边被压缩边吸入热量是不可能的。 错,比如多变过程,当n 大于k 时,可以实现边压缩边吸热。 ⑹ 对工质加热,其温度反而降低,这种情况不可能。 错,比如多变过程,当n 大于1,小于k 时,可实现对工质加热,其温度反而降低。 3“任何没有体积变化的过程就一定不对外作功”的说法是否正确?

《工程热力学与传热学》——期末复习题

中国石油大学(北京)远程教育学院期末复习题 《工程热力学与传热学》 一. 选择题 1. 孤立系统的热力状态不能发生变化;(×) 2. 孤立系统就是绝热闭口系统;(×) 3. 气体吸热后热力学能一定升高;(×) 4. 只有加热,才能使气体的温度升高;(×) 5. 气体被压缩时一定消耗外功;(√ ) 6. 封闭热力系内发生可逆定容过程,系统一定不对外作容积变化功;(√ ) 7. 流动功的改变量仅取决于系统进出口状态,而与工质经历的过程无关;(√ ) 8. 在闭口热力系中,焓h是由热力学能u和推动功pv两部分组成。(×) 9. 理想气体绝热自由膨胀过程是等热力学能的过程。(×) 10. 对于确定的理想气体,其定压比热容与定容比热容之比cp/cv的大小与气体的温度无关。(×) 11. 一切可逆热机的热效率均相同;(×) 12. 不可逆热机的热效率一定小于可逆热机的热效率;(×) 13. 如果从同一状态到同一终态有两条途径:一为可逆过程,一为不可逆过程,则不可逆 过程的熵变等于可逆过程的熵变;(√ ) 14. 如果从同一状态到同一终态有两条途径:一为可逆过程,一为不可逆过程,则不可逆 过程的熵变大于可逆过程的熵变;(×) 15. 不可逆过程的熵变无法计算;(×) 16. 工质被加热熵一定增大,工质放热熵一定减小;(×) 17. 封闭热力系统发生放热过程,系统的熵必然减少。(×) 18. 由理想气体组成的封闭系统吸热后其温度必然增加;(×) 19. 知道了温度和压力,就可确定水蒸气的状态;(×) 20. 水蒸气的定温膨胀过程满足Q=W;(×) 21. 对未饱和湿空气,露点温度即是水蒸气分压力所对应的水的饱和温度。(√) 二. 问答题

工程热力学习题集与答案

工程热力学习题集及答案 一、填空题 1.能源按使用程度和技术可分为 常规 能源和 新 能源。 2.孤立系是与外界无任何 能量 和 物质 交换的热力系。 3.单位质量的广延量参数具有 强度量 参数的性质,称为比参数。 4.测得容器的真空度48V p KPa =,大气压力MPa p b 102.0=,则容器内的绝对压力为 54kpa 。 5.只有 准平衡 过程且过程中无任何 耗散 效应的过程是可逆过程。 6.饱和水线和饱和蒸汽线将压容图和温熵图分成三个区域,位于三区和二线上的水和水蒸气呈现五种状态:未饱和水 饱和水 湿蒸气、 干饱和蒸汽 和 过热蒸汽 。 7.在湿空气温度一定条件下,露点温度越高说明湿空气中水蒸气分压力越 高 、水蒸气含量越 多 ,湿空气越潮湿。(填高、低和多、少) 8.克劳修斯积分/Q T δ? 等于零 为可逆循环。 9.熵流是由 与外界热交换 引起的。 10.多原子理想气体的定值比热容V c = g 7 2R 。 11.能源按其有无加工、转换可分为 一次 能源和 二次 能源。 12.绝热系是与外界无 热量 交换的热力系。 13.状态公理指出,对于简单可压缩系,只要给定 两 个相互独立的状态参数就可以确定它的平衡状态。 14.测得容器的表压力75g p KPa =,大气压力MPa p b 098.0=,则容器

