文档库 最新最全的文档下载
当前位置:文档库 › 高三数学复习不等式知识点及典型例题

高三数学复习不等式知识点及典型例题

高三数学复习不等式知识点及典型例题
高三数学复习不等式知识点及典型例题

(完整版)初一不等式难题-经典题训练(附答案)

初一不等式难题,经典题训练(附答案) 1. 已知不等式3x-a ≤0的正整数解恰好是1,2,3,则a 的取值范围是_______ 2. 已知关于x 的不等式组0 521 x a x ->?? -≥-?无解,则a 的取值范围是_________ 3. 若关于x 的不等式(a-1)x-2 a +2>0的解集为x<2,则a 的值为( ) A 0 B 2 C 0或2 D -1 4. 若不等式组2 20 x a b x ->?? ->?的解集为11x -<<,则2006()a b +=_________ 5. 已知关于x 的不等式组的解集41320 x x x a +?>+? ??+- 7. 不等式组951 1 x x x m +<+?? >+?的解集是2x >,则m 的取值范围是( ) A. 2m ≤ B. 2m ≥ C. 1m ≤ D. 1m f 8.不等式()()20x x x +-<的解集是_________ 9.当a>3时,不等式ax+2<3x+b 的解集是,则b=______ 10.已知a,b 为常数,若ax+b>0的解集是1 3 x <,则的0bx a -<解集是( ) A. 3x >- B 3x <- C. 3x > D. 3x < 11.如果关于x 的不等式组的整70 60x m x n -≥?? -? p 数解仅为1,2,3,那么适合不等式组的整数(m,n)对共 有( )对 A 49 B 42 C 36 D 13 12.已知非负数x,y,z 满足123 234 x y z ---==,设345x y z ω=++,求的ω最大值与最小值

基本不等式经典例题精讲

新课标人教A 版高中数学必修五典题精讲(3.4基本不等式) 典题精讲 例1(1)已知0<x <3 1,求函数y=x(1-3x)的最大值; (2)求函数y=x+ x 1的值域. 思路分析:(1)由极值定理,可知需构造某个和为定值,可考虑把括号内外x 的系数变成互为相反数;(2)中,未指出x >0,因而不能直接使用基本不等式,需分x >0与x <0讨论. (1)解法一:∵0<x <3 1,∴1-3x >0. ∴y=x(1-3x)= 3 1·3x(1-3x)≤3 1[ 2) 31(3x x -+]2= 12 1,当且仅当3x=1-3x ,即x= 6 1时,等号成 立.∴x= 6 1时,函数取得最大值 12 1 . 解法二:∵0<x <3 1,∴ 3 1-x >0. ∴y=x(1-3x)=3x(3 1-x)≤3[ 23 1x x -+ ]2= 12 1,当且仅当x= 3 1-x,即x= 6 1时,等号成立. ∴x= 6 1时,函数取得最大值12 1. (2)解:当x >0时,由基本不等式,得y=x+x 1≥2x x 1? =2,当且仅当x=1时,等号成立. 当x <0时,y=x+ x 1=-[(-x)+ ) (1x -]. ∵-x >0,∴(-x)+ ) (1x -≥2,当且仅当-x= x -1,即x=-1时,等号成立. ∴y=x+x 1≤-2. 综上,可知函数y=x+x 1的值域为(-∞,-2]∪[2,+∞). 绿色通道:利用基本不等式求积的最大值,关键是构造和为定值,为使基本不等式成立创造条件,同时要注意等号成立的条件是否具备. 变式训练1当x >-1时,求f(x)=x+ 1 1+x 的最小值. 思路分析:x >-1?x+1>0,变x=x+1-1时x+1与1 1+x 的积为常数.

