文档库 最新最全的文档下载
当前位置:文档库 › 抱箍施工计算方案

抱箍施工计算方案

抱箍施工计算方案
抱箍施工计算方案

盖梁抱箍设计

第一部分盖梁抱箍法施工设计图

一、施工设计说明

1、概况

某大桥盖梁为长26.4m,宽2.4m,高2.6m的钢筋砼结构,如图1-1。由于引桥墩柱高度较大,最大高度为32.5m,除4、5墩及高度较低的墩柱采用搭设支架施工外,其余墩柱盖梁施工拟采用抱箍法施工。

2、设计依据

(1)交通部行业标准,公路桥涵钢结构及木结构设计规范(JTJ025-86)

(2)施工计算手册(汪国荣、朱国梁编著)

(3)公路施工手册,桥涵(上、下册)(交通部第一公路工程

总公司)。

(4)路桥施工计算手册(人民交通出版社)

(5)盖梁模板提供厂家提供的模板有关数据。

(6)某大桥工程项目施工图设计文件。

(7)国家、交通部等有关部委规范和标准和地方要求规定。

(8)我单位的桥梁施工经验。

二、盖梁抱箍法结构设计

1、侧模与端模支撑

侧模为特制大钢模,面模厚度为δ6mm,肋板高为10cm,在肋板

外设2[14背带。在侧模外侧采用间距1.2m的2[14b作竖带,竖带高2.9m;在竖带上下各设一条 20的栓杆作拉杆,上下拉杆间间距2.7m,在竖带外设 48的钢管斜撑,支撑在横梁上。

端模为特制大钢模,面模厚度为δ6mm,肋板高为10cm。在端模

外侧采用间距1.2m的2[14b作竖带,竖带高2.9m;在竖带外设 48的钢管斜撑,支撑在横梁上。

2、底模支撑

底模为特制大钢模,面模厚度为δ8mm,肋板高为10cm。在底模

下部采用间距0.4m工16型钢作横梁,横梁长4.6m。盖梁悬出端底

模下设三角支架支撑,三角架放在横梁上。横梁底下设纵梁。横梁上设钢垫块以调整盖梁底2%的横向坡度与安装误差。与墩柱相交部位

采用特制型钢支架作支撑。

3、纵梁

在横梁底部采用单层四排上下加强型贝雷片(标准贝雷片规格:3000cm×1500cm,加强弦杆高度10cm)连接形成纵梁,长30m,每两排一组,每组中的两排贝雷片并在一起,两组贝雷梁位于墩柱两侧,中心间距253.6cm,贝雷梁底部采用3m长的工16型钢作为贝雷梁横向底部联接梁。贝雷片之间采用销连接。纵、横梁以及纵梁与联接梁之间采用U型螺栓连接;纵梁下为抱箍。

4、抱箍

采用两块半圆弧型钢板(板厚t=16mm)制成, M24的高强螺栓连接,抱箍高1734cm,采用66根高强螺栓连接。抱箍紧箍在墩柱上产生摩擦力提供上部结构的支承反力,是主要的支承受力结构。为了提高墩柱与抱箍间的摩擦力,同时对墩柱砼面保护,在墩柱与抱箍之间设一层2~3mm厚的橡胶垫,纵梁与抱箍之间采用U型螺栓连接。

5、防护栏杆与与工作平台

(1)栏杆采用υ50的钢管搭设,在横梁上每隔2.4米设一道1.2m 高的钢管立柱,竖向间隔0.5m设一道钢管立柱,钢管之间采用扣件连接。立柱与横梁的连接采用在横梁上设0.2m高的支座。钢管与支座之间采用销连接。

(2)工作平台设在横梁悬出端,在横梁上铺设2cm厚的木板,木板与横梁之间采用铁丝绑扎牢靠。

三、主要工程材料数量汇总表

见表一。

需要说明的是:主要工程材料数量是以单个盖梁需用量考虑。

第二部分盖梁抱箍法施工设计计算

一、设计检算说明

1、设计计算原则

(1)在满足结构受力情况下考虑挠度变形控制。

(2)综合考虑结构的安全性。

(3)采取比较符合实际的力学模型。

(4)尽量采用已有的构件和已经使用过的支撑方法。

2、贝雷架无相关数据,根据计算得出,无资料可复。

3、对部分结构的不均布,不对称性采用较大的均布荷载。

4、本计算结果不适合于除4#、5#墩盖梁施工。

5、本计算未扣除墩柱承担的盖梁砼重量。以做安全储备。

6、抱箍加工完成实施前,必须先进行压力试验,变形满足要求后方可使用。

二、侧模支撑计算

1、力学模型

假定砼浇筑时的侧压力由拉杆和竖带承受,P m为砼浇筑时的侧压力,T1、T2为拉杆承受的拉力,计算图式如图2-1所示。

2、荷载计算

砼浇筑时的侧压力:P m=Kγh

式中:K---外加剂影响系数,取1.2;

γ---砼容重,取26kN/m3;

h---有效压头高度。

砼浇筑速度v按0.3m/h,入模温度按20℃考虑。

则:v/T=0.3/20=0.015<0.035

h=0.22+24.9v/T=0.22+24.9×0.015=0.6m

P m= Kγh=1.2×26×0.6=19kPa

砼振捣对模板产生的侧压力按4kPa考虑。

则:P m=19+4=23kPa

盖梁长度每延米上产生的侧压力按最不利情况考虑(即砼浇筑至盖梁顶时): P=P m×(H-h)+P m×h/2=23×2+23×0.6/2=53kN

3、拉杆拉力验算

拉杆( 20圆钢)间距1.2m,1.2m范围砼浇筑时的侧压力由上、下两根拉杆承受。则有:

σ=(T1+T2)/A=1.2P/2πr2

=1.2×53/2π×0.012=101223kPa=101MPa<[σ]=160MPa(可)

4、竖带抗弯与挠度计算

设竖带两端的拉杆为竖带支点,竖带为简支梁,梁长l0=2.7m,砼侧压力按均布荷载q0考虑。

竖带[14b的弹性模量E=2.1×105MPa;惯性矩Ix=609.4cm4;抗弯模量Wx=87.1cm3

q0=23×1.2=27.6kN/m

最大弯矩:M max= q0l02/8=27.6×2.72/8=25kN·m

σ= M max/2W x=25/(2×87.1×10-6)

=143513≈144MPa<[σw]=160MPa(可)

挠度:f max= 5q0l04/384×2×EIx=5×27.6×2.74/(384×2×2.1×108×609.4×10-8)=0.0075m≈

[f]=l0/400=2.7/400=0.007m

5、关于竖带挠度的说明

在进行盖梁模板设计时已考虑砼浇时侧向压力的影响,侧模支撑对盖梁砼施工起稳定与加强作用。为了确保在浇筑砼时变形控制在允许范围,同时考虑一定的安全储备,在竖带外设钢管斜撑。钢管斜撑两端支撑在模板中上部与横梁上。因此,竖带的计算挠度虽略大于允许值,但实际上由于上述原因和措施,竖带的实际挠度能满足要求。

三、横梁计算

采用间距0.4m工16型钢作横梁,横梁长4.6m。在墩柱部位横梁设计为特制钢支架,该支架由工16型钢制作,每个墩柱1个,每个支架由两个小支架栓接而成。故共布设横梁56个,特制钢支架3个(每个钢支架用工16型钢18m)。盖梁悬出端底模下设特制三角支架,每个重约8kN。

1、荷载计算

(1)盖梁砼自重:G1=156.1m3×26kN/m3=4059kN

(2)模板自重:G2=279kN (根据模板设计资料)

(3)侧模支撑自重:G3=96×0.168×2.9+10=57kN

(4)三角支架自重:G4=8×2=16kN

(4)施工荷载与其它荷载:G5=20kN

横梁上的总荷载:G H=G1+G2+G3+G4+G5=4059+279+57+16+20=4431kN

q H=4431/26.4=168kN/m

横梁采用0.4m的工字钢,则作用在单根横梁上的荷载G H'=168×0.4=67kN

作用在横梁上的均布荷载为:

q H'= G H'/l H=67/2.4=28kN/m(式中:l H为横梁受荷段长度,为2.4m)

