文档库 最新最全的文档下载
当前位置:文档库 › 第一篇 电磁现象的普遍规律

第一篇 电磁现象的普遍规律

第一篇 电磁现象的普遍规律
第一篇 电磁现象的普遍规律

电动力学网络课程脚本

第一篇电磁现象的普遍规律

一、学习目标和建议

在这一篇中,我们将学习描述电磁场的基本理论,有电荷守恒定律、麦克斯韦方程组、洛仑兹力公式,以及介质的性质方程和边值关系。它们是解释电磁现象,解决经典电磁场问题的基本规律。电磁场是物质,过去我们仅对电磁场有能量有些认识,在这一篇里,我们将进一步学习理解电磁场的动量、角动量以及电磁场满足的能量守恒律、动量守恒律以及角动量守恒律。这将使我们更好地理解电磁场的物质性,以及自然界的统一性。

二、学习任务

任务一、

熟悉真空中麦克斯韦方程组并且理解其物理意义,了解推导过程

任务二、

理解介质的电磁性质并且熟悉介质中麦克斯韦方程组及其物理意义

任务三、

理解电磁场的能量、动量、角动量概念以及电磁场满足的能量守恒律、动量守恒律以及角动量守恒律,了解它们的推导过程

任务四、

理解电磁场的物质性

三、相关学习资源

1、电动力学(第二版),郭硕鸿编,高等教育出版社。这本教材对电磁场理论有比较系统的讲述和推导。

2、简明电动力学,俞允强编,北京大学出版社。一如书名,该书简明扼要地介绍电磁场的理论,对抓住主要概念是有利的。

3、经典电动力学,美国,J。D。杰克逊,的确是一部经典教材,对经典电动力学的理论和问题研究有全面深入的介绍和讨论。该书有中文版,不过有兴趣的同学建议读这个原文版。

4、电动力学习题解,林旋英,张之翔著,高等教育出版社。学习电动力学,有一本题解是必要的参考书。

5、电动力学专业性很强,一般只在大学的相关网站上有比较有意义的资料。 https://www.wendangku.net/doc/cb15827278.html,/diandong/yusoft/homepage1.htm

武汉大学物理科学与技术学院

四、页面内容

第一章 电磁场基本理论

本章给出的经典电动力学的基本理论,是以后各章讨论问题的出发点。

1.电荷守恒定律

??-=-=?V S dv dt d dt dq s d J ρ

0=??+??t

J ρ 电荷守恒定律是自然界的基本定律。

2.静电场的基本方程 ()()0

ερx x E =?? 1-1 ()0=??x E

1-2

⑴ 推导思路和方法 由库仑定律——积分形式——微分方程

⑵ 用到的数学知识 立体角、高斯公式、斯托克斯定理

⑶ 物理意义:

1-1表明,静电场是有源场,电荷是电场的源;电场线从正电荷发出,止于负电荷,不会在

没有电荷处中断;

1-2表明,静电场是保守力场,做功与路径无关,可以引入势来描述。

⑷ 学习中需注意

该方程是偏微分方程,只在连续区域成立;它反映场和源的点点对应关系。

静电场的基本方程实际就是静电场的散度和旋度,确定一个矢量场,就是由它的散度和旋度决定,这是前面数学准备中亥姆霍兹定理证明的。(链接1:亥姆霍兹定理

亥姆霍兹定理

定理 若给定矢量场()x A 在区域V 内的散度和旋度,以及它在边界面S 上的法向分量

()S

n x A 或者切向分量()S t x A ,则()x A 惟一确定。 说明:这个定理说明了为什么我们要研究电磁场的散度和旋度,为什么电磁场的基本方程要以散度和旋度的形式给出。亥姆霍兹定理就是矢量场的唯一性定理,研究具体的场我们只要给出对应的散度和旋度以及边界条件就可以得到定解。)

3.静磁场的基本方程

0=??B 1-3

J B 0μ=?? 1-4

⑴ 推导思路和方法 由毕萨定律——微分方程——积分形式

⑵ 用到的数学知识 高斯公式、斯托克斯定理、矢量运算的一些公式和定理(链接2: 此处用到的矢量运算公式:

()

()f f f ??+??=????? ()()()f f f ??+??=?????

??2?=???

()()

f f f 2?-???=???? 无旋场必可以表示为标量场的梯度,即

若,0=??f 则??=f 。

无源场必可以表示为另一矢量场的旋度,即

若0=??f ,则.A f ??=)

⑶ 物理意义:

1-3表明,静磁场是无源场,没有磁荷;磁场线是闭合曲线;可以引入矢势描述。

1-4表明,静磁场是有旋场,不可以引入标势来描述;磁场的源是电流,磁场线与电流套链,方向成右手螺旋关系。(链接3:磁场线和电流的关系。)

⑷ 学习中需注意

该方程是偏微分方程,只在连续区域成立;它反映场和源的点点对应关系。

静磁场的基本方程实际就是静磁场的散度和旋度,确定一个矢量场,就是由它的散度和旋度决定,这是前面数学准备中亥姆霍兹定理证明的。

4.真空中的麦克斯韦方程组

.,,0,

0000t

E J B t B E B E ??+=????-=??=??=?? εμμερ 1-5 ⑴ 这是真空中经典电磁场的基本方程;

⑵ 由静电磁场的方程到麦克斯韦方程组,关键在涡旋电场和位移电流的假说

1-5第三式说明,电场可以由变化的磁场激发,这样的电场称为涡旋电场或感生电场。空间的总电场是涡旋电场与库仑场之和。涡旋电场假说基于电磁感应定律。(链接4:库仑场与涡旋电场的比较)

1-5第四式说明,磁场由电流激发也由位移电流激发。位移电流的本质是变化的电场,这样电场和磁场的方程是对称的,变化的电磁场可以交替激发感应产生。这是电磁波产生和传

播的理论基础,并且是统一光和电磁场的理论基础。

⑶ 位移电流和涡旋电场假说由赫兹实验验证,从而麦克斯韦方程组成立。

(链接5:赫兹与赫兹实验)

赫兹于1857年2月22日出生于德国的汉堡。他从当律师和市议员的父亲

身上继承了对人文科学的热爱,还跟父亲学会了多种语言。在12岁生日时,父母给他的生日礼物是一条刨木头的长板凳和一套木工工具。他利用这套工具独立地做起了小凳子、小桌子、小柜子。赫兹从小就培养起对科学的热爱,并表现出了未来实验物理大师的才华。麦克斯韦曾设想,辐射应当由电振荡产生,并以光通过空间自由传播。赫兹正是以麦克斯韦的设想为出发点,开始了他的实验。经过不断努力,他发现了电磁效应可以通过空间传播;他还测量了这种传播的速度和电波的波长;他还用反射、折射偏振实验证明了电波的横波性。就这样,他完美地证实了光的电磁特性与麦克斯韦的理论是一致的。赫兹的成功不仅导致了通信工业的发展,更重要的是给出了有关光的波动本性的更清楚的图像,证实了麦克斯韦的伟大预言。

1886年9月底,赫兹开始了高速电振荡实验。他采用了变压器中的高交变电压,

把它们放在两根两端带金属球的导线上。当他使这两根导线相互靠近时,金属之间就有火花跳过。赫兹发现,传递不需要导体的连接。振荡电路通过空间蔓延到第二个振荡电路上。穿过空间的这种东西就是电波。1886年11月13日,他成功地把他的电波跨越1.5米的距离传递到第二个“振荡电路”上去。这样,他就首次设计了电波发射机和电波接收机。更重要的是,该实验证实了电波的真实存在。今天,我们无线所使用的电报及无线电技术就是赫兹实验的“最重要的收获”。为了纪念赫兹的重要贡献,他的名字被人们用作波的频率单位。

5.洛仑兹力

B J E f ?+=ρ

电荷和电流总是要激发电磁场,而电磁场总是给场中的电荷和电流作用力,这是电磁场问题的两个方面,洛仑兹力公式和麦克斯韦方程组构成了解决电磁问题的理论。

6.介质中的麦克斯韦方程组

f D ρ=??

t

B E ??-=?? 0=??B

t

D j H f ??+=?? ⑴ 描述介质的经典模型:分子电偶极矩和分子电流

⑵ 辅助物理量电位移矢量D 和磁场强度H

P E D +=0ε

M B H -=0

μ 有这两个物理量,使得介质中的问题比较简单。

⑶ 介质性质方程

E D ε=

H B μ=

E J f σ=

这三个方程是在有介质情况下,麦克斯韦方程组的补充。要注意的是,它们仅对线性介质成立。(链接6:电介质物理学)

电介质物理学

dielectric physics

研究电介质宏观介电性质及其微观机制以及电介质的各种特殊效应的物理学分支学科。基本内容包括极化机构、标志介电性质的电容率与介质的微观结构以及与温度和外场频率间的关系、电介质的导热性和导电性、介质损耗、介质击穿机制等。此外,还有许多电介质具有的各种特殊效应。

电介质性质 电介质包括气态、液态和固态等范围广泛的物质。固态电介质包括晶态电介质和非晶态电介质两大类,后者包括玻璃、树脂和高分子聚合物等,是良好的绝缘材料。凡在外电场作用下产生宏观上不等于零的电偶极矩,因而形成宏观束缚电荷的现象称为电极化,能产生电极化现象的物质统称为电介质。电介质的电阻率一般都很高,被称为绝缘体。有些电介质的电阻率并不很高,不能称为绝缘体,但由于能发生极化过程,也归入电介质。

