文档库 最新最全的文档下载
当前位置:文档库 › 双向可控硅控制灯泡亮灭并且单片机输出高电平控制电路闭合

双向可控硅控制灯泡亮灭并且单片机输出高电平控制电路闭合

双向可控硅控制灯泡亮灭并且单片机输出高电平控制电路闭合

双向可控硅控制灯泡亮灭并且单片机输出高电平控制电路闭合

可控硅是比较常用的可控型电子元器件,经常用在调光电路、开关电路中控制电路的通断。可控硅从方向上来分,可以分为双向可控硅和单向可控硅,双向可控硅在交流中比较常用。题目想用双向可控硅Triac来控制灯泡的亮灭,并且单片机输出高电平控制电路闭合,这

个功能实现起来非常简单。所实现的原理图如下图所示。

可控硅调速电路

可控硅调压调速原理 小功率分体机室内风机目前用的是PG调速塑封电机,为单向异步电容运转电动机。为了满足空调正常的运转,达到制冷、制热能力的平衡,所以必须保证室内风机的转速满足系统的要求,并保持转速的稳定。因此采用可控硅调压调速的方法来调节风机的转速。 1.电路原理图 2.工作原理简介 可控硅调速是用改变可控硅导通角的方法来改变电动机端电压的波形,从而改变电动机端电压的有效值,达到调速的目的。 当可控硅导通角α1=180°时,电动机端电压波形为正弦波,即全导通状态;(图示两种状态)当可 控硅导通角α1 <180°时,电动机端电压波形如图实 线所示,即非全导通状态,有效值减小;α1越小, 导通状态越少,则电压有效值越小,所产生的磁场越 小,则电机的转速越低。但这时电动机电压和电流波 形不连续,波形差,故电动机的噪音大,甚至有明显 的抖动,并带来干扰。这些现象一般是在微风或低风 速时出现,属正常。由以上的分析可知,采用可控硅 调速其电机转速可连续调节。 3.各元器件作用及注意事项 3.1D15、R28、R29、E9、Z1、R30、C1组成降压、整流、虑波稳压电路,获得相对直流电压 12V,通过光电偶合器PC817给双向可控硅BT131提供门极电压; 3.2R25、C15组成RC阻容吸收网络,解决可控硅导通与截止对电网的干扰,使其符合EMI测试标准;同时防止可控硅两端电压突变,造成无门极信号误导通。 3.3TR1选用1A/400V双向可控硅,TR1有方向性,T1、T2不可接反,否则电路不能正常工作。 3.4L2为扼流线圈,防止可控硅回路中电流突变,保护TR1,由于它是储能元件,在TR1关断和导通过程中,尖峰电压接近50V,R24容易受冲击损坏,因此禁止将L2放置在TR1前端。

三相晶闸管交流调压电路的设计与仿真

目录 1设计任务及分析 (1) 1.1 电路设计任务 (1) 1.2 电路设计的目的 (1) 2.1 主电路的原理分析 (2) 3 MATLAB建模与仿真 (5) 3.2 参数设置 (6) 3.3 仿真结果及分析 (7) 总结 (8) 参考文献 (9)

三相晶闸管交流调压电路的设计与 仿真 1设计任务及分析 1.1 电路设计任务 (1)用simulink设计系统仿真模型;能够正常运行得到仿真结果。 (2)比较理论分析结果与仿真结果异同,总结规律。 (3)设计出主电路结构图和控制电路结构图。 (4)根据结构图设计出主电路图和控制电路图,对主要器件进行选型。 1.2 电路设计的目的 电力电子装置及控制是我们大三下学期学的一门很重要的专业课,课本上讲了很多电路,比如各种单相可控整流电路,斩波电路,电压型逆变电路,三相整流电路,三相逆变电路,等各种电路,通过对这些电路的学习,让我们知道了如何将交流变为直流,又如何将直流变为交流。并且通过可控整流调节输出电压的有效值,以达到我们的目的。而本次三相交流调压电路的设计与仿真,我们需要用晶闸管的触发电路来实现调节输入电压的有效值,然后加到负载上。本次课程设计期间,我们自己通过老师提供的Matlab仿真技术的资料和我们在网上搜索相关的资料,到图书馆查阅书籍,以及同学之间的相互帮助,让我们学到了很多知识。通过对主电路的设计与分析,对晶闸管触发电路的设计与分析,了解了他们的工作原理,知道了该电路是如何实现所要实现的功能的,把课堂所学知识运用起来,使我更能深刻理解所学知识,这让我受益匪浅。通过写课程设计报告,电路的设计,提高了我的能力,为我以后的毕业设计以及今后的工作打下了坚实的基础。 2 主电路的设计

单片机课程设计报告--可控硅导通角的控制

单片机课程设计报告可控硅导通角的控制

可控硅导通角的控制 设计要求 ■导通时间可调,按键输入设置,LED 数码直读显示 ■精度误差小于50us 摘要:随着时代的进步和发展,单片机技术已经普及到我们生活,工作,科研,各个领域,已经成为一种比较成熟的技术,本文将介绍由单片机怎样去控制可控硅的导通角,可控硅在日常生活中的应用是非常广泛的,种类繁多,有温控可控硅和光控可控硅等多种,本设计使用的是MOC3021光敏双向可控硅,去控制交流电正负半周导通的时间。 关键词:单片机,数字控制,同步信号,数码管,可控硅,三端稳压器7805,MOC3021,P521,AT89C2051 1 引言 随着人们生活水平的不断提高,单片机控制无疑是人们追求的目标之一,它所给人带来的方便也是不可否定的,其中可控硅导通角的控制就是一个典型的例子。 本设计用光耦(P521)提取市电过零点的同步信号,由单片机控制可控硅的导通角,以实现被控对象(如灯泡)功率的数字化调节。(本设计用功率电阻代表被控对象) 2 总体设计方案 总体设计框图 图(1) 总体设计方框图 主控制器单片机通过外部中断口提取交流电过零点的信号,再依外部按键设置的数,通过一定的 算法转化为内部定时器的定时常数,去控制可控硅交流电导通的时间。 LED 显 示 同步信号提 取 单片机复位 时钟振荡 按键设置 可控硅 主 控 制 器

