文档库 最新最全的文档下载
当前位置:文档库 › 内存大小浅谈

内存大小浅谈

内存大小浅谈
内存大小浅谈

今天,Dwight Silverman将给大家普及一下小知识。当我们买电脑时,是选择32位Vista还是尝试一下64位Vista呢?在回答这个问题前,先来了解一下这方面的知识。

比起4G限制的32位Vista来,64位版的可以有效利用更多内存。从这句话可以看出,4G是个分水岭。低于4G内存,32位Vista照跑不误,但是高于

4G后,就需要64位Vista才能充分利用这么大的内存了。人们往往会将“内存”和“RAM”搞混淆,会把内存误认为就是RAM,这个错误的概念让不少人都付出了昂贵的代价,因为这些人购买了预装4GB内存或RAM并预装32位Vista的机器。而直到买回来后,才发现根本无法充分利用这么庞大的内存。

内存:在计算机的组成结构中,有一个很重要的部分,就是存储器。存储器是用来存储程序和数据的部件,对于计算机来说,有了存储器,才有记忆功能,才能保证正常工作。存储器的种类很多,按其用途可分为主存储器和辅助存储器,主存储器又称内存储器(简称内存,港台称之为记忆体)。内存一般采用半导体存储单元,包括随机存储器(RAM),只读存储器(ROM),以及高速缓存(CACHE)。只不过因为RAM是其中最重要的存储器。

RAM:存储单元的内容可按需随意取出或存入,且存取的速度与存储单元的位置无关的存储器。这种存储器在断电时将丢失其存储内容,故主要用于存储短时间使用的程序。

4G的限制所有安装的内存总和,而不仅仅是RAM。也就是说,你的系统内存(内存条),显卡专用内存(显存),PCI内存扩展,ACPI扩展以及其他零零碎碎的加起来,不能大于4G。如果你认为系统内存是唯一重要的因素,现在再想想。我们完全可以买张1G内存的显卡或者1G的内存条,当然如果有多余的钱的话,还可以买3G的内存条。

很多人不知道为什么会有4G的限制,下面我们来看看是怎么算出来的:

32位系统下支持的最大内存容量为:

232 = 4,294,967,296 bytes

4,294,967,296 / (1,024 x 1,024) = 4,096 MB = 4GB

而在64位系统下,这个数字为:

264 = 18,446,744,073,709,551,616

18,446,744,073,709,551,616 / (1,024 x 1,024) = 16EB (exabytes)

附:

1GB (Gigabyte 吉字节又称“千兆”)=1024MB,

1TB (Trillionbyte 万亿字节太字节)=1024GB,其中1024=2^10 ( 2 的10次方),

1PB(Petabyte 千万亿字节拍字节)=1024TB,

1EB(Exabyte 百亿亿字节艾字节)=1024PB,

如果你的系统拥有4GB内存或RAM,还有一块512MB显存的显卡,那么只有其中的3GB左右是可以得到充分利用的。如果想要换块更大显存的显卡,或者想要用2块显卡进行混合交火或SLI双路渲染的话,最好还是考虑一下换用64位Vista。

操作系统内存管理复习过程

操作系统内存管理

操作系统内存管理 1. 内存管理方法 内存管理主要包括虚地址、地址变换、内存分配和回收、内存扩充、内存共享和保护等功能。 2. 连续分配存储管理方式 连续分配是指为一个用户程序分配连续的内存空间。连续分配有单一连续存储管理和分区式储管理两种方式。 2.1 单一连续存储管理 在这种管理方式中,内存被分为两个区域:系统区和用户区。应用程序装入到用户区,可使用用户区全部空间。其特点是,最简单,适用于单用户、单任务的操作系统。CP/M和 DOS 2.0以下就是采用此种方式。这种方式的最大优点就是易于管理。但也存在着一些问题和不足之处,例如对要求内

存空间少的程序,造成内存浪费;程序全部装入,使得很少使用的程序部分也占用—定数量的内存。 2.2 分区式存储管理 为了支持多道程序系统和分时系统,支持多个程序并发执行,引入了分区式存储管理。分区式存储管理是把内存分为一些大小相等或不等的分区,操作系统占用其中一个分区,其余的分区由应用程序使用,每个应用程序占用一个或几个分区。分区式存储管理虽然可以支持并发,但难以进行内存分区的共享。 分区式存储管理引人了两个新的问题:内碎片和外碎片。 内碎片是占用分区内未被利用的空间,外碎片是占用分区之间难以利用的空闲分区(通常是小空闲分区)。 为实现分区式存储管理,操作系统应维护的数据结构为分区表或分区链表。表中各表项一般包括每个分区的起始地址、大小及状态(是否已分配)。

分区式存储管理常采用的一项技术就是内存紧缩(compaction)。 2.2.1 固定分区(nxedpartitioning)。 固定式分区的特点是把内存划分为若干个固定大小的连续分区。分区大小可以相等:这种作法只适合于多个相同程序的并发执行(处理多个类型相同的对象)。分区大小也可以不等:有多个小分区、适量的中等分区以及少量的大分区。根据程序的大小,分配当前空闲的、适当大小的分区。 优点:易于实现,开销小。 缺点主要有两个:内碎片造成浪费;分区总数固定,限制了并发执行的程序数目。 2.2.2动态分区(dynamic partitioning)。 动态分区的特点是动态创建分区:在装入程序时按其初始要求分配,或在其执行过程中通过系统调用进行分配或改变分区大小。与固定分区相比较其优点是:没有内碎

计算机基础知识试题及答案(全)..

