文档库 最新最全的文档下载
当前位置:文档库 › 基于运算放大器的工频信号陷波器设计

基于运算放大器的工频信号陷波器设计

基于运算放大器的工频信号陷波器设计
基于运算放大器的工频信号陷波器设计

目录

第1章摘要 (3)

第2章引言 (4)

第3章基于运算放大器的工频信号陷波器构建 (5)

3.1理论分析 (5)

3.2 参数计算 (8)

3.3 电路组成 (9)

第4章基于运算放大器的工频信号陷波器性能测试 (11)

4.1 multisim 各频率信号源仿真 (11)

4.2 pspice仿真 (19)

第5章结论 (20)

心得体会 (20)

参考文献 (20)

第1章摘要

本文介绍一种基于运算放大器的工频信号陷波器的设计与制作,简要地介绍了工频信号陷波器的工作原理与设计方案,并详细地介绍了该陷波器的参数设计和制作过程,通过multisim和pispice的仿真与测试,记录和分析了该陷波器的工作特性与陷波性能,论证了该陷波器的可行性。

该陷波器陷波性能良好,带宽较小,电路线路简单,易于实现,滤波性能方便调整,具有很大的实际应用价值。

第2章引言

工频陷波器是阻带宽度较小的带阻滤波器,它的作用是阻止或滤掉信号中有害分量,达到减少对电路的影响。

工频为一频率单一且固定的某一信号,工频通常和二次谐波及高次谐波同时出现。而有时工频是不需要的,甚至会给其他信号造成很大的干扰。工频陷波器就是为了很大程度地抑制或阻止该种所不需要工频信号,同时对其他频率的信号没有较大的抑制作用。本文所采用基于运算放大器的工频信号陷波器的一种设计方法是DABP带阻滤波器的方法。

高性能的工频陷波器,它应能完全滤除工频和其高次谐波而不衰减其他谐波。要获得这样高的性能,需要Q值很高的滤波器,而且调谐必须非常准确,而DABP带阻滤波器的Q值达到150,适合一般低频窄带滤波器设计。

获得高性能的工频陷波器,采用DABP带阻滤波器来实现陷波可大大提高其性能指标。其实现陷波思路有:先利用DABP带阻滤波器设计每个所要求中心频率的陷波器,然后把各个滤波器串联形成类似于梳状陷波器的带阻滤波器。

工频陷波器不仅在通信领域里被大量应用,还在自动控制、雷达、声纳、人造卫星、仪器仪表测量及计算机技术等领域有着广泛的应用。

第3章 基于运算放大器的工频信号陷波器构建

3.1理论分析

基于运算放大器的工频信号陷波器设计,用以消除叠加在频率为1kHz 以上的测试信号中所包含的50Hz 工频信号及其高次谐波(最高5次),即设计中心频率分别为50Hz 、100Hz 、150Hz 、200Hz 、250Hz 的窄带陷波器。采用子电路的方法,首先分为设计中心频率分别为50Hz 、100Hz 、150Hz 、200Hz 、250Hz 的5个窄带陷波器。然后把5个陷波器串联,以达到设计要求。最后利用放大单元实现单位增益输出。该窄带带阻滤波器分为六个独立的单元: 1. 50Hz 窄带陷波器。 2. 100Hz 窄带陷波器。 3. 150Hz 窄带陷波器。 4. 200Hz 窄带陷波器。 5. 250Hz 窄带陷波器。 6. 放大系数为K 的放大单元。

电路构建框图和最终电路图如图3.1.1图3.1.2所示

50Hz 陷波器

100Hz 陷波器200Hz 陷波器

250Hz 陷波器

150Hz 陷波器

输入

信号

输出信号

放大单元

图3.1.1基于运算放大器的工频信号陷波器构建框图

R10

R12

R

R C4R11

R

R

C4

R13

R15

R

R C5R14

R

R

C5

R1

R3

R

R

C1

R2R

R

C1

IN

R4

R6

R

R C2

R5R R

C2

R7

R9

R

R

C3

R8R R

C3

R17

R16

VO

图3.1.2基于运算放大器的工频信号陷波器电路图

每个陷波器单元的设计可以独立进行,并满足指定中心频率和带宽要求,基于仅仅需要消除叠加在频率为1kHz 以上的测试信号中所包含的50Hz 工频信号及其高次谐波(最高5次),为了降低带宽,则需要选用高品质因数Q 的电路,本设计选用DABP 带阻电路(Q<150),其电路如图3.1.2所示

R1

R3

R

R

C

R2

R

R

C

IN

OUT

图3.1.3 DABP 带阻电路

DABP 带阻电路的转移函数:

()2232223231

1

2

1

R R C S H S R R R R C S CS R +=++ (1.1.1)

令S j ω→可得,

()22

232223231

12

1R R C H j R R R R C Cj R ωωωω

-=-+ (1.1.2)

将上式化成标准形式()()ON N H j H H j ωω=,则

()2

2001(

)2

1()N H j j Q

ωωωωωωω-=-+

(1.1.3)

令对应系数相等,通过观察可得:2ON H = 令2

22

230

(

)R R C

ωωω=,可得 0231

C R R ω=

123

R Q R R = (1.1.4)

所以DABP 带阻电路的设计方程为

12Q R fC π=

231R R R Q

== (1.1.5) 所以五个陷波器单元串联的转移函数:

()2

2

5

1

2

22111222

222

354

22233444555

31(

)1()'21()1()1()1()1()

1()1()1()N H j j j Q Q j j j Q Q Q ωωωωωωωωωωωωωωωωωωωωωωωωωωωωωωω--=?

-+-+

---???

-+-+-+

其中11231C R R ω=

,22561C R R ω= ,33891C R R ω= ,4411121

C R R ω= ,

55

1415

1

C R R ω=

, 1

123

R Q R R = ,4

256

R Q R R = ,7

389

R Q R R = 1041112R Q R R =

,13

51415

R Q R R =

为了实现最后输出的单位增益,所以放大单元的放大倍数51

2

K =,即1617

32R R =,因此基于运算放大器的工频信号陷波器的最终转移函数: ()()1

'32

N H j H j ωω=-

2

2

2

2

2

3

5

12

4

2222211122233444555

31(

)1(

)1()1(

)1(

)1(

)1()1()1()1()j j j j j Q Q Q Q Q ωωωωωωωωωωωωωωωωωωωωωωωωωωωωωω-----=--+-+-+-+-+

3.2 参数计算

1. 当中心频率为50Hz 时,Q 为最大值150时,取11C uf =,10R k =Ω,根据式 (1.1.5)

计算可得1477.465R k =Ω,233182.3R R ==Ω。所以取1477R k =Ω,

233183R R ==Ω。

2. 当中心频率为100Hz 时,Q 为最大值150时,取20.47C uf =,10R k =Ω。根据式(1.1.5)