2、力学模型

如图2-2所示。

3、横梁抗弯与挠度验算

横梁的弹性模量E=2.1×105MPa;惯性矩I=1127cm4;抗弯模量Wx=140.9cm3

最大弯矩:M max= q H'l H 2/8=28×2.42/8=20kN·m

σ= M max/W x=20/(140.9×10-6)

=141945≈142MPa<[σw]=160MPa (可)

最大挠度:f max= 5 q H'l H 4/384×EI=5×28×2.44/(384×2.1×108×1127×

10-8)=0.0051m<[f]=l0/400=2.4/400=0.006m (可)

四、纵梁计算

纵梁采用单层四排,上、下加强型贝雷片(标准贝雷片规格:3000cm×1500cm,加强弦杆高度10cm)连接形成纵梁,长30m。

1、荷载计算

(1)横梁自重:G6=4.6×0.205×56+3×18×0.205=64kN

(2)贝雷梁自重:G7=(2.7+0.8×2+1+2×3×0.205)×40=237kN

纵梁上的总荷载:

G Z=G1+G2+G3+G4+G5+G6+G7=4059+279+57+16+20+64+237=4732kN

纵梁所承受的荷载假定为均布荷载q:

q= G Z/L=4732/26.4=179kN/m

2、力学计算模型

建立力学模型如图2-3所示。

3、结构力学计算

图2-3所示结构体系为一次超静定结构,采用位移法计算。

(1)计算支座反力R C:

第一步:解除C点约束,计算悬臂端均布荷载与中间段均布荷载情况下的弯矩与挠度

第二步:计算C点支座反力R C作用下的弯矩与挠度

第三步:由C点位移为零的条件计算支座反力RC 由假定支座条件知:∑f c=0

求得:

2)计算支座反力R A、R B

由静力平衡方程解得:

(3)弯矩图

根据叠加原理,绘制均布荷载弯矩图:

(4)纵梁端最大位移

4、纵梁结构强度验算

(1)根据以上力学计算得知,最大弯矩出现在A、B支座,代入q后

M B=8.82q=8.82×179=1579kN·m

(2)贝雷片的允许弯矩计算

查《公路施工手册桥涵》第923页,单排单层贝雷桁片的允许弯矩[M0]为975kN·m。

则四排单层的允许弯矩[M]=4×975×0.9=3510 kN·m(上下加强型的贝雷梁的允许变矩应大于此计算值)

故:M B=1579kN·m<[M]=3510 kN·m 满足强度要求

5、纵梁挠度验算

(1)贝雷片刚度参数

弹性模量:E=2.1×105MPa

惯性矩:I=Ah×h/2=(25.48×2×4)×150×150/2=2293200cm4(因无相关资料可查,进行推算得出)

(2)最大挠度发生在盖梁端

f max=648q/EI=648×179/(2.1×108×2293200×10-8)=0.024m

[f]=a/400=4.2/400=0.0105m

6、关于纵梁计算挠度的说明

由于f max>[f],计算挠度不能满足要求。

计算时按最大挠度在梁端部考虑,由于盖梁悬出端的砼量较小,悬出端砼自重产生荷载也相对较小,考虑到横梁、三角支架、模板等方面刚度作用,实际上梁端部挠度要小于计算的f max值。实际实施时,在最先施工的纵梁上的端部、支座位置、中部等部位设置沉降监测测点,监测施工过程中的沉降情况,据此确定是否需要预留上拱度。

如果需设置预拱度时,根据情况采取按以梁端部为预留上拱度最大值,在梁端部预留2cm的上拱度并递减至墩柱部位的办法解决。五、抱箍计算

(一)抱箍承载力计算

1、荷载计算

每个盖梁按墩柱设三个抱箍体支承上部荷载,由上面的计算可知:

支座反力R A=R B=[2(l+a)-8.31]q/2=[2(9+4.5)-8.31]×179/2=1672kN R C=8.31q=8.31×179=1487kN

以最大值为抱箍体需承受的竖向压力N进行计算,该值即为抱箍体需产生的摩擦力。

2、抱箍受力计算

(1)螺栓数目计算

抱箍体需承受的竖向压力N=1672kN

抱箍所受的竖向压力由M24的高强螺栓的抗剪力产生,查《路桥施工计算手册》第426页:

M24螺栓的允许承载力:

[N L]=Pμn/K

式中:P---高强螺栓的预拉力,取225kN;

μ---摩擦系数,取0.3;

n---传力接触面数目,取1;

K---安全系数,取1.7。

则:[N L]= 225×0.3×1/1.7=39.7kN

螺栓数目m计算:

m=N'/[N L]=1672/39.7=42.1≈42个,取计算截面上的螺栓数目m=42个。

则每条高强螺栓提供的抗剪力:

P′=N/44=1672/42=39.8KN≈[N L]=39.7kN

故能承担所要求的荷载。

(2)螺栓轴向受拉计算

砼与钢之间设一层橡胶,按橡胶与钢之间的摩擦系数取μ=0.3计算

抱箍产生的压力P b= N/μ=1672kN/0.3=5573kN由高强螺栓承担。

则:N'=P b=5573kN

抱箍的压力由42条M24的高强螺栓的拉力产生。即每条螺栓拉力为

N1=P b/44=55743kN /42=133kN<[S]=225kN

σ=N”/A= N′(1-0.4m1/m)/A

式中:N′---轴心力

m1---所有螺栓数目,取:66个

A---高强螺栓截面积,A=4.52cm2

σ=N”/A= P b(1-0.4m1/m)/A=5573×(1-0.4×66/42)/66×4.52×10-4

=117692kPa=118MPa<[σ]=140MPa

故高强螺栓满足强度要求。

(3)求螺栓需要的力矩M

1)由螺帽压力产生的反力矩M1=u1N1×L1

u1=0.15钢与钢之间的摩擦系数

L1=0.015力臂

M1=0.15×133×0.015=0.299KN.m

2)M2为螺栓爬升角产生的反力矩,升角为10°

M2=μ1×N′cos10°×L2+N′sin10°×L2

[式中L2=0.011 (L2为力臂)]

=0.15×133×cos10°×0.011+133×sin10°×0.011

=0.470(KN·m)

M=M1+M2=0.299+0.470=0.769(KN·m)

=76.9(kg·m)

所以要求螺栓的扭紧力矩M≥77(kg·m)

(二)抱箍体的应力计算:

1、抱箍壁为受拉产生拉应力

拉力P1=21N1=21×133=2793(KN)

抱箍壁采用面板δ16mm的钢板,抱箍高度为1.734m。

则抱箍壁的纵向截面积:S1=0.016×1.734=0.027744(m2) σ=P1/S1=2793/0.027744=100.67(MPa)<[σ]=140MPa

满足设计要求。

2、抱箍体剪应力

τ=(1/2R A)/(2S1)

=(1/2×1672)/(2×0.027744)

=15MPa<[τ]=85MPa

根据第四强度理论

σW=(σ2+3τ2)1/2=(100.672+3×152)1/2

=104MPa<[σW]=145MPa

满足强度要求。

三柱式盖梁抱箍法施工及计算

盖梁抱箍法施工及计算 第一部分盖梁抱箍法施工设计图 一、施工设计说明 1、概况 桥长1012.98米,各墩为三柱式结构(墩柱为直径2.0m的钢筋砼结构),墩柱上方为盖梁。盖梁为长26.4m,宽2.4m,高2.6m的钢筋砼结构,引桥盖梁砼浇筑量大,约156.1m3。 图1-1 盖梁正面图(单位:m) 二、盖梁抱箍法结构设计 1、侧模与端模支撑 侧模为特制大钢模,面模厚度为δ6mm,肋板高为10cm,在肋板外设2[14背带。在侧模外侧采用间距1.2m的2[14b作竖带,竖带高2.9m;在竖带上下各设一条φ20的栓杆作拉杆,上下拉杆间间距2.7m,在竖带外设φ48的钢管斜撑,支撑在横梁上。 端模为特制大钢模,面模厚度为δ6mm,肋板高为10cm。在端模外侧采用间距1.2m的2[14b作竖带,竖带高2.9m;在竖带外设φ48的钢管斜撑,支撑在横梁上。 2、底模支撑 底模为特制大钢模,面模厚度为δ8mm,肋板高为10cm。在底模下部采用间距0.4m工