内的绝对压力为 173a KP 。 15.如果系统完成某一热力过程后,再沿原来路径逆向进行时,能使 系统和外界都返回原来状态而不留下任何变化,则这一过程称为可逆过程。 16.卡诺循环是由两个 定温 和两个 绝热可逆 过程所构成。 17.相对湿度越 小 ,湿空气越干燥,吸收水分的能力越 大 。(填大、小) 18.克劳修斯积分/Q T δ? 小于零 为不可逆循环。 19.熵产是由 不可逆因素 引起的。 20.双原子理想气体的定值比热容p c = 72g R 。 21.基本热力学状态参数有:( 压力)、(温度 )、(体积)。 22.理想气体的热力学能是温度的(单值 )函数。 23.热力平衡的充要条件是:(系统内部及系统与外界之间各种不平衡的热力势差为零 )。 24.不可逆绝热过程中,由于不可逆因素导致的熵增量,叫做(熵产)。 25.卡诺循环由(两个可逆定温和两个可逆绝热 )热力学过程组成。 26.熵增原理指出了热力过程进行的(方向 )、(限度)、(条件)。 31.当热力系与外界既没有能量交换也没有物质交换时,该热力系为_孤立系_。 32.在国际单位制中温度的单位是_开尔文_。 33.根据稳定流动能量方程,风机、水泵的能量方程可简化为_-ws=h2-h1_。 34.同样大小的容器内分别储存了同样温度的氢气和氧气,若二个容器内气体的压力相等,则二种气体质量q a 的大小为2 H m _小于2 O m 。 35.已知理想气体的比热C 随温度的升高而增大,当t 2>t 1时, 2 1 2t t t 0 C C 与的大小关系为_2 21 t t t C C _。 36.已知混合气体中各组元气体的质量分数ωi 和摩尔质量M i ,则各组 元气体的摩尔分数χi 为_∑=ω ωn 1i i i i i M /M /_。 37.由热力系与外界发生_热量__交换而引起的熵变化称为熵流。 38.设有一卡诺热机工作于600℃和30℃热源之间,则卡诺热机的效

工程热力学课后作业答案(第三章)第五版

3-1 安静状态下的人对环境的散热量大约为400KJ/h,假设能容纳2000人的大礼堂的通风系统坏了:(1)在通风系统出现故障后的最初20min内礼堂中的空气内能增加多少?(2)把礼堂空气和所有的人考虑为一个系统,假设对外界没有传热,系统内能变化多少?如何解释空气温度的升高。 解:(1)热力系:礼堂中的空气。 闭口系统 根据闭口系统能量方程 Q+ = ? U W 因为没有作功故W=0;热量来源于人体散热;内能的增加等于人体散热。 ? Q=2.67×105kJ 2000? = 20 60 / 400 (1)热力系:礼堂中的空气和人。 闭口系统 根据闭口系统能量方程 ? = Q+ U W 因为没有作功故W=0;对整个礼堂的空气和人来说没有外来热量, 所以内能的增加为0。 空气温度的升高是人体的散热量由空气吸收,导致的空气内能增加。 3-5,有一闭口系统,从状态1经a变化到状态2,如图,又从状态2经b回到状态1;再从状态1经过c 变化到状态2。在这个过程中,热量和功的某些值已知,如表,试确定未知量。 解:闭口系统。 使用闭口系统能量方程 (1)对1-a-2和2-b-1组成一个闭口循环,有 ??=W δ Qδ

即10+(-7)=x1+(-4) x1=7 kJ (2)对1-c-2和2-b-1也组成一个闭口循环 x2+(-7)=2+(-4) x2=5 kJ (3)对过程2-b-1,根据W U Q +?= =---=-=?)4(7W Q U -3 kJ 3-6 一闭口系统经历了一个由四个过程组成的循环,试填充表中所缺数据。 解:同上题 3-7 解:热力系:1.5kg 质量气体 闭口系统,状态方程:b av p += )]85115.1()85225.1[(5.1---=?v p v p U =90kJ 由状态方程得 1000=a*0.2+b 200=a*1.2+b 解上两式得: a=-800 b=1160 则功量为 2.1 2.022 1 ]1160)800(21[5.15.1v v pdv W --==?=900kJ 过程中传热量 W U Q +?==990 kJ 3-8 容积由隔板分成两部分,左边盛有压力为600kPa ,温度为27℃的空气,右边为真空,容积为左边5倍。将隔板抽出后,空气迅速膨胀充满整个容器。试求容器内最终压力和温度。设膨胀是在绝热下进行的。 解:热力系:左边的空气 系统:整个容器为闭口系统 过程特征:绝热,自由膨胀 根据闭口系统能量方程 W U Q +?=