计算可得4507.94R k =Ω, 563386.28R R ==Ω。所以取4508R k =Ω,

563386R R ==Ω。

3. 当中心频率为150Hz 时,Q 为最大值150时,取31C uf =,

10R k =Ω,根据式 (1.1.5) 计算可得7159.155R k =Ω, 891061.033R R ==Ω.所以取7159R k =Ω,

891061R R ==Ω。

4. 当中心频率为200Hz 时,Q 为最大值150时,取40.47C uf =,

10R k =Ω,根据式(1.1.5)计算可得10253.971R k =Ω, 11121693.138R R ==Ω.所以10159R k =Ω,

11121061R R ==Ω。

5. 当中心频率为250Hz 时,Q 为最大值150时,取50.47C uf =,

10R k =Ω,根据式(1.1.5)计算可得13203.177R k =Ω, 14151354.510R R ==Ω.所以13159R k =Ω,

14151354R R ==Ω。

6. 因为放大单元的放大系数5

1

2K =-

,所以161732R R =,所以令1632R k =Ω,171R k =Ω。

3.3 电路组成

图3.3.1、图3.3.2 分别为工频信号有源陷波器Pspice 仿真电路和Multisim 真 电路。

图3.3.1 工频信号有源陷波器Pspice 仿真电路

图1.3.2 工频信号有源陷波器Multisim 仿真电路

电路参数:

11231,477,3183C uf R k R R ==Ω==Ω 24560.47,508,3386C uf R k R R ==Ω==Ω 37891,159,1061C uf R k R R ==Ω==Ω

51314150.47,203,1354C uf R k R R ==Ω==Ω161732,1R k R k =Ω=Ω,10R k =Ω

第4章基于运算放大器的工频信号陷波器性能测试4.1 multisim 各频率信号源仿真

图4.1.1 f=49Hz时仿真波形图

图4.1.2 f=50Hz时实测波形图

图4.1.3 f =51Hz 时实测波形图 表4.1.1 f =49Hz 、50Hz 、51Hz 时数据记录

频率/Hz 输入幅值/V

输出幅值/V 衰减/dB 相位差 49 10 9.867 -0.116 1.049π 50 10 0.381 -28.382 0.556π 51

10

9.859

-0.123

0.956π

分析:当频率为49Hz 的信号通过陷波器时,由于该频率小于第一窄带阻带的

49.299L Hz ω=,因此衰减较少,所以该信号能通过陷波器。当频率为50Hz 的信号通

过陷波器时,由于该频率等于第一窄带阻带的中心频率,所以该信号不能通过陷波器。当频率为51Hz 的信号通过陷波器时,由于该频率大于第一窄带阻带的50.701H Hz ω=,因此衰减较少,所以该信号能通过陷波器。

注:本小节multisim 仿真图中红色曲线是输入信号,蓝色曲线是输出信号

图4.1.4 f=99Hz时仿真波形图

图4.1.5 f=100Hz时实测波形图

图4.1.6 f=101Hz时实测波形图

表4.1.2 f =99Hz 、100Hz 、101Hz 时数据记录

频率/Hz 输入幅值/V

输出幅值/V 衰减/dB 相位差 99 10 9.456 -0.486 1.106π 100 10 0.384 -28.313 0.549π 101

10

9.489

-0.456

0.895π

分析:当频率为99Hz 的信号通过陷波器时,由于该频率小于第二窄带阻带的

99.266L Hz ω=,因此衰减较少,所以该信号能通过陷波器。当频率为100Hz 的信号通

过陷波器时,由于该频率等于第二窄带阻带的中心频率,所以该信号不能通过陷波器。当频率为101Hz 的信号通过陷波器时,由于该频率大于第二窄带阻带的

100.763H Hz ω=,因此衰减较少,所以该信号能通过陷波器。

图4.1.7 f =149Hz 时仿真波形图

图4.1.8 f =150Hz 时实测波形图

图4.1.9 f =151Hz 时实测波形图 表4.1.3 f =149Hz 、150Hz 、151Hz 时数据记录

频率/Hz 输入幅值/V

输出幅值/V 衰减/dB 相位差 149 10 8.862 -1.049 1.163π 150 10 0.882 -21.091 0.534 151

10

9.089

-0.830

0.92π

分析:当频率为149Hz 的信号通过陷波器时,由于该频率小于第三窄带阻带的

149.213L Hz ω=,因此衰减较少,所以该信号能通过陷波器。当频率为150Hz 的信号

通过陷波器时,由于该频率等于第三窄带阻带的中心频率,所以该信号不能通过陷波器。

当频率为151Hz的信号通过陷波器,由于该频率大于第三窄带阻带的150.782

H Hz

ω=,因此衰减较少,所以该信号能通过陷波器。

图4.1.10 f=199Hz时仿真波形图

图4.1.11 f=200Hz时实测波形图

图4.1.12 f=201Hz时实测波形图

表4.1.4 f=199Hz、200Hz、201Hz时数据记录

频率/Hz输入幅值/V 输出幅值/V 衰减/dB 相位差

199 10 8.123 -1.806 1.191π

200 10 1.039 -19.668 0.53π

201 10 7.572 -2.16 0.982π

分析:当频率为199Hz的信号通过陷波器,由于该频率小于第四窄带阻带的

199.139 L Hz

ω=,所以衰减较少,所以该信号能通过陷波器。当频率为200Hz的信号通过陷波器时,由于该频率等于第四窄带阻带的中心频率,所以该信号不能通过陷波器。当频率为201Hz的信号通过陷波器时,由于该频率大于第四窄带阻带的

200.842 H Hz

ω=,因此衰减较少,所以该信号能通过陷波器。

图4.1.13 f=249Hz时仿真波形图

图4.1.14 f =250Hz 时实测波形图

图4.1.15 f =251Hz 时实测波形图 表4.1.5 f =249Hz 、250Hz 、251Hz 时数据记录

频率/Hz 输入幅值/V

输出幅值/V 衰减/dB 相位差 249 10 7.572 -2.416 1.217π 250 10 0.499 -26.038 0.512π 251

10

7.804

-2.154

0.780π

分析:当频率为249Hz 的信号通过陷波器时,由于该频率小于第五窄带阻带的

249.068L Hz ω=,因此衰减较少,所以该信号能通过陷波器。当频率为250Hz 的信号

通过陷波器时,由于该频率等于第五窄带阻带的中心频率,所以该信号不能通过陷波器。

当频率为251Hz 的信号通过陷波器时,由于该频率大于第五窄带阻带的

250.938H Hz ω=,因此衰减较少,所以该信号能通过陷波器。

4.2 pspice 仿真

图4.2.1基于运算放大器的工频信号陷波器幅频特性曲线

(输出电压随频率变化而变化)

说明:图中曲线基于运算放大器的工频信号陷波器幅频特性曲线,其中A 点、C 点、D 点、F 点、G 点、I 点、J 点、L 点、M 点、O 点分别是输出幅值是输入幅值0.707的点。B 点、E 点、H 点、K 点、N 点分别为各个中心频率的点,即输出最小的点。

图4.2.1基于运算放大器的工频信号陷波器波特图

说明:图中曲线基于运算放大器的工频信号陷波器波特图,其中A ’点、C ’点、D ’点、F ’点、G ’点、I ’点、J ’点、L ’点、M ’点、O ’点是衰减3的DB 的点。B ’点、E ’点、H ’点、K ’点、

N’点分别为衰减最大的点。

第5章结论

本设计采用5个DABP窄带陷波器串联用以消除叠加在频率为1k Hz上的测信号中所包含的50Hz工频信号及其高次谐波(最高5次),当频率50Hz、100Hz、150Hz、200Hz、250Hz的信号通过陷波器时,由于这些信号刚好等于陷波器的5个窄带阻带的中心频率,所以工频信号及其高次谐波(最高5次)不能通过陷波器而被滤掉。而其频率信号都处于陷波器的这5个窄阻带的范围外,这些信号都能通过陷波器。消除了测试信号中来自工频的干扰。