3 模块电路方案论证与比较 3.1主控制器 方案一: 选用8051,其有四组I/O口,资源丰富 图(2)8051 方案二: 选用AT89C2051,其有两组I/O口,资源较紧张 图(3)AT89C2051 最终方案: 因单片机AT89C2051具有低电压供电和体积小等特点,;两组端口就能满足本电路系统的设计需要,价格又比较便宜,所以采用它。

51单片机复位电路有关问题

想问一下单片机复位电路问题 复位过程我明白,RST接高电平复位,接低电平单片机正常工作 但电路连接不太理解什么意思, 想知道图中电解电容的作用,既然是按键高电平复位为什么要加电解电容呢不加可以吗?如果一定要加原因是什么? 另外想知道电容作用是隔直流通交流,是绝对的直流不通过还是什么充电过程无电流放电过程有电流,求指教 我认为绛红的蓝同学说的不太好。 电容确实可以起到按键去除抖动的作用,但是这里的电容还有一个更重要的作用就是上电复位,因为考虑到芯片刚刚上电时由于供电不稳定而做出错误的计算,所以增加一个上电复位以达到延时启动CPU的目的,使芯片能够正常工作。虽然现在很多芯片自带了上电延时功能,但是我们一般还是会增加额外的上电复位电路,提高可靠性。 上电复位是如此工作的,此时不用考虑按键和你图中1K电阻的作用。上电瞬间,电压VCC短时间内从0V上升到5V(比方说5V),这一瞬间相当于交流电,电容相当于导线,5V的电压全部加在10K电阻上,也就是说,这时RST的电平状态为高电平。但是从上电开始,电容自己就慢慢充电,其两端电压呈曲线上升,最终达到5V,也就是说其正端电位为5V,负端电位为0V,其负端也就正好是RST,此时RST为低电平,单片机开始正常工作。 添加按键是为了手动复位,一般那个1K电阻可以不加。当按键按下时,电容两端构成回路并放电,使RST端重新变为高电平,按键抬起时电容又充电使RST 变回低电平。 复位电路的作用 在上电或复位过程中,控制CPU的复位状态:这段时间内让CPU保持复位状态,而不是一上电或刚复位完毕就工作,防止CPU发出错误的指令、执行错误操作,也可以提高电磁兼容性能。 无论用户使用哪种类型的单片机,总要涉及到单片机复位电路的设计。而单片机复位电路设计的好坏,直接影响到整个系统工作的可靠性。许多用户在设计完单片机系统,并在实验室调试成功后,在现场却出现了“死机”、“程序走飞”等现象,这主要是单片机的复位电路设计不可靠引起的。 基本的复位方式 单片机在启动时都需要复位,以使CPU及系统各部件处于确定的初始状态,并从初态开始工作。89系列单片机的复位信号是从RST引脚输入到芯片内的施密特触发器中的。当系统处于正常工作状态时,且振荡器稳定后,如果RST引脚上有一个高电平并维持2个机器周期(24个振荡周期)以上,则CPU就可以响应并将系统复位。单片机系统的复位方式有:手动按钮复位和上电复位 1、手动按钮复位 手动按钮复位需要人为在复位输入端RST上加入高电平(图1)。一般采用的办法是在RST端和正电源Vcc之间接一个按钮。当人为按下按钮时,则Vcc的+5V电平就会直接加到RST端。手动按钮复位的电路如所示。由于人的动作再快也会使按钮保持接通达数十毫秒,所以,完全能够满足复位的时间要求。

简易单向可控硅交流调压器原理图及工作原理介绍

简易可控硅交流调压器原理图及工作原理介绍 本文介绍一台电路简单、装置容易、控制方便的可控硅交流调压器,这可用作家用电器的调压装置,进行照明灯调光,电风扇调速、电熨斗调温等控制。这台调压器的输出功率达100W,一般家用电器都能使用。 可控硅交流调压器电路原理: 电路图如下可控硅交流调压器由可控整流电路和触发电路两部分组成,其电路原里图如下图所示。从图中可知,二极管D1—D4组成桥式整流电路,双基极二极管T1构成张弛振荡器作为可控硅的同步触发电路。当调压器接上市电后,220V交流电通过负载电阻RL经二极管D1—D4整流,在可控硅SCR的A、K两端形成一个脉动直流电压,该电压由电阻R1降压后作为触发电路的直流电源。在交流电的正半周时,整流电压通过R4、W1对电容C 充电。当充电电压Uc达到T1管的峰值电压Up时,T1管由截止变为导通,于是电容C通过T1管的e、b1结和R2迅速放电,结果在R2上获得一个尖脉冲。这个脉冲作为控制信号送到可控硅SCR的控制极,使可控硅导通。可控硅导通后的管压降很低,一般小于1V,所以张弛振荡器停止工作。当交流电通过零点时,可控硅自关断。当交流电在负半周时,电容 。 C又从新充电……如此周而复始,便可调整负载RL上的功率了 调压器的调节电位器选用阻值为470KΩ的WH114-1型合成碳膜电位器,这种电位器可以直接焊在电路板上,电阻除R1要用功率为1W的金属膜电阻外,其佘的都用功率为1/8W 的碳膜电阻。D1—D4选用反向击穿电压大于300V、最大整流电流大于0.3A的硅整流二极管,如2CZ21B、2CZ83E、2DP3B等。SCR选用正向与反向电压大于300V、额定平均电流大于1A的可控硅整流器件,如国产3CT系例。