工程热力学与传热学详解

工程热力学与传热学实验指导书 热工实验 2013年3月

实验一 非稳态(准稳态)法测材料的导热性能 实验 一、实验目的 1. 快速测量绝热材料(不良导体)的导热系数和比热。掌握其测试原理和方法。 2. 掌握使用热电偶测量温差的方法。 二、实验原理 图1 第二类边界条件无限大平板导热的物理模型 本实验是根据第二类边界条件,无限大平板的导热问题来设计的。设平板厚度为2δ,初始温度为t 0,平板两面受恒定的热流密度q c 均匀加热(见图1)。求任何瞬间沿平板厚度方向的温度分布t (x ,τ)。导热微分方程式、初始条件和第二类边界条件如下: 0) ,0( 0),( )0,( ) ,( ),( 0 22=??=+??=??=??x t q x t t x t x x t a x t c τλτδτττ 方程的解为:

???+--=-δδδτλτ63),( 220x a q t x t c ?? ?-??? ??-∑∞ =+102 2 1)( exp cos 2)1(n n n n n F x μδμμδ (1-1) 式中:τ — 时间;λ — 平板的导热系数; a — 平板的导温系数;n μ— πn ,n = 1,2,3,………; F 0 — 2δτa 傅里叶准则;0t — 初始温度; c q — 沿x 方向从端面向平面加热的恒定热流密度。 随着时间τ的延长,F 0数变大,式(1-1)中级数和项愈小,当F 0> 0.5时,级数和项变得很小,可以忽略,式(1-1)变成 ??? ? ??-+=-612),( 2220δδτλδτx a q t x t c (1-2) 由此可见,当F 0> 0.5后,平板各处温度和时间成线性关系,温度随时间变化的速率是常数,并且到处相同。这种状态称为准稳态。 在准稳态时,平板中心面x =0处的温度为: ?? ? ??-= -61),0( 20δτλδτa q t t 平板加热面x =δ处为: ??? ??+= -31),( 20δτλδτδa q t t c 此两面的温差为: λ δ ττδc q t t t ?= -=?21),0( ),( (1-3) 如已知c q 和δ,再测出t ?,就可以由式(1-3)求出导热系数: t q c ?= 2δ λ (1-4) 实际上,无限大平板是无法实现的,实验总是用有限尺寸的试件,一般可认为,试件的横向尺寸为厚度的6倍以上时,两侧散热对试件中心的温度影响可以忽略不计。试件两端面中心处的温度差就等于无限大平板时两端面的温度差。 根据热平衡原理,在准稳态时,有下列关系:

工程热力学课后作业答案第五版(DOC)

工程热力学课后答案 2-2.解:(1)2N 的气体常数 28 8314 0==M R R =296.9)/(K kg J ? (2)标准状态下2N 的比容和密度 101325 2739.296?==p RT v =0.8kg m /3 v 1= ρ=1.253 /m kg (3) MPa p 1.0=,500=t ℃时的摩尔容积Mv Mv =p T R 0 =64.27kmol m /3 2-3.解:热力系:储气罐。 应用理想气体状态方程。 压送前储气罐中CO 2的质量 11 11RT v p m = 压送后储气罐中CO 2的质量 2 2 22RT v p m = 根据题意 容积体积不变;R =188.9 B p p g +=11 (1) B p p g +=22 (2) 27311+=t T (3) 27322+=t T (4) 压入的CO 2的质量 )1 122(21T p T p R v m m m -= -= (5) 将(1)、(2)、(3)、(4)代入(5)式得 m=12.02kg 2-5解:同上题 10)273 325 .1013003.99(287300)1122(21?-=-= -=T p T p R v m m m =41.97kg 2-6解:热力系:储气罐。 使用理想气体状态方程。 第一种解法: 首先求终态时需要充入的空气质量 288 2875 .810722225???==RT v p m kg 压缩机每分钟充入空气量 288 28731015???==RT pv m kg 所需时间 == m m t 2 19.83min 第二种解法 将空气充入储气罐中,实际上就是等温情况下把初压为0.1MPa 一定量的空气压缩为0.7MPa 的空气;或者说0.7MPa 、8.5 m 3 的空气在0.1MPa 下占体积为多少的问题。 根据等温状态方程 const pv = 0.7MPa 、8.5 m 3 的空气在0.1MPa 下占体积为 5.591 .05 .87.01221=?== P V p V m 3 压缩机每分钟可以压缩0.1MPa 的空气 3 m 3 ,则要压缩 59.5 m 3 的空气需要的时间 == 3 5 .59τ19.83min 2-8解:热力系:气缸和活塞构成的区间。 使用理想气体状态方程。 (1)空气终态温度 == 11 2 2T V V T 582K (2)空气的初容积 p=3000×9.8/(πr 2 )+101000=335.7kPa == p m RT V 1 10.527 m 3 空气的终态比容