高考不等式经典例题

高考不等式经典例题 【例1】已知a >0,a ≠1,P =log a (a 3-a +1),Q =log a (a 2-a +1),试比较P 与Q 的大小. 【解析】因为a 3-a +1-(a 2-a +1)=a 2(a -1), 当a >1时,a 3-a +1>a 2-a +1,P >Q ; 当0<a <1时,a 3-a +1<a 2-a +1,P >Q ; 综上所述,a >0,a ≠1时,P >Q . 【变式训练1】已知m =a + 1a -2 (a >2),n =x - 2(x ≥12),则m ,n 之间的大小关系为( ) A.m <n B.m >n C.m ≥n D.m ≤n 【解析】选C.本题是不等式的综合问题,解决的关键是找中间媒介传递. m =a + 1a -2=a -2+1a -2 +2≥2+2=4,而n =x - 2≤(12)-2=4. 【变式训练2】已知函数f (x )=ax 2-c ,且-4≤f (1)≤-1,-1≤f (2)≤5,求f (3)的取值范围. 【解析】由已知-4≤f (1)=a -c ≤-1,-1≤f (2)=4a -c ≤5. 令f (3)=9a -c =γ(a -c )+μ(4a -c ), 所以???-=--=+1,94μγμγ???? ??? ? =-=38 ,35μγ 故f (3)=-53(a -c )+8 3(4a -c )∈[-1,20]. 题型三 开放性问题 【例3】已知三个不等式:①ab >0;② c a >d b ;③b c >a d .以其中两个作条件,余下的一个作结论,则能组 成多少个正确命题? 【解析】能组成3个正确命题.对不等式②作等价变形:c a >d b ?bc -ad ab >0. (1)由ab >0,bc >ad ?bc -ad ab >0,即①③?②; (2)由ab >0, bc -ad ab >0?bc -ad >0?bc >ad ,即①②?③; (3)由bc -ad >0, bc -ad ab >0?ab >0,即②③?①. 故可组成3个正确命题. 【例2】解关于x 的不等式mx 2+(m -2)x -2>0 (m ∈R ). 【解析】当m =0时,原不等式可化为-2x -2>0,即x <-1; 当m ≠0时,可分为两种情况: (1)m >0 时,方程mx 2+(m -2)x -2=0有两个根,x 1=-1,x 2=2 m . 所以不等式的解集为{x |x <-1或x >2 m }; (2)m <0时,原不等式可化为-mx 2+(2-m )x +2<0,

(完整版)基本不等式题型总结(经典,非常好,学生评价高)

基本不等式 一. 基本不等式 ①公式:(0,0)2 a b a b +≥≥≥,常用a b +≥ ②升级版:22222a b a b ab ++??≥≥ ??? ,a b R ∈ 选择顺序:考试中,优先选择原公式,其次是升级版 二.考试题型 【题型1】 基本不等式求最值 求最值使用原则:一正 二定 三相等 一正: 指的是注意,a b 范围为正数。 二定: 指的是ab 是定值为常数 三相等:指的是取到最值时a b = 典型例题: 例1 .求1(0)2y x x x =+<的值域 分析:x 范围为负,提负号(或使用对钩函数图像处理) 解:1()2y x x =--+- 00x x <∴->Q 1 2x x ∴-+≥=-1 2x x ∴+≤ 得到(,y ∈-∞

例2 .求12(3)3 y x x x =+>-的值域 解:123 y x x =+- (“添项”,可通过减3再加3,利用基本不等式后可出现定值) 12(3)63 x x =+-+- 330x x >∴->Q 12(3)3x x ∴ +-≥- 6y ∴≥, 即)6,y ?∈+∞? 例3.求2sin (0)sin y x x x π=+<<的值域 分析:sin x 的范围是(0,1),不能用基本不等式,当y 取到最小值时,sin x 不在范围内 解:令sin (0,1)t x t =∈, 2y t t =+ 是对钩函数,利用图像可知: 在(0,1)上是单减函数,所以23t t + >,(注:3是将1t =代入得到) (3,)y ∴∈+∞ 注意:使用基本不等式时,注意y 取到最值,x 有没有在范围内, 如果不在,就不能用基本不等式,要借助对钩函数图像来求值域。

高三数学不等式基本不等式经典例题高考真题剖析解析版

必修五:基本不等式 应用一:求最值 例:求下列函数的值域 (1)y =3x 2+12x 2 (2)y =x +1 x 解:(1)y =3x 2+1 2x 2 ≥2 3x 2·1 2x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧 技巧一:凑项 例 已知5 4x < ,求函数14245 y x x =-+-的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42)45 x x --g 不是常数,所以对42x -要进行拆、凑项, 5,5404x x <∴->Q ,11425434554y x x x x ??∴=-+=--++ ?--??231≤-+= 当且仅当1 5454x x -=-,即1x =时,上式等号成立,故当1x =时,max 1y =。 技巧二:凑系数 例: 当 时,求(82)y x x =-的最大值。 解析:由知,,利用均值不等式求最值,必须和为定值或积为定值,此题为两个式子积的形式,但其和不是定值。注意到2(82)8x x +-=为定值,故只需将(82)y x x =-凑上一个系数即可。 当,即x =2时取等号 当x =2时,(82)y x x =-的最大值为8。 变式:设2 3 0< -x ∴2922322)23(22)23(42 =?? ? ??-+≤-?=-=x x x x x x y 当且仅当,232x x -=即?? ? ??∈= 23,043x 时等号成立。 技巧三: 分离、换元 例:求2710 (1)1 x x y x x ++= >-+的值域。