通常情形下电介质中的正、负电荷互相抵消,宏观上不表现出电性,但在外电场作用下可产生如下3种类型的变化:①原子核外的电子云分布产生畸变,从而产生不等于零的电偶极矩,称为畸变极化;②原来正、负电中心重合的分子,在外电场作用下正、负电中心彼此分离,称为位移极化;③具有固有电偶极矩的分子原来的取向是混乱的,宏观上电偶极矩总和等于零,在外电场作用下,各个电偶极子趋向于一致的排列,从而宏观电偶极矩不等于零,称为转向极化。电介质极化时,电极化强度矢量P与总电场强度E的关系为P=ε

χe E,ε0

为真空电容率,χ

e 为电极化率,ε

r

=1+χ

e

称为相对电容率(见电极化强度,电极化率)。电极

化率或电容率与外电场的频率有关。对静电场或极低频电场,上述3种极化类型都参与极化过程,一定电介质的电容率为常量。电场频率增加时,转向极化逐渐跟不上外电场的变化,电容率变为复数,虚部的出现标志着电场能量的损耗,称为介电损耗。频率进一步增加时,转向极化失去作用,电容率减小。在红外线波段,电介质正、负电中心的固有振动频率往往与外场频率一致,从而产生共振,表现为电介质对红外线的强烈吸收。在吸收区,电容率的实部和虚部均随频率发生大起大落的变化。在可见光波段,位移极化也失去作用,只有畸变极化起作用。光频区域的电容率实部进一步减小,它对应电介质的折射率,虚部决定了对光波的吸收。在强电场(如激光)作用下,极化强度P与电场强度E不再有线性关系,这使电介质表现出种种非线性效应(见非线性光学)。各向异性晶体的电容率不能简单地用一个数来表示,需用张量表示。

电介质特殊效应对电介质特殊效应的理论和应用构成了电介质物理学另一方面的研究内容。这些特殊效应包括:①压电效应。一些晶体因受外力而产生形变时,会发生极化现象,在相对两面上形成异号束缚电荷,称为压电效应。压电晶体种类很多,常见的有石英、酒石酸钾钠(罗谢耳盐)、磷酸二氢钾(KDP)、磷酸二氢铵(ADP)、钛酸钡,以及砷化镓、硫化锌等半导体和压电陶瓷等。压电晶体的机械振动可转化为电振动,常用来制造晶体振荡器,其突出优点是振荡频率的高度稳定性,无线电技术中可用来稳定高频振荡的频率,这种振荡器已广泛用于石英钟。压电晶体还普遍用于话筒、电唱头等电声器件中。利用压电现象可测量各种情形下的压力、振动和加速度等。

②电致伸缩。是压电效应的逆效应。一些晶体在电场作用下会发生伸长或缩短形变,称电致伸缩。利用电致伸缩效应可将电振动转变为机械振动,常用于产生超声波的换能器,以及耳机和高音喇叭等。

③驻极体。除去外电场或外加机械作用后,仍能长时间保持极化状态的电介质称为驻极体。驻极体同时具有压电效应和热电效应。技术上大多采用极性高分子聚合物作为驻极体材料。驻极体能产生30千伏/厘米的强电场。驻极体能存储电荷的性能已被用于静电摄影术和吸附气体中微小颗粒的气体过滤器。

④热电效应。具有自发极化造成的宏观电偶极矩,并具有较大热胀系数的晶体称为热电晶体。处于自发极化状态的热电晶体,在电偶极矩正、负两端表面上本来存在着由极化形成的束缚电荷,但由于吸附了空气中的异号离子而不表现出带电性质。当温度改变时,热电晶体的体积发生显著变化,从而导致极化强度的明显改变,破坏了表面的电中性,表面所吸附的多余电荷将被释放出来,此现象称为热电效应。经人工极化的铁电体和驻极体都具有热电效应。热电效应已用于红外线探测和热成像技术。

⑤电热效应。热电效应的逆效应,具有电热效应的电介质(多为驻极体)称为电热体。在绝热条件下借助于外电场改变电热体的永久极化强度时,它的温度会发生变化,此称为电热效应。绝热去极化可降低温度,与绝热去磁法(见磁热效应)一样可用来获得超低温。常用的电热材料有钛酸锶陶瓷和聚偏氟乙烯(PVF)等驻极体。

⑥电光效应。某些各向同性的透明电介质在电场作用下变成光学各向异性的效应。

⑦铁电性。在一些电介质晶体中存在许多自发极化的小区域,每个自发极化的小区域称为

铁电畴,其线度为微米数量级。同一铁电畴内各个电偶极矩取向相同,不同铁电畴的自发极化方向一般不同,因而宏观上总的电偶极矩为零。在外电场作用下各铁电畴的极化方向趋于一致,极化强度P与电场强度E有非线性关系。在峰值固定的交变电场反复作用下,P与E的关系曲线类似于磁滞回线(见铁磁性),称为电滞回线。以上性质称为铁电性,具有铁电性的电介质称铁电体。当温度升高到某一临界值T

时,铁电畴互解,铁电性消失,铁电

c

称为铁电居里温度。铁电体具有很高的电容率。铁电体必定体转变为普通顺电性电介质,T

c

同时具有压电性和热电性。

⑧铁弹性。一些晶体在其内部能形成自发应变的小区域,称为铁弹畴,同一铁弹畴内的自发应变方向(畴态)相同,任两个铁弹畴的畴态相同或呈镜面对称。外加应力可使铁弹畴从一个畴态过渡到另一畴态。外应力改变时,应变滞后于应力变化,且应力与应变是非线性关系。在周期性外应力作用下,应变与应力的关系曲线类似于磁滞回线,称为力滞回线。以上性质称为铁弹性,具有铁弹性的电介质称为铁弹体。铁弹体的电容率、折射率、电导率、热胀系数、导热系数、弹性模量和电致伸缩率等因方向而异,且这种方向性会随应力而变,利用这些特点在制造力敏器件上有着广泛的应用前景。

(链接7:磁介质)

磁介质

磁介质magnetic medium

由于磁场和事物之间的相互作用,使实物物质处于一种特殊状态,从而改变原来磁场的分布。这种在磁场作用下,其内部状态发生变化,并反过来影响磁场分布的物质,称为磁介质。磁介质在磁场作用下内部状态的变化叫做磁化。

在磁场作用下表现出磁性的物质。物质在外磁场作用下表现出磁性的现象称为磁化。所有物质都能磁化,故都是磁介质。按磁化机构的不同,磁介质可分为抗磁体、顺磁体、铁磁体、反铁磁体和亚铁磁体五大类。在无外磁场时抗磁体分子的固有磁矩为零,外加磁场后,由于电磁感应每个分子感应出与外磁场方向相反的磁矩,所产生的附加磁场在介质内部与外磁场方向相反,此性质称为抗磁性。顺磁体分子的固有磁矩不为零,在无外磁场时,由于热运动而使分子磁矩的取向作无规分布,宏观上不显示磁性。在外磁场作用下,分子磁矩趋向于与外磁场方向一致的排列,所产生的附加磁场在介质内部与外磁场方向一致,此性质称为顺磁性。介质磁化后的特点是在宏观体积中总磁矩不为零,单位体积中的总磁矩称为磁化强度。

实验表明,磁化强度与磁场强度成正比,比例系数χm称为磁化率。抗磁体和顺磁体的磁性都很弱,即cm 很小,属弱磁性物质。抗磁体的cm为负值,与磁场强度无关,也不依赖于温度。顺磁体的cm为正值,也与磁场强度无关,但与温度成反比,即cm =C/T,C称为居里常数,T为热力学温度,此关系称为居里定律。

铁磁体在低于一定温度Tc时,内部存在许多自发磁化的小区域,称为磁畴,磁畴具有磁有序结构,同一磁畴内分子磁矩同向。无外磁场时不同磁畴的取向作无规分布,宏观上不显示磁性;在外磁场作用下磁畴转向,宏观体积内的总磁矩不为零,内部可产生与外磁场方向一致的、比外磁场要强得多的附加磁场。外磁场撤去后仍保留部分磁化强度。铁磁体还具有磁滞现象(见铁磁性)。铁磁体属强磁物质,是应用最广的磁介质。

反铁磁体内由于原子之间的相互作用使之与铁磁体一样具有磁有序结构,相邻自旋磁矩作反平行排列,大

小恰好相抵消,因而不具有固有的自发磁化磁矩,此种性质称为反铁磁性。反铁磁体具有较大的顺磁磁化率,在一定温度TN 处存在磁化率的峰值,温度大于TN 时反铁磁性消失而成为顺磁体,临界温度TN 称为奈耳温度。在奈耳温度TN 处,反铁磁体的热胀系数和比热容等均发生突变。铁、钴、镍、锰等过渡族金属的氧化物均是反铁磁体。

亚铁磁性与反铁磁性具有相同的物理本质,只是亚铁磁体中反平行的自旋磁矩大小不等,因而存在部分抵消不尽的自发磁矩,类似于铁磁体。温度高于某一数值Tc 时,亚铁磁体变为顺磁体,Tc 称居里温度。铁氧体大都是亚铁磁体。

7.电磁场的边值关系

()

f D D n σ=-?12 (

)012=-?B B n ()f J H H

n =-?12 ()

012=-?E E n

⑴ 这些关系式是解决电磁场问题时对麦克斯韦方程组的补充。麦克斯韦方程组是微分方程,只在连续区域成立,在两种不同介质的边界上,需要这些关系式给出不同连续区域的场之间的关系。