单片机控制可控硅

单片机控制可控硅 This manuscript was revised on November 28, 2020

1 调光控制器设计 在日常生活中,我们常常需要对灯光的亮度进行调节。本调光控制器通过控制双向可控硅的导通来实现白炽灯(纯阻负载)亮度的调整。双向可控硅的特点是导通后即使触发信号去掉,它仍将保持导通;当负载电流为零(交流电压过零点)时,它会自动关断。所以需要在交流电的每个半波期间都要送出触发信号,触发信号的送出时间就决定了灯泡的亮度。 调光的实现方式就是在过零点后一段时间才触发双向可控硅开关导通,这段时间越长,可控硅导通的时间越短,灯的亮度就越低;反之,灯就越亮。 这就要求要提取出交流电压的过零点,并以此为基础,确定触发信号的送出时间,达到调光的目的。 1.1 硬件部分 本调光控制器的框图如下: 控制部分:为了便于灵活设计,选择可多次写入的可器件,这里选用的是ATMEL的AT89C51单片机。 驱动部分:由于要驱动的是交流,所以可以用继电器或光耦+可控硅(晶闸管SCR)来驱动。继电器由于是机械动作,响应速度慢,不能满足其需

要。可控硅在电路中能够实现交流电的无触点控制,以小电流控制大电流,并且不象继电器那样控制时有火花产生,而且动作快、寿命长、可靠性高。所以这里选用的是可控硅。 负载部分:本电路只能控制白炽灯(纯阻负载)的亮度。 1.2 部分 要控制的对象是50Hz的正弦交流电,通过光耦取出其过零点的信号(同步信号),将这个信号送至单片机的外中断,单片机每接收到这个同步信号后启动一个延时程序,延时的具体时间由按键来改变。当延时结束时,单片机产生触发信号,通过它让可控硅导通,电流经过可控硅流过白炽灯,使灯发光。延时越长,亮的时间就越短,灯的亮度越暗(并不会有闪烁的感觉,因为重复的频率为100Hz,且人的视觉有暂留效应)。由于延时的长短是由按键决定的,所以实际上就是按键控制了光的强弱。 理论上讲,延时时间应该可以是0~10ms内的任意值。在程序中,将一个周期均分成N等份,每次按键只需要去改变其等份数,在这里,N越大越好,但由于受到单片机本身的限制和基于实际必要性的考虑,只需要分成大约100份左右即可,实际采用的值是95。 可控硅的触发脉冲宽度要根据具体的光耦结合示波器观察而定,在本设计中取20 μs。程序中使用T1来控制这个时间。 对两个调光按键的处理有两种方式:一种是每次按键,无论时间的长短,都只调整一个台阶(亮或暗);另一种是随按键时间的不同,调整方法

双向晶闸管交流调压电路分析

双向晶闸管交流调压电路分析 双向晶闸管交流调压电路分析 同学:老师,双向晶闸管看起来与单向晶闸管的外形差不多,也有三个电极(图2 ),它的主要工作特性是什么呢? 教师:双向晶闸管相当于两个单向晶闸管的反向并联(图3 ),但只有一个控制极。这样,双向晶闸管在正、反两个方向上都能够控制导电,而单向晶闸管却是一种可控的单方向导电器件。给双向晶闸管的控制极加正的或负的触发脉冲,都能使管子触发导通。这样,触发电路的设计就具有很大的灵活性,可以采用多种不同的触发方式。此外,双向晶闸管的两个主电极不再分为阳极和阴极,而是称为第一电极T1 和第二电极T2 。双向晶闸管在电路中不能用作可控整流元件,主要用来进行交流调压、交流开关、可逆直流调速等等。 同学:双向晶闸管触发电路(图 1 )中,使用了双向触发二极管,我们过去没有听说过这种管子,这是一种什么样的器件呢? 老师:双向触发二极管(图 4 )从结构上来说,是一

种没有控制极的晶闸管,我们可以把它看成是两个二极管的反向并联。这样,无论在双向触发二极管的两极之间外加什么极性的电压,只要电压的数值达到管子的转折电压值,就能使它导通。值得注意的是,双向触发二极管的转折电压较高,一般在20 ~40V 范围。 同学:老师,您给我们讲讲双向触发二极管组成的双向晶闸管触发电路的工作原理吧。 老师:调压器电路主要由阻容移相电路和双向晶闸管两部分组成。我们单独画出这两部分电路(图 5 ),R5 、RP 和C5 构成阻容移相电路。合上电源开关S ,交流电源电压通过R5 、RP 向电容器C5 充电,当电容器C5 两端的电压上升到略高于双向触发二极管ST 的转折电压时,ST 和双向晶闸管VS 相继导通,负载RL 得电工作。当交流电源电压过零瞬间,双向晶闸管自行关断,接着C5 又被电源反向充电,重复上述过程。分析电路时,大家应该意识到,触发电路是工作在交流电路中的,交流电压的正、负半周分别会发出正、负触发脉冲送到双向晶闸管的控制极,使管子在正、负半周内对称地导通一次。改变R P 的阻值,就改变了C5 的充电速度,也就改变了双向晶闸管的导通角,相应地改变了负载RL 上的交流电压,实现了交流调压。

可控硅调压电路图

可控硅调压电路图 可控硅是一种新型的半导体器件,它具有体积小、重量轻、效率高、寿命长、动作快以及使用方便等优点,目前交流调压器多采用可控硅调压器。这里介绍一台电路简单、装置容易、控制方便的可控硅交流调压器,这可用作家用电器的调压装置,进行照明灯调光,电风扇调速、电熨斗调温等控制。这台调压器的输出功率达100W,一般家用电器都能使用。 1:电路原理: 可控硅交流调压器由可控整流电路和触发电路两部分组成,其电路原里图如下图所示。从图中可知,二极管D1—D4组成桥式整流电路,双基极二极管T1构成张弛振荡器作为可控硅的同步触发电路。当调压器接上市电后,220V交流电通过负载电阻RL经二极管D1—D4整流,在可控硅SCR的A、K两端形成一个脉动直流电压,该电