《大学计算机》基础知识试题及答案 一、单选题: (说明:将认为正确答案的字母填写在每小题后面的括号内) 1.世界上第一台通用电子数字计算机诞生于( A )。 A.美国B.英国C.德国D.日本 2.世界上第一台通用电子数字计算机诞生于( B )。 A.1953年B.1946年C.1964年D.1956年 3.第一台电子计算机是1946年在美国研制的,该机的英文缩写名是(A )。 A.ENIAC B.EDVAC C.EDSAC D.MARK-II 4.一个完整的微型计算机系统应包括(C )。 A.计算机及外部设备 B.主机箱、键盘、显示器和打印机 C.硬件系统和软件系统 D.系统软件和系统硬件 5.计算机的中央处理器CPU包括运算器和(C )两部分。 A.存储器B.寄存器C.控制器D.译码器 6.下列设备中,( D )不是微型计算机的输出设备。 A.打印机B.显示器C.绘图仪D.扫描仪 7.下列各项中,不属于多媒体硬件的是(D )。 A.光盘驱动器 B.视频卡 C.音频卡 D.加密卡 8.计算机中对数据进行加工与处理的部件,通常称为( A )。 A.运算器 B.控制器 C.显示器 D.存储器 9.运算器的组成部分不包括( B )。 A.控制线路 B.译码器 C.加法器 D.寄存器 10.把内存中的数据传送到计算机的硬盘,称为(D )。 A.显示 B.读盘 C.输入 D.写盘 11.用MIPS为单位来衡量计算机的性能,它指的是计算机的( B ),指的是每 秒处理的百万级的机器语言指令数。 A.传输速率 B.运算速度 C.字长 D.存储器容量 12.计算机硬件的核心部件是( A )。 A.中央处理器B.存储器C.运算器D.控制器 13.在外部设备中,打印机属于计算机的( B )设备。 A.输入B.输出C.外存储D.内存储 14.CGA、EGA和VGA标志着(C )的不同规格和性能。 A.打印机 B.存储器 C.显示器 D.硬盘 15.硬盘上原存的有效信息,在下列哪种情况下会丢失( C )。 A.通过海关的X射线监视仪 B.放在盒内半年没有使用

计算机存储单位

字节就是由8个位所组成,可代表一个字符(A~Z)、数字(0~9)、或符号(,、?!%&+-*/),就是内存储存数据的基本单位。 1 byte = 8 bit 1 KB = 1024 bytes =210 bytes 1 MB = 1024 KB = 220 bytes 1 GB = 1024 MB = 230 bytes 位:“位(bit)”就是电子计算机中最小的数据单位。每一位的状态只能就是0或1。 字节:8个二进制位构成1个“字节(Byte)”,它就是存储空间的基本计量单位。1个字节可以储存1个英文字母或者半个汉字,换句话说,1个汉字占据2个字节的存储空间。 字:“字”由若干个字节构成,字的位数叫做字长,不同档次的机器有不同的字长。例如一台8位机,它的1个字就等于1个字节,字长为8位。如果就是一台16位机,那么,它的1个字就由2个字节构成,字长为16位。字就是计算机进行数据处理与运算的单位。 KB:在一般的计量单位中,通常K表示1000。例如:1公里= 1000米,经常被写为1km;1公斤=1000克,写为1kg。同样K在二进制中也有类似的含义。只就是这时K表示1024,也就就是2的10次方。1KB表示1K个Byte,也就就是1024个字节。 MB:计量单位中的M(兆)就是10的6次方,见到M自然想起要在该数值的后边续上六个0,即扩大一百万倍。在二进制中,MB也表示到了百万级的数量级,但1MB不正好等于1000000字节,而就是1048576字节,即1MB = 2E+20 Bytes = 1048576Bytes。 计算机系统中的数据的计量单位。 在标准10进制公制度量系统中,倍率关系如下所示 kilo (k)* = 10 ^ 3 = 1,000 thousand 千 mega (M) = 10 ^ 6 = 1,000,000 million 百万 giga (G) = 10 ^ 9 = 1,000,000,000 billion 十亿 tera (T) = 10 ^ 12 = 1,000,000,000,000 trillion 万亿 * 在公制系统中, "k" 或者"kilo" 前缀只使用小写字母 在计算机/通讯行业中,计算数据传送速度也使用每秒传送公制数据量来计算 1 bit (b) = 0 or 1 = one binary digit 一个二进制位元 1 kilobit(kb)=10^3 bits = 1,000 bits 一千位元 1 Megabit(Mb)=10^6 bits = 1,000,000 bits 一百万位元 1 Gigabit(Gb)=10^9 bits = 1,000,000,000 bits 一万亿位元 根据进制规定,传送速度可以有两种表示方法bps 与Bps,但就是她们就是有严格区别。Bps中的B 使用的就是二进制系统中的Byte字节,bps中的b 就是十进制系统中的位元。 在我们常说的56K拨号,100M局域网都就是bps计量,当用于软件下载时,下载工具一般又以Bps计算,所以它们之间有8 bit=1 Byte 的换算关系,那么56Kbps拨号极限下载速度就是56Kbps/8=7KBps 每秒下载7K字节。 在数据存储,容量计算中,一般又结合公制的进制与二进制的数据计算方法来计算 (二进制) 1 byte (B) = 8 bits (b) 字节=8个二进制位 1 Kilobyte(K/KB)=2^10 bytes=1,024 bytes 千字节 1 Megabyte(M/MB)=2^20 bytes=1,048,576 bytes 兆字节 1 Gigabyte(G/GB)=2^30 bytes=1,073,741,824 bytes 千兆字节 1 Terabyte(T/TB)=2^40 bytes=1,099,511,627,776 bytes吉字节 一些存储器厂家特别就是硬盘厂家就更紧密结合十进制来计算,这就就是为什么操作系统显示的容量与厂家标示的容量有些一些差异的原因