⑵ 在两种介质的界面处,电场的切向分量总是连续的,磁场的法向分量总是连续的。在理想介质界面处,电位移矢量的法向分量连续,磁场强度的切向分量连续;若界面上有自由电荷,则电位移矢量的法向分量不连续;若界面上有传导电流,则磁场强度的切向分量不连续。 ⑶ 边值关系的推导基于麦克斯韦方程组的积分形式,法向关系由高斯定理导出,切向关系由环路定理导出。请注意教材中有关部分。 第二章 电磁作用下的守恒定律

电磁场是物质的,它具有物质的基本属性,即有能量、动量、角动量,并且它们能与其他形式的能量、动量、角动量相互转化,自然界中,总的能量、动量、角动量是守恒的。本章的讨论充分地说明了这一点。

1.电磁场的能量和能量守恒定律

???+?=?-V

V wdV dt d V d v f d S σσ 2-1 ??-=?V

V wdV dt d V d v f 2-2 ⑴ 2-1是电磁作用中能量转化和守恒定律,说明电磁场有能量且满足转化与守恒律。等式左边表示通过任意区域V 的边界S 流入区域V 中的电磁能量;等式右边第一项表示区域V 中带电体在电磁力的作用下机械能的增量,第二项表示区域V 内电磁能的增量。因此2-1表示外界流入区域V 内的电磁能量,一部分增加了区域V 内带电体的机械能,一部分增加了区域V 中的电磁场能量。

2-2说明,若区域V 与外界无能量交换,则带电体机械能的增加,等于区域V 中电磁能量的减少。

⑵ 由麦克斯韦方程组、洛仑兹力公式以及电荷守恒定律可以证明上式成立,并且得到能量密度及能流密度的表示

能量密度 .212122B E w μ

ε+= 能流密度 H E S ?=

(链接8:能流Flash. 稳恒电路中,能量的传输是电磁场能流的传输,能流沿导线的切向分量,在导线的引导下传送到用电器,而垂直于导线表面的分量,进入导线,等于导线消耗的焦耳热。)

2.电磁场的动量和动量守恒定律

???+=?-→→V V dV g dt d V d f d T

σσ 2-3 ??-=V V dV g dt d V d f 2-4 ⑴ 2-3是电磁作用中动量转化和守恒定律,说明电磁场有动量且满足转化与守恒律。等式左边表示通过任意区域V 的边界S 流入区域V 中的电磁动量;等式右边第一项表示区域V 中带电体在电磁力的作用下机械动量的增量,第二项表示区域V 内电磁动量的增量。因此2-3表示外界流入区域V 内的电磁动量,一部分增加了区域V 内带电体的机械动量,一部分增加了区域V 中的电磁场动量。

2-4说明,若区域V 与外界无动量交换,则带电体机械动量的增加,等于区域V 中电磁动量的减少。

⑵ 由麦克斯韦方程组、洛仑兹力公式以及电荷守恒定律可以证明上式成立,并且得到动量密度及动量流密度的表示

动量密度 B E g ?=0ε

动量流密度 ???? ??++--=→→→→

2020001211B E I B B E E T μεμε 动量流密度是一个二阶张量。

3.电磁场的角动量和角动量守恒定律

????+=?-→→V V dV f R dV l dt d d M

σσ 2-5 ??-=?V V dV l dt d dV f R 2-6 ⑴ 2-5是电磁作用中角动量转化和守恒定律,说明电磁场有角动量且满足转化与守恒律。等式左边表示通过任意区域V 的边界S 流入区域V 中的电磁角动量;等式右边第一项表示区域V 中带电体在电磁力的作用下机械角动量的增量,第二项表示区域V 内电磁角动量的增量。因此2-5表示外界流入区域V 内的电磁角动量,一部分增加了区域V 内带电体的机械角动量,一部分增加了区域V 中的电磁场角动量。

2-6说明,若区域V 与外界无角动量交换,则带电体机械角动量的增加,等于区域V 中电磁角动量的减少。

⑵ 由麦克斯韦方程组、洛仑兹力公式以及电荷守恒定律可以证明上式成立,并且得到角动量密度及角动量流密度的表示

角动量密度 g R l ?=

角动量流密度 R T M

?-=→→→→ 五.补充例题

1.当介质分解面上不仅存在自由面电荷,而且存在传导面电流时,试推导出与电荷守恒定律相对应的边值关系式。(北京工业大学,1982年)

解 对电荷守恒定律,微分形式(0=??+??t

ρJ )在分界面上已不适用,仿照证明场量边值关系的方法可以证明与电荷守恒定律相对应的边值关系为:

(1)在无面传导电流的情况下(实际导体)其边值关系为

0)(12=??+-?t

σJ J n 在两种线性导电介质的分解面上

0)(1122=??+-?t

f σσσE E n n 由介质1指向介质2,1σ、2σ为界面两侧介质的电导率,σ和f σ分别为界面的总电荷密度和自由电荷密度。

(2)当介质分界面上存在面传导电流时,相应的边值关系为

J n =??+-?t

E E f σσσ)(1122 其中为J 为面传导电流密度。

2.有一放射性材料制成的小球,总电荷为Q ,由于小球周围形成沿径向流出的电流,因而Q 逐渐减小,假定电流的大小在各不同方向上都相同,求

(1)电流密度J

(2)位移电流密度D J

(3)证明磁感应强度0=B

解(1)由电荷守恒定律

?--=?=J r d dt

dQ 24πs J 故 3r

dt dQ r J π41-= ⑵3r Q r E 04πε= 3

D r dt dQ t r

E J πε410=??= (3) 0)(0=+=??D J J μB

而 0=??B 故 0=B

六、补充习题

由两块有限而且对称的平行板组成的电容器,板间为真空,两板的间距为d ,若在此电容器两板间跨接一个交变电动势t V V ωcos 0

=,证明此电容器内的电场不可能是均匀的轴向场.

链接7 补充习题答案

分析 题目要求证明电容器内的场不可能是均匀的轴向场,这就很快能想到如果是均匀的轴向场,会有什么结果。 若平行板如图放置,一板在x0y 平面上,另一板截z 轴于d

处,且z 轴为电容器的对称轴 .对于均匀轴向场有

t ωd

V E cos 0= ,据此平行板中任意一个两边平行于z 轴的闭合回路L ,有

?=?L

d 0l E (1) 若能求出闭合回路?

≠?L d 0l E ,则表示场不可能是均匀的轴向场.

解 在电容器内取半径为R 的圆回路L ,且回路所在平面与 Z 垂直,则由安培环路定理,有

s D l H d t d L S f I ?+=??

??? (2) 电容器内 0=f I H B 0μ= E D 0ε= 和 t d V E ωcos 0=

可得柱坐标下R 处的磁感应强度φωe B t d

V c R ω

R sin 2)(02--= (3) 又因为s B l E d t L S d ???-=???,只要求出面元S d ,并考虑到(3)式,即可求得??L

d l E 为此,我们取一回路'l (如图),其两边距Z 轴为1R ,2R ,高为Z ,回路'l 所围面积的面元矢量φφ

e e s dRdZ ds d ==

∴ t V d

c z R R

d d lf L ωωcos 4)(0222122-=?=???l E l E (5) (5)式只在21R R =或0=z 处才等于零,故一般说来0≠??l E d ,即E 不可能是均匀的轴向场.

七、阅读材料

(链接8)

1.Flash 能流

(链接9)

2.Maxwell电磁场理论的建立和启迪(链接10)

3.电磁场理论的建立

高考物理电磁感应现象的两类情况(大题培优)及答案

高考物理电磁感应现象的两类情况(大题培优)及答案 一、电磁感应现象的两类情况 1.如图所示,光滑的长平行金属导轨宽度d=50cm ,导轨所在的平面与水平面夹角θ=37°,导轨上端电阻R=0.8Ω,其他电阻不计.导轨放在竖直向上的匀强磁场中,磁感应强度B=0.4T .金属棒ab 从上端由静止开始下滑,金属棒ab 的质量m=0.1kg .(sin37°=0.6,g=10m/s 2) (1)求导体棒下滑的最大速度; (2)求当速度达到5m/s 时导体棒的加速度; (3)若经过时间t ,导体棒下滑的垂直距离为s ,速度为v .若在同一时间内,电阻产生的热与一恒定电流I 0在该电阻上产生的热相同,求恒定电流I 0的表达式(各物理量全部用字母表示). 【答案】(1)18.75m/s (2)a=4.4m/s 2 (32 22mgs mv Rt 【解析】 【分析】根据感应电动势大小与安培力大小表达式,结合闭合电路欧姆定律与受力平衡方程,即可求解;根据牛顿第二定律,由受力分析,列出方程,即可求解;根据能量守恒求解; 解:(1)当物体达到平衡时,导体棒有最大速度,有:sin cos mg F θθ= , 根据安培力公式有: F BIL =, 根据欧姆定律有: cos E BLv I R R θ==, 解得: 222 sin 18.75cos mgR v B L θ θ = =; (2)由牛顿第二定律有:sin cos mg F ma θθ-= , cos 1BLv I A R θ = =, 0.2F BIL N ==, 24.4/a m s =; (3)根据能量守恒有:22012 mgs mv I Rt = + , 解得: 2 02mgs mv I Rt -=

