文档库 最新最全的文档下载
当前位置:文档库 › 云广±800 kV特高压直流输电线路耐雷性能研究

云广±800 kV特高压直流输电线路耐雷性能研究

云广±800 kV特高压直流输电线路耐雷性能研究
云广±800 kV特高压直流输电线路耐雷性能研究

第34卷第lo期?2086?2008年10月

高电压技术

HighVoltageEngineering

V01.34No.10

0et.2008

云广±800kV特高压直流输电线路耐雷性能研究

尚涛1,杜忠东2,张成巍2,刘熙2

(1.中国南方电网有限责任公司,广州510000;2.国网电力科学研究院,武汉430074)

摘要:云广士800kV特高压直流输电线路工程是世界上第1个士800kV、输电容量5GW的特高压、大容量直流输电工程。所处地区属于雷击多发、易发区,防雷任务十分艰巨。为此结合特高压输电线路特点。建立了基于ATP—EMTP仿真软件的特高压直流输电线路反击仿真模型;依据改进电气几何模型,建立输电线路的屏蔽模型。计算结果表明:云广线路反击耐雷水平较高,反击闪络率较低;绕击闪络率较高.应该在云广线路中采用负的保护角;当杆塔升高到很高(>60m)。或地面倾角很大(>20。)时,应该考虑采用安装防绕击避雷针,架设耦合地线等防雷措施。

关键词:特高压直流输电;反击;绕击;防雷保护;ATP—EMTP;EGM

中图分类号:TM86文献标志码:A文章编号:1003—6520(2008)10—2086一04

LightningWithstandPerformanceoftheYun—guang±800kV

UHVDCPowerTransmissionLine

SHANGTa01,DUZhong—don92,ZHANGCheng—wei2,LIUXi2

(1.ChinaSouthernPowerGridCorporationLtd.,Guangzhou510000,China;

2.StateGridElectricPowerResearchInstitute,Wuhan430074,China)

Abstract:Yun-guang±800kVUHVIX;powertransmissionlineisthefirstUHVDCprojectwith士800kVvoltageand5millionkWcapacityintheworld.1。ightningprotectionforthetransmissionlineisarduousfortheseverelight—ningstrokeinthearea.BasedonATP—EMTP。EGM,modelsoflightningwithstandperformancesforbackstrikingandshieldingfailureforUHVDCtransmissionlineareestablished.Researchresultsshowthatbackstrikingwith—standperformanceisbetterthanshieldingfailurewithstandperformanceinYun-guang±800kVUHVDcpowertransmission1ine-andthenegativeshieldingangleshouldbeadoptedbecausetheprincipalcauseoflightningstrokefailureistheshieldingfailure.Othermeasuresforlightningprotectionsuchaslightningrodforshieldingfailureandcouplinggroundwireshouldbeinstalledwhenthetowerisexcessivelyhigh(higherthan60m)orthegroundobliq—uityisexcessivelylarge(1argerthan20。).

Keywords:UHVDC;backstriking;shieldingfailure;lightningprotection;ATP。EMTP;EGM

0引言

为满足“十一五”广东电网负荷增长的需要,国家规划了云南省“十一五”新增向广东省送电3.2GW容量,决定采用直流输电方式,即云南至广东(楚雄~穗东)±800kV特高压直流线路工程。

该工程是世界上第1个±800kV、输电容量5GW的特高压、大容量直流输电工程。工程线路全长1417km,经云南、广西和广东3省。地形以山地、高原丘陵为主,海拔在1000~2500m。线路走廊处于低纬度、高海拔地区,境内山丘、高原众多,河川、湖泊纵横,地形地貌复杂,气候类型多样,并时有台风登陆带来大量雷暴,属于雷击多发、易发区,防雷任务十分艰巨。因此,做好±800kV特高压直流输电线路防雷研究工作,减少雷击闪络率,对于保障西电东送和南网平稳运行,稳定电源和电网结构,实

基金资助项目:中国南方电网有限责任公司重点项目(200710)。

ProjectSupportedbytheImportantItemfromChinaSouthernPowerGridCorporationLtd(2007i0).现东西部地区优势互补具有重要意义。

本文结合特高压输电线路的防雷特点[1-8],建立了基于ATP—EMTP仿真软件的特高压直流输电线路反击耐雷性能模型;依据改进电气几何模型[9’10|,建立输电线路的屏蔽模型,分析影响特高压直流输电线路线路耐雷水平的因素,例如杆塔冲击接地电阻、保护角、地面坡度、杆塔高度、极线电压等。

1仿真计算模型

1.1直流输电线路反击模型

将杆塔视为分布参数,按波阻抗考虑Ll卜13]。本仿真中取杆塔型号为ZV2,波阻抗取150fl,波速取U

钞=f?i兰T,H为杆塔高,L为杆塔横担长度,f为■JTL

光速,按上式可算得波速为2.5×108m/s。由于雷电流波形中含有丰富的高次谐波,而线路的参数随频率变化,不同频率的谐波分量在线路中传播时的衰减和畸变各不相同,因此本文中的输电线采用频率相关模型——JMARTI架空线模型。此种架空

析计羹萼黧品1EEE标准所推荐的击距公式

本文选用偃既霎竺譬了的击蚴A㈣

K。=厂;

图2EGM原理图

Fig.2Schematic

forEGM

?2088?Oct.2008HighVoltageEngineeringV01.34No.Oct

衷2不同极线工作电压下线路绕击闪络率表4不同冲击接地电阻下的反击耐雷水平

Tab.2Lightningprotectionperformanceofshieldingfailure

1I和反击闪络率Pl

forvariousworkingvoltageTab。4Lightningprotectionperformanceofbackstriking

表3不同地面倾角时线路绕击闪络率P2

Tab.3Lightningprotectionperformanceofshieldingfailure

forvariousgroundingobliquity

0分别为0。,10。,20。,30。的情况,对斜坡内侧和斜坡外侧线路屏蔽性能进行了仿真计算,结果见表3。可以看出,总的绕击闪络率P:随地面倾角的增加而增加,且负极线在斜坡外侧、正极线在斜坡内侧时的绕击闪络率要小于正极线在斜坡外侧、负极线在内侧时的绕击闪络率。