操作系统实验内存分配

西安邮电大学 (计算机学院) 课内实验报告 实验名称:内存管理 专业名称:软件工程 班级: 学生姓名: 学号(8位): 指导教师: 实验日期:

实验五:进程 1.实验目的 通过深入理解区管理的三种算法,定义相应的数据结构,编写具体代码。充分模拟三种算法的实现过程,并通过对比,分析三种算法的优劣。 (1)掌握内存分配FF,BF,WF策略及实现的思路; (2)掌握内存回收过程及实现思路; (3)参考给出的代码思路,实现内存的申请、释放的管理程序,调试运行,总结程序设计中出现的问题并找出原因,写出实验报告。 2.实验要求: 1)掌握内存分配FF,BF,WF策略及实现的思路; 2)掌握内存回收过程及实现思路; 3)参考本程序思路,实现内存的申请、释放的管理程序,调试运行,总结程序设计中出现的问题并找出原因,写出实验报告。 3.实验过程: 创建进程:

删除其中几个进程:(默认以ff首次适应算法方式排列) Bf最佳适应算法排列方式:

wf最差匹配算法排列方式: 4.实验心得: 这次实验实验时间比较长,而且实验指导书中对内存的管理讲的很详细,老师上课的时候也有讲的很详细,但是代码比较长,刚开始的时候也是不太懂,但是后面经过和同学一起商讨,明白几种算法的含义: ①首次适应算法。在采用空闲分区链作为数据结构时,该算法要求空闲分区链表以地址递增的次序链接。在进行内存分配时,从链首开始顺序查找,直至找到一个能满足进程大小要求的空闲分区为止。然后,再按照进程请求内存的大小,从该分区中划出一块内存空间分配给请求进程,余下的空闲分区仍留在空闲链中。 ②循环首次适应算法。该算法是由首次适应算法演变而形成的,在为进程分配内存空间时,从上次找到的空闲分区的下一个空闲分区开始查找,直至找到第一个能满足要求的空闲分区,并从中划出一块与请求的大小相等的内存空间分配给进程。 ③最佳适应算法将空闲分区链表按分区大小由小到大排序,在链表中查找第一个满足要求的分区。 ④最差匹配算法将空闲分区链表按分区大小由大到小排序,在链表中找到第一个满足要求的空闲分区。 实验中没有用到循环首次适应算法,但是对其他三种的描述还是很详细,总的来说,从实验中还是学到了很多。 5.程序源代码: #include #include #include

计算机中容量单位B、KB、MB、GB和TB的关系

字节(Byte,简称B)与K、KB、M、MB的关系 计算机中各种存储容量的单位都是用字节(Byte简为B)来表示,此外还有KB、MB、GB和TB,他们的关系是: 1KB=1024Bytes=2的10次方Bytes 1MB=1024KB=2的20次方Bytes 1GB=1024MB=2的30次方Bytes 1TB=1024GB=2的40次方Bytes B(字节)、KB(K)、MB(M、兆)、GB(G)、TB 是大小不同的单位。 B :B就是Byte(字节)的简称,它是一个电脑存储的基本单位。1字节=8 位,就是有8个二进制数组成。1个英文字符是1个字节,也就是1B;1个汉字为2个字符,也就是2B。 K (KB):K 是千的意思,K就是KB,1024字节为1KB,即:1024B=1KB M (MB、兆):M 是兆的意思,M就是MB,1024KB=1MB G(GB):1024 MB = 1 GB TB:还有TB一般用的就不多了,1TB=1024GB K、M、G都是KB、MB、GB的简称。平时我们说的1兆就是1M(MB),1(发音“计”)就是1G(GB)。我们的照片一般是104KB、209KB、1.45MB、2.45MB、3.32MB等等。 K=KB、M=MB、 1MB=1024KB 1024 B = 1 KB ;1024 KB = 1 MB ;1024 MB = 1 GB K=kilo KB=kilobyte M=mega MB=megabyte Kb=kilobit Mb=megabit 1KB=1024Bytes=2的10次方Bytes 1MB=1024KB=2的20次方Bytes

操作系统课程设计内存管理

内存管理模拟 实验目标: 本实验的目的是从不同侧面了解Windows 2000/XP 对用户进程的虚拟内存空间的管理、分配方法。同时需要了解跟踪程序的编写方法(与被跟踪程序保持同步,使用Windows提供的信号量)。对Windows分配虚拟内存、改变内存状态,以及对物理内存(physical memory)和页面文件(pagefile)状态查询的API 函数的功能、参数限制、使用规则要进一步了解。 默认情况下,32 位Windows 2000/XP 上每个用户进程可以占有2GB 的私有地址空间,操作系统占有剩下的2GB。Windows 2000/XP 在X86 体系结构上利用二级页表结构来实现虚拟地址向物理地址的变换。一个32 位虚拟地址被解释为三个独立的分量——页目录索引、页表索引和字节索引——它们用于找出描述页面映射结构的索引。页面大小及页表项的宽度决定了页目录和页表索引的宽度。 实验要求: 使用Windows 2000/XP 的API 函数,编写一个包含两个线程的进程,一个线程用于模拟内存分配活动,一个线程用于跟踪第一个线程的内存行为,而且要求两个线程之间通过信号量实现同步。模拟内存活动的线程可以从一个文件中读出要进行的内存操作,每个内存操作包括如下内容: 时间:操作等待时间。 块数:分配内存的粒度。 操作:包括保留(reserve)一个区域、提交(commit)一个区域、释放(release)一个区域、回收(decommit)一个区域和加锁(lock)与解锁(unlock)一个区域,可以将这些操作编号存放于文件。保留是指保留进程的虚拟地址空间,而不分配物理 存储空间。提交在内存中分配物理存储空间。回收是指释放物理内存空间,但在虚拟地址空间仍然保留,它与提交相对应,即可以回收已经提交的内存块。释放是指将物理存储和虚拟地址空间全部释放,它与保留(reserve)相对应,即可以释放已经保留的内存块。 大小:块的大小。 访问权限:共五种,分别为PAGE_READONLY,PAGE_READWRITE ,PAGE_EXECUTE,PAGE_EXECUTE_READ 和PAGE EXETUTE_READWRITE。可以将这些权限编号存放于文件中跟踪线程将页面大小、已使用的地址范围、物理内存总量,以及虚拟内存总量等信息显示出来。