压由电阻R1降压后作为触发电路的直流电源。在交流电的正半周时,整流电压通过R4、W1对电容C充电。当充电电压Uc达到T1管的峰值电压Up时,T1管由截止变为导通,于是电容C通过T1管的e、b1结和R2迅速放电,结果在R2上获得一个尖脉冲。这个脉冲作为控制信号送到可控硅SCR的控制极,使可控硅导通。可控硅导通后的管压降很低,一般小于1V,所以张弛振荡器停止工作。当交流电通过零点时,可控硅自关断。当交流电在负半周时,电容C又从新充电……如此周而复始,便可调整负载RL上的功率了。 2:元器件选择 调压器的调节电位器选用阻值为470KΩ的WH114-1型合成碳膜电位器,这种电位器可以直接焊在电路板上,电阻除R1要用功率为1W的金属膜电阻外,其佘的都用功率为1/8W的碳膜电阻。D1—D4选用反向击穿电压大于300V、最大整流电流大于0.3A的硅整流二极管,如2CZ21B、2CZ83E、2DP3B等。SCR选用正向与反向电压大于300V、额定平均电流大于1A的可控硅整流器件,如国产3CT系例。

单相晶闸管调压电路

单向可控硅调压电路 可控硅交流调压器由可控整流电路和触发电路两部分组成,其电路原里图如下图所示。从图中可知,二极管D1—D4组成桥式整流电路,双基极二极管T1构成张弛振荡器作为可控硅的同步触发电路。当调压器接上市电后,220V交流电通过负载电阻RL经二极管D1—D4整流,在可控硅SCR的A、K两端形成一个脉动直流电压,该电压由电阻R1降压后作为触发电路的直流电源。在交流电的正半周时,整流电压通过R4、W1对电容C充电。当充电电压Uc达到T1管的峰值电压Up时,T1管由截止变为导通,于是电容C通过T1管的e、b1结和R2迅速放电,结果在R2上获得一个尖脉冲。这个脉冲作为控制信号送到可控硅SCR的控制极,使可控硅导通。可控硅导通后的管压降很低,一般小于1V,所以张弛振荡器停止工作。当交流电通过零点时,可控硅自关断。当交流电在负半周时,电容C又从新充电……如此周而复始,便可调整负载RL上的功率了。

双向可控硅的工作原理及原理图 2007年12月09日09:11 来源:本站整理作者:本站我要评论(1) 标签:可控硅(358) 双向可控硅的工作原理 1.可控硅是P1N1P2N2四层三端结构元件,共有三个PN结,分析原理时,可以把它看作由一个PNP管和一个NPN 管所组成 当阳极A加上正向电压时,BG1和BG2管均处于放大状态。此时,如果从控制极G输入一个正向触发信号,BG2便有基流ib2流过,经BG2放大,其集电极电流ic2=β2ib2。因为BG2的集电极直接与BG1的基极相连,所以ib1=ic2。此时,电流ic2再经BG1放大,于是BG1的集电极电流ic1=β1ib1=β1β2ib2。这个电流又流回到BG2的基极,表成正反馈,使ib2不断增大,如此正向馈循环的结果,两个管子的电流剧增,可控硅使饱和导通。 由于BG1和BG2所构成的正反馈作用,所以一旦可控硅导通后,即使控制极G的电流消失了,可控硅仍然能够维持导通状态,由于触发信号只起触发作用,没有关断功能,所以这种可控硅是不可关断的。 由于可控硅只有导通和关断两种工作状态,所以它具有开关特性,这种特性需要一定的条件才能转化 2,触发导通 在控制极G上加入正向电压时(见图5)因J3正偏,P2区的空穴时入N2区,N2区的电子进入P2区,形成触发电流IGT。在可控硅的内部正反馈作用(见图2)的基础上,加上IGT的作用,使可控硅提前导通,导致图3的伏安特性OA段左移,IGT越大,特性左移越快。 一、可控硅的概念和结构? 晶闸管又叫可控硅。自从20世纪50年代问世以来已经发展成了一个大的家族,它的主要成员有单向晶闸管、双向晶闸管、光控晶闸管、逆导晶闸管、可关断晶闸管、快速晶闸管,等等。今天大家使用的是单向晶闸管,也就是人们常说的普通晶闸管,它是由四层半导体材料组成的,有三个PN结,对外有三个电极〔图2(a)〕:第一层P型半导体引出的电极叫阳极A,第三层P 型半导体引出的电极叫控制极G,第四层N型半导体引出的电极叫阴极K。从晶闸管的电路符号〔图2(b)〕可以看到,它和二极管一样是一种单方向导电的器件,关键是多了一个控制极G,这就使它具有与二极管完全不同的工作特性。 图2 二、晶闸管的主要工作特性

十二篇可控硅交流调压电路解析

第一篇: 可控硅是一种新型的半导体器件,它具有体积小、重量轻、效率高、寿命长、动作快以及使用方便等优点,目前交流调压器多采用可控硅调压器。这里介绍一台电路简单、装置容易、控制方便的可控硅交流调压器,这可用作家用电器的调压装置,进行照明灯调光,电风扇调速、电熨斗调温等控制。这台调压器的输出功率达100W,一般家用电器都能使用。 1:电路原理:电路图如下 可控硅交流调压器由可控整流电路和触发电路两部分组成,其电路原里图如下图所示。从图中可知,二极管D1—D4组成桥式整流电路,双基极二极管T1构成张弛振荡器作为可控硅的同步触发电路。当调压器接上市电后,220V交流电通过负载电阻RL经二极管D1—D4整流,在可控硅SCR的A、K两端形成一个脉动直流电压,该电压由电阻R1降压后作为触发电路的直流电源。在交流电的正半周时,整流电压通过R4、W1对电容C充电。当充电电压Uc达到T1管的峰值电压Up时,T1管由截止变为导通,于是电容C通过T1管的e、b1结和R2迅速放电,结果在R2上获得一个尖脉冲。这个脉冲作为控制信号送到可控硅SCR的控制极,使可控硅导通。可控硅导通后的管压降很低,一般小于1V,所以张弛振荡器停止工作。当交流电通过零点时,可控硅自关断。当交流电在负半周时,电容C又从新充电……如此周而复始,便可调整负载RL上的功率了。 2:元器件选择 调压器的调节电位器选用阻值为470KΩ的WH114-1型合成碳膜电位器,这种电位器可以直接焊在电路板上,电阻除R1要用功率为1W的金属膜电阻外,其佘的都用功率为1/8W的碳膜电阻。D1—D4选用反向击穿电压大于300V、最大整流电流大于0.3A的硅整流二极管,如2CZ21B、2CZ83E、2DP3B等。SCR选用正向与反向电压大于300V、额定平均电流大于1A的可控硅整流器件,如国产3CT系例。 第二篇: 本例介绍的温度控制器,具有SB260取材方便、性能可靠等特点,可用于种子催芽、食用菌培养、幼畜饲养及禽蛋卵化等方面的温度控制,也可用于控制电热毯、小功率电暖器等家用电器。