3直流输电线路典型杆塔防雷研究

3.1高土壤电阻率地区

云广直流输电线路沿线土壤电阻率平均在1700~2000Qm,最大土壤电阻率可达9740Qm(8609杆塔),H一80m。对该杆塔进行ATP仿真计算,见表4,反击闪络率P。随着冲击接地电阻的增加而增加,反击闪络率在冲击接地电阻为50Q时达到0.08835次/(100km?a?40d)。在线路已完成设计后,降低杆塔高度难度较大,因此采取有效的措施控制杆塔冲击接地电阻,是提高杆塔反击耐雷水平的重要手段。

表5为H=80m,口从。11。到一15。变化时的绕击闪络率P:。通过逐渐减小线路的保护角,杆塔的绕击率逐渐下降,即使H一80m,但口减小为一15。时,其绕击率接近0。从以上分析可见,虽然杆塔较高,但是在设计时采取了负保护角,使其耐绕击性能大大增强。

3.2大跨越典型杆塔

在位于山区的特高压输电线路,其杆塔较高。加

forvariousgroundedresistance

11/kA232223216212192

Pl/(次?(100km?a?40d)一1)0.029l0.03690.04430.04920.0835

表5不同保护角下的绕击闪络率P2

Tab.5Lightningprotectionperformanceofshielding

failureforvariousshieldingangle

表6不同杆塔高度反击耐雪水平I-和反击闪络率PITab.6Lightningprotectionperformanceofback

striking

forvarioustowerheights

JI/kA313261226203

P1/(次(100km?a?40d)一1)0.00060.00050.00380.0153

表7不同杆塔高度下的绕击闪络率P2Tab.7Lightningprotectionperformanceofshielding

failureforvarioustowerheights

Pz/(次(100km?a?40d)一1)0.09310.46151.21962.3567

上所处位置多为山顶、山腰等地,线路往往要跨越很大的深谷或复杂地形,一些线路档距达上千米,形成大档距。在这种情况下雷电绕过避雷线击中导线的概率较高。本文选择843~844杆塔作为大跨越典型杆塔进行防雷性能计算。843~844杆塔为跨越纵深山谷杆塔,杆塔所处位置均位于山顶,土质为含碎石粉质粘土。表6为杆塔冲击接地电阻R。。为10Q,土壤电阻率p=600Qm时,杆塔高度对其耐雷水平的影响。从以上对该山区跨纵深山谷的杆塔的计算可见,其反击闪络率相对较低,可不进行接地改造,但也应尽量控制冲击接地电阻值<10Q。

843~844杆塔跨越纵深山谷,通过电气几何模型法对其绕击性能进行计算研究(保护角口=一12。),由表7可见,随着杆塔高度的逐渐增加,跨纵深山谷杆塔的绕击闪络率逐渐增加,当杆塔高度在70m时。绕击闪络率为1.2196次/(100km?a?40d),当杆塔高度为80m时,绕击闪络率为2.3567次/(100km?a?40d),绕击闪络情况比较严重。在线路设计中对于该地形的杆塔的线路保护角已降低在很小的负保护角,但是由于大跨越地形、高杆塔情况,以及山区复杂的气候环境,使得该地形下的绕击率较高,应采取有效的防绕击手段。

2008年10月高电压技术第34卷第10期?2089?

4结论

a)利用所建立的雷电反击仿真模型对云广士800kV特高压直流输电线路的反击耐雷性能及其影响因素进行研究,结果表明:云广线路反击耐雷水平较高,反击闪络率较低,发生反击的可能性不大。

b)考虑极线工作电压后,正极线反击耐雷水平下降,负极线反击耐雷水平上升,反击耐雷水平总体下降,发生雷击闪络的几率增大。随着塔高增加,线路的反击耐雷水平降低,反击闪络率增加。在杆塔高度较低时,减小杆塔冲击接地电阻使反击耐雷水平明显上升;但随着杆塔高度的增加,减小冲击接地电阻对提高反击耐雷水平的作用减弱。

c)依据改进电气几何模型建立了输电线路的屏蔽模型,仿真计算结果表明绕击闪络率较高,极线工作电压对绕击闪络率的影响很大,当地面有倾角时,负极线布置在斜坡外侧时的绕击闪络率低于正极线布置在斜坡外侧的情况。

d)云广线路中的绕击闪络率随保护角的减小而降低,因此应该在云广线路中采用负的保护角;当杆塔升高到很高(>60m),或地面倾角很大(>20。)时,即使在负保护角下线路的屏蔽也不明显,绕击闪络率较高,应该考虑采用安装防绕击避雷针,架设耦合地线等方式来降低线路绕击闪络率。

参考文献

[1]ErikssonAJ.Theincidenceoflightningstrikestopowerline[J].IEEETransonPowerDelivery,1987。2(3):871—886.

[2]IEEEWorkingGrouponEstimatingLightningPerformanceofTransmissionLines.Asimplifiedmethodforestimatinglight—ningperformanceoftransmission

lines[J].IEEETransonPow—erApparatusandSystems,1985,104(4):919—932.

[3]DL/T620/1997交流电气装置的过电压保护与绝缘配合[S],1997.

DL/T620/1997Overvohageprotectionandinsulationcoordi—nationforACelectricalinstaIlations[S],1997.

[4]陈维江,孙昭英,王献丽.等.35kV架空送电线路防雷用并联间隙研究[J].电网技术,2007.31(2):65—69.

CHENWei—jiang,SUNZhao-ying.WANGXian-li?eta1.Studyon

shuntgaplightningprotectionfor35kVoverheadtransmis—sionlines[J].PowerSystemTechnology,2007。31(2):65—69.[5]解广润.电力系统过电压[M].北京:水利电力出版社?1985.[6]陈维贤.电网过电压教程[M].北京:中国电力出版社,1996.[7]叶会生,何俊佳,李化,等.雷击高压直流线路杆塔时的过电压和闪络仿真研究[J].电网技术,2005,29(21)=35—39.’YEHui—sheng。HEJun-jia,LIHua。eta1.Simulationofover-voltageandflashovercausedbylightning

strokeattowersofHVDCtransmissionline[J].PowerSystemTechnology,2005,29(21):35-39.

[8]李立涅,司马文霞,杨庆。等.云广q-800kV特高压直流输电线路耐雷性能研究[J].电网技术,2007,31(8);1-5.

LILi—cheng,SIMAWen-xia,YANGQing,eta1.Researchon1ightningwithstandperformanceof士800kVultraHVDCpow—ertransmissionlinefromYunnantoGuangdong[J].PowerSys—ternTechnology。2007?31(8):l一5.

[9]ErikssonAJ.Animprovedelectricalgeometricmodelfortrans—missionlineshieldinganalysis[J].IEEETransonPowerDeliv-ery?1987,2(3):859?870.