论电磁感应现象的发现发展历程

论电磁感应的发现历程 古之成大事者,不惟有超世之才,亦必有坚忍不拔之志。昔禹之治水,凿龙门,决大河,而放之海。方其功之未成也,盖亦有溃冒冲突可畏之患,惟能前知其当然,事至不惧而徐为之图,是以得至于成功。电磁感应的发现与发展,凝结了无数人的智慧。 伟大的哲学家康德曾经说过:“各种自然现象之间是相互联系和相互转化的。”在1820年,丹麦物理学家、化学家奥斯特在一次实验中发现了电流的磁效应,这一惊人发现使当时整个科学界受到很大的震动,从此拉开了电磁联系的序幕,“物理学将不再是关于运动、热、空气、光、电、磁以及我们所知道的各种其他现象的零散的罗列,我们将把整个宇宙纳在一个体系中。” 奥斯特发现电流的磁现象后不久,各国各地的科学家们展开了对称性的思考:电和磁是一对和谐对称的自然现象,既然存在磁化和静电感应现象,那么磁体或电流也应能在附近导体中感应出电流来。于是,当时许多著名的科学家如法国的安培、菲涅尔、阿拉果和英国的沃拉斯顿等都纷纷投身于探索磁与电的关系之中。 仅仅空有满腔热血是远远不够的,还需要有科学的方法以及持之以恒的毅力,勇于突破思维的局限。安培曾做了很多实验,以期能实现“磁生电”,但他把分子电流理论看的

过分重要,完全被自己的理论囚禁起来了,以致尽管在一次实验中展现出了磁生电的迹象,但却没有引发他的正确认识。 1823年,瑞士物理学家科拉顿曾企图用磁铁在线圈中运动获得电流。他把一个线圈与电流计连成一个闭合回路。为了使磁铁不至于影响电流计中的小磁针,特意将电流计用长导线连后放在隔壁的房间里,他用磁棒在线圈中插入或拔出,然后一次又一次地跑到另一房间里去观察电流计是否偏转。由于感应电流的产生与存在是瞬时的暂态效应,他当然观察不到指针的偏转,发现电磁感应的机会也失之交臂。 为了证明磁能生电,1820年至1831年期间,法拉第用实验的方法探索这一课题,最初也是像上述物理学家一样,利用通常的思想方法,做了大量的实验,但磁生电的迹象却始终未出现。失败并没有使他放弃实验,因为他坚信自然力是统一的、和谐的,电和磁是彼此有关联的。 1825年,斯特詹发明了电磁铁,这给法拉第的研究带来了新的希望。1831年,法拉第终于在一次实验中获得了突破性进展。而这次实验就是著名的法拉第圆环实验。 这一实验使法拉第豁然开朗:由磁感应电的现象是一种暂态效应。发现了这一秘密后,他设计了另外一些实验,并证实了自己的想法。就这样经过近10年的思考与探索,法拉第克服了思维定势采用了新的实验方法,终于发现了电磁

电动力学习题答案第一章 电磁现象的普遍规律

第一章电磁现象的普遍规律 1. 根据算符的微分性与矢量性,推导下列公式: 解:矢量性为 ① ② ③微商性 ④ ⑤ 由②得 ⑥ ⑦ ⑥+⑦得 上式得 令得 2.设μ是空间坐标x,y,z的函数,证明: 解:① ② ③ 3.设为原点到场点的距离,的方向规定为从原点指向场点。 ⑴证明下列结果,并体会对原变数求微商 () 与对场变数求微商 () 的关系 (最后一式在r=0点不成立,见第二章第五节) ⑵求及,其中及均为常矢量。 解:⑴ ⑵

4. 4.⑴应用高斯定理证明 ⑵应用斯托克斯(Stokes)定理证明 解:⑴ ⑵ 5. 5.已知一个电荷系统的偶极矩定义为 利用电荷守恒定律 证明的变化率为 解: 取被积区域大于电荷系统的区域,即V的边界S上的,则 。 6. 若是常矢量,证明除R=0点以外矢量的旋度等于标量的梯度的负值,即,其中R为坐标原点到场点的距离,方向由原点指向场点。 解: 7. 有一内外半径分别为和的空心介质球,介质的电容率为,使介质内均匀带静止自由电荷,求 ⑴空间各点的电场;⑵ 极化体电荷和极化面电荷分布。 解:⑴对空间Ⅰ做高斯面,由: 对空间Ⅱ:做高斯面,由 对空间Ⅲ: 做高斯面,由 ⑵由 时,由边值条件:

(由1指向2) 8. 内外半径分别为和的无穷长中空导体圆柱,沿轴向流有恒定均匀自由电流,导体的磁导率为μ,求磁感应强度和磁化电流。 解:⑴由 所以 所以 方向为 对区域Ⅱ 由 方向为 对区域Ⅲ有: (2)(2)由 由 由 同理 由 得 9. 证明均匀介质内部的体极化电荷密度总是等于体自由电荷密度的倍。即: 解:由均匀介质有 ① ② ③ ④ 由①②得 两边求散度 由③④得

物理电磁感应现象的两类情况的专项培优练习题

物理电磁感应现象的两类情况的专项培优练习题 一、电磁感应现象的两类情况 1.如图,在地面上方空间存在着两个水平方向的匀强磁场,磁场的理想边界ef 、gh 、pq 水平,磁感应强度大小均为B ,区域I 的磁场方向垂直纸面向里,区域Ⅱ的磁场方向向外,两个磁场的高度均为L ;将一个质量为m ,电阻为R ,对角线长为2L 的正方形金属线圈从图示位置由静止释放(线圈的d 点与磁场上边界f 等高,线圈平面与磁场垂直),下落过程中对角线ac 始终保持水平,当对角线ac 刚到达cf 时,线圈恰好受力平衡;当对角线ac 到达h 时,线圈又恰好受力平衡(重力加速度为g ).求: (1)当线圈的对角线ac 刚到达gf 时的速度大小; (2)从线圈释放开始到对角线ac 到达gh 边界时,感应电流在线圈中产生的热量为多少? 【答案】(1)1224mgR v B L = (2)322 44 2512m g R Q mgL B L =- 【解析】 【详解】 (1)设当线圈的对角线ac 刚到达ef 时线圈的速度为1v ,则此时感应电动势为: 112E B Lv =? 感应电流:11E I R = 由力的平衡得:12BI L mg ?= 解以上各式得:122 4mgR v B L = (2)设当线圈的对角线ac 刚到达ef 时线圈的速度为2v ,则此时感应电动势 2222E B Lv =? 感应电流:2 2E I R = 由力的平衡得:222BI L mg ?=

解以上各式得:222 16mgR v B L = 设感应电流在线圈中产生的热量为Q ,由能量守恒定律得: 22122 mg L Q mv ?-= 解以上各式得:322 44 2512m g R Q mgL B L =- 2.如图,垂直于纸面的磁感应强度为B ,边长为 L 、电阻为 R 的单匝方形线圈 ABCD 在外力 F 的作用下向右匀速进入匀强磁场,在线圈进入磁场过程中,求: (1)线圈进入磁场时的速度 v 。 (2)线圈中的电流大小。 (3)AB 边产生的焦耳热。 【答案】(1)22 FR v B L =;(2)F I BL =;(3)4FL Q = 【解析】 【分析】 【详解】 (1)线圈向右匀速进入匀强磁场,则有 F F BIL ==安 又电路中的电动势为 E BLv = 所以线圈中电流大小为 = =E BLv I R R 联立解得 22 FR v B L = (2)根据有F F BIL ==安得线圈中的电流大小 F I BL = (3)AB 边产生的焦耳热 22( )4AB F R L Q I R t BL v ==??

高中物理学业水平考试复习训练电磁现象与规律

合格演练测评(八) [电磁现象与规律(选修1-1)] 姓名:__________ 班级:__________ 正确率:__________ 题号12345678910 答案 题号11121314151617181920 答案 一、单项选择题 1.如图所示,将一束塑料包扎带一端打结,另一端撕成细条后,用手迅速捋细条,观察到细条散开了,则产生这种现象的原因是( ) A.细条之间相互感应起电,相互排斥散开 B.撕成细条后,所受重力减小,细条自然松散 C.撕成细条后,由于空气浮力作用,细条散开 D.由于摩擦起电,细条带同种电荷,相互排斥散开 答案:D 2.两个相同的金属小球M、N,带电量分别为-4q和+2q.两球接触后分开,M、N的带电量分别为( ) A.+3q,-3q B.-2q,+4q C.+2q,-4q D.-q,-q

答案:D 3.关于静电的利用和防范,以下说法正确的是( ) A .没有安装避雷针的建筑物一定会被雷电击毁 B .油罐车行驶途中车尾有一条铁链拖在地上,避免产生电火花引起爆炸 C .飞机起落架的轮胎用绝缘橡胶制成,可防止静电积聚 D .手术室的医生和护士都要穿绝缘性能良好的化纤制品,可防止麻醉药燃烧 答案:B 4.关于点电荷,下列说法中不正确的是( ) A .点电荷是一个带有电荷的几何点,它是实际带电体的抽象化,是一种理想化的模型 B .点电荷自身不一定很小,所带电荷量不一定很少 C .体积小于1 mm 3的带电体就是点电荷 D .体积大的带电体,只要满足一定的条件也可以看成点电荷 答案:C 5.真空中,距离为r ,带电量均为q 的两个点电荷间的库仑力大小为F .若将它们的电荷量都增大到2q ,距离增大到2r ,则它们之间的库仑力大小为( ) A .F B .F 14 C .2F D .4F 答案:B 6.在光滑绝缘的水平面上,有两个相距较近的带同种电荷的小球,将它们由静止释放,则两球间( ) A .距离变大,库仑力变大 B .距离变大,库仑力变小