《工程热力学与传热学》在机械领域中的运用

《工程热力学与传热学》在机械领域中的运用 (华南农业大学,工程学院,广州510642) 摘要:自18世纪30年代发明近代动力机械以来,人类的生产力出现了质的飞跃,生产水平跨上了一个个新的台阶。随后的蒸汽轮机、内燃机乃至燃气轮机的陆续应用则更使能源的转换和利用技术达到了前所未有的崭新阶段。这个进程至今仍在继续当中。传热学科的建立与发展、不断完善和提高是与上述过程相伴而行的。热传递现象更是无时无处不在,它的影响几乎遍及所有的工业部门,也渗透到农业、林业等许多技术部门中。航空航天、核能、微电子、材料、生物医学工程、环境工程、新能源以及农业工程等诸多高新技术领域都在不同程度上应用传热研究的最新成果。 关键词:热传递传热学机械领域发展趋势 The application of engineering thermodynamics and heat transfer in mechanical field Qian Jianping (College of Engineering, South China Agricultural University, Guangzhou 510642, China) Abstract: Since the 1730 s, since the invention of the modern machinery, the productivity of human appeared a qualitative leap, the production level up a new step. Then steam turbines, internal combustion engines and gas turbine application in succession, more make the conversion and utilization of energy technology has reached the unprecedented new stage. The process is still continuing. The establishment and development of heat transfer science, and constantly improve and improve and is accompanied by the process. Heat transfer phenomenon is everywhere at all times, and its influence in almost all industrial sectors, also infiltrated in agriculture, forestry and many other technical department. the latest research results of application of heat transfer in different degree was use in Aerospace, nuclear energy, microelectronics, materials, biomedical engineering, environmental engineering, new energy and agricultural engineering, and many other high-tech fields. Key words: heat transfer heat transmission science Mechanical field development tendency 热传递现象无时无处不在,它的影响几乎遍及现代所有的工业部门,也渗透到农业、林业等许多技术部门中。可以说除了极个别的情况以外,很难发现一个行业、部门或者工业过程和传热完全没有任何关系。不仅传统工业领域,像能源动力、冶金、化工、交通、建筑建材、机械以及食品、轻工、纺织、医药等要用到许多传热学的有关知识,而且诸如航空航天、核能、微电子、材料、生物医学工程、环境工程、新能源以及农业工程等很多高新技术领域也都在不同程度上有赖于应用传热研究的最新成果,并涌现出像相变与多相流传热、(超)低温传热、微尺度传热、生物传热等许多交叉分支学科。在某些环节上,传热技术及相关材料设备的研制开发甚至成为整个系统成败的关键因素。 热科学的工程领域包括热力学和传热学。传热学的作用是利用可以预测能量传递速率的一些定律去补充热力学分析,因后裔只讨论在平衡状态下的系统。这些附加的定律是以三种基本的传热方式为基础的,即导热、对流和辐射。传热学是研究不同温度的物体,或同一物体的不同部分之间热量传递规律的学科。传热不仅是常见的自然现象,而且广泛存在于工程技术领域。例如,提高锅炉的蒸汽产量,防止燃气轮机燃烧室过热、减小内燃机气缸和曲轴的热应力、确定换热器的传热面积和控制热加工时零件的变形等,都是典型的传热问题。 传热学的应用非常广泛,几乎渗透到生活的各个领域,如:传热学在传统机械工业领域和农业机械领域中的应用,传热学在高新技术机械领域中的应用等。 以下将《工程热力学与传热学》在机械领域中的运用分为两个方面进行介绍。 1、传热学在传统工业机械领域和农业机械领域中的应用