[10]GilmanDW.WhiteheadER.Themechanismoflightningflashoveronhighvoltageandextra-highvoltagetransmissionlines[J].Electra。1973.27(3):65—96.

[113YamadaT,MochizukiA,SawadaJ,eta1.Experimentaleval—uationofaUHVtowermodelforlightningsurgeanalysis[J].IEEETransonPowerDelivery.1995。i0(1):393-402.

r121HaraT,YamamotoO.Modelingofatransmissiontowerfor

lightningsurgeanalysis[J].IEEEProceedings—Generation,TransmissionandDistribution,1996。143(3):283—289.

D3]MartinezJA,Castro-ArandaF.Towermodelingforlightninganalysisofoverheadtransmissionlines[C]}{IEEEPowerEn—gineeringSocietyGeneral

Meeting.Toronto,Canada“s.n.]。

2005,2:1345—1350.

[14]ErikssonAJ.Animprovedeleetrogeometricmodelfortrans-missionlineshieldinganalysis[J].IEEETransactionsonPow—erDelivery,1987,2(3):871—886.

[15]杨庆。司马文霞.冯杰.云广特高压直流输电线路屏蔽性能研究[J].高电压技术,2008,34(3):442—446.

YANGQing。SIMAWen-xia。FENGJie.Researchonthe

lightningshieldingperformanceoftheYun-GuangUHVDC

transmissionlines[J].HighVoltageEngineering,2008,34(3):442-446.

[16]RizkFAM.Modelingoftransmissionlineexposuretodirectlightningstrokes[J].IEEETransactionsonPowerDelivery,1990,5(4):1983-1997.

[17]BrownGW,WhiteheadER.Fieldandanalyticalstudiesoftransmissionlines[J].IEEETransactionsonPowerApparatusandSystems.1968,87(1):270—281.

[18]BrownGW。WhiteheadER.FieldandanalyticalstudiesoftransmissionlinespartⅡ[J].IEEETransactionsonPowerApparatusandSystems.1969?88(5):617—626.

尚涛

1969一,男,高级工程师

从事电力系统生产运行及管理工作

E-mail:Shangtao@spsc.com.cn

SHANGTao

Seniorengineer

杜忠东

1960一,男,博士,教授级高级工程师

从事电力系统防雷接地工作

电话:(027)59834831

E-mail:duzd@whvri.corn

DUZhong—dong

Ph.D.,Professor

收稿日期2008—09—09修回日期2008—10—13编辑陈蔓

云广±800 kV特高压直流输电线路耐雷性能研究

作者:尚涛, 杜忠东, 张成巍, 刘熙, SHANG Tao, DU Zhong-dong, ZHANG Cheng-wei,LIU Xi

作者单位:尚涛,SHANG Tao(中国南方电网有限责任公司,广州,510000), 杜忠东,张成巍,刘熙,DU Zhong-dong,ZHANG Cheng-wei,LIU Xi(国网电力科学研究院,武汉,430074)

刊名:

高电压技术

英文刊名:HIGH VOLTAGE ENGINEERING

年,卷(期):2008,34(10)

被引用次数:1次

参考文献(18条)

1.Brown G W;Whitehead E R Field and analytical studies of transmission lines part Ⅱ 1969(05)

2.Eriksson A J An improved electrical geometric model for transmission line shielding analysis

1987(03)

3.李立浧;司马文霞;杨庆云广±800 kV特高压直流输电线路耐雷性能研究[期刊论文]-电网技术 2007(08)

4.叶会生;何俊佳;李化雷击高压直流线路杆塔时的过电压和闪络仿真研究[期刊论文]-电网技术 2005(21)

5.陈维贤电网过电压教程 1996

6.解广润电力系统过电压 1985

7.陈维江;孙昭英;王献丽35 kV架空送电线路防雷用并联间隙研究[期刊论文]-电网技术 2007(02)

8.DL/T 620/1997.交流电气装置的过电压保护与绝缘配合 1997

9.IEEE Working Group on Estimating Lightning Performance of Transmission Lines A simplified method for estimating lightning performance of transmission lines 1985(04)

10.Eriksson A J The incidence of lightning strikes to power line 1987(03)

11.Brown G W;Whitehead E R Field and analytical studies of transmission lines[外文期刊] 1968(01)

12.Rizk F A M Modeling of transmission line exposure to direct lightning strokes[外文期刊] 1990(04)

13.杨庆;司马文霞;冯杰云广特高压直流输电线路屏蔽性能研究[期刊论文]-高电压技术 2008(03)

14.Eriksson A J An improved electrogeometric model for transmission line shielding analysis[外文期刊] 1987(03)

15.Martinez J A;Castro-Aranda F Tower modeling for lightning analysis of overhead transmission lines 2005

16.Hara T;Yamamoto O Modeling of a transmission tower for lightning surge analysis 1996(03)

17.Yamada T;Mochizuki A;Sawada J Experimental evaluation of a UHV tower model for lightning surge analysis[外文期刊] 1995(01)

18.Gilman D W;Whitehead E R The mechanism of lightning flashover on high voltage and extra-high voltage transmission lines 1973(03)

引证文献(1条)

1.韩燕明.黄曾述地电流对电力变压器影响研究[期刊论文]-电网与清洁能源 2010(1)

本文链接:https://www.wendangku.net/doc/c315881640.html,/Periodical_gdyjs200810014.aspx