16型钢作横梁,横梁长4.6m。盖梁悬出端底模下设三角支架支撑,三角架放在横梁上。横梁底下设纵梁。横梁上设钢垫块以调整盖梁底2%的横向坡度与安装误差。与墩柱相交部位采用特制型钢支架作支撑。 3、纵梁 在横梁底部采用单层四排上下加强型贝雷片(标准贝雷片规格:3000cm×1500cm,加强弦杆高度10cm)连接形成纵梁,长30m,每两排一组,每组中的两排贝雷片并在一起,两组贝雷梁位于墩柱两侧,中心间距253.6cm,贝雷梁底部采用3m长的工16型钢作为贝雷梁横向底部联接梁。贝雷片之间采用销连接。纵、横梁以及纵梁与联接梁之间采用U 型螺栓连接;纵梁下为抱箍。 4、抱箍 采用两块半圆弧型钢板(板厚t=16mm)制成,M24的高强螺栓连接,抱箍高1734cm,采用66根高强螺栓连接。抱箍紧箍在墩柱上产生摩擦力提供上部结构的支承反力,是主要的支承受力结构。为了提高墩柱与抱箍间的摩擦力,同时对墩柱砼面保护,在墩柱与抱箍之间设一层2~3mm厚的橡胶垫,纵梁与抱箍之间采用U型螺栓连接。 5、防护栏杆与与工作平台 (1)栏杆采用φ50的钢管搭设,在横梁上每隔2.4米设一道1.2m高的钢管立柱,竖向间隔0.5m设一道钢管立柱,钢管之间采用扣件连接。立柱与横梁的连接采用在横梁上设0.2m高的支座。钢管与支座之间采用销连接。 (2)工作平台设在横梁悬出端,在横梁上铺设2cm厚的木板,木板与横梁之间采用铁丝绑扎牢靠。 四、主要工程材料数量汇总表 见表一。 需要说明的是:主要工程材料数量是以单个盖梁需用量考虑。

抱箍法盖梁施工方案

抱箍法盖梁施工方案 一、工程概况 本标段荣乌高速公路棋盘井至乌海段工程QWTJ-2标段起止桩号为K10+018—K24+000,标段长度13.982Km,包括大、中桥884米/4座(预应力箱梁);分离式立交:995米/5座(预应力组合箱梁,现浇预应力箱梁);巴音陶亥互通立交桥1处(现浇预应力箱梁)。 桥墩盖梁为桥墩的重要组成部分,与桥墩系梁一样也为悬空体,因其结构及位置因素施工具有一定困难,因此将其自桥墩墩身中摘出,另行编制施工方案。首件工程编制依据: (1)荣乌高速公路棋盘井至乌海段工程施工招标文件; (2)荣乌高速公路棋盘井至乌海段工程施工图设计; (3)现行国家施工规范、规程、规则、及验收标准及地方标准; (4)我方对施工现场踏勘所获得的有关资料; 考虑到桥位处原地面地基承载力不高,而采用抱箍法施工盖梁可以克服满堂支架对地基承载力要求较高的缺点。我合同段拟对所有的圆柱墩盖梁采用抱箍法施工。抱箍承重原理:在盖梁施工时,用半圆形钢带抱紧墩柱,在钢带两端焊接牛腿,将盖梁底模的承重横梁架在牛腿上,利用钢带抱紧墩柱所产生的摩擦力来承担盖梁自重、模板自重、施工荷载等。 工程量:K17+083桥1号墩左幅盖梁:钢筋7.32t,混凝土30.41m3 二、施工方法:

2.1凿除柱顶浮浆: 将柱顶砼浮浆全部凿除,裸露新鲜砼。并冲刷干净,以保证墩柱与盖梁砼联接牢固。 2.2安装盖梁承重挂篮: 首先安装承重抱箍, 利用抱箍握紧墩柱产生的磨擦力来承担盖粱自身重量和施工荷载。抱箍与墩柱之间加一层10mm厚的橡胶垫,目的是增加抱箍与墩柱之间的磨擦力, 不啃伤墩柱砼。抱箍在每次使用前需经过认真检查,必须保证所有焊缝均饱满、不开焊,否则应加焊。抱箍用高强螺栓在紧固时必须保证每个螺栓受力均匀且达到设计拉力强度,确保抱箍与墩柱之间有充分的摩擦力以及承受上部荷载。在施工时,现场管理人员必须对每个螺栓的紧固情况进行认真检查。 在每承重抱箍下端加装一副抱箍,两抱箍间以槽钢、木楔支撑,以提高承载力,增加抱箍可靠性,抱箍上为承重横梁。 承重横梁采用30号工字钢, 与承重包箍牛腿之间以一对木楔支撑, 工字钢内侧用钢丝绳拉紧,中部设槽钢支撑在地面,地面承载力不足时在地面上加铺砼垫板或钢板;工字钢上放一排长2.5米10号工字钢或木方,垂直30工字钢布置,间距40-50cm,并与30号工字钢绑扎牢固;底模板两边搭设木板,利于施工操作。 2.3施工放样: 测量人员将盖梁轴线放出后,施工人员按盖梁轴线和盖梁标高安装底

【高速公路方案】高速公路桥梁盖梁抱箍法施工方案及抱箍试验

目录 一、施工设计说明 (2) (一)、工程简介 (2) (二)、设计依据 (2) 二、盖梁抱箍法结构设计 (2) (一)、盖梁模板底模支撑设计 (2) (二)、纵梁设计 (3) (三)、抱箍设计 (3) (四)、防护栏杆与工作平台设计 (3) 三、盖梁抱箍法施工设计计算 (4) (一)、设计检算说明 (4) (二)、横梁计算 (4) (三)、纵梁计算 (6) (四)、抱箍计算 (8) 四、抱箍试验 (11) (一)、试验柱浇筑 (11) (二)、抱箍安装 (12) (三)、液压油顶的选择与安装 (12) (四)、承载力试验 (13)

XX高速公路桥梁盖梁抱箍法施工方案及抱箍试验 一、施工设计说明 (一)、工程简介 高速公路****有桥梁2座。墩柱为两柱、三柱及四柱式结构,墩柱上方为盖梁,如图1所示。本图尺寸为其中一种形式,该盖梁设计砼43.4立方米,计算以该图尺寸为依据,其他尺寸形式盖梁施工以该计算结果相应调整。 图1 盖梁正面图(单位:cm) (二)、设计依据 1、公路桥涵钢结构及木结构设计规范(JTJ025-86) 2、路桥施工计算手册 3、其他相关资料及本单位以往施工经验。 二、盖梁抱箍法结构设计 (一)、盖梁模板底模支撑设计

在盖梁底模下部采用间距1m工14型钢作横梁,横梁长3.7m。横梁底下设纵梁。 (二)、纵梁设计 在横梁底部采用单层;两排贝雷片(标准贝雷片规格:3000mm ×1500mm,)连接形成纵梁,长18m,两排贝雷梁位于墩柱两侧,中心间距140mm。贝雷片之间采用销连接。纵、横梁以及纵梁与联接梁之间采用U型螺栓连接;纵梁下为抱箍。 (三)、抱箍设计 采用两块半圆弧型钢板(板厚t=16mm)制成, M24的高强螺栓连接,抱箍高50cm,采用20根高强螺栓连接。抱箍紧箍在墩柱上产生摩擦力提供上部结构的支承反力,是主要的支承受力结构。为了提高墩柱与抱箍间的摩擦力,同时对墩柱砼面保护,在墩柱与抱箍之间设一层2~3mm厚的橡胶垫,纵梁与抱箍之间采用U型螺栓连接。 图2 盖梁抱箍法施工示意图 (四)、防护栏杆与工作平台设计