心得体会

通过该课程设计,全面系统的理解了工频信号陷波器一般原理和基本实现方法。把死板的课本知识变得生动有趣,激发了学习的积极性。把学过的电子各个方面的知识强化,能够把课堂上学的知识通过自己的设计表示出来,加深了对理论知识的理解。其次,这次课程设计让我基本掌握了multsim,pspice等软件的使用,明白了软件仿真对设计的重要性。再次,这次课程设计让我充分认识到团队合作的重要性,只有分工协作才能保证整个项目的有条不紊。通过这次设计,我懂得了学习的重要性,了解到理论知识与实践相结合的重要意义,学会了坚持、耐心和努力,这将为自己今后的学习和工作做出了最好的榜样。更重要的是如何把自己平时所学的东西应用到实际中。而在课设中暴露的问题,我一定要好好改正,争取以后不再出现类似的错误,真正的提高自己的技术。

参考文献

1宁彦卿姚金科译. 电子滤波器设计. 科学出版社,2008年

2邱关源. 电路原理. 高等教育出版社,2008年

3 康华光. 模拟电子技术. 高等教育出版社,2008年

4.阎石. 数字电子技术基础. 2009年

本文来自网络,版权归原作者所有,请下载后,尽快删除。

.

Hz工频信陷波器设计

H z工频信陷波器设计 文档编制序号:[KK8UY-LL9IO69-TTO6M3-MTOL89-FTT688]

第1章摘要本文介绍一种基于运算放大器的工频信号陷波器的设计与制作,用以消除叠加在频率为1kHz以上的测试信号中所包含的50Hz工频信号。叙述内容包括工频信号陷波器的工作原理与设计思路,介绍了陷波器的参数计算及其选择,通过multisim仿真,记录和分析了该陷波器的工作特性与陷波性能,论证了 该陷波器的可行性。 此次设计的陷波器优点是:陷波性能良好,带宽较小,品质因数Q可调,即滤波性能便于调整,电路线路简单,具有实际应用价值。缺点是:对于元器件的参数要求高,需要仔细调节。 第2章设计原理概述及设计要求 陷波器的基本原理及作用 陷波器也称带阻滤波器(窄带阻滤波器),它能在保证其他频率的信号不损失的情况下,有效的抑制输入信号中某一频率信息。所以当电路中需要滤除存在的某一特定频率的干扰信号时,就经常用到陷波器。 在我国采用的是50hz频率的交流电,所以在平时需要对信号进行采集处 理和分析时,常会存在50hz的工频干扰,对我们的信号处理造成很大干扰, 因此50Hz陷波器在日常成产生活中被广泛应用,其技术已基本成熟。 工频陷波器不仅在通信领域里被大量应用,还在自动控制、雷达、声纳、人造卫星、仪器仪表测量及计算机技术等领域有着广泛的应用。 设计要求 1:完成题目的理论设计模型; 2:完成电路的multisim仿真;

3:完成一份设计说明书(其中包括理论设计的相关参数以及仿真结果); 4:提交一份电路原理图 第3章 基于运算放大器的工频信号陷波器设计 理论分析 0f 和抑制带宽BW 之间的关系为: 陷波器的实现方法有很多,本次设计采用的是电路比较简单,易于实现的双T 型陷波器。双T 型带阻滤波器的主体包括三部分内容:选频部分、放大器部分、反馈部分。此陷波器具有良好的选频特性和比较高的Q 值。 图双T 型陷波器电路 图中,2A 用作放大器,其输出端作为整个电路的输出。1A 接成电压跟随器的形式。因为双T 网络只有在离中心频率较远时才能达到较好的衰减特性,因此滤波器的Q 值不高。加入电压跟随器是为了提高Q 值,此电路中,Q 值可以提高到50以上,调节1R 、2R 两个电阻的阻值,来控制陷波器的滤波特性,包括带阻滤波的频带宽度和Q 值的高低。 在图2中,O C U U =, 1C Z sC = , 2212O O R U U R R =+,令212R K R R =+,1 n R = 对节点A 列KCL 方程,得: ()()()2i A O A A O U U sC U U sC n U KU -+-=- (1) 同样,对节点B 列KCL 方程,得: ()()()2i B O B B O U U n U U n sC U KU -+-=- (2) 同样,对节点C 列KCL 方程,得: ()()A O O B U U sC U U n -=- (3) 由式(1)、(2)、(3)可得到电路的传递函数为:

实验五集成运算放大器的基本应用共7页文档

实验五集成运算放大器的基本应用(I) ─模拟运算电路─ 一、实验目的 1、了解和掌握集成运算放大器的功能、引脚 2、研究由集成运算放大器组成的比例、加法、减法和积分等基本运算 电路的功能。 3、了解运算放大器在实际应用时应考虑的一些问题。 二、实验原理 集成运算放大器是一种具有高电压放大倍数的直接耦合多级放大电路。当外部接入不同的线性或非线性元器件组成输入和负反馈电路时,可以灵活地实现各种特定的函数关系。在线性应用方面,可组成比例、加法、减法、积分、微分、对数等模拟运算电路。 理想运算放大器特性 在大多数情况下,将运放视为理想运放,就是将运放的各项技术指标理想化,满足下列条件的运算放大器称为理想运放。 开环电压增益A =∞ ud =∞ 输入阻抗r i =0 输出阻抗r o 带宽 f =∞ BW 失调与漂移均为零等。 理想运放在线性应用时的两个重要特性:

(1)输出电压U O 与输入电压之间满足关系式 U O =A ud (U +-U -) 由于A ud =∞,而U O 为有限值,因此,U +-U -≈0。即U +≈U -,称为“虚短”。 (2)由于r i =∞,故流进运放两个输入端的电流可视为零,即I IB =0,称为“虚断”。这说明运放对其前级吸取电流极小。 上述两个特性是分析理想运放应用电路的基本原则,可简化运放电路的计算。 基本运算电路 1) 反相比例运算电路 电路如图8-1所示。对于理想运放, 该电路的输出电压与输入电压 之间的关系为 为了减小输入级偏置电流引起的运算误差,在同相输入端应接入平衡电阻R 2=R 1 // R F 。 图8-1 反相比例运算电路 图8-2 反相加法运算电路 2) 反相加法电路 电路如图8-2所示,输出电压与输入电压之间的关系为 )U R R U R R ( U i22 F i11F O +-= R 3=R 1 // R 2 // R F 3) 同相比例运算电路 图8-3(a)是同相比例运算电路,它的输出电压与输入电压之间的关系为 i 1 F O U R R U - =