操作系统实验内存分配

精心整理西安邮电大学 (计算机学院) 课内实验报告 1. (1 (2 (3 原因,写出实验报告。 2.实验要求: 1)掌握内存分配FF,BF,WF策略及实现的思路; 2)掌握内存回收过程及实现思路; 3)参考本程序思路,实现内存的申请、释放的管理程序,调试运行,总结程序设计中出现的问题并找出原因,写出实验报告。

3.实验过程: 创建进程: 删除其中几个进程:(默认以ff首次适应算法方式排列) Bf最佳适应算法排列方式: wf最差匹配算法排列方式: 4.实验心得: 明 实验中没有用到循环首次适应算法,但是对其他三种的描述还是很详细,总的来说,从实验中还是学到了很多。 5.程序源代码: #include #include #include #include

#define PROCESS_NAME_LEN 32 //进程名长度 #define MIN_SLICE 10 //最小碎片的大小#define DEFAULT_MEM_SIZE 1024 //内存大小 #define DEFAULT_MEM_START 0 //起始位置 /*内存分配算法*/ #define MA_FF 1 #define MA_BF 2 #define MA_WF 3 /*描述每一个空闲块的数据结构*/ struct free_block_type { }; /* /* { }; /* /* void display_menu(); int set_mem_size(); void set_algorithm(); void rearrange(int algorithm); int rearrange_WF(); int rearrange_BF(); int rearrange_FF(); int new_process(); int allocate_mem(struct allocated_block *ab);

计算机储存容量基本单位

电脑世界是由0与1组成,其中有数以万计的线路,一条线路传递一个信号,而0代表没有信号,1代表有信号,就像电源开关一样,同一时间只可能有一种状态,所以电脑最基本的单位就是一条线路的信号,我们就把它称作“位”,英文叫做bit,缩写为b。“位”和“字节”其实都是电脑的计量单位,我们可以理解成字节是由位组成的,一个“字节”等于8“位”,Byte是它的缩写."位" (bit)这个单位太小,所以字节(Byte)是电脑存储容量的基本计量单位。Byte 可简写为B,一个字节由八个二进制位组成,其最小值为0,最大值为11111111,一个存储单元能存储一个字节的内容。 这些单位之间的换算关系为: Kilo K 1K字节=1,024个字节 Mega M 1M字节= 1,048,576字节 Giga G 1G字节=1,073,741,824字节 Tera T 1T字节=1,099,511,627,776字节 Peta P 1P字节=1,125,899,906,842,624字节 Exa E 1E字节=1,152,921,504,606,846,976字节 Zetta Z 1Z字节=1,180,591,620,717,411,303,424字节 Yotta Y 1Y字节=1,208,925,819,614,629,174,706,176字节 根据上表可以算出40GB的硬盘应该可以存储40GB×1,073,741,824字节=4294 9672960字节的数据,但实际不然。 计算机中采用二进制,这样就造成在操作系统中对容量的计算是以每1024为一进制的,每1024字节为1KB,每1024KB为1MB,每1024MB为1GB;而硬盘厂商在计算容量时,则是以每1000为一进制的,每1000“字节”为1KB,每1000KB 为1MB,每1000MB为1GB,这二者进制上的差异造成了硬盘容量缩水。 所以标称40GB的硬盘,在操作系统中显示只有38GB;80GB的硬盘只有75GB;而1 20GB的硬盘则只有114GB了。 1、计算机存储信息的最小单位,称之为位(bit),音译比特,二进制的一个“0” 或一个“1”叫一位。 2、计算机存储容量基本单位是字节(Byte),音译为拜特,8个二进制位组成1 个字节,一个标准英文字母占一个字节位置,一个标准汉字占二个字节位置。3、计算机存储容量大小以字节数来度量,1024进位制: 1024B=1K(千)B 1024KB=1M(兆)B 1024MB=1G(吉)B 1024GB=1T(太)B 以下还有PB、EB、ZB、YB 、NB、DB,一般人不常使用了。 1字节=8bit 1KB=1024字节 1MB=1024KB 1GB=1024MB