±800kV特高压直流输电线路节能导线选择研究

±800kV特高压直流输电线路节能导线选择研究 发表时间:2015-12-03T16:52:06.117Z 来源:《电力设备》2015年4期供稿作者:郭瀚 [导读] 中国能源建设集团广东省电力设计研究院有限公司根据我国经济发展和能源分布格局,按照电力中长期发展规划,需要将西南水电、西北火电、西部光伏发电、风力发电等各类形式的电能输送到中东部负荷中心。 郭瀚 (中国能源建设集团广东省电力设计研究院有限公司广州 510663) 摘要:本文首先介绍了节能导线的分类,并以假设±800kV线路模型为例,对各种节能导线与普通钢芯铝绞线进行技术经济比较,分析利用节能导线后的经济效益和社会效益,提出推广及节能导线的合理建议。 关键词:节能导线;特高压直流输电;型线;年费用法 0引言 进入21世纪,国家大力提倡节能减排和使用新能源。我国政府正在以科学发展观为指导,加快发展现代能源产业,坚持节约资源和保护环境的基本国策,把建设资源节约型、环境友好型社会放在工业化、现代化发展战略的突出位置。根据我国经济发展和能源分布格局,按照电力中长期发展规划,需要将西南水电、西北火电、西部光伏发电、风力发电等各类形式的电能输送到中东部负荷中心。预计未来15年内我国需要建设的直流输电工程超过30 项,输送总容量超过1.5 亿千瓦[1-4]。因此,非常有必要研究特高压直流输电线路的节能导线的选择。 本文以±800kV直流输电线路模型为例,对各种节能导线与普通钢芯铝绞线进行技术经济比较,提出推广及节能导线的合理建议。 1节能导线选择. 目前国内节能导线主要分为软铝类节能导线、高导电率钢芯铝绞线、中强度铝合金绞线、高导电率硬铝类节能导线等。 碳纤维复合材料芯软铝绞线更适宜在老、旧线路改造中应用,以充分发挥其高运行温度的优势。在施工条件较好的新建线路中,经过技术经济比较,特强钢芯软铝绞线也勉强可以采用。但总体来说,软铝类节能导线更适合解决增容问题,并不适宜在新建的输电线路工程中推广应用。 铝合金芯铝绞线(圆铝和型铝)、中强度全铝合金绞线、钢芯高导电率硬铝绞线从全寿命周期经济性、施工和运行方便性、通用设计匹配性三个方面都有良好的表现,目前国内产能和制造水平也可满足工程招标要求,因此适合在新建线路中全面推广。 2导线型式选择 根据系统方案的要求,综合考虑电流密度以及电磁环境等因素,选用的截面为6×630。根据截面,选择了前文所述3种类型节能导线与钢芯铝绞线进行比较,分别为:高导电率钢芯铝绞线、铝合金芯铝绞线、中强度铝合金绞线。其中铝合金芯铝绞线分别考虑圆线结构和型线结构。鉴于目前国内硬铝单线生产水平,高导电率硬铝分别选取可大规模化工业生产的61.5%IACS(L1)硬铝和可已具备规模化生产的62.5%IACS(L3)硬铝,所选参比的节能导线型式详见表2.1所示。

电力工程特高压输电线路施工技术研究

电力工程特高压输电线路施工技术研究 发表时间:2017-11-21T18:29:12.250Z 来源:《电力设备》2017年第19期作者:杨海兴1 马晓然2 [导读] 摘要:随着社会的快速发展,电力行业也在不断地创新,为人们的日常生活提供充足地便利条件。 (1河北省送变电公司河北石家庄 050000;2国网河北省电力公司检修分公司河北石家庄 05000)摘要:随着社会的快速发展,电力行业也在不断地创新,为人们的日常生活提供充足地便利条件。根据众多的研究结果显示,特高压输电线路施工作为一项技术工作,是实现电力行业长远发展的一个必要途径。因此,本文就对电力工程中特高压输电线路施工技术研究进行了较为综合性的阐明。 关键词:电力工程;特高压;输电线路;施工技术;研究 1.电力工程特高压输电线路施工的主要内容简要解读 在电力工程中,通过对输电线路系统的分析及深入的研究,输电线路的基础就是杆塔埋入地下的部分。所以施工过程中需要相关部门对埋下输电线路的时间以及其结构等各个方面有一个全面细致化的了解。同时在进行大型施工项目的时候,也要优先考虑地下杆塔是否安全和稳定。只有做好了输电线路的基础工程才能保证整个输电线路工程的顺利进行。另外施工单位需建立健全的负责人安全生产责任制度,明确项目负责人、各施工队队长等管理人员的责任,将安全生产管理工作落实到实处,这样才能够确保输电线路施工能够全面顺利进行,进而提升输电线路自身的质量。 2.电力工程特高压输电线路施工安全质量控制的现状分析 在整个工程建设的过程中,关于施工的安全化的质量控制,是最终决定项目的安全目标能否实现的一个重要的问题,也是一个难点。针对我国近些年来相关的管理工作经验,我们对电力工程特高压输电线路的施工技术安全质量的控制现状进行了比较全面.彻底化的分析。 2.1电力工程单位对当前的一些规范以及应用的了解不彻底 对电力工程输电线路关于的“质量安全防治技术举措”等一些相关性的文件是掌握不够明白和彻底的,对这些的相关性的规定缺少一些应有的实践;电力输电工程设计前对工程相关的策划工作设计的不够深入,当前的设计工作完成之后没有对应该创优的工作进行全面性的评价和审核;没有把工程达标创优工作贯穿于整个工程之中则会全面直接地影响我们电力输电工程项目的创优工作的难以开展及最终的评优先进工作。 2.2电力工程特高压输电技术的质量防治效果是不完美的 电力工程的输电线路设计单位对工程中出现的一些常见的弊端缺乏必要的感性理解,缺少对输电线路工程设计工作展开一些必要的关于质量总结性的东西,致使这样的错误经常是屡禁不止的;电力工程的施工的承包商对特高压的输电质量控制措施是特别不严格,没有把输电线路的质量问题消灭在我们的项目施工过程之中。 2.3电力工程的输电线路安全管理工作的预防还是比较差 部分施工的人员素质是比较低下的、安全质量意识还是比较差的,不能认真履行其应有的岗位职责,这样会严重的削弱了我们监管方面的一些工作。部分对工程施工评估工作开展是十分的不到位,缺乏对电力工程的各个施工性质的环节以及可能产生一些工程危险的全面性了解和深入的认识,最终就会致使我们在组织施工时缺少一些非常有针对性的质量控制化的举措。 3.电力工程特高压输电线路施工技术研究的要点简析 3.1全面明确电力工程的输电质量指标控制系统机制 作为在电力工程输电线路的施工中实践与理论的一种互相融合,这就要求我们从当前的实际的施工情况来作为出发点,全面着重分析电力施工地工程的各个项目指标和要求,通过严谨化的标准的确立来对我们工程的使用质量进行严格把控。 3.2电力工程特高压输电线路的质量责任要全面落实 电力工程特高压输电线路的施工质量控制还是需要我们继续进行积极落实质量责任的制度,落实该责任制的目的就在于对各个级别的管理人员和施工操作人员所应有的职责进一步彻底的明确,在日常的施工过程之中,如果一旦发现有关于质量事故的发生便可自上而下一一进行全面彻底的落实,并将相关的质量责任追究到涉及到的每一个人。进而全面提升电力工程的施工质量和施工地安全稳定性。 3.3电力工程特高压输电线路要全面建立质量监管系统 我们当前质量监管系统主要概括为两个大的方面:第一就是质量保证过程中的质量管理组织结构。第二个方面就是质量保证体系机制中的管理性的职能所在,该职能简单而言就是对我们所要完成的任务进行全面彻底的有效分配使用,最终来切实全面维护施工单位的整体性的经济利益。 3.4电力工程特高压输电线路的施工的后期 在电力工程的特高压输电线路施工阶段的大后期,我们大家都知道其质量的验收工作是非常至关重要的,在我们工作人员完成每一项分项的工程之后,应该在相关的监理人员的严密监管控制之下,对施工工程进行非常详细的检查核对和校验验收,对于分项工程符合我们要求的则可将其划分为我们的优良工程。在完成整个工程智慧对电力工程高压输电线路质量进行全面有效的把握和控制。 4.结束语 根据上文我们所述的来看,就当前我们国家的经济社会的全面发展和社会进步的大背景之下,电力工程输电线路施工行业引起了社会各界的广泛关注与重视,这主要是因为这些线路施工建设对于人们日常的用电安全稳定性以及可靠性等因素有着直接影响。所以就希望相关的企业和部门能够高度的关注和意识到高压输电线路施工项目的重要性,能够全面明确电力工程的输电质量指标控制系统机制,以及对电力工程特高压输电线路的质量责任要全面落实到个人,认真的做好质量的监管工作,同时还应该积极地做好施工的后期工作。从而最终实现我们提升工程整体施工质量的终极目标和要求,为我们国家的经济建设以及社会的发展提供一个强而有力的条件。 参考文献: [1] 杨晓川.浅述电力工程中输电线路的施工管理[J].中国新技术新产品,2011(02). [2] 吴伟智.论输电线路在电力施工中的质量控制 [J].广东科技,2009(04). [3]卫洪彬.电力工程输电线路施工探讨 [J].中国新技术新产品,2010(19).