不等式典型例题之基本不等式的证明

5.3、不等式典型例题之基本不等式的证明——(6例题) 雪慕冰 一、知识导学 1.比较法:比较法是证明不等式的最基本、最重要的方法之一,它是两个实数大小顺序和运算性质的直接应用,比较法可分为差值比较法(简称为求差法)和商值比较法(简称为求商法). (1)差值比较法的理论依据是不等式的基本性质:“a-b≥0a≥b;a-b≤0a≤b”.其一般步骤为:①作差:考察不等式左右两边构成的差式,将其看作一个整体;②变形:把不等式两边的差进行变形,或变形为一个常数,或变形为若干个因式的积,或变形为一个或几个平方的和等等,其中变形是求差法的关键,配方和因式分解是经常使用的变形手段;③判断:根据已知条件与上述变形结果,判断不等式两边差的正负号,最后肯定所求证不等式成立的结论.应用范围:当被证的不等式两端是多项式、分式或对数式时一般使用差值比较法. (2)商值比较法的理论依据是:“若a,b∈R + ,a/b≥1a≥b;a/b≤1a≤b”.其一般步骤为:①作商:将左右两端作商;②变形:化简商式到最简形式;③判断商与1的大小关系,就是判定商大于1或小于1.应用范围:当被证的不等式两端含有幂、指数式时,一般使用商值比较法. 2.综合法:利用已知事实(已知条件、重要不等式或已证明的不等式)作为基础,借助不等式的性质和有关定理,经过逐步的逻辑推理,最后推出所要证明的不等式,其特点和思路是“由因导果”,从“已知”看“需知”,逐步推出“结论”.即从已知A逐步推演不等式成立的必要条件从而得出结论B. 3.分析法:是指从需证的不等式出发,分析这个不等式成立的充分条件,进而转化为判定那个条件是否具备,其特点和思路是“执果索因”,即从“未知”看“需知”,逐步靠拢“已知”.用分析法证明书写的模式是:为了证明命题B成立,只需证明命题B1为真,从而有…,这只需证明B2为真,从而又有…,……这只需证明A为真,而已知A为真,故B必为真.这种证题模式告诉我们,分析法证题是步步寻求上一步成立的充分条件. 4.反证法:有些不等式的证明,从正面证不好说清楚,可以从正难则反的角度考虑,即要证明不等式A>B,先假设A≤B,由题设及其它性质,推出矛盾,从而肯定A>B.凡涉及到的证明不等式为否定命题、惟一性命题或含有“至多”、“至少”、“不存在”、“不可能”等词语时,可以考虑用反证法. 5.换元法:换元法是对一些结构比较复杂,变量较多,变量之间的关系不甚明了的不等式可引入一个或多个变量进行代换,以便简化原有的结构或实现某种转化与变通,给证明带来新????

2015届高三数学—不等式1:基本不等式经典例题+高考真题剖析(解析版)

基本不等式 应用一:求最值 例:求下列函数的值域 (1)y =3x 2+12x 2 (2)y =x +1 x 解:(1)y =3x 2+1 2x 2 ≥2 3x 2·1 2x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧 技巧一:凑项 例 已知5 4x < ,求函数14245 y x x =-+-的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42)45 x x -- 不是常数,所以对42x -要进行拆、凑项, 5,5404x x <∴-> ,11425434554y x x x x ??∴=-+=--++ ?--??231≤-+= 当且仅当1 5454x x -=-,即1x =时,上式等号成立,故当1x =时,max 1y =。 技巧二:凑系数 例: 当 时,求(82)y x x =-的最大值。 解析:由知,,利用均值不等式求最值,必须和为定值或积为定值,此题为两个式子积的形式,但其和不是定值。注意到2(82)8x x +-=为定值,故只需将(82)y x x =-凑上一个系数即可。 当,即x =2时取等号 当x =2时,(82)y x x =-的最大值为8。 变式:设2 3 0< -x ∴2922322)23(22)23(42 =?? ? ??-+≤-?=-=x x x x x x y 当且仅当,232x x -=即?? ? ??∈= 23,043x 时等号成立。 技巧三: 分离、换元

高中不等式所有知识及典型例题(超全)