计算机操作系统内存分配实验报告

一、实验目的 熟悉主存的分配与回收。理解在不同的存储管理方式下.如何实现主存空间的分配与回收。掌握动态分区分配方式中的数据结构和分配算法及动态分区存储管理方式及其实现过程。 二、实验内容和要求 主存的分配和回收的实现是与主存储器的管理方式有关的。所谓分配.就是解决多道作业或多进程如何共享主存空间的问题。所谓回收.就是当作业运行完成时将作业或进程所占的主存空间归还给系统。 可变分区管理是指在处理作业过程中建立分区.使分区大小正好适合作业的需求.并且分区个数是可以调整的。当要装入一个作业时.根据作业需要的主存量查看是否有足够的空闲空间.若有.则按需要量分割一个分区分配给该作业;若无.则作业不能装入.作业等待。随着作业的装入、完成.主存空间被分成许多大大小小的分区.有的分区被作业占用.而有的分区是空闲的。 实验要求使用可变分区存储管理方式.分区分配中所用的数据结构采用空闲分区表和空闲分区链来进行.分区分配中所用的算法采用首次适应算法、最佳适应算法、最差适应算法三种算法来实现主存的分配与回收。同时.要求设计一个实用友好的用户界面.并显示分配与回收的过程。同时要求设计一个实用友好的用户界面,并显示分配与回收的过程。 三、实验主要仪器设备和材料 实验环境 硬件环境:PC或兼容机 软件环境:VC++ 6.0 四、实验原理及设计分析 某系统采用可变分区存储管理.在系统运行当然开始.假设初始状态下.可用的内存空间为640KB.存储器区被分为操作系统分区(40KB)和可给用户的空间区(600KB)。 (作业1 申请130KB、作业2 申请60KB、作业3 申请100KB 、作业2 释放 60KB 、作业4 申请 200KB、作业3释放100KB、作业1 释放130KB 、作业5申请140KB 、作业6申请60KB 、作业7申请50KB) 当作业1进入内存后.分给作业1(130KB).随着作业1、2、3的进入.分别分配60KB、100KB.经过一段时间的运行后.作业2运行完毕.释放所占内存。此时.作业4进入系统.要求分配200KB内存。作业3、1运行完毕.释放所占内存。此时又有作业5申请140KB.作业6申请60KB.作业7申请50KB。为它们进行主存分配和回收。 1、采用可变分区存储管理.使用空闲分区链实现主存分配和回收。 空闲分区链:使用链指针把所有的空闲分区链成一条链.为了实现对空闲分区的分配和链接.在每个分区的起始部分设置状态位、分区的大小和链接各个分区的前向指针.由状态位指示该分区是否分配出去了;同时.在分区尾部还设置有一后向指针.用来链接后面的分区;分区中间部分是用来存放作业的空闲内存空间.当该分区分配出去后.状态位就由“0”置为“1”。 设置一个内存空闲分区链.内存空间分区通过空闲分区链来管理.在进行内存分配时.系统优先使用空闲低端的空间。 设计一个空闲分区说明链.设计一个某时刻主存空间占用情况表.作为主存当前使用基础。初始化空间区和已分配区说明链的值.设计作业申请队列以及作业完成后释放顺序.实现主存的分配和回收。要求每次分配和回收后显示出空闲内存分区链的情况。把空闲区说明链的变化情况以及各作业的申请、释放情况显示打印出来。

操作系统简答及大题

1、请举例说明单用户单任务的操作系统与多用户多任务的操作系统之间的区别? 2、死锁产生的4个必要条件是什么?它们是彼此独立的吗? 3、当系统中的地址空间非常大时(例如32位),会给页表的设计带来什么问题?请给出一个方案并分析其优缺点。 4、文件在磁盘上存放的形式有几种?它们与存取方法有何关系? 5、试比较进程与程序的异同。 6、脱机命令接口和联机命令接口有什么不同? 1、答案:DOS是单用户单任务的操作系统,通常这种操作系统没有进程调度,内存管理也比较简单,只划分为系统区和用户区,是单道的程序运行环境。Unix是多用户多任务的操作系统,有进程管理,内存管理也比较复杂。它们都具有设备管理系统和文件管理系统,但功能也有差别。 2、互斥,请求和保持,不剥夺,环路等待。 不是相互独立的,前三个条件是必要条件,而环路等待实际上是在前三者基础上的一种可能的结果,是死锁的一种现象。 3、会导致页表过长从而很难找到一块连续的存储空间存放页表,此外如果页表中的行不连续也会加大访问页表的查找时间。 可以用多级页表解决这个问题,将页表分页,离散地存储在不同区域,同时建立另一张页表映射原来页表的每一页。优点是不需要大块的连续空间,但并没有减少页表的空间,同时也增加了访存次数。 4、三种存储结构的特点略。 5、答案:进程与程序是紧密相关而又完全不同的两个概念:1)每个进程实体中包含了程序段和数据段这两个部分,因此他们是紧密相关的。但从结构上看,进程实体中除了程序段和数据段外,还必须包含一个数据结构,即进程控制块PCB。2)进程是程序的一次执行过程,因此是动态的;动态性还表现在进程由创建而产生、由调度而进行、由撤销而消亡,即它具有一定的生命周期。而程序只是一组指令的有序集合,并可以永久的驻留在某种介质上,其本身不具有运动的含义,是静态的。3)多个进程实体可同时存放在内存中并发执行,其实这正是引入进程的目的。而程序的并发执行具有不可再现性,因此程序不能正确并发执行。4)进程是一个能够独立运行、独立分配资源和独立接受调度的基本单位,而程序不可能在多道环境下独立运行。5)进程与程序不一一对应,同一个程序多次运行,将形成不同的进程;同一个程序的一次执

第四章 操作系统存储管理(练习题答案)