设计一个射频小信号放大器[1]要点

射 频 课 程 设 技 论 文 院系:电气信息工程学院 班级:电信2班 姓名:贾珂 学号:541101030211

1射频小信号放大器概述 射频小信号放大器是通信设备中常用的功能电路,它所放大的信号频率在数百千赫至数百兆赫。高频小信号放大器的功能是实现对微弱的高频信号进行不失真的放大,所谓小信号,一是信号幅度足够小,使得所有有源器件(晶体三极管,场效应管或IC)都可采用二端口Y参数或线性等效电路来模型化;二是放大器的输出信号与输入信号成线性比例关系.从信号所含频谱来看,输入信号频谱与放大后输出信号的频谱是相同的。 小信号放大器的分类:按元器件分为:晶体管放大器、场效应管放大器、集成电路放大器; 按频带分为:窄带放大器、宽带放大器; 按电路形式分为:单级放大器、多级放大器; 按负载性质分为:谐振放大器、非谐振放大器;. 小信号谐振放大器除具有放大功能外,还具有选频功能,即具有从众多信号中选择出有用信号,滤除无用的干扰信号的能力.从这个意义上讲,高频小信号谐振放大电路又可视为集放大,选频一体,由有源放大元件和无源选频网络所组成的高频电子电路.主要用途是做接收机的高频放大器和中频放大器. 其中射频小信号调谐放大器广泛应用于通信系统和其它无线电系统中,特别是在发射机的接收端,从天线上感应的信号是非常微弱的,这就需要用放大器将其放大。高频信号放大器理论非常简单,但实际制作却非常困难。其中最容易出现的问题是自激振荡,同时频率选择和各级间阻抗匹配也很难实现。本文以理论分析为依据,以实际制作为基础,用LC振荡电路为辅助,来消除高频放大器自激振荡和实现准确的频率选择;另加其它电路,实现放大器与前后级的阻抗匹配。2电路的基本原理 图2-1所示电路为共发射极接法的晶体管高频小信号单级单调谐回路谐振放大器。它不仅要放大高频信号,而且还要有一定的选频作用,因此,晶体管的集电极负载为LC并联谐振回路。在高频情况下,晶体管本身的极间电容及连接导线的分布参数等会影响放大器输出信号的频率或相位。晶体管的静态工作点由电阻R b1、R b2及Re决定,其计算方法与低频单管放大器相同。

Hz工频信号陷波器设计

第1章摘要 本文介绍一种基于运算放大器的工频信号陷波器的设计与制作,用以消除叠加在频率为1kHz以上的测试信号中所包含的50Hz工频信号。叙述内容包括工频信号陷波器的工作原理与设计思路,介绍了陷波器的参数计算及其选择,通过multisim仿真,记录和分析了该陷波器的工作特性与陷波性能,论证了该陷波器的可行性。 此次设计的陷波器优点是:陷波性能良好,带宽较小,品质因数Q可调,即滤波性能便于调整,电路线路简单,具有实际应用价值。缺点是:对于元器件的参数要求高,需要仔细调节。 第2章设计原理概述及设计要求 陷波器的基本原理及作用 陷波器也称带阻滤波器(窄带阻滤波器),它能在保证其他频率的信号不损失的情况下,有效的抑制输入信号中某一频率信息。所以当电路中需要滤除存在的某一特定频率的干扰信号时,就经常用到陷波器。 在我国采用的是50hz频率的交流电,所以在平时需要对信号进行采集处理和分析时,常会存在50hz的工频干扰,对我们的信号处理造成很大干扰,因此50Hz陷波器在日常成产生活中被广泛应用,其技术已基本成熟。 工频陷波器不仅在通信领域里被大量应用,还在自动控制、雷达、声纳、人造卫星、仪器仪表测量及计算机技术等领域有着广泛的应用。 设计要求 1:完成题目的理论设计模型; 2:完成电路的multisim仿真; 3:完成一份设计说明书(其中包括理论设计的相关参数以及仿真结果); 4:提交一份电路原理图 第3章基于运算放大器的工频信号陷波器设计 理论分析 f和抑制带宽BW之间的关系为:

陷波器的实现方法有很多,本次设计采用的是电路比较简单,易于实现的双T 型陷波器。双T 型带阻滤波器的主体包括三部分内容:选频部分、放大器部分、反馈部分。此陷波器具有良好的选频特性和比较高的Q 值。 图双T 型陷波器电路 图中,2A 用作放大器,其输出端作为整个电路的输出。1A 接成电压跟随器的形式。因为双T 网络只有在离中心频率较远时才能达到较好的衰减特性,因此滤波器的Q 值不高。加入电压跟随器是为了提高Q 值,此电路中,Q 值可以提高到50以上,调节1R 、2R 两个电阻的阻值,来控制陷波器的滤波特性,包括带阻滤波的频带宽度和Q 值的高低。 在图2中,O C U U =, 1C Z sC = , 2212O O R U U R R =+,令212R K R R =+,1 n R = 对节点A 列KCL 方程,得: ()()()2i A O A A O U U sC U U sC n U KU -+-=- (1) 同样,对节点B 列KCL 方程,得: ()()()2i B O B B O U U n U U n sC U KU -+-=- (2) 同样,对节点C 列KCL 方程,得: ()()A O O B U U sC U U n -=- (3) 由式(1)、(2)、(3)可得到电路的传递函数为: ()222 22 2 s 44o i U s C n H U s C n nsC nsCK +==++- (4) 令s j ω=, 01RC ω= 得: ()()2 02 001141H j j K ωωωωωωω??- ???=????-+- ? ???? ? (5) 由带阻滤波器的标准形式:()2 020011H j j Q ωωωωωωω??- ? ??= ?? ? ????-+ ??? (6)

集成运算放大器的基本应用

实验十一 集成运算放大器的基本应用 —— 模拟运算电路 一、实验目的 1、研究由集成运算放大器组成的比例、加法、减法和积分等基本运算电路的功能。 2、了解运算放大器在实际应用时应考虑的一些问题。 二、实验仪器 1、双踪示波器 2、万用表 3、交流毫伏表 4、信号发生器 三、实验原理 在线性应用方面,可组成比例、加法、减法、积分、微分、对数、指数等模拟运算电路。 1、 反相比例运算电路 电路如图11-1所示。对于理想运放,该电路的输出电压与输入电压之间的关系为 i F O U R R U 1 - = (11-1) U i O 图11-1 反相比例运算电路 为减小输入级偏置电流引起的运算误差,在同相输入端应接入平衡电阻R2=R1∥R F ,此处为了简化电路,我们选取R2=10K 。

2、反相加法电路 U O U 图11-2 反相加法运算电路 电路如图11-2所示,输出电压与输入电压之间的关系为 )( 22 11i F i F O U R R U R R U +-= R 3=R 1∥R 2∥R F (11-2) 3、同相比例运算电路 图11-3(a )是同相比例运算电路,它的输出电压与输入电压之间的关系为 i F O U R R U )1(1 + = R 2=R 1∥R F (11-3) 当R1→∞时,U O =U i ,即得到如图11-3(b )所示的电压跟随器。图中R2=R F ,用以减小漂移和起保护作用。一般RF 取10K Ω,R F 太小起不到保护作用,太大则影响跟随性。 (a)同相比例运算 (b)电压跟随器 图11-3 同相比例运算电路 4、差动放大电路(减法器) 对于图11-4所示的减法运算电路,当R1=R2,R3=R F 时,有如下关系式: )(1 120i i U U R RF U -= (11-4)