桥梁盖梁抱箍法的施工及计算

盖梁抱箍法施工及计算 一、施工设计说明 1、工程简介 高速公路****有桥梁2座。墩柱为两柱式或三柱式结构,墩柱上方为盖梁,如图1所示。本图尺寸为其中一种形式,该盖梁设计砼37立方米,计算以该图 尺寸为依据,其他尺寸形式盖梁施工以该计算结果相应调整。 图1盖梁正面图(单位:cm) 2、设计依据 (1)公路桥涵钢结构及木结构设计规范(JTJ025-86) (2)路桥施工计算手册 (3)其他相关资料及本单位以往施工经验。 二、盖梁抱箍法结构设计 1、盖梁模板底模支撑 在盖梁底模下部采用间距1m工14型钢作横梁,横梁长3.7m。横梁底下设纵梁。 3、纵梁 在横梁底部采用单层;两排贝雷片(标准贝雷片规格:3000cmx 1500cm )连 接形成纵梁,长18m两排贝雷梁位于墩柱两侧,中心间距120cm贝雷片之间采用销连接。纵、横梁以及纵梁与联接梁之间采用U型螺栓连接;纵梁下为抱箍。 4、抱箍 采用两块半圆弧型钢板(板厚t=10mm制成,M24的高强螺栓连接,抱箍高70cm采用14根高强螺栓连接。抱箍紧箍在墩柱上产生摩擦力提供上部结构的支承反力,是主要的支承受力结构。为了提高墩柱与抱箍间的摩擦力,同时对 墩柱砼面保护,在墩柱与抱箍之间设一层2?3mn厚的橡胶垫,纵梁与抱箍之间采用U型螺栓连接。 5、防护栏杆与工作平台 ⑴ 栏杆采用? 50的钢管搭设,在横梁上每隔2米设一道1.2m高的钢管立柱, 竖向间隔

0.5m设一道钢管横杆,钢管之间采用扣件连接。立柱与横梁的连接采用在横梁上设0.2m 高的支座。钢管与支座之间采用销连接。 (2)工作平台设在横梁悬出端,在横梁上铺设5cm厚的木板,木板与横梁之间采用铁丝绑扎牢靠。 三、盖梁抱箍法施工设计计算 (一)、设计检算说明 1、设计计算原则 (1)在满足结构受力情况下考虑挠度变形控制。 (2)综合考虑结构的安全性。 (3)采取比较符合实际的力学模型。 (4)尽量采用已有的构件和已经使用过的支撑方法。 2、对部分结构的不均布,不对称性采用较大的均布荷载。 3、本计算未扣除墩柱承担的盖梁砼重量。以做安全储备。 4、抱箍加工完成实施前,必须先进行压力试验,变形满足要求后方可使用。 (二)、横梁计算 采用间距1m工14型钢作横梁,横梁长3.7m。共设横梁18根,总重约11kNo 1、荷载计算 (1)盖梁砼自重:G仁37荻24.5kN/m3=906.5kN (2)模板自重:G2=81.3kN (3)施工荷载与其它荷载:G3=21kN 横梁上的总荷载:G=G1+G2+G3 =1008.8kN q1=1008.8/17.2=58.65kN/m 横梁采用1m间距的工字钢,则作用在单根横梁上的荷载G =58.65 X 1=58.65kN 作用在横梁上的均布荷载为: q2= =58.65/1.7=34.5kN/m 2、力学模型 如图所示。 q? = 3z1 J l< N. /1 图2横梁计算模型 3、横梁抗弯与挠度验算 横梁的弹性模量E=2.1 X 105MPa惯性矩l=712cm4;抗弯模量Wx=102cm 为了简化计算,

桥梁盖梁抱箍法施工方案

盖梁抱箍法施工方案 一、工程概况 某大桥桥梁左幅起讫桩号:K780+891.5~K781+722.8。桥梁跨 径组成为:2×(6×20)+3×(5×20)+(62+110+62)+2×25m,桥梁全 长831.3m。 某大桥桥梁右幅起讫桩号:K780+891.5~K781+728.5。桥梁跨 径组成为:2×(6×20)+3×(5×20)+(62+110+62)+(18+20+18)m, 桥梁全长837.0m。 本桥1#-5#、7#-9#、31#右幅、32#右幅墩墩径为φ1.3m,盖梁 尺寸为:长9.79m(7.39m)、宽1.6m、厚(0.7+0.6)m;6#墩墩径 为φ1.3m,盖梁尺寸为:长9.79m(7.39m)、宽1.8m、厚(0.7+0.6)m;10#、11#、13#-16#、18#-21#、23#-26#墩墩径为φ1.4m,盖梁 尺寸为:长9.79m(7.39m)、宽1.6m、厚(0.7+0.6)m;12#、17#、22#墩墩径为φ1.4m,盖梁尺寸为长9.79m(7.39m)、宽 1.8m、厚(0.7+0.6)m;31#左幅墩墩径φ1.4m,盖梁尺寸为长9.79m(7.39m)、宽1.7m、厚(0.75+0.65)m。 二、编制依据 (1)《两阶段施工图设计》(第三册)。 (2)《土建工程施工招标文件》。 (3)项目实施性施工组织设计。 (4)我国现行的公路工程设计、施工规范、工程质量评定验收 标准及安全技术规程。 (5)我单位的以往类似桥梁施工经验。 三、施工进度计划

计划施工时间:2012 年4 月15 日~2012 年6 月30 日 四、劳动力配置 序号工种数量/姓名序号工种数量/姓名 1 技术负责人 1 6 技术员 1 2 试验负责人 1 7 测量负责人 1 3 现场负责人 1 8 钢筋工10 4 模板工8 9 砼工 6 5 机械工 4 10 杂工 2 五、施工方案及主要施工工艺 (1)施工准备 桥墩施工完成后,根据盖梁设计标高返算出抱箍钢带下缘在墩柱的确切位置,并做好标记,以便抱箍准确就位。 为方便盖梁底模的安装,在浇注混凝土时,墩柱顶混凝土标高按比设计标高高5cm 控制。 (2)墩柱顶凿毛 待墩柱混凝土达到设计强度的75%以上后,对墩柱顶进行凿毛处理,凿除顶部的水泥砂浆和松弱层,凿毛至新鲜混凝土,并用高压 风吹干净。标高控制在比设计标高高3cm 左右,以便于安装盖梁底模。 (3)测量放样 在盖梁施工前,对墩柱进行施工测量,作为安装盖梁底模的依据。墩柱施工测量与控制的内容包括:墩柱中心位置测量、立柱顶高程测量。墩柱中心测量采用全站仪进行测量;高程测量是根据施工中设立的临时水准点,用水准仪直接进行,也可以三维坐标控制测量。 (4)盖梁模板加工及安装

高墩柱施工专项施工方案

高墩柱施工专项施工方案 一、高墩柱施工重大危险源分析 高墩施工涉及高空作业,常因存在没有进行深入细致的安全技术交底、特种作业人员没有持证上岗、没有按照操作规程施工作业、起重设备安全装置不符合安全规定、没有使用标准的劳动防护用品、高空作业没有合乎要求的安全防护措施、扶手、爬梯、脚踏板不符合规定、夜间施工照明设备不符合规定、高空作业没有使用安全带、安全绳等、进入施工作业区没有戴安全帽、作业人员违章指挥、违章作业、不了解高空作业人员的身体情况、运输车辆安全装置不全、失效、所使用的电器设备不符合安全规定等危险因素存在,致使墩施工可能造成人身伤害、砸伤、摔伤、电击、机械损伤等,因此必须制定专项施工方案,防止事故的发生。 高墩施工必须由施工项目的工程技术人员依据相关安全技术规范编制专项施工方案,经项目负责人、总工程师及项目总监理工程师审批签认后实施。项目总工程师应组织负责现场的技术人员针对该方案向作业班组、作业人员进行安全技术交底,并双方签认,保留照片归档。 二、高墩施工安全技术要求 1、施工准备 ⑴施工现场的生活生产房屋、变电所、发电机房、临时油库等均应设在干燥地基上,并应符合防火、防洪、防风、防爆、防震的要求。 ⑵场内道路应经常维护,保持畅通。载重车辆通过较多的道路,急弯及陡坡地段应设置明显交通标志。道路的宽度不小于1.5m。 ⑶生产生活用水应进行鉴定,其水质必须符合国家现行标准。水源应采取保持措施,

防止水质污染。 ⑷各种电器设备的检查维修,一般应停电作业;如必须带电作业时,应有可靠的安全措施并派专人监护。 ⑸工地安装变压器必须符合电业部门的要求,并设专人管理。施工用电要尽量保持三项平衡。 ⑹施工前必须搭设好脚手架及作业平台,并在平台外侧设置栏杆。高墩3米以上应加设防护网,爬梯进出口处要设置三牌(安全帽、安全带、高空坠落)靠近便道或交叉道口要设置警示灯。 2、用电的安全措施 ⑴严格遵守建设部《施工现场临时用电安全技术规范》的规定,搞好工程的用电安全工作。 ⑵工地供电采用TN—S系统三项五线制系统。用电线路采用架设或埋地敷设,不准明敷。 ⑶场内架设的电线应绝缘良好,悬挂度及线间距应符合电业部门的安全规定。 ⑷各种电器设备,符合一机一箱一闸一保的用电要求。 ⑸现场接灯照明时,凡危险场所及潮湿环境应使用安全电压;灯位安装在工作时碰不到的地方;保持一灯一开关且有防雨装置。 ⑹各种电器设备的检查维修,一般应停电维修,并挂警示牌。 ⑺严禁在施工现场使用金属体代替保险丝。 3、吊车作业施工安全措施