基于51单片机的调光控制器设计

基于51单片机的调光控制器设计 1 调光控制器设计 在日常生活中,我们常常需要对灯光的亮度进行调节。本调光控制器通过单片机控制双向可控硅的导通来实现白炽灯(纯阻负载)亮度的调整。双向可控硅的特点是导通后即使触发信号去掉,它仍将保持导通;当负载电流为零(交流电压过零点)时,它会自动关断。所以需要在交流电的每个半波期间都要送出触发信号,触发信号的送出时间就决定了灯泡的亮度。 调光的实现方式就是在过零点后一段时间才触发双向可控硅开关导通,这段时间越长,可控硅导通的时间越短,灯的亮度就越低;反之,灯就越亮。 这就要求要提取出交流电压的过零点,并以此为基础,确定触发信号的送出时间,达到调光的目的。 1.1 硬件部分 本调光控制器的框图如下: 控制部分:为了便于灵活设计,选择可多次写入的可编程器件,这里选用的是ATMEL的AT89C51单片机。 驱动部分:由于要驱动的是交流,所以可以用继电器或光耦+可控硅(晶闸管SCR)来驱动。继电器由于是机械动作,响应速度慢,不能满足其需要。可控硅在电路中能够实现交流电的无触点控制,以小电流控制大电流,并且不象继电器那样控制时有火花产生,而且动作快、寿命长、可靠性高。所以这里选用的是可控硅。 负载部分:本电路只能控制白炽灯(纯阻负载)的亮度。 1.2 软件部分 要控制的对象是50Hz的正弦交流电,通过光耦取出其过零点的信号(同步信号),将这个信号送至单片机的外中断,单片机每接收到这个同步信号后启动一个延时程序,延时的具体时间由按键来改变。当延时结束时,单片机产生触发信号,通过它让可控硅导通,电流经过可控硅流过白炽灯,使灯发光。延时越长,亮的时间就越短,灯的亮度越暗(并不会有闪烁的感觉,因为重复的频率为100Hz,且人的视觉有暂留效应)。由于延时的长短是由按键决定的,所以实际上就是按键控制了光的强弱。 理论上讲,延时时间应该可以是0~10ms内的任意值。在程序中,将一个周期均分成N 等份,每次按键只需要去改变其等份数,在这里,N越大越好,但由于受到单片机本身的限制和基于实际必要性的考虑,只需要分成大约100份左右即可,实际采用的值是95。 可控硅的触发脉冲宽度要根据具体的光耦结合示波器观察而定,在本设计中取20 μs。程序中使用T1来控制这个时间。 对两个调光按键的处理有两种方式:一种是每次按键,无论时间的长短,都只调整一个台阶(亮或暗);另一种是随按键时间的不同,调整方法不同:短按只调整一个台阶,长按可以连续调整。如前面所述,由于本设计中的台阶数为95(N=95),如果使用前一种方式,操作太麻烦,所以用后者较为合理。 2 各单元电路及说明 2.1 交流电压过零点信号提取 交流电压过零点信号提取电路,图中的同步信号就是我们需要的交流电压过零点信号。各部分波形。

单片机复位电路参数计算

系统上电时,随着Vcc 电压由0V 增加到5V ,电容C1的上极板电位随之增加,电容的内电场增强,使C1能吸引更多的电子通过R 到达下极板,从外面看就电流通过C1 和R10入地。按电压在随着电流方向逐惭降低的原则,电流的出现会在R10端形成一大于0的电位。由于电容的充电逐渐饱和,所以电流会逐渐减小,电位也会逐渐减小。该电位的大小和持续的时间将直接影响到我们的系统能否上电复位。在AT89C51的规格书中有这么一段描述: 如果当Reset Pin 有两个机器周期的时间是高电平,那么就会系统就会被复位。 震荡频率震荡周期1 = 12*震荡周期机器周期= 所以对于12M 晶振做为“原动力”的系统来说,使系统复位的时间t 应大于: us M t 212*121 *2== 两个机器周期的时间求出来了,但是多高的电平才算是高电平呢?由AT89C51是规格书中关于其DC 特性的描述中可以知道,当Reset Pin 上的电压超过Min=0.7Vcc 时Reset Pin 就会认为是高电平。事先假设的系统电压为5V ,Vcc 在这里可以看成5V ,所以如果Reset Pin 上的电压超过0.7Vcc=3.5V ,就可以看成Reset Pin 为高电平,如果这超过3.5V 的电平持续时间超过2uS ,那么系统就会复位。 最后一步就是计算RST_H 处的电位了。不考虑流入Reset Pin 内电流,该电路就是一阶RC 电路。电容两端暂态电流与电压的关系式如下:

()()()()[]RC t C C C C U U U t U -+∞-+∞=e 因为()V U C 5=∞;()V U C 00=+;所以 ()RC t C t U --= 55 设Reset pin 电压为()t U R ,那么: ()()t U V t U C CC R -= 所以, ()RC t R t U -= 5, 当()V t U R 4.3=的时, RC t 357.0= 当且仅当 us RC t 2357.0≥=时,系统才会复位,即满足条件 610*6.5-≥RC 所以用R=1K Ω、C=22μF 符合要求