第四章存储管理 1. C存储管理支持多道程序设计,算法简单,但存储碎片多。 A. 段式 B. 页式 C. 固定分区 D. 段页式 2.虚拟存储技术是 B 。 A. 补充内存物理空间的技术 B. 补充相对地址空间的技术 C. 扩充外存空间的技术 D. 扩充输入输出缓冲区的技术 3.虚拟内存的容量只受 D 的限制。 A. 物理内存的大小 B. 磁盘空间的大小 C. 数据存放的实际地址 D. 计算机地址位数 4.动态页式管理中的 C 是:当内存中没有空闲页时,如何将已占据的页释放。 A. 调入策略 B. 地址变换 C. 替换策略 D. 调度算法 5.多重分区管理要求对每一个作业都分配 B 的内存单元。 A. 地址连续 B. 若干地址不连续 C. 若干连续的帧 D. 若干不连续的帧 6.段页式管理每取一数据,要访问 C 次内存。 A. 1 B. 2 C. 3 D. 4 7.分段管理提供 B 维的地址结构。 A. 1 B. 2 C. 3 D. 4 8.系统抖动是指 B。 A. 使用计算机时,屏幕闪烁的现象 B. 刚被调出内存的页又立刻被调入所形成的频繁调入调出的现象 C. 系统盘不干净,操作系统不稳定的现象 D. 由于内存分配不当,造成内存不够的现象 9.在 A中,不可能产生系统抖动现象。 A. 静态分区管理 B. 请求分页式管理 C. 段式存储管理 D. 段页式存储管理 10.在分段管理中 A 。 A. 以段为单元分配,每段是一个连续存储区 B. 段与段之间必定不连续 C. 段与段之间必定连续 D. 每段是等长的 11.请求分页式管理常用的替换策略之一有 A 。 A. LRU B. BF C. SCBF D. FPF 12.可由CPU调用执行的程序所对应的地址空间为 D 。 A. 名称空间 B. 虚拟地址空间 C. 相对地址空间 D. 物理地址空间 13. C 存储管理方式提供二维地址结构。 A. 固定分区 B. 分页

操作系统之内存分配与回收

操作系统实验 内存的分配与回收 实验报告 一、实验题目:内存的分配与回收 二、实验内容:利用可变分区的首次适应算法,模拟内存的分配与回收。 三、实验目的:掌握可变分区首次适应算法的原理以及其编程实现。 四、实验过程: 1、基本思想:可变分区分配是根据进程的实际需求,动态地为之分配内存空间。首次适应算法要求空闲空间链以地址递增的次序链接。进行内存分配时,从链表头部开始依次检索,找到第一个不小于请求空间大小的空闲空间进行分配。分配时需考虑碎片问题,若分配会导致碎片产生则将整块分区分配。内存的回收需要考虑四种情况:⑴回收分区前后两个分区都空闲,则需要和前后两个分区合并;(2)回收分区只有前一分区空闲,则与前一分区合并;(3)回收分区只有后一分区空闲,则和后一分区合并;(4)回收分区独立,不考虑合并 。 2、主要数据结构: struct FreeArea{ 链结点包含的数据:分区号、大小、起址、标记 i nt ID; i nt size;

l ong address; i nt sign; }; struct Node { 双链表结点结构体:数据区、前向指针、后继指针 F reeArea data; s truct Node *prior; s truct Node *next; }*DLinkList; 3、输入、输出: 输入: I.内存分配时由键盘输入分区ID和大小; II.内存回收时由键盘输入需要回收的分区ID; 输出:输出内存的分配情况(按照地址从低到高) 4、程序流程图:

5、实验结果截屏:

6、源程序代码: #include using namespace std; #define Free 0 //空闲状态 #define Busy 1 //已用状态 #define PBusy 2 //碎片已用状态 #define FINISH 1 //完成 #define FINISH2 1 //完成 #define ERROR 0 //出错 #define memory 512 //最大内存空间为(单位:KB)#define min 10 //碎片最小值(单位:KB) typedef struct FreeArea//空闲链数据 { i nt ID; i nt size; l ong address; i nt sign; }; typedef struct Node//空闲连结构 { F reeArea data;

操作系统习题课件.doc

一、选择题 1.在三种基本类型的操作系统中,都设置了进程调度,在批处理系统中还应设置作业调度;在分时系统中除了设置进程调度,通常还设置中级调度,在多处理机系统中则还需设置剥夺调度。 2.在面向用户的调度准则中,截止时间的保证是选择实时调度算法的重要准则,响应时间快是选择分时系统中调度算法的重要准则,平均周转时间短是批处理系统中选择作业调度算法的重要准则,而优先权高的作业能获得优先服务准则则是为了照顾紧急作业用户的要求而设置的。 3.作业调度是从处于后备状态的队列中选取作业投入运行,周转时间是指作业进入系统到作业完成所经过的时间间隔,时间片轮转算法不适合作业调度。 4.下列算法中,FCFS算法只能采用非抢占调度方式,时间片轮转法只能采用抢占调度方式,而其余的算法既可采用抢占方式也可采用非抢占方式。 5.我们如果为每一个作业只建立一个进程,则为了照顾短作业用户,应采用短作业优先;为照顾紧急作业的用户,应采用基于优先权的剥夺调度算法;为能实现人机交互作用应采用时间片轮转法;为了兼顾短作业和长时间等待的用户,应采用高响应比优先;为了使短作业、长作业及交互作业用户都比较满意,应采用多级反馈队列调度算法;为了使平均周转时间最短,应采用短作业优先算法。 6.下列调度方式和算法中,最容易引起进程长期等待的是抢占式静态优先权优先算法。 7.下列选项中,降低进程优先级的最合理的时机是进程的时间片用完。 8.支持多道程序设计的操作系统在运行过程中,不断地选择新进程运行来实现 CPU的共享,但其中有新进程进入就绪队列不是引起操作系统选择新进程的直 接原因。 9.从下面关于优先权大小的论述中,选择一条正确的论述。 (6)在动态优先权时,随着进程执行时间的增加,其优先权降低。 10.假设就绪队列中有10个进程,以时间片轮转方式进行进程调度,时间片大小 为300ms,CPU进行进程切换要花费10ms,则系统开销所占的比率约为%3,若 就绪队列中进程的个数增加到20个,其余条件不变,则系统开销所占的比率将