电磁现象的普遍规律

第一章 电磁现象的普遍规律 §1.1 电荷与电场 1、库仑定律 (1)库仑定律 如图1-1-1所示,真空中静止电荷' Q 对另一个静止电荷Q 的作用力F 为 () ' 3''041 r r r r Q Q F --= πε (1.1.1) 式中0ε是真空介电常数。 (2)电场强度E 静止的点电荷' Q 在真空中所产生的电场强度E 为 ()' 3 ''041 r r r r Q E --= πε (1.1.2) (3)电场的叠加原理 N 个分立的点电荷在r 处产生的场强为 ()'1 3 ' 0' 4i N i i i r r r r Q E --=∑ =πε (1.1.3) 体积V 内的体电荷分布()'r ρ所产生的场强为 ()()' 3 ' ' ' 41r r r r dV r E V --= ? ρπε (1.1.4) 式中'r 为源点的坐标,r 为场点的坐标。 2、高斯定理和电场的散度 高斯定理:电场强度E 穿出封闭曲面S 的总电通量等于S 内的电荷的代数和 )(∑i i Q 除以0ε。用公式表示为

∑? = ?i i S Q S d E 0 1ε (分离电荷情形) (1.1.5) 或 ? ? = ?V S dV S d E ρε0 1 (电荷连续分布情形) (1.1.6) 其中V 为S 所包住的体积,S d 为S 上的面元,其方向是外法线方向。 应用积分变换的高斯公式 ????=?V S dV E S d E (1.1.7) 由(1.1.6)式可得静电场的散度为 ρε0 1 =??E 3. 静电场的旋度 由库仑定律可推得静电场E 的环量为 0=??L l d E (1.1.8) 应用积分变换的斯托克斯公式 ?????=?S L S d E l d E 从(1.1.8)式得出静电场的旋度为 0=??E (1.1.9)

电磁感应现象的发现

第一章电磁感应 一、电磁感应的发现 教学目标: 1.知识与技能: (1)知道电磁感应现象,了解利用不同磁体的磁场产生感应电流的方法; (2)知道感应电流的产生是由于穿过闭合回路的磁通量发生改变而引起的; (3)了解电源电动势的概念,知道感应电流大小是由感应电动势大小决定的。 2.过程与方法: (1)由课文第一句“奥斯特发线电流的磁效应”入手,引导学生逆向思维思考,让学生领会科学研究中逆向思维的途径与重要性; (2)探究产生感应电流的三种不同的方法,经历科学研究的主要环节,通过探究实验,观察实验现象,分析实验结果,获得科学探究的感性认识; (3)初步认识对比与归纳是物理思维的两种基本形式; (4)通过对“感应电流的产生是由于穿过闭合回路的磁通量变化而引起”内容的学习,了解抽象、概括等思维形式在物理定律发现中的重要性。 3.情感、态度与价值观 了解科学发现对社会文明进程的巨大推动作用,激发学生的求知欲和探究精神;在探究过程中学习合作与交流 教学重点、难点: (1)探究产生感应电流的三种不同的方法,归纳、总结出产生感应电流的条件; (2)正确理解产生感应电流的条件。 教具准备与教学方法 (1)灵敏电流计、大小螺线管、线圈、导线、开关、滑动电阻、电源、条形磁铁,蹄形磁铁; (2)运用实验探究、启发引导、对比与归纳等教学方法。 教学设计思路 本设计的基本思路是:以实验创设情景,激发学生的好奇心。通过对问题的讨论,引入学习电磁感应现象。本设计强调问题讨论、交流讨论、实验研究、教师指导等多种教学策略的应用,重视概念、规律的形成过程以及伴随这一过程的科学方法的教育。通过学生主动参与,培养其分析推理、比较判断、归纳概括的能力,使之感受猜想、假设、实验、比较、归纳等科学方法的重要作用;感悟科学家的探究精神,提高学习的兴趣。 新课教学 1、不同自然现象之间是有相互联系的,而这种联系可以通过我们的观察与思考来发现。例如摩擦生热则表明了机械运动与热运动是互相联系的,奥斯特之所以能够发现电流产生磁场,就是因为他相信不同自然现象之间是互相联系和互相转化的。自奥斯特发现电能生磁之后,历史上许多科学家都在研究“磁生电”这个课题。介绍瑞士物理学家科拉顿的研究。

电动力学复习总结第一章电磁现象的普遍规律2012答案

第一章 电磁现象的普遍规律 一、 填空题 1.已知介质中的极化强度Z e A P =,其中A 为常数,介质外为真空,介质中的极 化电荷体密度=P ρ ;与P 垂直的表面处的极化电荷面密度P σ分别等于 和 。 答案: 0, A, -A 2.已知真空中的的电位移矢量D =(5xy x e +2z y e )cos500t ,空间的自由电荷体 密度为 。 答案: 5cos500y t 3.变化磁场激发的感应电场的旋度等于 。 答案: B t ?-? 4.介电常数为ε的均匀介质球,极化强度z e A P =A 为常数,则球内的极化电荷 密度为 ,表面极化电荷密度等于 答案0,cos A θ 5.一个半径为R 的电介质球,极化强度为ε,电容率为2r r K P =,则介质中的自由电荷体密度为 ,介质中的电场强度等于 . 答案: 20r K f )(εεερ-= 2 0r r K εε- 二、 选择题 1.半径为R 的均匀磁化介质球,磁化强度为M ,则介质球的总磁矩为 A .M B. M R 334π C.3 43R M π D. 0 答案:B 2.下列函数中能描述静电场电场强度的是 A .z y x e x e y e x ++32 B.φθe cos 8 C.y x e y e xy 236+ D.z e a (a 为非零常数) 答案: D

3.充满电容率为ε的介质平行板电容器,当两极板上的电量t q q ωsin 0=(ω很小),若电容器的电容为C ,两极板间距离为d ,忽略边缘效应,两极板间的位移电流密度为: A .t dC q ωω εcos 0 B. t dC q ωωsin 0 C. t dC q ωωεsin 0 D. t q ωωcos 0 答案:A 4.下面矢量函数中哪一个不能表示磁场的磁感强度?式中的a 为非零常数 A .r e ar (柱坐标) B.y x e ax e ay +- C. y x e ay e ax - D.φe ar 答案:A 5.变化磁场激发的感应电场是 A.有旋场,电场线不闭和 B.无旋场,电场线闭和 C.有旋场,电场线闭和 D.无旋场,电场线不闭和 答案: C 6.在非稳恒电流的电流线的起点.终点处,电荷密度ρ满足 A.J ??=ρ B.0=??t ρ C.0=ρ D. 0≠??t ρ 答案: D 7.处于静电平衡状态下的导体,关于表面电场说法正确的是: A.只有法向分量; B.只有切向分量 ; C.表面外无电场 ; D.既有法向分量,又有切向分量 答案:A 8.介质中静电场满足的微分方程是 A.;,0t B E E ??-=??=?? ερ B.0,=??=??E D ρ; C.;0,0=??=??E E ερ D.;,t B E D ??-=??=?? ρ 答案:B 9.对于铁磁质成立的关系是 A.H B μ= B.H B 0μ= C.)(0 M H B +=μ D.)(M H B +=μ 答案:C 10.线性介质中,电场的能量密度可表示为 A. ρφ21; B.E D ?2 1; C. ρφ D. E D ? 答案:B

初中物理电磁现象带答案

专题十六电磁现象 考纲解读 五年中考 A组2008—2012年北京中考题组 一、选择题 1. (2012北京,13,3分)(多选)关于电磁现象,下列说法中正确的是( ) A.通电线圈在磁场中受力转动的过程中,机械能转化为电能 B.指南针能指南是由于地磁场对指南针磁极有力的作用 C.磁场中某点的磁场方向是由放在该点的小磁针决定的 D.闭合电路的部分导体在磁场中做切割磁感线运动时,导体中一定产生电流 2. (2011北京,15,3分)(多选)关于电磁现象,下列说法中正确的是( ) A.磁场是由磁感线组成的 B.磁场对放人其中的小磁针一定有力的作用 C.导体中的负电荷在做定向移动时_定产生磁场 D.利用撤在磁体周围的铁屑可以判断该磁体周围各点的磁场方向 3. (2010北京,15,3分)(多选)关于电磁现象,下列说法中正确的是( ) A.通电螺线管能够产生磁场 B.电动机能够把电能转化为机械能 C.改变电磁铁线圈的匝数,电磁铁的磁性强弱就会改变 D.导体在磁场中做切割磁感线运动时,导体中就会产生感应电流 4. (2009北京,13,3分)(多选)下列关于电磁现象的说法中,正确的是( ) A.通电导线周围存在磁场

B.发电机是根据电磁感应现象制成的 C.电磁铁磁性的强弱与电磁铁线圈的匝数有关 D.只要导体在磁场中运动,就会产生感应电流 5. (2008北京,13,3分)(多选)关于电磁现象,下列说法正确的是( ) A.用磁感线可以形象地描述磁场 B.发电机是利用电磁感应现象制成的 C.奥斯特实验说明了电流周围存在磁场 D.放在磁场中的导体一定受到磁场力的作用 二、填空题 6.(2012北京,27,2分)通电螺线管中的电流方向如图所示,由此可以判断出通电螺线管的左端是极.(选填“N”或“S”) 7. (2011北京,26,2分)根据图中通电螺线管中的电流方向,可以判断出通电螺线管的左端是 极,(填“N”或“S”). B组2008—2012年全国中考题组 一、选择题 1.(2012天津,7,2分)图中,能说明电动机工作原理的是( ) 2. (2012广东,4,3分)图中小磁针的指向正确的是( ) 3.(2012湖北武汉,18,3分)下列装置中,利用电磁感应原理工作的是( )