直流电与交流电在应用中的优缺点

直流电与交流电在应用中的优缺点 高压直流输电方式与高压交流输电方式相比,有明显的优越性.历史上仅仅由于技术的原因,才使得交流输电代替了直流输电.下面先就交流电和直流电的主要优缺点作出比较,从而说明它们各自在应用中的价值. 交流电的优点主要表现在发电和配电方面:利用建立在电磁感应原理基础上的交流发电机可以很经济方便地把机械能(水流能、风能……)、化学能(石油、天然气……)等其他形式的能转化为电能;交流电源和交流变电站与同功率的直流电源和直流换流站相比,造价大为低廉;交流电可以方便地通过变压器升压和降压,这给配送电能带来极大的方便.这是交流电与直流电相比所具有的独特优势. 直流电的优点主要在输电方面: ①输送相同功率时,直流输电所用线材仅为交流输电的2/3~l/2 直流输电采用两线制,以大地或海水作回线,与采用三线制三相交流输电相比,在输电线载面积相同和电流密度相同的条件下,即使不考虑趋肤效应,也可以输送相同的电功率,而输电线和绝缘材料可节约1/3. 如果考虑到趋肤效应和各种损耗(绝缘材料的介质损耗、磁感应的涡流损耗、架空线的电晕损耗等),输送同样功率交流电所用导线截面积大于或等于直流输电所用导线的截面积的1.33倍.因此,直流输电所用的线材几乎只有交流输电的一半.同时,直流输电杆塔结构也比同容量的三相交流输电简单,线路走廊占地面积也少. ②在电缆输电线路中,直流输电没有电容电流产生,而交流输电线路存在电容电流,引起损耗. 在一些特殊场合,必须用电缆输电.例如高压输电线经过大城市时,采用地下电缆;输电线经过海峡时,要用海底电缆.由于电缆芯线与大地之间构成同轴电容器,在交流高压输线路中,空载电容电流极为可观.一条200kV的电缆,每千米的电容约为0.2μF,每千米需供给充电功率约3×103kw,在每千米输电线路上,每年就要耗电2.6×107kw·h.而在直流输电中,由于电压波动很小,基本上没有电容电流加在电缆上. ③直流输电时,其两侧交流系统不需同步运行,而交流输电必须同步运行.交流远距离输电时,电流的相位在交流输电系统的两端会产生显著的相位差;并网的各系统交流电的频率虽然规定统一为50HZ,但实际上常产生波动.这两种因素引起交流系统不能同步运行,需要用复杂庞大的补偿系统和综合性很强的技术加以调整,否则就可能在设备中形成强大的循环电流损坏设备,或造成不同步运行的停电事故.在技术不发达的国家里,交流输电距离一般不超过300km而直

中国特高压交流输电线路的现状及发展(自撰)

中国特高压交流输电线路的现状及发展 我国电力的建设当中。特高压输电能同时满足电能大容量、远距离、高效率、低损耗、低成本输送的基本要求,而且能有效解决目前500kV 超高压电网存在的输电能力低、安全稳定性差、经济效益欠佳等方面的问题,所以,建设特高压电网已经成为我国电力发展的必然趋势。 电力系统。电力系统中输送和分配电能的部分称为电力网,电网是电 电网是电能传输的载体,在发电厂发出电能后,如何将电能高效地传送给用户,就成为电网的主要功能。在对电力系统以及电网的基本概念及要求全面的了解的基础上,通过查阅资料了解我国特高压输电线路的发展现状以及我国引入特高压的必要性。特高压的英文缩写为UHV。在我国,特高压是指交流1000千伏及以上和直流正负600千伏以上的电压等级。特高压能大大提升我国电网的输送能力。 不同电压等级的输电能力 理论上,输电线路的输电能力与输电电压的平方成正比,与输电线路的阻抗成反比。输电线路的输送能力可以近似估计认为,电压升高1倍,功率输送能力将提高4倍。考虑到不同电压等级输电线路的