操作系统之内存分配与回收

操作系统实验 存的分配与回收 实验报告 一、实验题目:存的分配与回收 二、实验容:利用可变分区的首次适应算法,模拟存的分配与回收。 三、实验目的:掌握可变分区首次适应算法的原理以及其编程实现。 四、实验过程: 1、基本思想:可变分区分配是根据进程的实际需求,动态地为之分配存空间。首次适应算法要求空闲空间链以地址递增的次序。进行存分配时,从链表头部开始依次检索,找到第一个不小于请求空间大小的空闲空间进行分配。分配时需考虑碎片问题,若分配会导致碎片产生则将整块分区分配。存的回收需要考虑四种情况:⑴回收分区前后两个分区都空闲,则需要和前后两个分区合并;(2)回收分区只有前一分区空闲,则与前一分区合并;(3)回收分区只有后一分区空闲,则和后一分区合并;(4)回收分区独立,不考虑合并 。 2、主要数据结构: struct FreeArea{ 链结点包含的数据:分区号、大小、起址、标记 int ID; int size;

long address; int sign; }; struct Node { 双链表结点结构体:数据区、前向指针、后继指针FreeArea data; struct Node *prior; struct Node *next; }*DLinkList; 3、输入、输出: 输入: I.存分配时由键盘输入分区ID和大小; II.存回收时由键盘输入需要回收的分区ID; 输出:输出存的分配情况(按照地址从低到高) 4、程序流程图:

5、实验结果截屏:

6、源程序代码: #include using namespace std; #define Free 0 //空闲状态 #define Busy 1 //已用状态 #define PBusy 2 //碎片已用状态 #define FINISH 1 //完成 #define FINISH2 1 //完成 #define ERROR 0 //出错 #define memory 512 //最大存空间为(单位:KB)#define min 10 //碎片最小值(单位:KB) typedef struct FreeArea//空闲链数据 { int ID; int size; long address; int sign; }; typedef struct Node//空闲连结构 { FreeArea data;

操作系统原理-内存分配与回收

内存的动态存储管理 一、实验内容 编写程序实现动态分区存储管理方式的主存分配与回收。具体内容包括:首先确定主存空间分配表;然后采用最先适应算法完成主存空间的分配与回收;最后编写主函数对所做工作进行测试 二、实验原理 模拟存储管理中内存空间的管理和分配内存空间的管理分为固定分区管理方式,可变分区管理方式,页式存储管理,段式存储管理。 题目:模拟内存分配与回收 三、实验步骤(或过程) 在Microsoft Visual C++ 6.0环境下运行 1.设计一个空闲分区表,空闲分区表通过空闲分区链表来管理,在进行内存分配时,系统优先使用空闲分区低端的空间。 2.设计一个内存分区表,可用链表管理,用以表示当前以内存使用情况。 3.设计一个进程申请队列以及进程完成后的释放顺序,实现主存的分配和回收。 4.要求每次分配和回收后把空闲分区的变化情况以及各进程的申请、释放情况以及各进程的申请、释放情况以图形方式显示、打印出来。 最佳适应算法: 该算法总是把满足要求、又是最小的空闲区分配给作业。检查空闲区说明表是否有满足作业要求的空闲区,也分为三种情况:大于,等于,小于。若检查到有“等于”的情况,就可以直接分配,若没有,则继续检查是否有“大于”的情况

代码实现如下: #include #include #include #define n 64 //定义内存的大小 int a[n],count=0;//数组a用来保存内存使用状况1为已分配0为未分配,count用来记name 数组中元素个数 char name[n];//已分配内存的名称(字符类型) typedef struct linknode{ char pid; int start; int length; struct linknode *left,*right; }de_node; //进程节点结构体定义 //head1表示未分配内存队列头指针,head2便是已分配进程队列头指针 de_node *head1,*head2=NULL; struct linknode* creat()//创建一个进程节点 { int len,flag1=1;//用于表示进程是否可以创建 char id; struct linknode* p; p = (de_node *)malloc(sizeof(de_node));//试图在系统内存中开辟空间创建一个进程 if (p==NULL) //p为空,说明系统没有可用内存用于创建此模拟进程 { printf("系统没有足够的内存可供使用!\n");//输出 return(NULL);//返回空指针 } printf("请输入进程id(字符类型)和长度:");//为进程输入id和分配的长度 scanf("%c %d",&id,&len); fflush(stdin);//清除输入缓存 if((id>='a'&&id<='z'||id>='A'&&id<='Z')&&(len>0)){ for(int i=0;i

操作系统内存管理

操作系统内存管理 1. 内存管理方法 内存管理主要包括虚地址、地址变换、内存分配和回收、内存扩充、内存共享和保护等功能。 2. 连续分配存储管理方式 连续分配是指为一个用户程序分配连续的内存空间。连续分配有单一连续存储管理和分区式储管理两种方式。 2.1 单一连续存储管理 在这种管理方式中,内存被分为两个区域:系统区和用户区。应用程序装入到用户区,可使用用户区全部空间。其特点是,最简单,适用于单用户、单任务的操作系统。CP /M和DOS 2.0以下就是采用此种方式。这种方式的最大优点就是易于管理。但也存在着一些问题和不足之处,例如对要求内存空间少的程序,造成内存浪费;程序全部装入,使得很少使用