九年级物理全册第十四章电磁现象一简单磁现象教案(新版)北师大版

一、简单磁现象 教学目标 知识要点课标要求 1.简单的磁现象了解简单的磁现象 2.磁极间的作用规律通过实验认识磁极及磁极间的相互作用 教学过程 新课引入 播种季节,小明的爸爸有一件很头疼的事情,就是他家的种子中混有一些杂草的种子.但两种种子在外表面上是不同的,农作物的种子比较光滑,不易吸附小颗粒物,而杂草的种子表面有许多绒毛,能够吸附靠近它的小颗粒物.怎么把它们很快分离?正在束手无策的时候,机灵的小明很快利用一些铁屑和一块磁铁就把种子和杂草的种子分离开来?你能说出他是怎么做的吗?其中所含的物理道理是什么?从中导入新课。 合作探究 探究点一几个磁概念 活动1:如图所示为两个外形完全相同的铁棒和铜棒,小组之间交流、讨论,如何将它们区分开? 活动2:小组发表自己的见解,有不同方案的加以补充。 总结:将它们分别靠近磁铁,看能否被吸引,能够被吸引的为铁棒,不能够被吸引的为铜棒。

归纳总结: 磁性:能够吸引铁钴镍这类物质的性质称为磁性。 磁体:具有磁性的物体称为磁体。 活动3:让学生将磁铁靠近玻璃板上的铁屑,说出你所观察的实验现象并阐明这个实验所要说明的问题。 活动4:如图甲所示,把一个条形磁体用细线悬挂起来,使它在水平面内能够自由转动,看看会有什么现象发生呢? 归纳总结: (1)磁体上的不同位置,磁性强弱不同; (2)磁体上磁性最强的部分为磁极。磁体上有两个磁极。指北的为北极(N极)、指南的为南极(S极)。 (3)磁体具有南北指向性。 知识拓宽:指南针是我国古代四大发明之一,它是利用磁体的磁极具有指向性制成的,最早的指南仪叫司南。 活动5:教师按照如图所示给学生演示,让学生说出观察到的实验现象。根据实验现象,让学生交流、讨论所阐明的物理问题。 归纳总结:同名磁极互相排斥;异名磁极互相吸引. 典例剖析为了得出条形磁铁的磁性两端强、中间弱的特性,甲乙丙丁四位同学各自设计了一个实验,其中能达到目标的是() A B C D

电磁感应现象的两类情况练习题

课后巩固作业 限时:45分钟总分:100分 一、选择题(包括8小题,每小题8分,共64分) 1.下列说法中正确的是( ) A.感生电场由变化的磁场产生 B.恒定的磁场也能在周围空间产生感生电场 C.感生电场的方向也同样可以用楞次定律和右手定则来判定 D.感生电场的电场线是闭合曲线,其方向一定是沿逆时针方向解析:磁场变化时在空间激发感生电场,其方向与所产生的感应电流方向相同,可由楞次定律和右手定则判断,故A、C项正确,B、D项错. 答案:AC 2.如图所示,导体AB在做切割磁感线运动时,将产生一个感应电动势,因而在电路中有电流通过,下列说法中正确的是( ) A.因导体运动而产生的感应电动势称为动生电动势

B.动生电动势的产生与洛伦兹力有关 C.动生电动势的产生与静电力有关 D.动生电动势和感生电动势产生的原因是一样的 解析:根据动生电动势的定义可知A项正确.动生电动势中的非静电力与洛伦兹力有关,感生电动势中的非静电力与感生电场有关,B项正确,C、D项错误. 答案:AB 3.如图所示,一个带正电的粒子在垂直于匀强磁场的平面做圆周运动,当磁感应强度均匀增大时,此粒子的动能将( ) A.不变B.增加 C.减少D.以上情况都可能 解析:当磁感应强度均匀增大时,产生感生电场,根据楞次定律判断出感生电场的方向沿逆时针方向.粒子带正电,所受电场力与感生电场的方向相同,因而运动方向也相同,从而做加速运动,动能增大,B选项正确. 答案:B 4.如图所示,一金属半圆环置于匀强磁场中,当磁场突然减弱

时,则( ) A.N端电势高 B.M端电势高 C.若磁场不变,将半圆环绕MN轴旋转180°的过程中,N端电势高 D.若磁场不变,将半圆环绕MN轴旋转180°的过程中,M端电势高 解析:将半圆环补充为圆形回路,由楞次定律可判断圆环中产生的感应电动势方向在半圆环中由N指向M,即M端电势高,B正确;若磁场不变,半圆环绕MN轴旋转180°的过程中,由楞次定律可判断,半圆环中产生的感应电动势在半圆环中由N指向M,即M端电势高,D正确. 答案:BD 5.在闭合铁芯上绕有一组线圈,线圈与滑动变阻器、电池构成电路,假定线圈产生的磁感线全部集中在铁芯.a、b、c为三个闭合金属圆环,位置如图所示.当滑动变阻器滑片左右滑动时,能产生感应电流的圆环是( )

高中物理11电磁感应现象的发现教案教科版

1.1 电磁感应现象的发现 [要点导学] 1、不同自然现象之间是有相互联系的,而这种联系可以通过我们的观察与思考来发现。例如摩擦生热则表明了机械运动与热运动是互相联系的,奥斯特之所以能够发现电流产生磁场,就是因为他相信不同自然现象之间是互相联系和互相转化的。 2、机遇总是青睐那些有准备的头脑,奥斯特的发现是必然中的偶然。发现中子的历史过程(在选修3-5中学习)也说明了这一点。小居里夫妇首先发现这种不带电的未知射线,他们误认为这是能量很高的射线,一项划时代的伟大发现就与小居里夫妇擦肩而过了。当查德威克遇到这种未知射线时,查德威克很快就想到这种不带电的射线可能是高速运动的中子流,因为查德威克的老师卢瑟神福早已预言中子的存在,所以查德威克的头脑是一个有准备的头脑,查德威克就首先发现了中子,并因此获得诺贝尔物理学奖。所以学会用联系的眼光看待世界,比记住奥斯特实验重要得多。 3、法拉第就是用联系的眼光看待世界的人,他坚信既然电流能够产生磁场,那么利用磁场应该可以产生电流。信念是一种力量,但信念不能代替事实。探索“磁生电”的道路非常艰苦,法拉第为此寻找了10年之久,我们要学习的就是这种百折不挠的探索精神。 4、法拉第为什么走了10年弯路,这个问题值得我们研究。原来自然界的联系不是简单的联系,自然界的对称不是简单的对称,“磁生电”不象“电生磁”那样简单,“磁生电”必须在变化、运动的过程中才能出现。法拉第的弯路应该使我们对自然界的联系和对称的认识更加深刻、更加全面。 [范例精析] 例1奥斯特的实验证实了电流的周围存在磁场,法拉第经过10年的努力终于发现了利用磁场产生电流的途径,法拉第认识到必须在变化、运动的过程中才能利用磁场产生电流。法拉第当时归纳出五种情形,请说出这五种情形各是什么。 解析法拉第把能引起感应电流的实验现象归纳为五类:变化的电流、变化的磁场、运动的恒定电流、运动的磁铁、在磁场中运动的导体。它们都与变化和运动有关。 拓展法国物理学家安培也曾将恒定电流或磁铁放在导体线圈的附近,希望在线圈中看到被“感应”出来的电流,可是这种努力均无收获。因为“磁生电”是在变化或运动中产生的物理现象。 例2 自然界的确存在对称美,质点间的万有引力F=Gm1m2/r2和电荷间的库仑力F=kq1q2/r2就是一个对称美的例子。电荷间的相互作用是通过电场传递的,质点间的相互作用则是通过引力场传递的。点电荷q的在相距为r处的电场强度是E=kq/r2,那么质点m在相距为r 处的引力场强度是多少呢?如果两质点间距离变小,引力一定做正功,两质点的引力势能一定减少。如果两电荷间距离变小,库仑力一定做正功吗?两电荷的电势能一定减少吗?请简述理由。