一.不等式的性质: 二.不等式大小比较的常用方法: 1.作差:作差后通过分解因式、配方等手段判断差的符号得出结果; 2.作商(常用于分数指数幂的代数式);3.分析法;4.平方法;5.分子(或分母)有理化; 6.利用函数的单调性;7.寻找中间量或放缩法 ;8.图象法。其中比较法(作差、作商)是最基本的方法。 三.重要不等式 1.(1)若R b a ∈,,则ab b a 22 2≥+ (2)若R b a ∈,,则2 22b a ab +≤(当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则ab b a ≥+2 (2)若*,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=”) (3)若* ,R b a ∈,则2 2?? ? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则1 2x x +≥ (当且仅当1x =时取“=”); 若0x <,则1 2x x + ≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 若0>ab ,则2≥+a b b a (当且仅当 b a =时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=” ) 4.若R b a ∈,,则2 )2 (2 22b a b a +≤+(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求 它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 5.a 3+b 3+c 3≥3abc (a,b,c ∈ R +), a +b +c 3 ≥3abc (当且仅当a =b =c 时取等号); 6. 1 n (a 1+a 2+……+a n )≥12n n a a a (a i ∈ R +,i=1,2,…,n),当且仅当a 1=a 2=…=a n 取等号; 变式:a 2+b 2+c 2≥ab+bc+ca; ab ≤( a +b 2 )2 (a,b ∈ R +) ; abc ≤( a +b +c 3 )3(a,b,c ∈ R +) a ≤ 2a b a +b ≤ab ≤ a +b 2 ≤ a 2+b 2 2 ≤b.(0b>n>0,m>0; 应用一:求最值 例1:求下列函数的值域(1)y =3x 2+12x 2 (2)y =x +1 x

基本不等式培优专题(推荐)

高中数学——基本不等式培优专题 目录 培优(1)常规配凑法 培优(2)“1”的代换 培优(3)换元法 培优(4)和、积、平方和三量减元 培优(5)轮换对称与万能k法 培优(6)消元法(必要构造函数求异) 培优(7)不等式算两次 培优(8)齐次化 培优(9)待定与技巧性强的配凑 培优(10)多元变量的不等式最值问题 培优(11)不等式综合应用

培优(1) 常规配凑法 1.(2018届温州9月模拟)已知242=+b a (a,b ∈R ),则a+2b 的最小值为_____________ 2. 已知实数x,y 满足116 2 2 =+y x ,则22y x +的最大值为_____________ 3.(2018春湖州模拟)已知不等式9)1 1)((≥++y x my x 对任意正实数x,y 恒成立,则正实数m 的最小值 是( ) A.2 B.4 C.6 D.8 4.(2017浙江模拟)已知a,b ∈R,且a ≠1,则b a b a -+++1 1 的最小值是_____________ 5.(2018江苏一模)已知a ﹥0,b ﹥0,且 ab b a =+3 2,则ab 的最小值是_____________

6.(诸暨市2016届高三5月教学质量检测)已知a ﹥b ﹥0,a+b=1,则b b a 21 4+ -的最小值是_____________ 7.(2018届浙江省部分市学校高三上学期联考)已知a ﹥0,b ﹥0,11 1 11=+++b a ,则a+2b 的最小值 是( ) A.23 B.22 C.3 D.2 培优(2) “1”的代换 8.(2019届温州5月模拟13)已知正数a,b 满足a+b=1,则b a b 1 +的最小值为_____________此时a=______ 9.(2018浙江期中)已知正数a,b 满足112=+ b a 则b a +2 的最小值为( ) A.24 B.28 C.8 D.9

列不等式经典练习题

祖π数学新人教七年级下册之高分速成 1 【题型1】列不等式用不等式表示: (1)x的2 3 与5的差小于1: ;(2)y的9倍与b的 1 3 的和是负数: . (3)x的1 7 与9的倒数的和大于y的15%:____________________________. (4)a的30%与a的和大于a的2倍与10的差:_____________________________. 【变式训练】 1.数学表达式:①-5<7;②3y-6>0;③a=6;④x-2x;⑤a≠2;⑥7y-6>5y+2中,是不等式的有( ) A.2个 B.3个 C.4个 D.5个 2.下面给出5个式子:①3x>5;②x+1;③1-2y≤0;④x-2≠0;⑤3x-2=0.其中是不等式的个数有( ) A.2个 B.3个 C.4个 D.5个 3.“数x不小于2”是指( ) A.x≤2 B.x≥2 C.x<2 D.x>2 4.用不等式表示 (1)x的2倍与5的差不大于1 ; (2)x的1 3 与x的 1 2 的和是非负数; (3)a与3的和不小于5 ; (4)a的20%与a的和大于a的3倍 . 5.用不等式表示 (1)a比6小__________; (2)x与1的和大于2___________; (3)a的2倍小于b__________; (4)m的相反数是正数___________; (5)x的4倍与7的差大于3___________; (6)a、b两数的平方和大于4__________; (7) m不大于-5 ; (8) x的4倍大于3 . 6.设“●”、“▲”表示两种不同的物体,现用天平称(如图),若用x、?y分别表示“●”、“▲”的重量,写出符合题意的不等式是_________.