运算放大器应用设计的技巧总结

运算放大器应用设计的几个技巧 一、如何实现微弱信号放大? 传感器+运算放大器+ADC+处理器是运算放大器的典型应用电路,在这种应用中,一个典型的问题是传感器提供的电流非常低,在这种情况下,如何完成信号放大?张世龙指出,对于微弱信号的放大,只用单个放大器难以达到好的效果,必须使用一些较特别的方法和传感器激励手段,而使用同步检测电路结构可以得到非常好的测量效果。这种同步检测电路类似于锁相放大器结构,包括传感器的方波激励,电流转电压放大器,和同步解调三部分。他表示,需要注意的是电流转电压放大器需选用输入偏置电流极低的运放。另外同步解调需选用双路的SPDT模拟开关。 另有工程师朋友建议,在运放、电容、电阻的选择和布板时,要特别注意选择高阻抗、低噪声运算和低噪声电阻。有网友对这类问题的解决也进行了补充,如网友“1sword”建议: 1)电路设计时注意平衡的处理,尽量平衡,对于抑制干扰有效,这些在美国国家半导体、BB(已被TI收购)、ADI等公司关于运放的设计手册中均可以查到。 2)推荐加金属屏蔽罩,将微弱信号部分罩起来(开个小模具),金属体接电路地,可以大大改善电路抗干扰能力。 3)对于传感器输出的nA?级,选择输入电流pA?级的运放即可。如果对速度没有多大的要求,运放也不贵。仪表放大器当然最好了,就是成本高些。 4)若选用非仪表运放,反馈电阻就不要太大了,M欧级好一些。否则对电阻要求比较高。后级再进行2级放大,中间加入简单的高通电路,抑制50Hz干扰。 二、运算放大器的偏置设置 在双电源运放在接成单电源电路时,工程师朋友在偏置电压的设置方面会遇到一些两难选择,比如作为偏置的直流电压是用电阻分压好还是接参考电压源好?有的网友建议用参考电压源,理由是精度高,此外还能提供较低的交流旁路,有的网友建议用电阻,理由是成本低而且方便,对此,张世龙没有特别指出用何种方式,只是强调双电源运放改成单电源电路时,如果采用基准电压的话,效果最好。这种基准电压使系统设计得到最小的噪声和最高的PSRR。但若采用电阻分压方式,必须考虑电源纹波对系统的影响,这种用法噪声比较高,PSRR比较低。 三、如何解决运算放大器的零漂问题? 有网友指出,一般压电加速度传感器会接一级电荷放大器来实现电荷——电压转换,可是在传感器动态工作时,电荷放大器的输出电压会有不归零的现象发生,如何解决这个问题? 对此,网友“Frank”分析道,有几种可能性会导致零漂:1)反馈电容ESR特性不好,随电荷量的变化而变化;2)反馈电容两端未并上电阻,为了放大器的工作稳定,减少零漂,在反馈电容两端并上电阻,形成直流负反馈可以稳定放大器的直流工作点;3)可能挑选的运算放大器的输入阻抗不够高,造成电荷泄露,导致零漂。 网友“camel”和“windman”还从数学分析的角度对造成零漂的原因进行了详细分析,认为除了使干扰源漂移小以外还必须使传感器、缆线电阻要大,运放的开环输入阻抗要高、运放的反馈电阻要小,即反馈电阻的作用是为了防止漂移,稳定直流工作点。但是反馈电阻太小的话,也会影响到放大器的频率下限。所以必须综合考虑! 而嘉宾张世龙则建议,对于电荷放大器输出电压不归零的现象,一般采用如下办法来解决: 1)采用开关电容电路的技巧,使用CDS采样方式可以有效消除offset电压;2)采用同步检测电路结构,可以有效消除offset电压。

运算放大器的典型应用

Op Amp Circuit Collection AN-31

Practical Differentiator f c e 1 2q R2C1 f h e 1 2q R1C1 e 1 2q R2C2 f c m f h m f unity gain TL H 7057–9 Integrator V OUT e b 1 R1C1 t2 t1 V IN dt f c e 1 2q R1C1 R1e R2 For minimum offset error due to input bias current TL H 7057–10 Fast Integrator TL H 7057–11Current to Voltage Converter V OUT e l IN R1 For minimum error due to bias current R2e R1 TL H 7057–12 Circuit for Operating the LM101 without a Negative Supply TL H 7057–13Circuit for Generating the Second Positive Voltage TL H 7057–14

Neutralizing Input Capacitance to Optimize Response Time C N s R1 R2 C S TL H 7057–15 Integrator with Bias Current Compensation Adjust for zero integrator drift Current drift typically0 1 n A C over b55 C to125 C temperature range TL H 7057–16 Voltage Comparator for Driving DTL or TTL Integrated Circuits TL H 7057–17 Threshold Detector for Photodiodes TL H 7057–18 Double-Ended Limit Detector V OUT e4 6V for V LT s V IN s V UT V OUT e0V for V IN k V LT or V IN l V UT TL H 7057–19 Multiple Aperture Window Discriminator TL H 7057–20

通信电子电路课程设计小信号放大器

通信电子线路课程设计-- 高频小信号谐振放大器 学校: 姓名: 学号: 班级: 指导老师:

目录 一、刖言 (3) 二、电路基本原理................................................. .3 三、主要性能指标及测量方法....................................... .5 1谐振频率 (7) 2、电压增益 (7) 3、通频带 (8) 4、矩形系数 (9) 四、设计方案 (10) 1设置静态工作点 (10) 2、计算谐振回路参数 (10) 3、电路图、仿真图和PCB图 (11) 五、电路装调与测试.......................................... ??13 六、心得体会................................................. ??14 七、参考文献............................................... ???15

一、前言高频调谐放大器广泛应用于通信系统和其它无线电系统中,特别是在发射机的接收端,从天线上感应的信号是非常微弱的,这就需要用放大器将其放大。高频信号放大器理论非常简单,但实际制作却非常困难。其中最容易出现问题是自激震荡,同时频率选择和各级建阻抗匹配也恶化你难实现。 Protel DXP 软件能实现从电学概念设计到输出物理生产数据,以及这之间的所有分析、验证、和设计数据管理。今天的Protel DXP 软件已不是单纯的PCB 设计工具,而是一个系统,它覆盖了以PCB 为核心的全部物理设计。使用Protel、等计算机软件对产品进行辅助 设计在很早以前就已经成为了一种趋势,这类软件的问世也极大地提高了设计人员在机械、电子等行业的产品设计质量与效率。 通过《通信电子线路》的学习,使用Protel DXP 软件设计了一个高频小信号放大器。 二、电路的基本原理高频小信号放大器的功用就是五失真的放大某一频率范围内的信号。按其频带宽度可以分为窄带和宽带放大器。高频小信号放大器是通信电子设备中常用的功能电路,它所放大的信号频率在数百千赫。高频小信号放大器的功能是实现对微弱的高频信号进行不失真的放大,从信号所含频谱来看,输入信号频谱与放大后输出信号的频谱是相同的。

集成运算放大器的基本应用

第7章集成运算放大器的基本应用 7.1 集成运算放大器的线性应用 7.1.1 比例运算电路 7.1.2 加法运算电路 7.1.3 减法运算电路 7.1.4 积分运算电路 7.1.5 微分运算电路 7.1.6 电压—电流转换电路 7.1.7 电流—电压转换电路 7.1.8 有源滤波器 *7.1.9 精密整流电路 7.2 集成运放的非线性应用 7.2.1 单门限电压比较器 7.2.2 滞回电压比较器 7.3 集成运放的使用常识 7.3.1 合理选用集成运放型号 7.3.2 集成运放的引脚功能 7.3.3 消振和调零 7.3.4 保护 本章重点: 1. 集成运算放大器的线性应用:比例运算电路、加减法运算电路、积分微分运算电路、一阶有源滤波器、二阶有源滤波器 2. 集成运算放大器的非线性应用:单门限电压比较器、滞回比较器 本章难点: 1. 虚断和虚短概念的灵活应用 2. 集成运算放大器的非线性应用 3. 集成运算放大器的组成与调试 集成运算放大器(简称集成运放)在科技领域得到广泛的应用,形成了各种各样的应用电路。从其功能上来分,可分为信号运算电路、信号处理电路和信号产生电路。从本章开始和以后的相关章节分别介绍它们的应用。 7.1 集成运算放大器的线性应用