阻抗变化,电压升高了1倍,功率输送能力将大于4倍。表1—1给 出了以220kV输电线路自然功率输电能力为基准,不同电压等级,从高压、超高压到特高压但回输电线路自然功率输电能力的比较值。 注:以220kV线路输送自然功率132MW为基准同样,输电线路的输送功率与线路阻抗成反比,而输电线路的阻抗随线路距离的增加而增加,即输电线路越长,输电能力越小。要大幅提高线路的输电能力,特别是远距离输电电路的功率输送能力,就必须提高电网的电压等级。电网的发展表明,各国在选择更高一级电压时,通常使相邻两个输电电压之比等于2。特大容量发电厂的建设和大型、特大型发电机组的采用,可以产生更大规模的效益。他们可以通过输电网实现区域电网互联,可在更大范围内实现电力资源优化配置,进行电力的经济调度。 1 、特高压电网的发展目标 发展特高压输电有三个主要目标:(1)大容量、远距离从发电中心(送端)向负荷中心(受端)输送电能。(2)超高压电网之间的强互联,形成坚强的互联电网,目的是更有效地利用整个电网内各种可以利用的发电资源,提高互联的各个电网的可靠性和稳定性。(3)在已有的、强大的超高压电网之上覆盖一个特高压输电网目的是把送端和受端之间大容量输电的主要任务从原来超高压输电转到特高压输电上来,

高压直流输电与特高压交流输电的优缺点比较

高压直流输电与特高压交流输电的优缺点比较 从经济方面考虑,直流输电有如下优点: (1) 线路造价低。对于架空输电线,交流用三根导线,而直流一般用两根采用大地或海水作回路时只要一根,能节省大量的线路建设费用。对于电缆,由于绝缘介质的直流强度远高于交流强度,如通常的油浸纸电缆,直流的允许工作电压约为交流的3倍,直流电缆的投资少得多。 (2) 年电能损失小。直流架空输电线只用两根,导线电阻损耗比交流输电小;没有感抗和容抗的无功损耗;没有集肤效应,导线的截面利用充分。另外,直流架空线路的“空间电荷效应”使其电晕损耗和无线电干扰都比交流线路小。 所以,直流架空输电线路在线路建设初投资和年运行费用上均较交流经济。 直流输电在技术方面有如下优点: (1) 不存在系统稳定问题,可实现电网的非同期互联,而交流电力系统中所有的同步发电机都保持同步运行。直流输电的输送容量和距离不受同步运行稳定性的限制,还可连接两个不同频率的系统,实现非同期联网,提高系统的稳定性。 (2) 限制短路电流。如用交流输电线连接两个交流系统,短路容量增大,甚至需要更换断路器或增设限流装置。然而用直流输电线路连接两个交流系统,直流系统的“定电流控制”将快速把短路电流限制在额定功率附近,短路容量不因互联而增大。 (3) 调节快速,运行可靠。直流输电通过可控硅换流器能快速调整有功功率,实现“潮流翻转”(功率流动方向的改变),在正常时能保证稳定输出,在事故情况下,可实现健全系统对故障系统的紧急支援,也能实现振荡阻尼和次同步振荡的抑制。在交直流线路并列运行时,如果交流线路发生短路,可短暂增大直流输送功率以减少发电机转子加速,提高系统的可靠性。 (4) 没有电容充电电流。直流线路稳态时无电容电流,沿线电压分布平稳,无空、轻载时交流长线受端及中部发生电压异常升高的现象,也不需要并联电抗补偿。 (5) 节省线路走廊。按同电压500 kV考虑,一条直流输电线路的走廊~40 m,一条交流线路走廊~50 m,而前者输送容量约为后者2倍,即直流传输效率约为交流2倍。 下列因素限制了直流输电的应用范围: (1) 换流装置较昂贵。这是限制直流输电应用的最主要原因。在输送相同容量时,直流线路单位长度的造价比交流低;而直流输电两端换流设备造价比交流变电站贵很多。这就引起了所谓的“等价距离”问题。 (2) 消耗无功功率多。一般每端换流站消耗无功功率约为输送功率的40%~60%,需要无功补偿。 (3) 产生谐波影响。换流器在交流和直流侧都产生谐波电压和谐波电流,使电容器和发电机过热、换流器的控制不稳定,对通信系统产生干扰。 (4) 缺乏直流开关。直流无波形过零点,灭弧比较困难。目前把换流器的控制脉冲信号闭锁,能起到部分开关功能的作用,但在多端供电式,就不能单独切断事故线路,而要切断整个线路。 (5) 不能用变压器来改变电压等级。 直流输电主要用于长距离大容量输电、交流系统之间异步互联和海底电缆送电等。与直流输电比较,现有的交流500 kV输电(经济输送容量为1 000 kW、输送距离为300~500 km)已不能满足需要,只有提高电压等级,采用特高压输电方式,才能获得较高的经济效益。

特高压输电线路过电压的分析报告

特高压输电线路过电压的 分析与研究 ———高电压技术

目录前言 第一章:特高压输电技术的发展第二章:特高压输电系统的分类 第三章:特高压输电线路的分析 第四章:参考文献

前言 特高压电网指1000千伏的交流或+800千伏的直流电网。特高压电网形成和发展的基本条件是用电负荷的持续增长以及大容量、特大容量电厂的建设和发展,其突出特点是大容量、远距离输电. 用电负荷的持续增长以及大容量、特大容量电厂的建设和发展呼唤特高压电网的发展建设。那么,在世界范围内,虽然特高压输变电技术的储备是足够的,但取得的运行经验是初步的,还存在风险和困难,有些技术问题还需要进行深入的研究,同时累积运行经验。特高压交流输电线路具有输送容量大、输电损耗低、节约线路走廊等优点,特高压电网的建设可很好地解决超高压线路输送能力不足、损耗大、经济发达地区线路走廊紧张以及超高压系统短路容超标等问题,在发电中心向负荷中心远距离大规模输电、超高压电网互联等情况下具有明显的经济、环境优势,是我国电网发展的方向。 随着我国电力需求的快速增长,建设特高压电网已成为解决电网发展需求的必然选择。为了特高压输电工程的安全运行和经济性,限制特高压系统的过电压水平和合理选择绝缘水平是特高压输电工程建设的关键技术课题之一。

第一章特高压输电技术的发展 一、国际特高压输电技术的发展现状 (1)美国的特高压技术研究美国在AEP、和通用电力公司等于1974 年开始在皮茨菲尔德的特高压输电技 BPA术研究试验站进行了可听噪声、无线电干扰、电晕损失和其他环境效应的实测。美国邦纳维尔电力公司从 1976 年开始在莱昂斯试验场和莫洛机械试验线段 上进行特高压输电线路机械结构研究,并进行了电晕和电场研究,生态和环境研究、噪声和雷电冲击绝缘研究等。美国电力研究院(EPRI)于 1974 年开始建设 1000~1500kV 三相试验线路并投入运行,进行了深入的操作冲击试验和污秽绝缘子工频耐压试验,测量了电磁环境指标,并进行了特高压输电线路电场效应的研究,以及杆塔的安装试验、特大型变压器的设计和考核的试验研究。 (2)前苏联的特高压技术研究 20 世纪 60 年代,前苏联为了解决特高压输电的工程设计、设备制造问题,国家组织动力电气化部技术总局、全苏电气研究所、列宁格勒直流研究所全苏线路设计院等单位济宁特高压输电的基础研究。从 1973 年开始,前苏联在白利帕斯特变电站建设特高压三相试验线段,长度 1.17km,开展特高压实验研