高中基本不等式经典例题教案

全方位教学辅导教案

例1:(2)1 2,33 y x x x =+>-。 变式:已知5 4x < ,求函数14245 y x x =-+-的最大值 。 技巧二:凑系数 例1.当 时,求(82)y x x =-的最大值。 解析:由知,,利用均值不等式求最值,必须和为定值或积为定值,此 题为两个式子积的形式,但其和不是定值。注意到2(82)8x x +-=为定值,故只需将 (82)y x x =-凑上一个系数即可。 评注:本题无法直接运用均值不等式求解,但凑系数后可得到和为定值,从而可利用均值不等式求最大值。 变式:1、设2 3 0< -+的值域。 技巧四:换元 解析二:本题看似无法运用均值不等式,可先换元,令t=x +1,化简原式在分离求最值。 当 ,即t= 时,4 259y t t ≥? +=(当t=2即x =1时取“=”号)。 评注:分式函数求最值,通常直接将分子配凑后将式子分开或将分母换元后将式子分开再利用不等式求最值。即化为()(0,0)() A y mg x B A B g x =++>>,g(x)恒正或恒负的形式,然后运用均值不等式来求最值。 变式 (1)231 ,(0)x x y x x ++= > 技巧五:注意:在应用最值定理求最值时,若遇等号取不到的情况,应结合函 数()a f x x x =+的单调性。 例:求函数22 5 4 x y x +=+的值域。 解:令24(2)x t t +=≥,则2 254 x y x +=+221 1 4(2)4 x t t t x =++ =+≥+ 因10,1t t t >?=,但1 t t =解得1t =±不在区间[)2,+∞,故等号不成立,考虑单调 性。 因为1 y t t =+在区间[)1,+∞单调递增,所以在其子区间[)2,+∞为单调递增函数, 故52 y ≥。

必修5--基本不等式几种解题技巧及典型例题

均值不等式应用(技巧)技巧一:凑项 1、求y = 2x+ 1 x - 3 (x > 3)的最小值 2、已知x > 3 2 ,求y = 2 2x - 3 的最小值 3、已知x < 5 4 ,求函数y = 4x – 2 + 1 4x - 5 的最大值。 技巧二:凑系数 4、当0 < x < 4时,求y = x(8 - 2x)的最大值。 5、设0 < x < 3 2 时,求y = 4x(3 - 2x)的最大值,并求此时x的值。 6、已知0 < x < 1时,求y = 2x(1 - x) 的最大值。 7、设0 < x < 2 3 时,求y = x(2 - 3x) 的最大值 技巧三:分离 8、求y = x2 + 7x + 10 x + 1 (x > -1)的值域; 9、求y = x2 + 3x + 1 x (x > 0)

的值域 10、已知x > 2,求y = x2 - 3x + 6 x - 2 的最小值 11、已知a > b > c,求y = a - c a - b + a - c b - c 的最小值 12、已知x > -1,求y = x + 1 x2 + 5x + 8 的最大值 技巧四:应用最值定理取不到等号时利用函数单调性 13、求函数y = x2 + 5 x2 + 4 的值域。 14、若实数满足a + b = 2,则3a + 3b的最小值是。 15、若 + = 2,求1 x + 1 y 的最小值,并求x、y的值。 技巧六:整体代换 16、已知x > 0,y > 0,且1 x + 9 y = 1,求x + y的最小值。

17、若x、y∈R+且2x + y = 1,求1 x + 1 y 的最小值 18、已知a,b,x,y∈R+ 且a x + b y = 1,求x + y的最小值。 19、已知正实数x,y满足2x + y = 1,求1 x + 2 y 的最小值 20、已知正实数x,y,z满足x + y + z = 1,求1 x + 4 y + 9 z 的最小值 技巧七:取平方 21、已知x,y为正实数,且x2 + y2 2 = 1,求x 1 + y2的最大值。 22、已知x,y为正实数,3x + 2y = 10,求函数y = 3x + 2y的最值。 23、求函数y = 2x - 1 + 5 - 2x(1 2 < x < 5 2 )的最大值。 技巧八:已知条件既有和又有积,放缩后解不等式 24、已知a,b为正实数,2b + ab + a = 30,求函数y = 1 ab 的最小值。

第课基本不等式经典例题练习附答案

第9课基本不等式 ◇考纲解读 ①了解基本不等式的证明过程. ②会用基本不等式解决简单的最大(小)值问题. ◇知识梳理 1.常用的基本不等式和重要的不等式 ①0,0,2≥≥∈a a R a 当且仅当,②22,______,2a b a b ab ∈+≥则 ③,_____a b ∈,则ab b a 2≥+,④222)2 (2b a b a +≤+ 2.最值定理:设,0,x y x y >+≥由 ①如积(xy P x y =+定值),则积有______②如积2(2S x y S x y += 定值),则积有______() 运用最值定理求最值的三要素: ________________________________________________ ◇基础训练 1.若1a b +=,恒有 () A .41 ≤ab B .41≥ab C .1622≤b a D .以上均不正确