集成运算放大器的线性应用 7.1.1 比例运算电路 1. 同相比例运算电路 (点击查看大图)反馈方式:电压串联负反馈 因为有负反馈,利用虚短和虚断 虚短: u-= u+= u i

虚断: i +=i i- =0 , i 1 =i f 电压放大倍数: 平衡电阻R=R f//R1 2. 反相比例运算 (点击查看大图)反馈方式:电压并联负反馈 因为有负反馈,利用虚短和虚断 i - =i+= 0(虚断) u + =0,u-=u+=0(虚地) i 1 =i f 电压放大倍数:

调谐某小信号放大器分析报告设计与仿真

实验室 时间段 座位号 实验报告 实验课程 实验名称 班级 姓名 学号 指导老师

小信号调谐放大器预习报告 一.实验目的 1.熟悉电子元器件和高频电子线路实验系统; 2.掌握单调谐和双调谐放大器的基本工作原理; 3.掌握测量放大器幅频特性的方法; 4.熟悉放大器集电极负载对单调谐和双调谐放大器幅频特性的影响; 5.了解放大器动态范围的概念和测量方法。 二.实验内容 调谐放大器的频率特性如图所示。 图1-1 调谐放大器的频率特性 调谐放大器主要由放大器和调谐回路两部分组成。因此,调谐放大器不仅有放大作用,而且还有选频作用。本章讨论的小信号调谐放大器,一般工作在甲类状态,多用在接收机中做高频和中频放大,对它的主要指标要求是:有足够的增益,满足通频带和选择性要求,工作稳定等。 二.单调谐放大器 共发射极单调谐放大器原理电路如图1-2所示。 放大倍数f o f 1f K 0.7o K o K 2o f ?通频带f ?2o f ?2o f ?

图1-2 图中晶体管T 起放大信号的作用,R B1、R B2、R E 为直流偏置电阻,用以保证晶体管工作于放大区域,从而放大器工作于甲类。C E 是R E 的旁路电容,C B 、C C 是输入、输出耦合电容,L 、C 是谐振回路作为放大器的集电极负载起选频作用,它采用抽头接入法,以减轻晶体管输出电阻对谐振回路Q 值的影响,R C 是集电极(交流)电阻,它决定了回路Q 值、带宽。 三.双调谐回路放大器 图中,R B1、R B2、R E 为直流偏置电阻,用以保证晶体管工作于放大区域,且放大器工作于甲类状态,E C 为E R 的旁通电容,B C 和C C 为输入、输出耦合电容。图中两个谐振回路:11L C 、组成了初级回路,22L C 、组成了次级回路。两者之间并无互感耦合(必要时,可分别对12L L 、加以屏蔽),而是由电容3C 进行耦合,故称为电容耦合。

50HZ自适应陷波器

一 课题意义的及要求 陷波器也叫带阻滤波器,能保证在其他频率信号不损失的情况下,有效地抑制输入信号中某一频率的干扰。由于我国采用的是50Hz 的交流电,所以在平时需要对信号进行采集处理和分析时,经常会存在50Hz 工频干扰,对于信号的处理造成很大的干扰,于是,很有必要设计50Hz 的陷波器。采用自适应滤波组成的陷波器,与一般硬件组成的固定网络的陷波器比较,它既能自适应地准确跟踪干扰频率又容易控制带宽。 在本次设计中,应用自适应滤波器滤除输入随机信号中的50Hz 工频干扰,并分析比较了不同算法在此设计中的优缺点,及在何种参数下效果最优和那一种机构更适合此设计。 二 自适应陷波器原理 自适应陷波器原理图 其原始输入为任意信号s(t)与t 0cos ω单频干扰的叠加,经采样后送入k d 端, k d =k d +)cos(0kt ω。参考输入分两路,其中一路经?90向移,两路都经过采样后加到1x 及2x 端,它门分别是 )c o s (0,1φω+=kt c x k )sin(0,2φω+=kt c x k 所以,采用两个权可以使组合后的正弦波的振幅和相位都能加以调整,而两个权也意味着有两个自由度待调整。经过k k x w ,1,1与k k x w ,2,2相加得到k y ,其相位和振

幅得到相应调整后可与原输入中的干扰分量相一致,使输出k e 中的0 频率的干扰得以抵消,达到陷波的目的。 三 结构及方法的选择 自适应滤波器的结构有横向滤波器和格型结构,用自适应横向滤波器实现陷波,比较简单且易于实现,而格型滤波器的计算复杂,不易于实际运用。故本设计中选择横向滤波器结构。 在算法选择方面,分别对LMS 算法,RLS 算法, 进行了仿真实验。比较了其优劣。 四 LMS 算法不同参数的实验结果分析 3.1带有50Hz 工频干扰的随机信号及其功率谱图

集成运放基本应用之一—模拟运算电路

集成运放基本应用之一—模拟运算电路

————————————————————————————————作者:————————————————————————————————日期:

实验十二集成运放基本应用之一——模拟运算电路 一、实验目的 1、了解并掌握由集成运算放大器组成的比例、加法、减法和积分等基本运算电路的原理与功能。 2、了解运算放大器在实际应用时应考虑的一些问题。 二、实验原理 集成运算放大器是一种具有高电压放大倍数的直接耦合多级放大电路。当外部接入不同的线性或非线性元器件组成输入和负反馈电路时,可以灵活地实现各种特定的函数关系。在线性应用方面,可组成比例、加法、减法、积分、微分、对数等模拟运算电路。 理想运算放大器特性: 在大多数情况下,将运放视为理想运放,就是将运放的各项技术指标理想化,满足下列条件的运算放大器称为理想运放: 开环电压增益A ud=∞ 输入阻抗r i=∞ 输出阻抗r o=0 带宽f BW=∞ 失调与漂移均为零等。 理想运放在线性应用时的两个重要特性: (1)输出电压U O与输入电压之间满足关系式 U O=A ud(U+-U-) 由于A ud=∞,而U O为有限值,因此,U+-U-≈0。即U+≈U-,称为“虚短”。

(2)由于r i =∞,故流进运放两个输入端的电流可视为零,即I IB =0,称为“虚断”。这说明运放对其前级吸取电流极小。 上述两个特性是分析理想运放应用电路的基本原则,可简化运放电路的计算。 基本运算电路 1) 反相比例运算电路 电路如图5-1所示。对于理想运放, 该电路的输出电压与输入电压之间的 关系为 为了减小输入级偏置电流引起的运算误差,在同相输入端应接入平衡电阻R 2=R 1 // R F 。 图5-1 反相比例运算电路 图5-2 反相加法运算电路 2) 反相加法电路 电路如图5-2所示,输出电压与输入电压之间的关系为 )U R R U R R ( U i22 F i11F O +-= R 3=R 1 / R 2 // R F 3) 同相比例运算电路 图5-3(a)是同相比例运算电路,它的输出电压与输入电压之间的关系为 i 1 F O )U R R (1U + = R 2=R 1 / R F 当R 1→∞时,U O =U i ,即得到如图5-3(b)所示的电压跟随器。图中R 2=R F , i 1 F O U R R U -=