的程序部分也占用—定数量的内存。 2.2 分区式存储管理 为了支持多道程序系统和分时系统,支持多个程序并发执行,引入了分区式存储管理。分区式存储管理是把内存分为一些大小相等或不等的分区,操作系统占用其中一个分区,其余的分区由应用程序使用,每个应用程序占用一个或几个分区。分区式存储管理虽然可以支持并发,但难以进行内存分区的共享。 分区式存储管理引人了两个新的问题:内碎片和外碎片。 内碎片是占用分区内未被利用的空间,外碎片是占用分区之间难以利用的空闲分区(通常是小空闲分区)。 为实现分区式存储管理,操作系统应维护的数据结构为分区表或分区链表。表中各表项一般包括每个分区的起始地址、大小及状态(是否已分配)。 分区式存储管理常采用的一项技术就是内存紧缩

(compaction)。 2.2.1 固定分区(nxedpartitioning)。 固定式分区的特点是把内存划分为若干个固定大 小的连续分区。分区大小可以相等:这种作法只适合于多个相同程序的并发执行(处理多个类型相同的对象)。分区大小也可以不等:有多个小分区、适量的中等分区以及少量的大分区。根据程序的大小,分配当前空闲的、适当大小的分区。 优点:易于实现,开销小。 缺点主要有两个:内碎片造成浪费;分区总数固定,限制了并发执行的程序数目。 2.2.2动态分区(dynamic partitioning)。 动态分区的特点是动态创建分区:在装入程序时按其初始要求分配,或在其执行过程中通过系统调用进行分配或改变分区大小。与固定分区相比较其优点是:没有内碎片。但它却引入了另一种碎片——外碎片。动态分区的分区分配就是寻找某个空闲分区,其大小需大于或等于程序的要求。

操作系统内存管理

内存管理 1.分页内存管理方案 分页的最大作用就在于:使得进程的物理地址空间可以是非连续的。物理内存被划分为一小块一小块,每块被称为帧(Frame)。分配内存时,帧是分配时的最小单位,最少也要给一帧。在逻辑内存中,与帧对应的概念就是页(Page)。 每个操作系统都有自己的方法来保存页表。绝大多数都会为每个进程分配一个页表。现在由于页表都比较大,所以放在内存中(以往是放在一组专用寄存器里),其指针存在进程控制块(PCB)里,当进程被调度程序选中投入运行时,系统将其页表指针从进程控制块中取出并送入用户寄存器中。随后可以根据此首地址访问页表。 页表的存储方式是TBL(Translation look-aside buffer, 翻译后备缓冲器)+内存。TBL实际上是一组硬件缓冲所关联的快速内存。若没有TBL,操作系统需要两次内存访问来完成逻辑地址到物理地址的转换,访问页表算一次,在页表中查找算一次。TBL中存储页表中的一小部分条目,条目以键值对方式存储。 图1.带TLB的分页硬件 2.分段内存管理方案 采用分页内存管理有一个不可避免的问题:用户视角的内存和实际内存的分离。设想一段main函数代码,里面包含Sqrt函数的调用。按照编写者的理解,这段代码运行时,操作系统应该分配内存给:符号表(编译时使用),栈(存放局部变量与函数参数值),Sqrt代码段,主函数代码段等。这样,编写者就可以方便地指出:"函数sqrt内存模块的第五条指令",来

定位一个元素。而实际上,由于采用Paging的管理方式,所有的一切都只是散落在物理内存中的各个帧上,并不是以编写者的理解来划分模块。 图2. 逻辑地址空间 Segmentation的内存管理方式可以支持这种思路。逻辑地址空间由一组段组成。每个段都有名字和长度。地址指定了段名称和段内偏移。因此用户通过两个量来指定地址:段名称和偏移。段是编号的,通过段号而非段名称来引用。因此逻辑地址由有序对构成: (<段号s, 段内偏移d>) 段偏移d因该在0和段界限之间,如果合法,那么就与基地址相加而得到所需字节在物理内存中的地址。因此段表是一组基地址和界限寄存器对。

32位操作系统和64位操作系统支持的最大内存数

32位操作系统和64位操作系统支持的最大内存数系统最大支持内存只和硬件有关!即地址线的数目。 32位就是有32根地址线,那么它的寻址能力就是2的32次方,就是4G;64位就是有64根地址线。它的寻址能力就是2的64次方。也就是17179869184G,当然这只是理论值,实际中不可能用到这么大的内存,目前64位windows系统最大只支持128G。 32位windows系统支持的最大内存表: system(系统) Physical RAM物理内存Virtual Address Space 虚拟内存 windows NT 4.0 WorkStation 4GB 2GB windows NT 4.0 Server 4GB 2GB windows NT 4.0 Enterprise Edition 4GB 3GB** windows 2000 Professional 4GB2GB windows 2000 Server 4GB 2GB windows 2000 Advanced Server 8GB* 3GB** windows 2000 DataCenter Edition 32GB* 3GB** windows XP Professional 4GB3GB** windows 20034GB 3GB** windows 2003 Enterprise Edition32GB* 3GB** * 需要在BOOT.INI中添加"/3GB"参数,例如: [boot loader] timeout=30 default=multi(0)disk(0)rdisk(0)partition(2)\WINNT [operating systems] multi(0)disk(0)rdisk(0)partition(2)\WINNT="Windows Server 2000" /fastdetect /3GB ** 需要在BOOT.INI中添加"/PAE"参数,例如: [boot loader] timeout=30 default=multi(0)disk(0)rdisk(0)partition(2)\WINDOWS [operating systems] multi(0)disk(0)rdisk(0)partition(2)\WINDOWS="Windows Server 2003, Enterprise" /fastdetect /PAE 警告:Boot.ini 文件的内容根据您的配置而异。总之,PAE 是Windows 2000 和Windows Server 2003 内存管理器的一项功能,它为请求内存的程序提供了更多物理内存。程序并不知道它正使用的内存中有些在大于4 GB 的范围内,正如程序不知道它请求的内存实际上是在页面文件中一样。

相关文档
相关文档 最新文档