盖梁抱箍法施工及计算()

盖梁抱箍法施工及计算摘要:详细介绍了抱箍法盖梁施工的支撑体系结构设计,盖梁结构的内力计算和抱箍支撑体系的内力验算,以及本工艺的施工方法。 关键词:盖梁抱箍结构计算施工 1.工程概况 广州西二环高速公路徐边高架桥为左、右幅分离式高架桥,全桥长1280m,全桥共有盖梁84片,下部结构为三立柱接盖梁,上部结构为先简支后连续20m空心板和30m T梁,另有15跨现浇预应力混凝土连续箱梁。全桥施工区鱼塘密布,河涌里常年流水,墩柱高度较高,给盖梁施工带来难度。为加快施工,减少地基处理,本桥盖梁拟采用抱箍法施工。 2.抱箍支撑体系结构设计 2.1盖梁结构 以20m空心板结构的支撑盖梁为例,盖梁全长20m,宽1.6 m,高1.4m,砼体积为42.6 m3,墩柱Φ1.2m,柱中心间距7m。 2.2抱箍法支撑体系设计 盖梁模板为特制大钢模,侧模面板厚度t=5mm,侧模外侧横肋采用单根[8槽钢,间距0.3m,竖向用间距0.8m的2[8槽钢作背带,背带高1.55m,在背带上设两条Φ18的栓杆作对拉杆,上、下拉杆间距1.0m,底模板面模厚6mm,纵、横肋用[8槽钢,间距为0.4m×0.4m,模板之间用螺栓连接。 盖梁底模下部采用宽×高为0.1m×0.15m的方木作横梁,间距0.25m。盖梁底模两悬出端下设三角支架支撑,三角架放在横梁上。在横梁底部采用贝雷片连接形成纵梁,纵梁位于墩柱两侧,中心间距1.4m,单侧长度21m。纵梁底部用四根钢管作连接梁。横梁直接耽在纵梁上,纵梁之间用销子连接,连接梁与纵梁之间用旋转扣件连接。 抱箍采用两块半圆弧型钢板制成,钢板厚t=16mm,高0.6m,抱箍牛腿钢板厚20mm,宽0.27m,采用10根M24高强螺栓连接。为了提高墩柱与抱箍间的摩擦力,同时对墩柱砼面保护,在墩柱与抱箍之间设一层3mm厚的橡胶垫,纵梁与抱箍之间采用U型螺栓连接。抱箍构件形象示意图如图1所示。 2.3防护栏杆 栏杆采用φ48的钢管搭设,在侧模上每隔5m焊接一道1.2m高

高墩柱施工方案

目录 一、编制范围和编制依据 (1) ⒈编制依据 (1) 2.编制范围 (2) 二、工程概况 (2) 三、施工组织 (2) ⒈主要人员组织 (2) ⒉主要机械设备表 (3) ⒊材料组织 (3) ⒋工期安排 (3) 四、施工方法 (4) ⒈施工程序 (4) ⒉施工工艺及操作过程 (4) ⒊钢筋的进场、加工及安装 (4) ⒋模板组合安装施工 (6) ⒌施工工作平台安装 (8) ⒍上下通道系统 (9) ⒎墩底实心段砼浇筑 (11) ⒏墩底变截面及标准段钢筋安装 (11) ⒐墩底变截面及标准段模板安装 (12) ⒑模板拆除 (12) ⒒模板翻升 (13) ⒔空心墩质量控制 (13) ⒕接缝处理 (13) ⒖预埋件施工 (14) 五、注意事项 (14) 六、墩身施工外观质量控制 (17) 七、安全、环保、文明施工 (20)

高墩柱施工专项方案 一、编制范围和编制依据 ⒈编制依据 ⑴汶马高速C24标段《实施性施工组织设计》; ⑵《四川省高速公路桥梁施工标准化管理指南》; ⑶施工规范与验收标准: ①《公路桥涵施工技术规范》(JTGT F50-2011) ②《公路工程水泥及水泥混凝土试验规程》(JTG E30—2005) ③《公路工程集料试验规程》(JTG E42—2005) ④《公路工程岩石试验规程》(JTG E41—2005) ⑤《公路土工试验规程》(JTG E40—2007) ⑥《公路桥涵地基及基础设计规范》 (JTGD63-2007) ⑦《公路工程质量检验评定标准》(JTG F80/1-2004) ⑧《塔式起重机混凝土基础工程技术规程》 ⑷现场调查报告、施工能力及类似工程施工工法、科技成果; ⑸我单位类似工程施工技术和管理经验; ⑹四川省汶川至马尔康马高速公路C24标段《两阶段施工图设计》送审版; ⑺施工合同中相关要求。 2.编制范围 达衣沃大桥左线3、4、5右线4、5墩柱。 二、工程概况 YK220+380/ZK220+372达衣沃大桥跨梭磨河和干沟沟口,连接扑鸭脚隧道出口和卓克基隧道进口,采用桩基础、柱式墩,其中左线3、4、5右线4、5墩采用变截面方形墩,墩柱最高40米。具体参数如 钢筋 t,混凝土 m3。

盖梁抱箍法施工及计算4工字钢

江门市滨江新区规划四路 K0+516.157大桥盖梁抱箍施工方案 编制: 审核: 日期:

盖梁抱箍法施工及计算 目录 第一部分盖梁抱箍法施工设计 一、施工设计说明 二、盖梁抱箍法结构设计 三、主要工程材料数量汇总表 第二部分盖梁抱箍法施工设计计算 一、设计检算说明 二、侧模支撑计算 三、横梁计算 四、纵梁计算 五、抱箍计算

第一部分盖梁抱箍法施工设计图 一、施工设计说明 1、概况 江门市滨江新区规划四路K0+516.157大桥长120米(6×20米),全桥共有5个桥墩,共20条墩柱,墩柱上方为盖梁,共5个盖梁。每个盖梁长25.5572m,宽1.6m,高1.20m的钢筋砼结构,墩柱盖梁施工拟采用抱箍法施工。 图1-1 盖梁正面图(单位:cm) 2、设计依据 (1)交通部行业标准,公路桥涵钢结构及木结构设计规范(JTJ025-86) (2)《公路桥涵钢结构及木结构设计规范(JTJ025-86)》 (3)《机械设计手册》 (4)《建筑施工手册》(第四版)

(5)桥梁施工经验。 二、盖梁抱箍法结构设计 1、侧模与端模支撑 侧模为为15mm厚的胶合板,背带肋条为10×10cm方木,间距30cm,在竖肋外设2[4槽钢背带。背肋高1.3m;在背带上按间距40cm设φ14的栓杆作拉杆(共3排),在侧模与底模连接处设6×6角钢,角钢与背带平行。 2、底模支撑 底模为钢模,模板厚度为δ2.5mm,设纵向肋条(肋条:3×3cm),肋条间距20cm。在底模下部采用间距30cm的2[8#槽钢,2根槽钢焊接牢固。横梁长2.7m(超出部分作支模、挂网、操作平台用)。盖梁悬出端底模下设三角支架支撑,三角架放在横梁上。横梁底下设纵梁。 3、纵梁 纵梁采用2根I45b工字钢。两根工字钢位于墩柱两侧,中心间距100cm,工字钢间用φ20钢筋对拉连接,间距为3m。工字钢连接处采用高强螺栓与焊接相结合。 (1)、力学性能指标。 查《简明施工计算手册》、《钢结构设计规范》GB50017-2003得I45b工字钢的截面特性(I截面惯性矩;W截面抵抗矩): E=2.6×105MPa;W x =1500.4cm4;I X =33759cm4;A=111.4cm2;S X =887.1cm; [σ]=215MPa;[τ]=125MPa;d=13.5mm,每延米重887.1Kg (2)、梁长27m,位于墩柱两侧。 4、抱箍