工程热力学,课后习题答案

工程热力学(第五版)习题答案 工程热力学(第五版)廉乐明 谭羽非等编 中国建筑工业出版社 第二章 气体的热力性质 2-2.已知2N 的M =28,求(1)2N 的气体常数;(2)标准状 态下2N 的比容和密度;(3)MPa p 1.0=,500=t ℃时的摩尔容积Mv 。 解:(1)2N 的气体常数 2883140==M R R =296.9)/(K kg J ? (2)标准状态下2N 的比容和密度 1013252739.296?==p RT v =0.8kg m /3 v 1 =ρ=1.253/m kg (3)MPa p 1.0=,500=t ℃时的摩尔容积Mv Mv =p T R 0=64.27kmol m /3 2-3.把CO2压送到容积3m3的储气罐里,起始表压力 301=g p kPa ,终了表压力3.02=g p Mpa ,温度由t1=45℃增加到t2=70℃。试求被压入的CO2的质量。当地大气压B =101.325 kPa 。 解:热力系:储气罐。 应用理想气体状态方程。 压送前储气罐中CO2的质量

11 11RT v p m = 压送后储气罐中CO2的质量 22 22RT v p m = 根据题意 容积体积不变;R =188.9 B p p g +=11 (1) B p p g +=22 (2) 27311+=t T (3) 27322+=t T (4) 压入的CO2的质量 )1122(21T p T p R v m m m -=-= (5) 将(1)、(2)、(3)、(4)代入(5)式得 m=12.02kg 2-5当外界为标准状态时,一鼓风机每小时可送300 m3的 空气,如外界的温度增高到27℃,大气压降低到99.3kPa ,而鼓风机每小时的送风量仍为300 m3,问鼓风机送风量的质量改变多少? 解:同上题 1000)273325.1013003.99(287300)1122(21?-=-=-=T p T p R v m m m =41.97kg

工程热力学课后作业答案(第十一章)第五版 .

11-1空气压缩致冷装置致冷系数为2.5,致冷量为84600kJ/h ,压缩机吸入空气的压力为0.1MPa ,温度为-10℃,空气进入膨胀机的温度为20℃,试求:压缩机出口压力;致冷剂的质量流量;压缩机的功率;循环的净功率。 解:压缩机出口压力 1)12(1/)1(-= -k k p p ε 故:))1/(()11(12-+=k k p p ε=0.325 MPa 2 134p p p p = T3=20+273=293K k k p p T T /)1()3 4(34-==209K 致冷量:)41(2T T c q p -==1.01×(263-209)=54.5kJ/kg 致冷剂的质量流量==2q Q m 0.43kg/s k k p p T T /)1()1 2(12-==368K 压缩功:w1=c p (T2-T1)=106 kJ/kg 压缩功率:P1=mw1=45.6kW 膨胀功:w2= c p (T3-T4)=84.8 kJ/kg 膨胀功率:P2=mw2=36.5kW 循环的净功率:P=P1-P2=9.1 KW 11-2空气压缩致冷装置,吸入的空气p1=0.1MPa ,t1=27℃,绝热压缩到p2=0.4MPa ,经冷却后温度降为32℃,试计算:每千克空气的致冷量;致冷机消耗的净功;致冷系数。 解:已知T3=32+273=305K k k p p T T /)1()1 2(12-==446K k k p p T T /)1()34( 34-==205K 致冷量:)41(2T T c q p -==1.01×(300-205)=96kJ/kg 致冷机消耗的净功: W=c p (T2-T1)-c p (T3-T4)=46.5kJ/kg 致冷系数:==w q 2ε 2.06 11-3蒸气压缩致冷循环,采用氟利昂R134a 作为工质,压缩机进口状态为干饱和蒸气,蒸发温度为-20℃,冷凝器出口为饱和液体,冷凝温度为40℃,致冷工质定熵压缩终了时焓值为430kJ/kg ,致冷剂质量流量为100kg/h 。求:致冷系数;每小时的制冷量;所需的理论功率。 解:在lgp-h 图上查各状态点参数。 ,p1=0.133MPa h1=386kJ/kg s1=1.739 kJ/(kg ?K) ,p2=1.016 MPa h2=430 kJ/kg ,h3=419 kJ/kg h5=h4=256 kJ/kg