单片机各种复位电路原理

单片机各种复位电路原理 复位电路的作用 在上电或复位过程中,控制CPU的复位状态:这段时间内让CPU保持复位状态,而不是 一上电或刚复位完毕就工作,防止CPU发出错误的指令、执行错误操作,也可以提高电磁 兼容性能。 无论用户使用哪种类型的单片机,总要涉及到单片机复位电路的设计。而单片机复位电路设 计的好坏,直接影响到整个系统工作的可靠性。许多用户在设计完单片机系统,并在实验室调试成功后,在现场却出现了“死机”、“程序走飞”等现象,这主要是单片机的复位电路设计不可 靠引起的。 基本的复位方式 单片机在启动时都需要复位,以使CPU及系统各部件处于确定的初始状态,并从初态开始 工作。89系列单片机的复位信号是从RST引脚输入到芯片内的施密特触发器中的。当系统处于正常工作状态时,且振荡器稳定后,如果RST引脚上有一个高电平并维持2个机器周期(24个振荡周期)以上,则CPU就可以响应并将系统复位。单片机系统的复位方式有:手动按钮复位和上电复位 1、手动按钮复位 手动按钮复位需要人为在复位输入端RST上加入高电平(图1)。一般采用的办法是在RST 端和正电源Vcc之间接一个按钮。当人为按下按钮时,则Vcc的+5V电平就会直接加到RST端。手动按钮复位的电路如所示。由于人的动作再快也会使按钮保持接通达数十毫秒, 所以,完全能够满足复位的时间要求。

图1 图2 2 、上电复位 AT89C51 的上电复位电路如图 2 所示,只要在RST 复位输入引脚上接一电容至Vcc 端,下接一个电阻到地即可。对于CMOS 型单片机,由于在RST 端内部有一个下拉电阻,故可将外部电阻去掉,而将外接电容减至1μF。上电复位的工作过程是在加电时,复位电路通 过电容加给RST 端一个短暂的高电平信号,此高电平信号随着Vcc 对电容的充电过程而 逐渐回落,即RST 端的高电平持续时间取决于电容的充电时间。为了保证系统能够可靠地 复位,RST 端的高电平信号必须维持足够长的时间。上电时,Vcc 的上升时间约为10ms ,而振荡器的起振时间取决于振荡频率,如晶振频率为10MHz ,起振时间为1ms ;晶振频率为1MHz ,起振时间则为10ms 。在图 2 的复位电路中,当Vcc 掉电时,必然会使RST 端电压迅速下降到0V 以下,但是,由于内部电路的限制作用,这个负电压将不会对器件产生 损害。另外,在复位期间,端口引脚处于随机状态,复位后,系统将端口置为全“l态”。如果系统在上电时得不到有效的复位,则程序计数器PC 将得不到一个合适的初值,因此,CPU 可能会从一个未被定义的位置开始执行程序。 2 、积分型上电复位 常用的上电或开关复位电路如图 3 所示。上电后,由于电容C3 的充电和反相门的作用,使RST 持续一段时间的高电平。当单片机已在运行当中时,按下复位键K 后松开,也能使RST 为一段时间的高电平,从而实现上电或开关复位的操作。 根据实际操作的经验,下面给出这种复位电路的电容、电阻参考值。 图3 中:C:=1uF ,Rl=lk ,R2=10k

交流调压原理—可控硅

6.1 交流调压电路 交流调压电路采用两单向晶闸管反并联(图6-1(a))或双向晶闸(图6-1(b)),实现对交流电正、负半周的对称控制,达到方便地调节输出交流电压大小的目的,或实现交流电路的通、断控制。因此交流调压电路可用于异步电动机的调压调速、恒流软起动,交流负载的功率调节,灯光调节,供电系统无功调节,用作交流无触点开关、固态继电器等,应用领域十分广泛。 图6-1 交流调压电路 交流调压电路一般有三种控制方式,其原理如图6-2所示。 图6-2 交流调压电路控制方式 (1)通断控制 通断控制是在交流电压过零时刻导通或关断晶闸管,使负载电路与交流电源接通几个周波,然后再断开几个周波,通过改变导通周波数与关断周波数的比值,实现调节交流电压大小的目的。 通断控制时输出电压波形基本正弦,无低次谐波,但由于输出电压时有时无,电压调节不连续,会分解出分数次谐波。如用于异步电机调压调速,会因电机经常处于重合闸过程而出现大电流冲击,因此很少采用。一般用于电炉调温等交流功率调节的场合。 (2)相位控制 与可控整流的移相触发控制相似,在交流的正半周时触发导通正向晶闸管、负半周时触发导通反向晶闸管,且保持两晶闸的移相角相同,以保证向负载输出正、负半周对称的交流电压波形。 相位控制方法简单,能连续调节输出电压大小。但输出电压波形非正弦,含有

丰富的低次谐波,在异步电机调压调速应用中会引起附加谐波损耗,产生脉动转矩等。 (3)斩波控制 斩波控制利用脉宽调制技术将交流电压波形分割成脉冲列,改变脉冲的占空比即可调节输出电压大小。 斩波控制输出电压大小可连续调节,谐波含量小,基本上克服了相位及通断控制的缺点。由于实现斩波控制的调压电路半周内需要实现较高频率的通、断,不能采用晶闸管,须采用高频自关断器件,如GTR、GTO、MOSFET、IGBT等。 实际应用中,采取相位控制的晶闸管型交流调压电路应用最广,本章将分别讨论单相及三相交流调压电路。 6.1.1 单相交流调压电路 单相交流调压电路原理图如图6-1所示,其工作情况与负载性质密切相关。 1.电阻性负载 纯电阻负载时交流调压电路输出电压、输出电流波形如图6-3所示。电路 工作过程是:在电源电压正半周、移相控制角时刻,触发导通晶闸管VT1,使正半周的交流电压施加到负载电阻上,电流、电压波形相同。当电压过零时,VT1 因电流为零而关断。在控制角为时触发导通VT2,负半周交流电压施加在负载上,当电压再次过零时,VT2因电流为零而关断,完成一个周波的对称输出。 当时,输出电压最大;当时。改变控制角大小可获得大小可调的交流电压输出,其波形为“缺块”正弦波。正因为电压波形有缺损,