集成运算放大器的基本应用

实验名称 集成运算放大器的基本应用 一.实验目的 1.掌握集成运算放大器的正确使用方法。 2.掌握用集成运算放大器构成各种基本运算电路的方法。 3.学习正确使用示波器交流输入方式和直流输入方式观察波形的方法,重点掌握积分输入,输出波形的测量和描绘方法。 二.实验元器件 集成运算放大器 LM324 1片 电位器 1k Ω 1只 电阻 100k Ω 2只;10k Ω 3只;5.1k Ω 1只;9k Ω 1只 电容 0.01μf 1只 三、预习要求 1.复习由运算放大器组成的反相比例、反相加法、减法、比例积分运算电路的工作原理。 2.写出上述四种运算电路的vi 、vo 关系表达式。 3.实验前计算好实验内容中得有关理论值,以便与实验测量结果作比较。 4.自拟实验数据表格。 四.实验原理及参考电路 本实验采用LM324集成运算放大器和外接电阻、电容等构成基本运算电路。 1. 反向比例运算 反向比例运算电路如图1所示,设组件LM324为理想器件,则 11 0υυR R f -=

R f 100k R 1 10k A 10k R L v o v 1 R 9k 图1 其输入电阻1R R if ≈,图中1//R R R f ='。 由上式可知,改变电阻f R 和1R 的比值,就改变了运算放大器的闭环增益vf A 。 在选择电路参数是应考虑: ○ 1根据增益,确定f R 与1R 的比值,因为 1 R R A f vf - = 所以,在具体确定f R 和1R 的比值时应考虑;若f R 太大,则1R 亦大,这样容易引起较大的失调温漂;若f R 太小,则1R 亦小,输入电阻if R 也小,可能满足不了高输入阻抗的要求,故一般取f R 为几十千欧至几百千欧。 若对放大器输入电阻有要求,则可根据1R R i =先确定1R ,再求f R 。 ○ 2运算放大器同相输入端外接电阻R '是直流补偿电阻,可减小运算放大器偏执电流产生的不良影响,一般取1//R R R f =',由于反向比例运算电路属于电压并联负反馈,其输入、输出阻抗均较低。 本次试验中所选用电阻在电路图中已给出。 2. 反向比例加法运算 反向比例加法运算电路如图2所示,当运算放大器开环增益足够大时,其输入端为“虚地”,11v 和12v 均可通过1R 、2R 转换成电流,实现代数相加,其输出电压 ??? ??+-=122111 v R R v R R v f f o 当R R R ==21时 ()1211v v R R v f o +- = 为保证运算精度,除尽量选用精度高的集成运算放大器外,还应精心挑选精度高、稳定性好的电阻。f R 与R 的取值范围可参照反比例运算电路的选取范围。 同理,图中的21////R R R R f ='。

2016东南大学模电实验1运算放大器的基本应用

东南大学电工电子实验中心 实验报告 课程名称:模拟电子电路实验 第 1 次实验 实验名称:运算放大器的基本应用 院(系):吴健雄学院专业:电类强化班 姓名:学号: 610142 实验室:实验组别: 同组人员:实验时间:2016年4月10日 评定成绩:审阅教师: 一、实验目的 1.熟练掌握反相比例、同相比例、加法、减法等电路的设计方法; 2.熟练掌握运算放大电路的故障检查和排除方法; 3.了解运算放大器的主要直流参数(输入失调电压、输入偏置电流、输入 失调电流、温度漂移、共模抑制比,开环差模电压增益、差模输入电阻、输出电阻等)、交流参数(增益带宽积、转换速率等)和极限参数(大差模输入电压、大共模输入电压、大输出电流、大电源电压等)的基本概念; 4.熟练掌握运算放大电路的增益、幅频特性、传输特性曲线的测量方法;

5.掌握搭接放大器的方法及使用示波器测量输出波形。 二、预习思考 1.查阅 LM324 运放的数据手册,自拟表格记录相关的直流参数、交流参数 和极限参数,解释参数含义。

2.设计一个反相比例放大器,要求:|AV|=10,Ri>10K?,RF=100 k?,并用 multisim 仿真。 其中分压电路由100k?的电位器提供,与之串联的510?电阻起限流的作用。 3.设计一个同相比例放大器,要求:|AV|=11,Ri>10K?,RF=100 k?,并用 multisim 仿真。

三、 实验内容 1. 基本要求 内容一: 反相输入比例运算电路各项参数测量实验(预习时,查阅 LM324 运放的数据手册,自拟表格记录相关的直流参数、交流参数和极限参数,解释参数含义)。 图 1.1 反相输入比例运算电路 LM324 管脚图 1) 图 1.1 中电源电压±15V ,R1=10k Ω,RF=100 k Ω,RL =100 k Ω,RP =10k//100k Ω。按图连接电路,输入直流信号 Ui 分别为-2V 、-0.5V 、0.5V 、2V ,用万用表测量对应不同 Ui 时的 Uo 值,列表计算 Au 并和理论值相比较。其中 Ui 通过电阻分压电路产生。 Ui/V Uo/V Au 测量值 理论值 -2 13.365 -6.6825 \

高频小信号放大器的设计

高 频 小 信 号 放 大 器 设 计 学号:320708030112 姓名:杨新梅 年级:07电信本1班 专业:电子信息工程 指导老师:张炜 2008年12月3日

目录 一、选题意义 (3) 二、总体方案 (4) 三、各部分设计及原理分析 (7) 四、参数选择 (11) 五、实验结果 (17) 六、结论 (18) 七、参考文献 (19)

一、选题的意义 高频小信号放大器是通信设备中常用的功能电路,它所放大的信号频率在数百千赫至数百兆赫。高频小信号放大器的功能是实现对微弱的高频信号进行不失真的放大,从信号所含频谱来看,输入信号频谱与放大后输出信号的频谱是相同的。 高频小信号放大器的分类: 按元器件分为:晶体管放大器、场效应管放大器、集成电路放大器; 按频带分为:窄带放大器、宽带放大器; 按电路形式分为:单级放大器、多级放大器; 按负载性质分为:谐振放大器、非谐振放大器; 其中高频小信号调谐放大器广泛应用于通信系统和其它无线电系统中,特别是在发射机的接收端,从天线上感应的信号是非常微弱的,这就需要用放大器将其放大。高频信号放大器理论非常简单,但实际制作却非常困难。其中最容易出现的问题是自激振荡,同时频率选择和各级间阻抗匹配也很难实现。本文以理论分析为依据,以实际制作为基础,用LC振荡电路为辅助,来消除高频放大器自激振荡和实现准确的频率选择;另加其它电路,实现放大器与前后级的阻抗匹配。