钢抱箍工字钢梁在盖梁施工中的应用

钢抱箍+工字钢梁在盖梁施工中的应用 摘要:钢抱箍+工字钢梁是圆柱形门式墩盖梁施工过程中的一种简单实用的临时支撑体系。钢抱箍的使用,相对于其他可行的施工方法,既节省了人工及材料,又不需要破坏墩柱的整体性及外观质量;工字钢作为一种常见的型钢,因为其结构特性,抗弯性能良好,常在工程施工过程中作为短跨度临时支撑梁使用。钢抱箍与工字钢的结合,使盖梁施工更为简易可操作,省时、省料、省工。本文根据工程实例对钢抱箍+工字钢梁支撑体系作了简单的受力计算,并阐述其工作原理及施工工艺。 关键词:盖梁; 抱箍; 工字钢; 临时支撑 一、引言 盖梁作为一种悬空钢筋混凝土结构,施工时需相应的临时支撑体系,适用的方案:满堂支架法、钢桩支撑法、预埋牛腿法、预留孔钢棒法、抱箍法等。施工方案的选取决定了整个施工过程的人、材、机消耗及并最终影响工程质量,其中抱箍法因为其相对于其他方案的明显优势,已在圆柱形墩盖梁中得到广泛的应用。 二、各种方案的优缺点 满堂支架法是可用于任何悬空混凝土结构施工的最普遍的方法,如现浇梁、板、盖梁等;优点在于任何结构均适用,且不需要大型设备,稳定、安全;但缺点在于耗费的人工量大、支架消耗量大、占地面积大、耗时较长,且在处于地面不平整、墩高较大等情况时适用性受限。 钢桩支撑法是以螺旋钢管桩作为支撑柱,立在承台或符合承载力要求的基础上,上搭设工字钢或贝雷梁作为主承重梁形成的支撑体系,优点在于占地小,相对满堂支架搭设速度较快,用材较少;但缺点在于墩身高度变化较大时钢管桩高度调整不便且搭设完全依靠吊

装机械。 预埋牛腿法是在墩柱浇筑时于预定位置预埋钢板,后在预埋钢板上焊接托架作为临时主梁支撑的施工方法,具有省时省工省材料操作简便等优点;但缺点在于破坏了墩身的外观,且预埋钢板无法取出。 预留孔钢棒法是在浇筑墩柱时预留孔道,施工盖梁时将符合受力要求的钢棒穿过预留孔,临时支撑主梁架设于钢棒两头形成的支撑体系;拥有预埋牛腿法的所有优点,且钢棒能循环使用;缺点在于不仅破坏了墩身的外观,且对墩身结构的整体性有一定的损害。 综合以上方法优缺点,抱箍法得以提出,此方法是在墩柱上安装钢抱箍,在抱箍上架设工字钢作为承重主梁,整个支撑体系所受的竖向力通过墩柱与抱箍摩擦力传导至墩柱;抱箍法拥有牛腿法预留孔法的省时、省材、省工、适用性强、占用场地少等优点,同时也能保证不破坏墩柱的结构及外观质量。现钢抱箍+工字钢梁法已广泛应用于圆柱形门式墩盖梁的施工中,下面对钢抱箍+工字钢法计算应用及施工工艺作简单的叙述。 三、工程实例及计算 某高速公路特大桥引桥部分下部结构采用圆柱形门式墩,最大盖梁长11.45m,宽2m,高1.7m,圆柱墩直径D=1.6m,盖梁混凝土方量为37.7m3。 拟采用钢抱箍+工字钢法施工盖梁,施工方案示意图如下:

桥梁施工方案及施工方法

桥梁施工方案及施工方法 1、总体施工方案 (1)桩基根据地质情况和桩基深度,保留采用小型松动爆破配合人工挖孔方案。 (2)明挖扩大基础土质基坑采用挖掘机配合人工开挖,石质基坑采用小型松动爆破配合挖掘机开挖,排水整平基底后,安装钢筋,支立侧模,浇筑砼。 (3)中低墩柱采用定型钢模一次浇筑成型,墩身系梁和墩帽采用抱箍承重支架现浇施工;桥台采用大平面钢模现浇施工。 (4)T梁在桥头预制场预制,采用自行拼装双导梁架桥机架设,结构连续T梁,在连续接头施工完毕后,拆除临时支座实现体系转换。 (5)桥梁砼集中拌和,砼罐车运到工地后,用输送泵输送。 2、施工方法 (一)基础施工 (1)扩大基础施工 土质基坑用挖掘机配合人工开挖,坑壁坡度根据地质情况确定,开挖过程中,须加强排水,开挖至距基底20cm时,由人工清理至设计标高。石质基坑采用挖掘机开挖,无法松动时,采用小型松动爆破配合开挖,挖至设计标高后,凿出新鲜岩面,用砂浆找平。开挖完成后,各项指标符合要求即可进行基础砼施工,如承载力达不到设计要求,应按监理工程师批复方案处理。

基础钢筋运到现场绑扎,并预埋墩台身联接钢筋。基础模板采用定型平面钢模,利用基坑壁对称支撑和对拉螺杆加固。砼由拌和站供应,砼罐车运送,输送泵输送入模,水平分层浇筑。 (2)桩基施工 ①桩基成孔 浅桩采用小型松动爆破配合人工挖孔,测量放样确定各桩基孔位后,按桩径做好孔口护围,并设置手摇绞车排渣。在开挖过程中,采用15cm厚C15砼护壁,每层护壁高度不得超过1.0m,地质变化段埋设连接钢筋增加护壁的整体性。岩层开挖采用爆破作业,炮眼布置根据岩层硬度和倾向而定,先试爆,确定间距及用药量,防止成孔过大或孔壁破坏。当桩底进入倾斜岩层时,桩底应凿成水平状。孔内经爆破后,应先通风排烟,经检查无毒气后,施工人员方可下井继续作业。 孔内有水时应做好排水工作,刚浇筑的护壁砼不得被水浸泡。 挖孔时,应注意施工安全。挖孔工人必须配有安全帽、安全绳,必要时应搭设掩体。提取土渣的吊桶、吊钩、钢丝绳、卷扬机等机具,应经常检查。井口围护应高出地面200㎜-300㎜,防止土、石、杂物落入孔内伤人。挖孔工作暂停时,孔口必须罩盖并派专人守护。如孔内的二氧化碳含量超过0.3%,或孔深超过10m时,应采用机械通风。 ②孔底清渣 挖孔桩爆破终了时,孔底应预留20-30cm,用人工、风镐凿除至设计标高,将松散石渣、淤泥等拢动软土层清理干净,如地质复杂,应用钢钎探明孔底以下地质情况,并报经监理工程师复查认可后方可灌注混凝土,以保证桩底嵌岩效果。

墩柱施工方案(最终版)

墩柱施工 1.1准备工作 1技术准备 1)施工方案已编制完成并经监理工程师审核批准。 2)桥梁的基础已检测完成,桥墩的测量放样已经完成。 3)施工人员满足施工需求,并已通过交底、培训。培训的内容应包括:钢筋加工及安装、模板拼接与安装、混凝土浇筑方法、混凝土浇筑顺序,混凝土振捣工艺,混凝土拆模强度及养护方案等。 2场地准备 1)对施工区域的场地已平整,排水畅通;模板堆放有序,施工机械、小型机具摆放整齐。 2)施工便道修整顺畅,能满足混凝土运输车、吊车等施工车辆通过并实施施工作业。 3)绑扎钢筋前先对墩柱底混凝土进行凿毛。凿毛完成后用压力水冲洗干净。 1.2施工工艺控制

墩柱施工工艺流程图 每座桥梁墩柱开工前,宜先做试验墩,以检查模板质量、砼外观质量、色泽等,获得批准后再进行全面施工。 1钢筋安装 1)墩柱钢筋在钢筋棚中统一加工。根据钢筋笼设计长度,运至工地现场安装。当柱内主筋直径大于25mm时,主筋接长采用直螺纹连接工艺,丝口在机械连接前需采用保护套包裹保护,接头需相互错开,满足施工规范要求。现场安装时,要在钢筋安装完毕后,拧开部分螺母检查钢筋实际间隙,两钢筋头之间的间隙应尽量小,不得大于6mm,否则应进行处理。其他钢筋接头应采用焊接,焊接长度不小于规范要求。凡需焊接的钢筋,应满足各项指标要求。 2)为保证钢筋的保护层厚度,钢筋外应按设计厚度绑扎梅花形高强度轮型垫块。墩柱砼保护层厚度应均匀。禁止为保证保护层厚度,在钢模顶部与钢筋笼之间加大头楔使其居中。 3)墩柱钢筋安装后应确保其垂直且居中,必要时应设置缆风绳