工程热力学与传热学(第十七讲)11_1、2、3

第十一章蒸汽压缩制冷循环 制冷:对物体进行冷却,使其温度低于周围环境温度,并维持这个低温,称为制冷。 制冷技术广泛应用于生产、科研、生活中。 制冷循环的目的:是将低温热源的热量转移到高温热源。 根据热力学第二定律,为了达到这个目的,必须提供机械能或热能作为代价。 根据所消耗的能量形式不同,一般可将逆循环分为两大类: ①消耗机械能的压缩式制冷循环。 包括:空气压缩制冷循环和蒸汽压缩制冷循环。 ②消耗热能的制冷循环。 包括:蒸汽喷射式制冷循环和吸收式制冷循环。 本章介绍最常用的蒸汽压缩制冷循环,并分析提高其经济性的途径。 第一节制冷剂及p-h图 制冷剂是制冷装置的工质,主要是低沸点物质。蒸汽压缩制冷装置中的制冷剂主要是氟里昂和液氨。 常用的氟利昂有:氟利昂12(CF2Cl2)、氟利昂22(CHF2Cl)、氟利昂134a (C2H2F4)、氨等。物理性质见表11-1。

制冷剂在制冷循环中存在汽-液相变,为了计算制冷循环中个过程的能量变化和状态参数,需要查找制冷剂的饱和蒸汽表和过热蒸汽表。 但是,工程上更多的是应用制冷剂的压-焓图(p-h图)进行分析。 p-h图是根据制冷剂蒸汽性质表绘制的。 p-h图是以logp为纵坐标、以h为横坐标建立的半对数坐标图。 如图11-1所示。 说明:①采用logp为坐标,可以使压力从0.001~0.01Mpa,从0.01~0.1Mpa,从0.1~1Mpa所占的坐标高度相同,使低压区图线面积增大,读数更准确。 ②因为实际蒸汽压缩制冷循环常用的工作压力围都远低于临界压力,所以工程上使用的p-h图都没有绘制较高压力部分。 p-h图分析:全图共有六条线、三个区(未饱和液体区、湿蒸汽区、过热蒸汽区)和一个点临界点C)。

武汉理工工程热力学和传热学作业

工程热力学和传热学 第二章基本概念 一.基本概念 系统: 状态参数: 热力学平衡态: 温度: 热平衡定律: 温标: 准平衡过程: 可逆过程: 循环: 可逆循环: 不可逆循环: 二、习题 1.有人说,不可逆过程是无法恢复到起始状态的过程,这种说法对吗? 2.牛顿温标,用符号°N表示其温度单位,并规定水的冰点和沸点分别为100°N和200°N,且线性分布。(1)试求牛顿温标与国际单位制中的热力学绝对温标(开尔文温标)的换算关系式;(2)绝对零度为牛顿温标上的多少度? 3.某远洋货轮的真空造水设备的真空度为0.0917MPa,而当地大气压力为0.1013MPa,