2.当1 2x >时,821 y x x =+-的最小值为. 3.已知01x <<,则(12)y x x =-的最大值为. 4.实数,a b 满足22a b +=,则39a b +的最小值为. ◇典型例题 例1.求函数(5)(2)(1)1x x y x x ++= >-+的最小值. 例2.已知+∈R b a ,,且191,a b +=求a b +最小值. ◇能力提升 1.若+∈R b a ,,1)(=+-b a ab ,则b a +的最小值是() A .222+ B.25+ C.222- D.22 2.下列命题中正确的是() A .x x y 1+=的最小值是2 B .2 322++=x x y 的最小值是2 C .45 22++=x x y 的最小值是25D .x x y 432--=的最大值是342- 3.若+∈R b a ,满足3ab a b =++,则ab 的取值范围是________________. 4.若1x >时,不等式11x a x + ≥-恒成立,则实数a 的取值范围是____________. 5.若(4,1)x ∈-,求2221 x x x -+-的最大值.

基本不等式及其应用知识梳理及典型练习题(含答案)

基本不等式及其应用 1.基本不等式 若a>0,,b>0,则 a + b 2 ≥ab ,当且仅当 时取“=”. 这一定理叙述为:两个正数的算术平均数 它们的几何平均数. 注:运用均值不等式求最值时,必须注意以下三点: (1)各项或各因式均正;(一正) (2)和或积为定值;(二定) (3)等号成立的条件存在:含变数的各项均相等,取得最值.(三相等) 2.常用不等式 (1)a 2+b 2≥ab 2(a ,b ∈R ). 2 a b +()0,>b a 注:不等式a 2+b 2≥2ab 和 2 b a +≥a b 它们成立的条件不同,前者只要求a 、b 都是实数,而后者要求a 、b 都是正数.其等价变形:ab≤(2 b a +)2 .

(3)ab≤ 2 2 ? ? ? ? ?+b a (a,b∈R). (4) b a + a b ≥2(a,b同号且不为0). (5) 2 2 ? ? ? ? ?+b a ≤ a2+b2 2 (a,b∈R). (6) b a ab b a b a 1 1 2 2 2 2 2 + ≥ ≥ + ≥ +()0 ,> b a (7)abc≤ a3+b3+c3 3 ;() ,,0 a b c> (8) a+b+c 3 ≥ 3 abc;() ,,0 a b c> 3.利用基本不等式求最大、最小值问题 (1)求最小值:a>0,b>0,当ab为定值时,a+b,a2+b2有,即a +b≥,a2+b2≥. (2)求最大值:a>0,b>0,当a+b为定值时,ab有最大值,即;或a2+b2为定值时,ab有最大值(a>0,b>0),即.

设a,b∈R,且a+b=3,则2a +2b的最小值是( ) 解:因为2a>0,2b>0,由基本不等式得2a+2b≥22a·2b=22a+b=42, 当且仅当a=b=3 2 时取等号,故选B. 若a>0,b>0,且a+2b-2=0, 则ab的最大值为( ) 解:∵a>0,b>0,a+2b=2,∴a+2b=2≥22ab,即ab≤1 2 .当且仅当a =1,b=1 2 时等号成立.故选A.

一元一次不等式典型例题

一元一次不等式典型例题 令狐采学 类型一:一元一次不等式的解集问题 1.若不等式﹣3x+n>0的解集是x<2,则不等式﹣3x+n<0的解集是. 2.已知实数x、y满足2x﹣3y=4,并且x≥﹣1,y<2,现有k=x﹣y,则k的取值范围是. 3.关于x的一元一次不等式≤﹣2的解集为x≥4,则m 的值为________ 4.若关于x的一元一次方程x﹣m+2=0的解是负数,则m的取值范围是_______ 类型二:一元一次不等式组无解的情况 1.若关于x的一元一次不等式组无解,则a的取值范围是. 2.已知不等式组无解,则a的取值范围是 3.已知关于x的不等式组无解,则a的取值范围是类型三:明确一元一次不等式组的解集求范围

1.若不等式的解集为x>3,则a的取值范围是 2.若关于x的不等式的解集为x<2,则a的取值范围是. 3.若关于x的一元一次不等式组的解集是x<5,则m的取值范围是________ 4.若不等式组的解集为﹣1<x<1,那么(a+1)(b ﹣1)的值等于 5.已知不等式组的解集为﹣1<x<2,则(m+n)2008= 类型四:一元一次不等式组有解求未知数的范围 1.若有解,则a的取值范围是 2.若关于x的不等式组有实数解,则a的取值范围是 3.______ _