电磁现象与规律总结

一·电荷和电荷守恒定律 ⑴自然界的两种电荷 ⑵元电荷e=1.6*10-19c ⑶三种使物体带电的方法: 接触起电,摩擦起电,感应起电(都是电荷在同一物体的不同部分之间或不同物体之间的转移,电荷的总量是不变的) ⑷电荷守恒定律 二·库仑定律 带电体可以看成点电荷的条件:如果物体间距离比它们自身线度的大小大得多,以至带电体的形状和大小对相互作用力的影响可以忽略不计,这样的带电体可以看成点电荷。 ⑴库仑定律的内容 ⑵表达式:F=kQ1Q2/r2,k=9*109Nm2/e2 ⑶库仑定律的成立条件:真空中静止的点电荷 三·电场,电场力,电场强度及电场线 ⑴电场,存在于电荷周围的特殊物质。实物和场是物质存在的两种方式。 ⑵电场强度的定义。表达式E=F/q。电场强度的单位是N/C。电场强度的大小与放入电场中的电 荷无关,只有电场本身确定。 ⑶电场强度方向的规定:电场中某点的电场强度的方向跟正电荷在该点所受电场力方向相同,与 负电荷在该点受到的电场力方向相反。 ⑷电场线的特点: ①电场线从正电荷或无穷远出发,终止于无限远或负电荷; ②电场线在电场中不会相交; ③电场越强的地方,电场线越密,因此电场线不仅形象表示电场方向,还能大致表示电场强度 的相对大小。 ⑸无论是静止电荷或者是运动电荷,在电场中一定受到电场力的作用。 四·磁场及磁感线 ⑴磁场,磁体和电流周围都存在磁场。 ⑵磁场方向。 ⑶磁感线:曲线上任何一点的切线方向都跟这一点的磁场方向相同(且磁感线互不交叉),这些 曲线叫磁感线。磁感线是闭合曲线。规定小磁针的北极所指的方向为磁感线的方向。 磁铁周围的磁感线都是从N极出来进入S极,在磁体内部磁感线从S极到N极。 ⑷磁感线的特点:a,磁感线是假想的线b,两条磁感线不会相交c,磁感线一定是闭合的 五·地磁场 ⑴磁偏角:地磁北极在地理南极附近,小磁针并不准确指南或指北,其间有一个交角,叫磁偏 角。科学家发现,磁偏角在缓慢变化。 ⑵地磁场方向:赤道上方地磁场方向水平向北。 六·电流的磁场及安培定则 ⑴电流的磁效应的发现:1820 丹麦奥斯特 ⑵安培定则:通电直导线,通电圆环,通电螺线管七·磁感应强度及磁通量 ⑴磁感应强度的定义:B=F/IL(通电导线与磁场方向垂直)。单位:特 ⑵磁感应强度的方向:磁场的方向 ⑶磁通量:穿过一个闭合回路的磁感线的条数。 八·安培力的大小及左手定则 ⑴安培力:通电导线在磁场中受到的作用力。 ⑵安培力公式F=BIL,方向垂直时,F(max)=BIL;方向相交时,F=IBL*sinθ 方向平行时,F(min)=0; ⑶左手定则: 伸开左手,使拇指跟其余的四指垂直,且与手掌都在同一平面内,让磁感线穿入手心,并使四指指向电流方向,这时拇指所指的方向就是通电导线在磁场中所受安培力的方向。九·洛伦兹力的方向 ⑴洛伦兹力:磁场对运动电荷的作用力。 ⑵安培力是洛伦兹力的宏观表现。 ⑶左手定则判定洛伦兹力的方向: 伸开左手,使拇指跟其余的四指垂直,且与手掌都在同一平面内,让磁感线穿入手心,并使四指指向正电荷运动的方向,这时拇指所指的方向就是运动的正电荷在磁场中所受洛伦兹力的方向。负电荷的受力方向(阴极射线管中电子束的运动方向)与正电荷的受力方向相反。 十·电磁感应现象及其应用 ⑴1831年英国物理学家法拉第发现了电磁感应现象 ⑵电磁感应现象:利用磁场产生电流的现象叫电磁感应现象。由电磁感应产生的电流叫感应电流。 ⑶产生感应电流的条件:穿过闭合回路的磁通量发生变化。 十一·电磁感应定律 ⑴感应电动势:电磁感应现象中产生的电动势 ⑵电磁感应定律的内容 ⑶公式:E=△φ/△t(单线圈);E=n*(△φ/△t)(n匝线圈) 十二·静电的利用与防止 ⑴静电利用原理:带电粒子受到电场力的作用,会向电极运动,最后被吸附在电极上。带正电 荷的粒子在电场力作用下会向负极运动,带负电的粒子则向正极运动。 实例:静电除尘,静电喷涂,静电复印,静电植绒,避雷针等。 ⑵静电危害:放电火花可能引起易燃物的爆炸。人体静电在与金属等导体接触时放电会使人有 刺痛感。 ⑶静电防止的方法:及时把静电导走。如给空气加湿(空气是绝缘体,不能导电,但空气加湿 后,导电率随之提高,把物体上带的静电导走以防止静电的影响甚至危害), 地毯中加入导电金属丝 十三·电磁波 ⑴麦克斯韦预言电磁波的存在,而赫兹证实了电磁波的存在。 ⑵麦克斯韦电磁场理论,变化的磁场产生电场,变化的电场产生了磁场。

初三物理电磁现象练习题

第十四章《电磁现象》 一、磁现象 1.物体能够吸引铁、钴、镍等物质,说明该物体具有_____,该物体称为_______. 2.磁性材料按其磁化后保持磁性情况的不同,可分为________和________。 3.磁体上________的部分叫做磁极,任何磁体都有_____个磁极;当磁体能够自由转动时,最终总会有一个磁极指向北方,这个磁极称为____极,另一个磁极指向南方,称为____极. 4.把钢条的一端移近小磁针,小磁针被吸引过来,说明( )。 A. 钢条一定具有磁性 B. 钢条一定没有磁性 C .钢条可能有磁性 D .以上说法都不对 5.用钢棒的一端去接近磁针时,两者互相排斥,则( ). A .它们原来都具有磁性 B .它们原来都没有磁性c .铜棒有磁性,磁针没有磁性 D .铜棒可能有磁性,也可能没有 6.将条形磁铁从中间断开,两段将( ) A.都消失 B .各有两个磁极 C .各有一个磁极 D .都有可能 7.有两根大头针被磁铁一端吸引,悬在磁铁下方,如下图所示的四幅图中能正确反映实 际情况的是( )。 8.下列几种物质中,不能被磁化的是( )。 A .铝 B .铁 C .钴 D .镍 9.某科技馆展出的磁动轮是根据异名磁极相互_______的原理制成的。如图所示,每个轮的边缘装有12个侧放的柱形磁体,当推动A 轮转动时,其他3个轮会随之转动。若A 轮磁体外侧是N 极。则c 轮磁体外侧是______;如果A 轮顺时针转动,则C 轮将______时针转动,D 轮将______时针转动(填“顺”或“逆”)。 10.如图所示,ab 、cd 均是铁片,一永磁体P 从它的正前方摆过,当永磁体吊线摆到中线OO 1位置时, b 是______极, c 是_____极,b 与c______,永磁体摆动一个来回,灯泡亮______ 次。 11.如右图所示,弹簧测力计下吊着一个小铁球,在磁体水平向右移动过程中,弹簧测力计的示数将 ( )。 A .逐渐变大 B .逐渐变小 C .先变大后变小 D .先变小后变大 二、磁场 1.指南针能指南北,是由于存在_______作用的缘故,地理的南极在地磁的_____极附近。 2.我国在市投入运营的磁悬浮列车利用___磁极相互排斥的原理来实现悬浮,磁悬浮列车与一搬火车相比较,具有___等优点。 A B C D N S N S N S N S

电动力学复习总结第一章电磁现象的普遍规律答案

第一章电磁现象的普遍规律 一、填空题 1.已知介质中的极化强度,其中A为常数,介质外为真空,介质中的极 化电荷体密度;与垂直的表面处的极化电荷面密度分别等于 和。 答案: 0, A, -A 2.已知真空中的的电位移矢量=<5xy+)cos500t,空间的自由电荷体密度为。 答案: 3.变化磁场激发的感应电场的旋度等于。 答案: 4.介电常数为的均匀介质球,极化强度A为常数,则球内的极化电 表面极化电荷密度等于 荷密度为 , 答案0, 5.一个半径为R的电介质球,极化强度为,则介质中的自由电荷体密度为,介质中的电场强度等于. 答案: 二、选择题 1.半径为R的均匀磁化介质球,磁化强度为,则介质球的总磁矩为 A. B. C. D. 0 答案:B 2.下列函数中能描述静电场电场强度的是 A. B. C. D.<为非零常数) 答案:D

3.充满电容率为的介质平行板电容器,当两极板上的电量<很 小),若电容器的电容为C,两极板间距离为d,忽略边缘效应,两极板间的位移电流密度为: A. B. C. D. 答案:A 4.下面矢量函数中哪一个不能表示磁场的磁感强度?式中的为非零常数 A.(柱坐标> B. C. D. 答案:A 5.变化磁场激发的感应电场是 A.有旋场,电场线不闭和 B.无旋场,电场线闭和 C.有旋场,电场线闭和 D.无旋场,电场线不闭和 答案:C 6.在非稳恒电流的电流线的起点.终点处,电荷密度满足 A. B. C. D. 答案:D 7.处于静电平衡状态下的导体,关于表面电场说法正确的是: A.只有法向分量。 B.只有切向分量。 C.表面外无电场。 D.既有法向分量,又有切向分量答案:A 8.介质中静电场满足的微分方程是 A. B.。 C. D. 答案:B 9.对于铁磁质成立的关系是 A. B. C. D. 答案:C 10.线性介质中,电场的能量密度可表示为 A. 。 B.。 C. D. 答案:B

电磁感应现象的两类情况(新、选)