单片机复位电路理图解

单片机复位电路原理图解 复位电路的作用 在上电或复位过程中,控制CPU的复位状态:这段时间内让CPU保持复位状态,而不是一上电或刚复位完毕就工作,防止CPU发出错误的指令、执行错误操作,也可以提高电磁兼容性能。 无论用户使用哪种类型的单片机,总要涉及到单片机复位电路的设计。而单片机复位电路设计的好坏,直接影响到整个系统工作的可靠性。许多用户在设计完单片机系统,并在实验室调试成功后,在现场却出现了“死机”、“程序走飞”等现象,这主要是单片机的复位电路设计不可靠引起的。 基本的复位方式 单片机在启动时都需要复位,以使CPU及系统各部件处于确定的初始状态,并从初态开始工作。89系列单片机的复位信号是从RST引脚输入到芯片内的施密特触发器中的。当系统处于正常工作状态时,且振荡器稳定后,如果RST引脚上有一个高电平并维持2个机器周期(24个振荡周期)以上,则CPU就可以响应并将系统复位。单片机系统的复位方式有:手动按钮复位和上电复位 1、手动按钮复位 手动按钮复位需要人为在复位输入端RST上加入高电平(图1)。一

般采用的办法是在RST端和正电源Vcc之间接一个按钮。当人为按下按钮时,则Vcc的+5V电平就会直接加到RST端。手动按钮复位的电路如所示。由于人的动作再快也会使按钮保持接通达数十毫秒,所以,完全能够满足复位的时间要求。 图1 图2 2、上电复位 AT89C51的上电复位电路如图2所示,只要在RST复位输入引脚上接一电容至Vcc端,下接一个电阻到地即可。对于CMOS型单片机,由于在RST端内部有一个下拉电阻,故可将外部电阻去掉,而将外接电

容减至1µF。上电复位的工作过程是在加电时,复位电路通过电容加给RST端一个短暂的高电平信号,此高电平信号随着Vcc对电容的充电过程而逐渐回落,即RST端的高电平持续时间取决于电容的充电时间。为了保证系统能够可靠地复位,RST端的高电平信号必须维持足够长的时间。上电时,Vcc的上升时间约为10ms,而振荡器的起振时间取决于振荡频率,如晶振频率为10MHz,起振时间为1ms;晶振频率为1MHz,起振时间则为10ms。在图2的复位电路中,当Vcc 掉电时,必然会使RST端电压迅速下降到0V以下,但是,由于内部电路的限制作用,这个负电压将不会对器件产生损害。另外,在复位期间,端口引脚处于随机状态,复位后,系统将端口置为全“l”态。如果系统在上电时得不到有效的复位,则程序计数器PC将得不到一个合适的初值,因此,CPU可能会从一个未被定义的位置开始执行程序。 2、积分型上电复位 常用的上电或开关复位电路如图3所示。上电后,由于电容C3的充电和反相门的作用,使RST持续一段时间的高电平。当单片机已在运行当中时,按下复位键K后松开,也能使RST为一段时间的高电平,从而实现上电或开关复位的操作。 根据实际操作的经验,下面给出这种复位电路的电容、电阻参考值。图3中:C:=1uF,Rl=lk,R2=10k

双向可控硅的调光电路

双向可控硅的调光电路 核心提示:双向可控硅的调光电路工作原理说明一接通电源,220V经过灯泡VR4 R19对C 23充电,由于电容二端电压是不能突变的,充电需要一定时间 双向可控硅的调光电路 工作原理说明 一接通电源,220V经过灯泡VR4 R19对C23充电,由于电容二端电压是不能突变的,充电需要一定时间的,充电时间由VR4和R19大小决定,越小充电越快,越大充电越慢。当C23上电压充到约为33V左右的时候DB1导通,可控硅也导通,可控硅导通后灯泡中有电流流过,灯泡就亮了。随着DB1导通C23上电压被完全放掉,DB1又截止可控硅也随之截止灯泡熄灭。C23上又进行刚开始一样的循环,因为时间短人眼有暂留的现象,所以灯泡看起来是一直亮的,充放电时间越短灯泡就越亮,反之,R20 C24能保护可控硅,如果用在阻性负载上可以省掉,如果是用在感性负载,比如说电动机上就要加上去,这个电路也可以用于电动机调速上,当然是要求不高的情况下。 这个电路的优点是元件少、成本低、性价比高。缺点是对电源干扰比较大、噪声大、驱动电动机时候在较小的时候可能会发热比较大。 可控硅相当于可以控制的二极管,当控制极加一定的电压时,阴极和阳极就导通了。可控硅分单向可控硅和双向可控硅两种,都是三个电极。单向可控硅有阴极(K)、阳极(A)、控制极(G)。双向可控硅等效于两只单项可控硅反向并联而成。即其中一只单向硅阳极与

另一只阴极相边连,其引出端称T2极,其中一只单向硅阴极与另一只阳极相连,其引出端称T2极,剩下则为控制极(G)。1、单、双向可控硅的判别:先任测两个极,若正、反测指针均不动(R×1挡),可能是A、K或G、A极(对单向可控硅)也可能是T2、T1或T2、G极(对双向可控硅)。若其中有一次测量指示为几十至几百欧,则必为单向可控硅。且红笔所接为K极,黑笔接的为G极,剩下即为A极。若正、反向测批示均为几十至几百欧,则必为双向可控硅。再将旋钮拨至R×1或R×10挡复测,其中必有一次阻值稍大,则稍大的一次红笔接的为G极,黑笔所接为T1极,余下是T2极。 2、性能的差别:将旋钮拨至R×1挡,对于1~6A单向可控硅,红笔接K极,黑笔同时接通G、A极,在保持黑笔不脱离A极状态下断开G极,指针应指示几十欧至一百欧,此时可控硅已被触发,且触发电压低(或触发电流小)。然后瞬时断开A极再接通,指针应退回∞位置,则表明可控硅良好。 对于1~6A双向可控硅,红笔接T1极,黑笔同时接G、T2极,在保证黑笔不脱离T2极的前提下断开G极,指针应指示为几十至一百多欧(视可控硅电流大小、厂家不同而异)。然后将两笔对调,重复上述步骤测一次,指针指示还要比上一次稍大十几至几十欧,则表明可控硅良好,且触发电压(或电流)小。若保持接通A极或T2极时断开G极,指针立即退回∞位置,则说明可控硅触发电流太大或损坏。可按图2方法进一步测量,对于单向可控硅,闭合开关K,灯应发亮,断开K灯仍不息灭,否则说明可控硅损坏。 对于双向可控硅,闭合开关K,灯应发亮,断开K,灯应不息灭。然后将电池反接,重复上述步骤,均应是同一结果,才说明是好的。否则说明该器件已损坏。