当航行至另一海域,其真空度变化为0.0874MPa,而当地大气压力变化为0.097MPa。试问该真空造水设备的绝对压力有无变化? 4.如图1-1所示,一刚性绝热容器内盛有水,电流通过容器底部的电阻丝加热 水。试述按下列三种方式取系统时,系统与外界交换的能量形式是什么。 (1)取水为系统;(2)取电阻丝、容器和水为系统;(3)取虚线内空间为系统。 图 1-1 5.判断下列过程中那些是不可逆的,并扼要说明不可逆原因。 (1)在大气压力为0.1013MPa时,将两块0℃的冰互相缓慢摩擦,使之化为0℃的水。 (2)在大气压力为0.1013MPa时,用(0+dt)℃的热源(dt→0)给0℃的冰加热使之变为0℃的水。 (3)一定质量的空气在不导热的气缸中被活塞缓慢地压缩(不计摩擦)。 (4)100℃的水和15℃的水混合。 6.如图1-2所示的一圆筒容器,表A的读数为 360kPa;表B的读数为170kPa,表示室I压力高于 室II的压力。大气压力为760mmHg。试求: (1)真空室以及I室和II室的绝对压力; (2)表C的读数; (3)圆筒顶面所受的作用力。 图1-2 第三章热力学第一定律

工程热力学实验报告

水的饱和蒸汽压力和温度关系 实验报告

水的饱和蒸汽压力和温度关系 一、实验目的 1、通过水的饱和蒸汽压力和温度关系实验,加深对饱和状态的理解。 2、通过对实验数据的整理,掌握饱和蒸汽P-t关系图表的编制方法。 3、学会压力表和调压器等仪表的使用方法。 二、实验设备与原理 456 7 1. 开关 2. 可视玻璃 3. 保温棉(硅酸铝) 4. 真空压力表(-0.1~1.5MPa) 5. 测温管 6. 电压指示 7. 温度指示8. 蒸汽发生器9. 电加热器10. 水蒸汽11.蒸馏水12. 调压器 图1 实验系统图 物质由液态转变为蒸汽的过程称为汽化过程。汽化过程总是伴随着分子回到液体中的凝结过程。到一定程度时,虽然汽化和凝结都在进行,但汽化的分子数与凝结的分子数处于动态平衡,这种状态称为饱和态,在这一状态下的温度称为饱和温度。此时蒸汽分子动能和分子总数保持不变,因此压力也确定不变,称为饱和压力。饱和温度和饱和压力的关系一一对应。 二、实验方法与步骤 1、熟悉实验装置及使用仪表的工作原理和性能。 2、将调压器指针调至零位,接通电源。 3、将调压器输出电压调至200V,待蒸汽压力升至一定值时,将电压降至30-50V保温(保温电压需要随蒸汽压力升高而升高),待工况稳定后迅速记录水蒸汽的压力和温度。 4、重复步骤3,在0~4MPa(表压)范围内实验不少于6次,且实验点应尽量分布均匀。 5、实验完毕后,将调压器指针旋回至零位,断开电源。 6、记录室温和大气压力。

四、数据记录 五、实验总结 1. 绘制P-t关系曲线将实验结果绘在坐标纸上,清除偏离点,绘制曲线。

工程热力学与传热学课程总结与体会(DOC)

工程热力学与传热学 题目:工程热力学与传热学课程总结与体会院系:水利建筑工程学院给排水科学与工程班级:给排水科学与工程一班 姓名:张琦文 指导老师:姚雪东 日期:2016年5月1日 认识看法地位作用存在问题解决措施未来 发展展望

传热学在高新技术领域中的应用 摘要: 热传递现象无时无处不在【2】它的影响几乎遍及现代所有的工业部门【1】也渗透到农业、林业等许多技术部门中。本文介绍了航空航天、核能、微电子、材料、生物医学工程、环境工程、新能源以及农业工程等诸多高新技术领域在不同程度上应用传热研究的最新成果。可以说除了极个别的情况以外,很难发现一个行业、部门或者工业过程和传热完全没有任何关系。不仅传统工业领域,像能源动力、冶金、化工、交通、建筑建材、机械以及食品、轻工、纺织、医药等要用到许多传热学的有关知识【1】而且诸如航空航天、核能、微电子、材料、生物医学工程、环境工程、新能源以及农业工程等很多高新技术领域也都在不同程度上有赖于 应用传热研究的最新成果,并涌现出像相变与多相流传热、(超)低温传热、微尺度传热、生物传热等许多交叉分支学科。在某些环节上,传热技术及相关材料设备的研制开发甚至成为整个系统成败的关键因素。 前言:通过对传热学这门课程的学习,了解了传热的基本知识和理论。发现传热学是一门基础学科应用非常广泛,它会解决许许多多的实际问题更是与机械制造这门学科息息相关。传热学是研究由温度差异引起的热量传递过程的科学。传热现