二、总体方案 高频小信号调谐放大器简述: 高频小信号放大器的功用就是无失真的放大某一频率范围内的信号。按其频带宽度可以分为窄带和宽带放大器,而最常用的是窄带放大器,它是以各种选频电路作负载,兼具阻抗变换和选频滤波功能。对高频小信号放大器的基本要求是: (1)增益要高,即放大倍数要大。 (2)频率选择性要好,即选择所需信号和抑制无用信号的能力要强,通常用Q值来表示,其频率特性曲线如图-1所示,带宽BW=f2-f1= 2Δf0.7,品质因数Q=fo/2Δf0.7. 图-1频率特性曲线

50Hz工频陷波电路图

50Hz工频陷波电路图 图2前置放大器电路 A VCC LMC6464

主放大电路 <无线心电信号采集系统研究> 李罗,卢建刚 计算机测量与控制 英文刊名:COMPUTER MEASUREMENT & CONTROL 年,卷(期): 2006,14(12) 被引用次数: 2次 图2 系统原理图

图 1 nRF905 模块的高频头用户接口电路管脚 [21] 李朝青.无线发送/接收IC 芯片及其数据通信技术选编.北京:北京航空航天大学出版社.2003 [26] 张毅刚,彭喜元.单片机原理与应用设计.哈尔滨工业大学出版社.2008,7 NRF905 应用原理图

心电信号接收电路图 通信电路

图3-4 单片机最小系统板

显示模块 无线射频收发芯片nRF905内置有天线,同时内部集成有调制,解调、编码/解码等功能,故在通信过程中能自动生成前导码和CRC校验,而不需要"接人"网络就能享受通信服务。本设计根据nRF905的特点设计的无线数据收发系统,经过多次实验证明,其发射端能正确地将数据传送出去;同时,经nRF905发射后,接收端也能正确接收并显示数据,有效通信距离大于200米。在有障碍物体的混凝土结构的建筑内测试,其有效直线通信距离大于50 m。此外,该系统采用了比较完善的软件、硬件设计以及抗干扰措施,这样,就可以保证系统工作的安全性和可靠性,并具有通用性,便于投入实际应用,而且稍作改动就可以应用到小区传呼、工业数据采集、生物信号采集,无线遥控等其它一些短距离无线通信领域,以实现无线数据的双向传输,具有较好的市场应用价值。 为了减少电路板对无线射频部分的通信干扰,本系统中所用的nRF905将构成一个最小系统作为一个功能模块,直接以功能模块的形式引出与单片机的接口。这样既敬爱年少了电路板对无线通信的干扰,又方便了无线模块的更换。nRF905芯片内部集成了电源管理、晶振、低噪放大器、频率合成器、功放等模块,可以自动完成处理字头和CRC(循环冗余码校验)的工作,片内硬件自动完成曼彻斯特编码/解码。本系统所选取的以NRF905为核心的无线通信模块采用的频率为433MHz,最大数据传输率(曼彻斯特编码)为100kbps,工作温度范围为-40℃~85℃,调制方式为GFSK。单片机将数据以SPI协议写入nRF905 后,nRF905自动将数据加前导打包发送。

运算放大器应用电路的设计与制作

运算放大器应用电路的设计与制作 运算放大器 1.原理 运算放大器是目前应用最广泛的一种器件,当外部接入不同的线性或非线性元器件组成输入和负反馈电路时,可以灵活地实现各种特定的函数关系。在线性应用方面,可组成比例、加法、减法、积分、微分、对数等模拟运算电路。 运算放大器一般由4个部分组成,偏置电路,输入级,中间级,输出级。 图1运算放大器的特性曲线 图2运算放大器输入输出端图示 图1是运算放大器的特性曲线,一般用到的只是曲线中的线性部分。如图2所示。U -对应的端子为“-”,当输入U -单独加于该端子时,输出电压与输入电压U -反相,故称它为反相输入端。U +对应的端子为“+”,当输入U +单独由该端加入时,输出电压与U +同相,故称它为同相输入端。 输出:U 0= A(U +-U -) ; A 称为运算放大器的开环增益(开环电压放大倍数)。 在实际运用经常将运放理想化,这是由于一般说来,运放的输入电阻很大,开环增益也很大,输出电阻很小,可以将之视为理想化的,这样就能得到:开环电压增益A ud =∞;输入阻抗r i =∞;输出阻抗r o =0;带宽f BW =∞;失调与漂移均为零等理想化参数。 理想运放在线性应用时的两个重要特性 输出电压U O 与输入电压之间满足关系式:U O =A ud (U +-U -),由于A ud =∞,而U O 为有限值,因此,U +-U -≈0。即U +≈U -,称为“虚短”。 由于r i =∞,故流进运放两个输入端的电流可视为零,即I IB =0,称为“虚断”,这说明运放对其前级吸取电流极小。

上述两个特性是分析理想运放应用电路的基本原则,可简化运放电路的计算。 运算放大器的应用 (1)比例电路 所谓的比例电路就是将输入信号按比例放大的电路,比例电路又分为反向比例电路、同相比例电路、差动比例电路。 (a) 反向比例电路 反向比例电路如图3所示,输入信号加入反相输入端: 图3反向比例电路电路图 对于理想运放,该电路的输出电压与输入电压之间的关系为: 为了减小输入级偏置电流引起的运算误差,在同相输入端应接入平衡电阻 R ’=R 1 // R F 。 输出电压U 0与输入电压U i 称比例关系,方向相反,改变比例系数,即改变两个电阻的阻值就可以改变输出电压的值。反向比例电路对于输入信号的负载能力有一定的要求。 (b) 同向比例电路 同向比例电路如图4所示,跟反向比例电路本质上差不多,除了同向接地的一段是反向输入端: 图4 同相比例电路电路图 i 1 f O U R R U -=

小信号放大器设计

摘要 关键词:差动放大、低通滤波、共模抑止比、信噪比、输入电阻 电路的设计: 根据本次设计的要求,是放大倍数为1000倍,所以用3级放大,由第一级放大的是小信号,所以将第一级放大定为5倍,第二次放大倍数为20倍,第三级放大倍数为10倍。由输入 阻抗为10M Ω,所以第一级放大采用同相放大。考虑到共模抑止比的关系所以第二级放大采用差动放大。由于本次设计的是小信号为了保证信号的纯真度和频率响应范 围所以最后设计一个100HZ 的有源低通滤波器,并设计放大倍数为10倍。系统框图如下: 无源低通滤波器: 由RC f π21 = ,取C=0.1uf 得R=16k R1 16kΩ C1R216kΩ 13 同向放大器: 根据2 /1 11Rr R Av + =得到同相放大器放大倍数,根据同相端放大 5倍。取R1=10K ,则Rr=2K,因为考虑到放大倍数可调的目的所以将Rr 修改为滑动变阻器,并取值5K 。

5kΩ Key=A 差动放大器: 3 4 2R R Av - =得到差动放大器的放大倍数,根据差动放大级放大20倍。取R3=10K ,则R4=200K 。 R610k|?R710k|? C489 有源低通滤波器: 根据有源二阶低通滤波器的快速设计方法,首先由截止频率Fc=100HZ 得到确定一个电容C=1uF ,和K=7并根据放大倍数为20确定R1=470Ω,R2=2.7K ,C1=2.2uF 。在由有源二阶低通滤波器的放大倍数为10,取R3=3.6K ,则R4=36K,考虑到放大倍数的可调性,则将R4用滑动变阻器来代替,并取值为50K.

系统完整图: 系统PCB图:

相关文档