双向可控硅结构原理及应用

双向可控硅结构原理及应用 时间:2010-01-19 09:58:05 来源:作者: 普通晶闸管(VS)实质上属于直流控制器件。要控制交流负载,必须将两只晶闸管反极性并联,让每只SCR控制一个半波,为此需两套独立的触发电路,使用不够方便。 双向晶闸管是在普通晶闸管的基础上发展而成的,它不仅能代替两只反极性并联的晶闸管,而且仅需一个触发电路,是目前比较理想的交流开关器件。其英文名称TRIAC即三端双向交流开关之意。 构造原理 尽管从形式上可将双向晶闸管看成两只普通晶闸管的组合,但实际上它是由7只晶体管和多只电阻构成的功率集成器件。小功率双向晶闸管一般采用塑料封装,有的还带散热板,外形如图l所示。典型产品有BCMlAM(1A/600V)、BCM3AM(3A/600V)、2N6075(4A/600V),MAC218-10(8A/800V)等。大功率双向晶闸管大多采用RD91型封装。双向晶闸管的主要参数见附表。 双向晶闸管的结构与符号见图2。它属于NPNPN五层器件,三个电极分别是T1、T2、G。因该器件可以双向导通,故除门极G以外的两个电极统称为主端子,用T1、T2。表示,不再划分成阳极或阴极。其特点是,当G极和T2极相对于T1,的电压均为正时,T2是阳极,T1是阴极。反之,当G极和T2极相对于T1的电压均为负时,T1变成阳极,T2为阴极。双向晶闸管的伏安特性见图3,由于正、反向特性曲线具有对称性,所以它可在任何一个方向导通。 检测方法 下面介绍利用万用表RXl档判定双向晶闸管电极的方法,同时还检查触发能力。 1.判定T2极 由图2可见,G极与T1极靠近,距T2极较远。因此,G—T1之间的正、反向电阻都很小。在用RXl档测任意两脚之间的电阻时,只有在G-T1之间呈现低阻,正、反向电阻仅几十欧,而T2-G、T2-T1之间的正、反向电阻均为无穷大。这表明,如果测出某脚和其他两脚都不通,就肯定是T2极。,另外,采用TO—220封装的双向晶闸管,T2极通常与小散热板连通,据此亦可确定T2极。

单片机在市电过零检测并驱动可控硅进行功率调节的应用综述

单片机在市电过零检测并驱动可控硅进行 功率调节的应用综述 摘要:利用可控硅可实现通过控制低电压直流电使高电压交流电开启或关闭,相比继电器的控制方法可控硅具有更经济、无高次谐波产生、不干扰通讯设备的优点,并且通过对市电是否过零进行检测,通过可编程器件触发可控硅可以实现功率调节。本文综述了一些常用的市电过零检测的方法,及如何通过单片机产生中断来触发可控硅进行功率的调节。 关键词:单片机;可控硅;过零检测;功率调节 由于单片机体积小功耗低数据处理速度快的优点在工业现场被广泛的使用。单片机在工业流程控制的应用,与手动控制相比,它有准确、及时、迅速等诸多方面的优点。市电通过过零检测电路检测到过零时,电路向单片机发出中断申请,单片机通过定时器延时选择导通角从而调节可控硅导通系数。通过这种方法不仅能控制交流电的通断,并且还能调节电路的输出功率。笔者通过工程试验提出以下市电过零检测的方法,和单片机控制可控硅的调节功率的方案。 1可控硅开关原理 可控硅是一种以硅单晶为基本材料的P1N1P2N2四层三端器件,创制于1957年,由于它特性类似于真空闸流管,所以国际上通称为硅晶体闸流管,简称可控硅T。又由于可控硅最初应用于可控整流方面所以又称为硅可控整流元件,简称为可控硅SCR。在性能上,可控硅不仅具有单向导电性,而且还具有比硅整流元件(俗称“死硅”)更为可贵的可控性。它只有导通和关断两种状态。可控硅能以毫安级电流控制大功率的机电设备,如果超过此频率,因元件开关损耗显著增加,允许通过的平均电流相降低,此时,标称电流应降级使用。 由于可控硅共有三个PN结,分析原理时,可以把它看作由一个PNP管和一个NPN管所组成。当阳极A加上正向电压时,BG1和BG2管均处于放大状态。此时,如果从控制极G输入一个正向触发信号,BG2便有基流ib2流过,经BG2放大,其集电极电流ic2=β2ib2。因为BG2的集电极直接与BG1的基极相连,所以ib1=ic。此时,电流ic2再经BG1放大,于是BG1的集电极电流ic1=β1ib1=β1β2ib2。这个电流又流回到BG2的基极,表成正反馈,使ib2不断增大,如此正向馈循环的结果,两个管子的电流剧增,可控硅使饱和导通。由于可控硅只有导通和关断两种工作状态,所以它具有开关特性。 2过零触发电路的实现 2.1通过光电耦合器进行过零检测 过零检测电路的最终目标是实现当50Hz的交流电压通过零点时取出其脉冲。电路中采用两个光电耦合器实现过零控制,其工作原理(图2.1)是:交流电源

相关文档
相关文档 最新文档