类型五:一元一次不等式组有整数解求范围 1.不等式组有3个整数解,则m的取值范围是.2.不等式组有3个整数解,则m的取值范围是. 3.已知关于x的不等式组仅有三个整数解,则a 的取值范围是. 4.关于x的不等式组的所有整数解的和是﹣7,则m的取值范围是. 5.关于x的不等式组的解集中至少有5个整数解,则正数a的最小值是______ 6.已知关于x的不等式组恰好有两个整数解,求实数a的取值范围. 7.已知关于x的不等式组有四个整数解,求实数a的取值范围. 类型六:一元一次不等式(组)应用题 1.分配问题 (1)学校现有若干个房间分配给初三(1)班的男生住宿,已知该班男生不足50人,若每间住4人,则余15人无住处;

高中数学不等式解法15种典型例题

不等式解法15种典型例题 例1 解不等式:(1)01522 3>--x x x ;(2)0)2()5)(4(3 2 <-++x x x . 分析:如果多项式)(x f 可分解为n 个一次式的积,则一元高次不等式0)(>x f (或0)(-+x x x 把方程0)3)(52(=-+x x x 的三个根3,2 5,0321=-==x x x 顺次标上数轴.然后从右上开始画线顺次经过三个根,其解集如下图的阴影部分. ∴原不等式解集为? ?????><<- 3025x x x 或 (2)原不等式等价于 ?? ?>-<-≠????>-+≠+?>-++2 450)2)(4(050 )2()5)(4(32x x x x x x x x x 或 ∴原不等式解集为{} 2455>-<<--+-+-x x x x 2 12 1 310 2730 132027301320 )273)(132(2 22222><<+->+-?>+-+-?x x x x x x x x x x x x x x x 或或或∴原不等式解集为),2()1,21()31,(+∞??-∞。 解法二:原不等式等价于 0) 2)(13() 1)(12(>----x x x x 0)2()13)(1)(12(>-?---?x x x x 用“穿根法”∴原不等式解集为),2()1,2 1()31 ,(+∞??-∞ 典型例题三 例3 解不等式242+<-x x 分析:解此题的关键是去绝对值符号,而去绝对值符号有两种方法:一是根据绝对值的意义? ??<-≥=)0() 0(a a a a a 二是根据绝对值的性质:a x a x a x a a x >?<<-?<.,或a x -<,因此本题有如下两种解法. 解法一:原不等式?????+<-<-?????+<-≥-?2 40 4240422 22x x x x x x 或 即? ? ?>-<<<-???<<--≤≥1222222x x x x x x x 或或或 ∴32<≤x 或21<-+<-) 2(42 422x x x x ∴312132<<<-x x x x 故或. 典型例题四 例4 解不等式 04125 62 2<-++-x x x x . 分析:这是一个分式不等式,其左边是两个关于x 二次式的商,由商的符号法则,它等价于下列两个不等式组: ?????>-+<+-041205622x x x x 或?????<-+>+-0 4120 562 2x x x x 所以,原不等式的解集是上面两个不等式级的解集的并集.也可用数轴标根法求解.

不等式经典题型专题练习(含答案)-

不等式经典题型专题练习(含答案) :__________ 班级:___________ 一、解答题 1.解不等式组: ()13x 2x 11{ 25 233x x -+≤-+≥-,并在数轴上表示不等式组的解集. 2.若不等式组21{ 23x a x b -<->的解集为-1

5.解不等式组:并写出它的所有的整数解. 6.已知关于x、y的方程组 521118 23128 x y a x y a +=+ ? ? -=- ? 的解满足x>0,y>0,数a的取 值围. 6.求不等式组 x20 x 1x3 2 -> ? ? ? +≥- ?? 的最小整数解. 7.求适合不等式﹣11<﹣2a﹣5≤3的a的整数解. 8.已知关于x的不等式组的整数解共有5个,求a的取值围. 9.若二元一次方程组 2 { 24 x y k x y -= += 的解x y >,求k的取值围.

10.解不等式组5134122 x x x x ->-???--??≤并求它的整数解的和. 11.已知x ,y 均为负数且满足:232x y m x y m +=-?? -=?①②,求m 的取值围. 12.解不等式组?? ???<+-+≤+12312)2(352x x x x ,把不等式组的解集在数轴上表示出来,并写出不等式组的非负整数集. 14.若方程组2225 x y m x y m +=+??-=-?的解是一对正数,则: (1)求m 的取值围 (2)化简:42m m -++ 15.我市一山区学校为部分家远的学生安排住宿,将部分教室改造成若干间住房. 如果每间住5人,那么有12人安排不下;如果每间住8人,那么有一间房还余一些床位,问该校可能有几间住房可以安排学生住宿?住宿的学生可能有多少人?