电磁感应现象的两类情况 [随堂基础巩固] 1.某空间出现了如图4-5-9所示的一组闭合电场线,方向从上向下看 是顺时针的,这可能是() A.沿AB方向磁场在迅速减弱 B.沿AB方向磁场在迅速增强图4-5-9 C.沿BA方向磁场在迅速增强 D.沿BA方向磁场在迅速减弱 解析:感生电场的方向从上向下看是顺时针的,假设在平行感生电场的方向上有闭合回路,则回路中的感应电流方向从上向下看也应该是顺时针的,由右手螺旋定则可知,感应电流的磁场方向向下,根据楞次定律可知,原磁场有两种可能:原磁场方向向下且沿AB方向减弱,或原磁场方向向上,且沿BA方向增强,所以A、C有可能。 答案:AC 2.如图4-5-10所示,矩形闭合金属框abcd的平面与匀强磁场垂 直,若ab边受竖直向上的磁场力的作用,则可知线框的运动情况是() A.向左平动进入磁场图4-5-10 B.向右平动退出磁场 C.沿竖直方向向上平动 D.沿竖直方向向下平动 解析:由于ab边受竖直向上的磁场力的作用,根据左手定则可判断金属框中电流方向为abcd,根据楞次定律可判断穿过金属框的磁通量在增加,所以选项A正确。 答案:A 3.研究表明,地球磁场对鸽子识别方向起着重要作用。鸽子体内的电阻大约为103Ω,当它在地球磁场中展翅飞行时,会切割磁感线,在两翅之间产生动生电动势。这样,鸽子体内灵敏的感受器即可根据动生电动势的大小来判别其飞行方向。若某处地磁场磁感应强度的竖直分量约为0.5×10-4 T。鸽子以20 m/s的速度水平滑翔,则可估算出两翅之间产生的动生电动势大约为() A.30 mV B.3 mV C.0.3 mV D.0.03 mV 解析:鸽子展翅飞行时两翅端间距约为0.3 m。由 E=Bl v得E=0.3 mV。C项正确。

电磁感应现象及电磁在生活中的应用

电磁感应现象及电磁在生活中的应用 摘要:电磁感应,也称为磁电感应现象是指放在变化磁通量中的导体,会产生电动势。此电动势称为感应电动势或感生电动势,若将此导体闭合成一回路,则该电动势会驱使电子流动,形成感应电流。 电磁反应是一个复杂的过程,其运用到现实生活中的技术(例如:电磁炉、微波炉、蓝牙技术、磁悬浮列车等等)。是经过很多人的探索和努力一步一步走到现在的。 正文: 电磁感应的定义:闭合电路的一部分导体在磁场中做切割磁感线的运动时,导体中就会产生电流,这种现象叫电磁感应现象。本质是闭合电路中磁通量的变化。由电磁感应现象产生的电流叫做感应电流。 电磁感应的发现:1831年8月,法拉第把两个线圈绕在一个铁环上,线圈A 接直流电源,线圈B接电流表,他发现,当线圈A的电路接通或断开的瞬间,线圈B中产生瞬时电流。法拉第发现,铁环并不是必须的。拿走铁环,再做这个实验,上述现象仍然发生。只是线圈B中的电流弱些。为了透彻研究电磁感应现象,法拉第做了许多实验。1831年11月24日,法拉第向皇家学会提交的一个报告中,把这种现象定名为“电磁感应现象”,并概括了可以产生感应电流的五种类型:变化的电流、变化的磁场、运动的恒定电流、运动的磁铁、在磁场中运动的导体。法拉第之所以能够取得这一卓越成就,是同他关于各种自然力的统一和转化的思想密切相关的。正是这种对于自然界各种现象普遍联系的坚强信念,支持着法拉第始终不渝地为从实验上证实磁向电的转化而探索不已。这一发现进一步揭示了电与磁的内在联系,为建立完整的电磁理论奠定了坚实的基础。 电磁感应是指因磁通量变化产生感应电动势的现象。电磁感应现象的发现,乃是电磁学中伟大的成就之一。它不仅让我们知道电与磁之间的联系,而且为电与磁之间的转化奠定了基础,为人类获取巨大而廉价的电能开辟了道路,在实用上有重大意义。电磁感应现象的发现,标志着一场重大的工业和技术革命的到来。事实证明,电磁感应在电工、电子技术、电气化、自动化方面的广泛应用对推动社会生产力和科学技术的发展发挥了重要的作用。 若闭合电路为一个n匝的线圈,则又可表示为:式中n为线圈匝数,ΔΦ为磁通量变化量,单位Wb ,Δt为发生变化所用时间,单位为s.ε为产生的感应电动势,单位为V。 磁通量:设在匀强磁场中有一个与磁场方向垂直的平面,磁场的磁感应强度为B,平面的面积为S。(1)定义:在匀强磁场中,磁感应强B与垂直磁场方向的面积S的乘积,叫做穿过这个面的磁通量。 (2)公式:Φ=BS 当平面与磁场方向不垂直时: Φ=BS⊥=BScosθ(θ为两个平面的二面角) (3)物理意义

《电磁感应现象的两类情况》教案2

电磁感应现象的两类情况 【教学目标】 1、知识与技能: (1)、了解感生电动势和动生电动势的概念及不同。 (2)、了解感生电动势和动生电动势产生的原因。 (3)、能用动生电动势和感生电动势的公式进行分析和计算。 2、过程与方法 通过探究感生电动势和动生电动势产生的原因,培养学生对知识的理解和逻辑推理能力。 3、情感态度与价值观 从电磁感应现象中我们找到产生感生电动势和动生电动势的个性与共性问题,培养学生对不同事物进行分析,找出共性与个性的辩证唯物主义思想。 【教学重点】感生电动势和动生电动势。 【教学难点】感生电动势和动生电动势产生的原因。 【教学方法】类比法、练习法 【教具准备】 多媒体课件 【教学过程】 一、复习提问: 1、法拉第电磁感应定律的内容是什么?数学表达式是什么? 答:感应电动势的大小与磁通量的变化率成正比,即E= ?Φ。 t? 2、导体在磁场中切割磁感线产生的电动势与什么因素有关,表达式是什么,它成立的条件又 是什么? 答:导体在磁场中切割磁感线产生的电动势的大小与导体棒的有效长度、磁场强弱、导体棒的运动速度有关,表达式是E=BLv sinθ,该表达式只能适用于匀强磁场中。 二、引入新课 在电磁感应现象中,由于引起磁通量的变化的原因不同感应电动势产生的机理也不同,本节课我们就一起来学习感应电动势产生的机理。 三、进行新课 (一)、感生电动势和动生电动势 由于引起磁通量的变化的原因不同感应电动势产生的机理也不同,一般分为两种:一种是磁场不变,导体运动引起的磁通量的变化而产生的感应电动势,这种电动势称作动生电动势,另外一种是导体不动,由于磁场变化引起磁通量的变化而产生的电动势称作感生电动势。

电磁感应现象的两类情况.

4.5 电磁感应现象的两类情况 课型:新授编号:5 日期:2018-12-28 学习目标: 1.了解感生电场,知道感生电动势产生的原因。会判断感生电动势的方向,并会计算它的大小。 2.了解动生电动势的产生以及与洛伦兹力的关系。会判断动生电动势的方向,并计算它的大小。 3. 了解电磁感应规律的一般应用,会联系科技实例进行分析。 活动方案: 活动一:电磁感应现象中的感生电场 如图:一个200匝、面积为20cm2在圆形线圈,放在匀强磁场中,磁场的方向与线圈平面垂直,磁感应强度在0.05s内由0.1T增加到0.5T。在此过程中: 问题1:磁场变强会使线圈中产生什么方向的感应电流? 问题2:电流是电荷的定向移动产生的,为什么自由电荷会发生移动的? 总结: 1.变化的磁场在空间产生一种电场------ 2. 使电荷受到作用力做定向 移动 3.感生电动势的非静电力 扩展: 感生电场方向的判断: 例题1:如图所示,一个闭合电路静止于 磁场中,由于磁场强弱的变化,而使电路中 产生了感应电动势,下列说法中正确的是 () A.磁场变化时,会在在空间中激发一种感生 电场 B.使电荷定向移动形成电流的力是磁场力 C.使电荷定向移动形成电流的力是电场力 D.以上说法都不对 活动二:电磁感应现象中的洛伦兹力。 如图所示:有导线CD长0.15m,在 磁感应强度为0.8T的匀强磁场中,以 3m/S的速度做切割磁感线运动,导线垂 直磁感线,运动方向跟磁感线及直导线 均垂直. 思考下列问题: 磁场变强

1、自由电荷会随着导体棒运动,并因此受到洛伦兹力。导体中自由电荷的合运动在空间大致沿什么方向?为了方便,可以认为导体中的自由电荷是正电荷。 2、导体棒一直运动下去,自由电荷是否也会沿着导体棒一直运动下去?为什么? 3、导体棒的哪端电势比较高? 4、如果用导线把C、D两端连到磁场外的一个用电器上,导体棒中电流是沿什么方向的? 总结: 导线两端存在感应电动势,在这种情况下,非静电力与有关。 例题2:如图所示,导体AB在做切割磁感线运动时,将产生一个电动势,因而在电路中有电流通过,下列说法中正确的是() A.因导体运动而产生的感应电 动势称为动生电动势 B.动生电动势的产生与洛仑兹力有关 C.动生电动势的产生与电场力有关 D.动生电动势和感生电动势产生的原因是一样的 同步练习: 1.如图所示,一个有孔带正电小球套在 光滑的圆环上(重力不计),在垂直于匀强磁 场的平面内做圆周运动,当磁感应强度均匀 增大时,此小球的动能将() A.不变 B.增加 C.减少 D.以上情况都可能 2.穿过一个电阻为l Ω的单匝闭合线圈的磁通量始终是每秒钟均匀地减少2 Wb,则() A.线圈中的感应电动势一定是每秒减少2 V B.线圈中的感应电动势一定是2 V C.线圈中的感应电流一定是每秒减少2 A D.线圈中的感应电流一定是2 A 3.如图所示,面积为0.2 m2的100匝线圈处在匀强磁场中,磁场方问垂直于线 圈平面,已知磁感应强度随时间变 化的规律为B=(2+0.2t)T, 定值电

相关文档
相关文档 最新文档