4)钢筋安装后及时安装钢模完成砼浇筑,避免钢筋长时间暴露,若无法保证立即浇筑混凝土,则钢筋骨架应采用土工布包裹以免锈蚀。 2模板安装 1墩柱模板制作完成后应进行试拼,检查模板的刚度、平整度、接缝密合性及结构尺寸等,以避免给现场使用过程带来难以克服的缺陷及困难。 2)模板不应与脚手架进行连接,避免引起模板变形。 3)墩柱高在5m以下(含5m)应采用一节整体式大型组合模板,5m以上时,在尽可能减少接缝要求的前提下,根据墩柱高度均匀分成。 4)模板支立前需认真清洗干净,之后涂刷脱模剂或模板漆,在拼装时采用海绵条夹在模板接缝处以防漏浆。模板支立完成后紧固各加固螺栓。 5)立模时,墩柱与桩基或承台连接处,若采用高标号水泥砂浆找平,严禁砂浆侵入墩柱内,以免出现钢筋无保护层质量隐患。 6)墩柱模板必须用缆绳校正固定,并搭设支架稳固模板和搭建操作平台。 7)墩柱顶高程须满足:模板顶高出设计标高至少5cm;墩柱混凝土顶面要高出设计标高1~2cm,不得低于设计高程。 3混凝土浇筑 1)墩柱一次分节浇筑时,浇筑间隔不得超过混凝土的初凝时间;分次分节浇筑时,含系梁墩柱先浇筑第一道系梁下墩身,再浇筑第一道系梁,然后浇筑第二道系梁下墩身,接着浇筑第二道系梁,最后完成最上部墩身浇筑,浇筑过程中混凝土落差不得超过2m,超过2m时应采用减速串筒下料,防止砼离析。 2)为保证墩柱砼外观,浇筑砼一定要振捣充分,但切忌过振,对于钢筋比较

桥梁盖梁抱箍法施工方案

桥梁盖梁抱箍法施工方 案 TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-

盖梁抱箍法施工方案 一、工程概况 某大桥桥梁左幅起讫桩号:K780+~K781+。桥梁跨径组成为:2×(6×20)+3×(5×20)+(62+110+62)+2×25m,桥梁全长。 某大桥桥梁右幅起讫桩号:K780+~K781+。桥梁跨径组成为:2×(6×20)+3×(5×20)+(62+110+62)+(18+20+18)m,桥梁全长。 本桥1#-5#、7#-9#、31#右幅、32#右幅墩墩径为φ,盖梁尺寸为:长()、宽、厚(+)m;6#墩墩径为φ,盖梁尺寸为:长()、宽、厚(+)m;10#、11#、13#-16#、18#-21#、23#-26#墩墩径为φ,盖梁尺寸为:长()、宽、厚(+)m;12#、17#、22#墩墩径为φ,盖梁尺寸为长()、宽、厚(+)m;31#左幅墩墩径φ,盖梁尺寸为长()、宽、厚(+)m。 二、编制依据 (1)《两阶段施工图设计》(第三册)。 (2)《土建工程施工招标文件》。 (3)项目实施性施工组织设计。 (4)我国现行的公路工程设计、施工规范、工程质量评定验收标准及安全技术规程。 (5)我单位的以往类似桥梁施工经验。 三、施工进度计划 计划施工时间:2012年4月15日~2012年6月30日 四、劳动力配置

五、施工方案及主要施工工艺 (1)施工准备 桥墩施工完成后,根据盖梁设计标高返算出抱箍钢带下缘在墩柱的确切位置,并做好标记,以便抱箍准确就位。 为方便盖梁底模的安装,在浇注混凝土时,墩柱顶混凝土标高按比设计标高高5cm控制。 (2)墩柱顶凿毛 待墩柱混凝土达到设计强度的75%以上后,对墩柱顶进行凿毛处理,凿除顶部的水泥砂浆和松弱层,凿毛至新鲜混凝土,并用高压风吹干净。标高控制在比设计标高高3cm左右,以便于安装盖梁底模。 (3)测量放样 在盖梁施工前,对墩柱进行施工测量,作为安装盖梁底模的依据。墩柱施工测量与控制的内容包括:墩柱中心位置测量、立柱顶高程测量。墩柱中心测量采用全站仪进行测量;高程测量是根据施工中设立的临时水准点,用水准仪直接进行,也可以三维坐标控制测量。 (4)盖梁模板加工及安装 模板采用大块整体钢模,选用不小于6mm厚钢板作为面板。要求模板表面平整,尺寸偏差符合设计要求,具有足够的刚度、强度、稳定性,且拆装方便接缝严密不漏浆。

限高墩柱施工方案

桃园至巴中高速公路 LJ10合同段土建工程 (G1K91+975.00~K97+075.00) 吴家河1#大桥墩柱施工方案 编制单位:桃巴十标四工区

吴家河1#大桥墩柱施工方案 一、编制依据 1.1、桃(园)—巴(中)高速公路段第十合同段招、投标文件、合同文件、施工图纸及设计技术交底资料。 1.2、规范和强制性条文和相关标准: 《公路工程技术标准》JGJ B01-2003 《公路桥涵设计通用规范》JTJ D60-2004 《公路钢筋混凝土及预应力混凝土桥涵设计规范》JTG D062-2004 《公路圬工桥涵设计规范》 JTG D061-2005 《公路桥涵地基与基础设计规范》JTJ024-85 《公路桥涵抗震施工技术规范》JTJ004-89 《公路桥涵施工技术规范》JTJ041—2000 《滚扎直螺纹钢筋连接接头》JG163-2004 《公路工程质量管理检测评定标准》JTG G80/1—2004 《公路水泥混凝土试验规程》JTJ053—94 《公路测量规范》JTJ061—99 《公路工程施工安全技术规程》JTJ076—95 二、工程概况 吴家河1号大桥位于巴中市南江县境内,左线起讫桩号为K95+840-K96+031,右线起讫桩号为K95+835-K96+024,本桥孔跨采用30m/跨,左右幅分别布置。桥梁上部构造采用预制预应力混凝土简支T梁;下部构造采用柱式墩台、重力式桥台。该桥墩柱采用钢筋混凝土变径式圆形墩柱。 工程数量见下表:

三、施工工艺和方法 (一)施工准备 1、场地准备 施工前应进行场地平整,清除杂物,对机械位置处平整夯实,场地满足吊车等机械及钢筋制作安装、浇筑混凝土要求。 2、拌合设备安全就位并经过相关质量技术监督局标定,生产能力能够满足 生产需要,投入吊车1台,能够满足进度要求。 3、施工用水用电 施工用水使用小河河水,按原设计桥梁施工,电源外接315KVA变压器能满足施工要求。 4、物质准备 根据业主、监理要求确定厂家组织钢材、水泥进场,砂石材料场按中心试验室配合比标准试验中的产地规格进料,并对进场的材料及时检验。钢筋半成品在拌合站加工,钢筋笼在现场加工。 5、技术准备 1)技术交底:在组织材料设备前进行交底,在桩孔设备就位后进行墩柱施工交底及水下混凝土施工交底。 2)测量定位:使用经检校合格的全站仪(拓普康)按照设计图纸进行现场桩位精确定位放样,在墩柱中心位置进行油漆标记。放样后由主管技术人员进行复核,施工中护桩妥善维护。 3)原材料及配合比试验。 (二)施工顺序:

桥梁抱箍法施工方案

星辉路(高鼎路-瓦浦路)新建工程 盖 梁 抱 箍 法 施 工 方 案 江苏宏鑫路桥建设有限公司 星辉路新建工程项目部 二零一二年十一月

目录 一、方案概述 3 二、编制依据 4 三、施工重点与难点 5 四、盖梁抱箍法结构设计 5 五、盖梁抱箍法施工设计计算 8 六、安全管理及保证措施 20 七、施工应急救援预案 22