象在我们的日常生活中司空见惯。早在人类文明之初人们就学会了烧火取暖。随着工业革命的到来,蒸汽机、内燃机等热动力机械相继出现,传热研究更是得到了飞速的发展,被广泛地应用于工农业生产与人们的日常生活之中。当今世界国与国之间的竞争是经济竞争,而伴随着经济的高速发展也带来了资源、人口与环境等重大国际问题。传热学在促进经薪发展和加强环境保护方面起着举足轻重的作用。20世纪以前传热学是作为物理热学的一部分而逐步发展起来的。20世纪以后,传热学作为一门独立的技术学科获得迅速发展,越来越多地与热力学、流体力学、燃烧学、电磁学和机械工程学等一些学科相互渗透,形成多相传热、非牛顿流体传热、燃烧传热、等离子体传热和数值计算传热等许多重要分支。现在,机械工程仍不断地向传热学提出大量新的课题。如浇铸和冷冻技术中的相变导热,切削加工中的接触热阻和喷射冷却,等离子工艺中带电粒子的传热特性。核工程中有限空间的自然对流,动力和化工机械中超临界区换热,小温差换热,两相流换热,复杂几何形状物体的换热湍流换热等。随着激光等新的实验技术的引入和计算机的应用,为传热学的发展提供了广阔前景。 传热学是研究热量传递规律的一门学科,生产部门存在的多种多样的热量传递问题都可以用传热学来解决,这些部门包括能源、化工、冶金、建筑、机械制造、电子、制冷、

工程热力学参考答案

宁波工程学院2011~2012学年第 二 学期 《工程热力学》课程期终考试卷(A ) 题 号 一 二 三 四 五 总分 复核人 应得分 15 10 15 30 30 100 实得分 评卷人 成型、机电、制造专业适用,考试时间:120分钟 一、 填空题(每格1分,共15分) 1.卡诺循环由两个可逆定温过程和两个可逆绝热过程组成。 2.迈耶公式C p -C v =R g 适用于理想气体,是否定比热容不限。 3.绝热过程P =常数,k=C p /C v ,适用于理想气体,定比热容。 4.绝热系是与外界无 热量 交换的热力系。 5.热力系在不受外界影响的条件下,系统的状态能够始终保持不变,这种状态称为 平衡 状态。 6.稳定流动系统能量方程式q dh vdp δ=-的适用条件是:稳定流动。 7.同一理想气体从同一初态分别经过定温压缩,绝热压缩和多变压缩 ()1n k <<到达同一 终压力,耗功最大的为绝热压缩过程,而耗功最小的为定温 压缩过程。 8.卡诺机A 工作在927℃和T 的两个热源间,卡诺机B 工作在T 和27℃的两个热源间。当此两个热机的热效率相等时,T 热源的温度T =600K 。 9.如图所示的容器,被一刚性壁分成两部分,环境压力为0.1MPa ,压力表B 的读数为40kPa ,真空计C 的读数为30kPa ,则容器两部分内气体绝对压力 1p = 0.14MPa , 2p = 0.07MPa 。 10.活塞式压气机由于存在余隙容积,压缩耗功不变,产气量减 小,随比压增大,容积效率减小。(填“增加”、“不变”或“减小”) 二、 选择题(每题1分,共10分) 1. 准静态过程,系统经过的所有状态都接近于D A 、 初态 B 、环境状态 C 、邻近状态 D 、平衡状态 2. 有一机器可从单一热源吸收1000KJ 热量,并输出1200KJ 功,这台机器D A、违反第一定律B、违反第二定律 C一个都不违反 D两个都违反 3. 若已知工质的绝对压力P=0.08MPa ,大气压力P=0.1MPa ,则测得压差A A 、真空度为0.02MPa B 、表压力0.02 MPa C 、真空度0.18MPa D 、表压力0.18 MPa 4. 气体在某一过程中吸入了100kJ 的热量,同时内能增加了150kJ ,该过程是B 班级: 姓名: 学号:

相关文档
相关文档 最新文档