不等式经典题型专题练习(含答案)

不等式经典题型专题练习(含答案) 姓名:__________ 班级:___________ 一、解答题 1.解不等式组: ()13x 2x 11{ 2 5233x x -+≤-+≥-,并在数轴上表示不等式组的解集. 2.若不等式组21 { 23x a x b -<->的解集为-1

3.已知关于x ,y 的方程组?? ?=+=+3135y x m y x 的解为非负数,求整数m 的值. 4.由方程组212x y x y a +=?? -=?得到的x 、y 的值都不大于1,求a 的取值范围. 5.解不等式组: 并写出它的所有的整数解.

6.已知关于x、y的方程组 521118 23128 x y a x y a +=+ ? ? -=- ? 的解满足x>0,y>0,求实数a的取 值范围. 6.求不等式组 x20 x 1x3 2 -> ? ? ? +≥- ?? 的最小整数解. 7.求适合不等式﹣11<﹣2a﹣5≤3的a的整数解.

8.已知关于x的不等式组3的整数解共有5个,求a的取值范围. 9.若二元一次方程组 2 { 24 x y k x y -= += 的解x y >,求k的取值范围. 10.解不等式组 5134 1 2 2 x x x x ->- ? ? ? -- ??≤ 并求它的整数解的和. 23 x y m +=- ?①

12.解不等式组?? ???<+-+≤+12312)2(352x x x x ,把不等式组的解集在数轴上表示出来,并写出不等式组的非负整数集. 14.若方程组2225x y m x y m +=+??-=-? 的解是一对正数,则: (1)求m 的取值范围 (2)化简:42 m m -++

基本不等式题型总结(经典,非常好,学生评价高)

基本不等式 .基本不等式 ①公式: -_b ab (a 0,b 0),常用 a b 2. ab 2 2 ■ 2 2 ②升级版: a b a b ab a,b R 2 2 选择顺序:考试中,优先选择原公式,其次是升级版 二?考试题型 【题型1】 基本不等式求最值 求最值使用原则:一正 二定三相等 一正: 指的是注意a,b 范围为正数。 二定: 指的是ab 是定值为常数 三相等:指的是取到最值时 a b 典型例题: 1 例1?求 y x £;(x 0)的值域 分 x 范围为负,提负号(或使用对钩函数图像处 1 解:y (x ) Q x 0 2x 2x 1 x 2x 得到y ( , &]

1 分析:sinx 的范围是(0,1),不能用基本不等式,当 y 取到最小值时,sinx 的值是.2,但「2不 在范围内 解:令 t sinx , t (0,1) 是对钩函数,禾U 用图像可知: 2 在(0,1)上是单减函数,所以t 3,(注:3是将t 1代入得到) y (3,) 注意:使用基本不等式时,注意 y 取到最值,x 有没有在范围内, 如果不在,就不能用基本不等式 ,要借助对钩函数图像来求 值域。 例2 ?求y 2x (x 3)的值域 解:y 2x (“添项”,可通过减3再加3,利用基本不等式后可出现定值 ) 2(x 3) 22 即 y 2.2 6, 例3?求 y sin x 2 sin x (0 x )的值域

y t f (p 为常数)型函数,要注意t 的取值范围; 【失误与防范】 1.使用基本不等式求最值,其失误的真正原因 是对其前提“一正、二定、三相等”的忽视. 要利 用基本不等式求最值,这三个条件缺一不可. 2 ?在运用重要不等式时, 要特别注意“拆” “拼” “凑” “正” “定” “等”的条件. 3.连续使用公式时取 等号的条件很严格,要求同时满足任何一次的字母取值存在且一致. 【题型2】条件是a b 或ab 为定值,求最值(值域)(简) x 2 2x 1 例 4.求 y (x 2)的值域 分析:先换元,令t x 2 ,t 0,其中x 解:y (t 2)2 2(t 2) 1 t 2 6t 1 t Qt 0 [8, 总之:形如y 2 CX ax b dx f (a 0,c 0)的函数,一般可通过换元法等价变形化为 等技巧,使其满足重要不等式中 例5. 0, y 0且x y 18,则xy 的最大值是 解析: 由于 x 0,y 0,则x y 2 xy ,所以2 xy 18,则xy 的最大值为81 例6. 已知 x,y 为正实数,且满足 4x 3y 12,则xy 的最大值为

相关文档
相关文档 最新文档