盖梁抱箍法施工方案 一、方案概述 1、工程简介 星辉路新建工程本次施工部分道路长度约1860 米,宽度为14 米。其中桥梁三座:3#桥三跨简支梁桥8m+10m+8m 装配式空心板梁,桥宽,5#桥三跨简支梁桥8m+8m+8m 装配式空心板梁,桥宽,6#桥三跨简支梁桥 8m+8m+8m 装配式空心板梁,桥宽。墩柱为五柱(6#桥)式、及八柱式(3#、5#桥桥)结构,立柱高2m,立柱上方为盖梁,如图1所示。本图尺寸为三号桥盖梁示意图,该盖梁设计尺寸为2460mm×1600mm×1340mm(长×宽×高),设计砼立方米(最大方量),计算以该图尺寸为依据,其他尺寸形式盖梁施工以该计算结果相应调整。 图1 盖梁正面图(单位:cm)

2、设计概况 1、上部结构:采用三跨简支梁桥8m+10m+8m 装配式钢筋混凝土空心板梁,预制吊装。采用桥面连续式,三跨一联。 2、下部结构:桥墩采用排架式桥墩,桥台为轻型桥台,桩基采用直接1000mm钻孔灌注桩,单排布置。 3、桥面铺装:从上至下采用100mm沥青混凝土+防水层1mm+100mmC40钢筋砼。 4、伸缩缝:全桥在0#台、3#台处各设置一道RGC-40型钢伸缩缝,在1#墩、2#墩处各设置一道桥面连续缝。 5、搭板:桥台台后机动车道与非机动车道部分设置长8m的搭板,板厚400mm,材料采用C30钢筋混凝土。 6、桥面设2%横坡,由墩台形成,桥面标高不足部分可由砼铺装层调整。 3、周边施工概况 桥梁南侧施工便道畅通,无任何障碍物。桥墩盖梁施工困难,所以本桥盖梁采用抱箍法施工。本次计算选择3#桥墩盖梁为例,验算盖梁施工中的抱箍应力是否达到施工要求。3#桥墩盖梁为八柱式桥墩,墩柱中心距离为3m,上方盖梁长,宽,高,砼浇筑量为。 二、编制依据 1、星辉路新建工程桥梁施工图纸 2、《公路桥涵施工技术规范》JGJ041-2000 3、《星辉路新建工程岩土工程勘察报告》 4、《建筑施工模板安全技术规程》JGJ162-2008

桥梁盖梁支架专项施工方案

新溆高速第十六合同段 桥梁盖梁支架专项施工方案 一、工程概况 我合同段起点为溆浦县油洋乡麻溪村,路线沿X012南侧展线,经甘溪村、庄坪村、河底江村、三板桥村、桥江镇槐荫村,路线终点为桥江乡独石村。路线全长 5.685km。其中,桥梁工程包括大中桥梁1687m/6座,桥梁下部构造设计有扩大基础、 U型桥台、桩基础、承台、肋板、立柱、盖梁等结构形式,上部构造有预应力空心板、T梁、现浇箱梁等结构形式,现在正进入高空作业盖梁施工。为确保桥梁盖梁施工按总体施组中的工期顺利开展,特制定以下有关桥梁盖梁支架施工的专项方案。 二、施工部署 我部施工的桥梁工程共计6座,其中K75+722擂鼓坡大桥盖梁支架采用包箍法施工,其余K76+370.5廖家湾大桥、K78+285新塘湾大桥及A、B匝道桥、K79+532向家山大桥等五座桥梁盖梁采用剪力销法施工。 三、施工方案及稳定计算 (一)包箍法施工方案 盖梁包箍法无支架施工可操作性强,有很高的安全保证体系,外观轻巧又便于检查验收,可以较好控制施工安全,支模可以省很多工时,对地基要求不高,节省支撑钢管,大大降低了成本。抱箍法无支架施工很少影响道路、河道的交通和通航,

有利于快速施工和文明施工,具有很好的推广应用价值。 1、盖梁抱箍法结构设计 按最大立柱与盖梁尺寸进行设计验算,根据设计施工图,选定擂鼓坡大桥7#墩墩柱为φ200cm,盖梁尺寸为170*220(宽*高)为设计验算依据 (1)、侧模与端模支撑 侧模为特制大钢模,面模厚度为δ6mm,肋板高为10cm,在肋板外设2[16违带。在侧模外侧采用间距1.0m的2[16b作竖带,竖带高2.9m;在竖带上下各设一条φ20的栓杆作拉杆,上下拉杆间间距2.7m,在竖带外设φ48的钢管斜撑,支撑在横梁上。端模为特制大钢模,面模厚度为δ6mm,肋板高为10cm。在端模外侧采用间距1.0m 的2[16b作竖带,竖带高2.9m;在竖带外设φ48的钢管斜撑,支撑在横梁上。(2)、底模支撑 底模为特制大钢模,面模厚度为δ6mm,肋板高为10cm。在底模下部采用间距0.6m工16型钢作横梁,横梁长4.4m。盖梁悬出端底模下设三角支架支撑,三角支架放在横梁上。横梁底下设纵梁。横梁上设钢垫块以调整盖梁底2%的横向坡度与安装误差。与墩柱相交部位采用特制型钢支架作支撑。 (3)、受荷纵梁 在横梁底部采用双层1排加强型贝雷片(标准贝雷片规格:3000cm×1500cm,加强弦杆高度10cm)连接形成纵梁,长12m,每组中的两排贝雷片拼装在一起,两

高架桥墩柱施工方案

高架桥墩柱施工方案 本工程主线标准桥墩采用Y形双立柱,立柱之间设置预应力混凝土横梁以平衡外力,立柱为矩形断面,根部断面尺寸为1.75m×1.75m,四周设R15cm圆角。两联之间的桥墩顶部纵向展开。P123桥墩由于高度较高,在中间加联系梁一道。 匝道桥墩采用以矩形为主,上部分叉的立柱形式;根部断面尺寸为 1.6m×1.6m;边墩立柱在顶部展开,以满足支座边缘尺寸不小于15cm的要求。E匝道和F匝道桥台采用直立式桥台。 墩台身施工中,模板采用新的、特制定型钢模板,砼采用商品混凝土,砼搅拌运输车运送,汽车泵泵送,采用串筒下料。 1、施工工艺流程 墩台身施工工艺流程见下图。 2、施工方法 (1)基坑回填 墩身施工前,首先进行基坑回填,回填采用原土回填,且采用小型压实机械夯填密实,回填高度不超过承台顶面高度,并作成一定的坡度,以利积水的排除。 (2)测量放线 承台在混凝土完成后,采用全站仪在承台表面准确测设出墩台身十字线并用墨线弹出墩台身的外轮廓线,作为桥墩上部结构施工基准控制线,同时将标高控制点自水准基点引测至承台上,作为上部结构的控制点。因墩柱采用Y形双柱墩,故搭设施工脚手架时,应在脚手架上布设截面变化处的位置控制点及控制框,加强对钢筋位置的控制,测量工作严格实行“三级复核制”。

(3 )施工缝处理 墩柱施工前,将墩柱范围内承台顶面凿毛、清除浮浆、油污及泥土等杂质及预埋钢筋上附着的水泥浆,经凿毛处理后混凝土表面采用高压水冲洗干净,加强基础与墩台身的连接效果。 (4)立柱钢筋施工 立柱主筋接头采用对焊机对焊,焊接时两焊接钢筋应对齐,轴线方向一致,并采用加绑筋全线焊接牢固;与承台与埋钢筋的对接采用电渣压力焊。对于箍筋与加强筋绑扎,每个接点都要求进行绑扎,钢筋绑扎采用22#铅丝,无漏绑、松动现象,钢筋骨架结实稳固,并有足够的钢度,在灌注过程中不发生任何松动。安装钢筋骨架时,由于主筋长度较长,采用机械配合安装。成型后的立柱钢筋按设计要求进行整形,并设置加强筋,防止钢筋笼发生整体扭转。钢筋笼四周牢固技术准备 基顶放线墩顶定位 墩台身钢筋安装 墩台身模板安装 质量检验 浇筑墩台身混凝土 拆模养护 自检后报监理签证 钢筋制作 模板制作 报监理签证 图9-6 墩台身施工工艺流程图 下道工序 混凝土拌制、运输 配合比设计 浇筑墩台身混凝土 拆模养护

相关文档