浅谈高压直流输电与交流输电各自优缺点

浅谈高压直流输电与交流输电各自优缺点 文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

追溯历史,最初采用的输电方式是直流输电,于1874年出现于俄国。当时输电电压仅100V。随着直流发电机制造技术的提高,到1885年,直流输电电压已提高到6000V。但要进一步提高大功率直流发电机的额定电压,存在着绝缘等一系列技术困难。由于不能直接给直流电升压,输电距离受到极大的限制,不能满足输送容量增长和输电距离增加的要求。19世纪80年代末,人类发明了三相交流发电机和变压器。1891年,世界上第一个三相交流发电站在德国竣工。此后,交流输电普遍代替了直流输电。随着电力系统的迅速扩大,输电功率和输电距离的进一步增加,交流输电遇到了一系列技术困难。大功率换流器(整流和逆变)的研究成功,为高压直流输电突破了技术上的障碍,直流输电重新受到人们的重视。1933年,美国通用电器公司为布尔德坝枢纽工程设计出高压直流输电装置;1954年,建起了世界上第一条远距离高压直流输电工程。之后,直流输电在世界上得到了较快发展,现在直流输电工程的电压等级大多为±275~±500kV,投入商业运营的直流工程最高电压等级为±600kV(巴西伊泰普工程),我国计划在西南水电送出的直流工程中采用±800kV电压等级。 在现代直流输电系统中,只有输电环节是直流电,发电系统和用电系统仍然是交流电。在输电线路的送端,交流系统的交流电经换流站内的换流变压器送到整流器,将高压交流电变为高压直流电后送入直流输电线路。直流电通过输电线路送到受端换流站内的逆变器,将高压直流电又变为高压交流电,再经过换流变压器将电能输送到交流系统。在直流输电系统中,通过控制换流器,可以使其工作于整流或逆变状态。

高压直流输电会不会取代交流输电

一、首先我们来看高压直流输电的特点: 换流器控制复杂,造价高; 直流输电线路造价低,输电距离越远越经济; 没有交流输电系统的功角稳定问题,适合远距离输电; 适合海底电缆(海岛供电、海上风电)和城市地下电缆输电; 能够非同步(同频不同相位,或不同频)连接两个交流电网,且不增加短路容量; 传输功率的可控性强,控制速度快,可有效支援交流系统; 换流器大量消耗无功(注意这是对LCC-HVDC而言,VSC-HCDC整流侧和逆变侧均可独立灵活控制无功,两种系统差别下文将单独说明。),且产生谐波; 双极不对称大地回线运行时存在直流偏磁问题和电化学腐蚀问题(地电流危害); 不能向无源系统供电(依然是对LCC-HVDC系统而言),构成多端直流系统困难(由于直流没有过零点,难以熄弧,所以现在缺少大容量直流断路器,无法切除输电线路的短路故障,从而限制了多端直流输电的发展。最近ABB貌似把这个东西搞出来了,不明觉厉。)。 二、经济问题: 高压直流输电主要是两头换流站贵,线路便宜。所以相较于交流输电,距离越远越经济。 架空线路等价距离约在640~960km 地下电缆线路的等价距离为56~90km 海底电缆线路的等价距离为24~48km

*交流输电时电缆线路会与周边介质(海水、土壤)形成一个较大的电容,影响电网的经济稳定,直流输电不存在这个问题。 三、电能质量: 直流输电系统的主要缺点是存在谐波,特别是低次谐波(主要是LCC-HVDC,而VSC-HVDC最低次谐波频率较高,滤波器可以有效消除这种高次谐波)。另一个不太突出的缺点是地电流。 谐波的危害: 对铁磁设备的影响。谐波造成额外的铁耗导致发热、振动和噪声,降低了设备出力、效率及寿命; 对旋转电机的影响:谐波造成转矩脉动,转速不稳; 对电力电容器的影响:谐波可能引起谐振过电压; 对电力系统测控的影响:谐波使测量误差增加,可能导致控制失灵,保护误动; 三次谐波电流过大可能使中性线过流; 谐波叠加在基波上,使电气应力增加,对各种电气设备尤其是电容器的绝缘造成威胁; 谐波对通信线路造成干扰。 HVDC引起的变压器直流偏磁(地电流) : 现象:直流输电系统接地极流过较大电流时(如单极大地运行)会导致中性点接地变压器产生直流偏磁现象。 后果:导致铁芯饱和,产生谐波,引起振动和噪声,引起发热,严重时损坏变压器,引起保护误动等。 四、电网安全: 直流输电对电网稳定的贡献: 紧急功率支援:如交流电网出现大幅度功率缺额(联络线跳开、某些大电厂跳开等),HVDC 可以快速增加输送功率或者快速潮流反转。HVDC快速有效的潮流控制能力对于所连交流系统的稳定控制,交流系统正常运行过程中应对负荷随机波动的频率控制及故障状态下的频率变动控制都能发挥重要作用。 直流输电对电网的不利影响:

《直流输电原理》题库

《直流输电原理》题库 一、填空题 1.直流输电工程的系统可分为两端(或端对端)直流输电系统和多端直流输电系统两大类。 2.两端直流输电系统的构成主要有整流站、逆变站和直流输电线路三部分。 3.两端直流输电系统可分为单极系统、双极系统和背靠背直流输电系统三种类型。 4.单极系统的接线方式有单极大地回线方式和单极金属回线方式两种。 5.双极系统的接线方式可分为双极两端中性点接地接线方式、双极一端中性点接地接线方 式和双极金属中线接线方式三种类型。 6.背靠背直流系统是输电线路长度为零的两端直流输电系统。 7.直流输电不存在交流输电的稳定性问题,有利于远距离大容量送电。 8.目前工程上所采用的基本换流单元有6脉动换流单元和12脉动换流单元两种。 9.12脉动换流器由两个交流侧电压相位差30°的6脉动换流器所组成。 10.6脉动换流器在交流侧和直流侧分别产生6K±1次和6K次特征谐波。12脉动换流器在 交流侧和直流侧分别产生12K±1次和12K次特征谐波。 11.为了得到换流变压器阀侧绕组的电压相位差30°,其阀侧绕组的接线方式必须一个为 星形接线,另一个为三角形接线。 12.中国第一项直流输电工程是舟山直流输电工程。 13.整流器α角可能的工作范围是0<α<90°,α角的最小值为5°。 14.α<90°时,直流输出电压为正值,换流器工作在整流工况; α=90°时, 直流输出电为 零,称为零功率工况; α>90°时,直流输出电压为负值,换流器则工作在逆变工况。15.直流输电控制系统的六个等级是:换流阀控制级、单独控制级、换流器控制级、极控制 级、双极控制级和系统控制级。 16.换流器触发相位控制有等触发角控制和等相位间隔控制两种控制方式。 17.直流输电的换流器是采用一个或多个三相桥式换流电路(也称6脉动换流器)串联构 成。其中,6脉动换流器的直流电压,在一个工频周期内有6段正弦波电压,每段60°。

特高压交直流输电系统技术经济分析

特高压交直流输电系统技术经济分析 摘要:随着我国电力事业的快速发展,我国特高压输电工程建设正处于稳步上 升阶段。特高压输电技术的广泛应用,很好地解决了当前输电技术存在的经济性 较低以及无法实现或者实现难度较大的更远距离输电问题,进一步提高了输电系 统供电的稳定性、安全性以及经济性。对于当前特高压输电网而言,1000kV以及±800kV输电系统的技术经济性是重中之重。基于此,研究特高压交直流输电系统 技术经济性具有重要的现实意义。 关键词:特高压交直流水电系统;技术经济性 引言: 1000kV与±800kV输电系统的技术经济性是发展特高压输电网的重要基础。从我国特高压交直流输电示范工程成功运行经验讨论1000kV与±800kV输电的技术 经济性对推进特高压输电网的规划建设具有重要现实意义。 1 1000kV和±800kV输电系统建设成本阐述 1.1 1000kV输电系统的建设成本 一般来说,都是使用单位输电建设成本来表示1000kV与±800kV输电系统的 建设成本。同时,参照示范工程投资决算实对其施估算。以2009年投入运行的1000kV特高压交流试验示范工程为例来看,其最初建设成本为56.9亿元。根据 试验示范工程相关元器件成本以及建设成本的实际情况,使用工程成本计算方法 对其建设成本进行估算,拟使用1000kV、4410MW、1500km特高压输电系统, 其单位输电建设成本预期估算成本为1900元/km?MW。若将500kV输电系统建 设成本按照2500元/km?MW的价格来看,那么此1000kV特高压输电系统的单位 建设成本则近似为500kV输电系统的8成左右。 1.2 ±800kV输电系统的建设成本 对于±800kV直流输电系统而言,首先需要把各发电单元机组通过电站500kV 母线汇集在一起,接着借助500kV输电线路连通到直流输电的整流站中,从而把 三相交流电更换成直流电,再使用两条正负极输电线路将其配送到逆变站中,再 把直流电转变为三相交流电,最后输送到有电压作为保障的500kV枢纽变电站中。和其余输电系统相同,±800kV直流输电系统在进行长距离、大规模输电的过程中,也需要两个电厂作为支撑,拟将其发电机组定位6×600MW以及5×600MW,线路 总长度为1500km,通过±800kV特高压直流输电示范工程数据对其输电建设成本 实施估算。某±800kV特高压直流输电示范工程的直流输电线路总长度为1891km,额定直流电流为4kA,额定换流功率为6400MW,分裂导线的规格为6×720mm2,开工建设的时间为2007年,不断对系统进行调试,最终于2010年正式投入使用。根据系统调试以及投入运行的实际结果来看,自助研发的±800kV特高压直流输电 系统及其相关设备具有较高的运行性能。该±800kV直流输电示范工程建设成本为190亿元,其中换流站与相关线路的成本均占总成本的一半。根据示范工程建设 成本进行估算,±800kV、6400MW、1500km直流输电系统的单位输电建设成本应为1780元/km?MW。 1.3 1000kV和±800kV输电系统建设成本对比分析 一般来说,通过逆变站的输出功率对交流输电进行估算,而直流输电的估算 亦是如此;1000kV交流输电系统的单位建设成本与±800kV直流输电系统的单位 建设成本基本一致,都为1900元/km?MW,处于相同等级。1000kV交流输电系 统的对地电压为578kV和±800kV直流输电系统极线的对地电压相匹配。±800kV

特高压输电线路工程资料整理手册

输电线路工程资料整理手册

现场资料填写手册一、现场资料填写分类及责任人划分:

备注:所有人员都需填写相片登记表;以上表格填写均有相关样板。 现场资料填写资料表格样板: 1.土石方、基础分部工程样表: 资料填写 责 任 人 施工阶段 填 写 资 料 备 注 监理站长 土石方、基础施工阶段 安全监理巡视检查记录表、强制性条文执行检查记录表、施工进度统计表(监理部统计表)、见证取样记录表(实验室表,归档需要) 有旁站或停工待检时也应填写相应表格;发现问题时填写:监理安全质量现场检查整改复检记录表(公司管理表格) 铁塔组立 接地施工阶段 安全监理巡视检查记录表、强制性 条文执行检查记录表、施工进度统计表(监理部统计表) 导地线架 设 阶 段 安全监理巡视检查记录表、强制性条文执行检查记录表 附件安装阶段 安全监理巡视检查记录表、强制性条文执行检查记录表、施工进度统计表(监理部统计表) 现场监理 土石方阶段 安全监理巡视检查记录表、安全旁站监理记录表、基础浇制前(停工待检)监理检查记录表 每个分部工 程都应填写质量监理巡 视情况周报表、监理安全质量现场检查整改复检记录表(公司管理表格) 基础施工阶段 旁站监理记录表、基础浇制(旁站)监理检查记录(公司表格) 接地施工阶段 旁站监理记录表 铁塔组立 阶段 安全监理巡视检查记录表、安全旁站监理记录表、监理检查(地锚埋设)记录表 导、地线 架设阶段 旁站监理记录表、导线、地线液压监理检查记录表、监理检查(地锚埋设)记录表、压接管位置及压接 施工日期统计(监理部统计表) 附件阶段 安全旁站监理记录表

基础浇制前(停工待检)监理检查记录表 工程名称:××××××××××××输电线路工程 塔号**** 腿号 A B C D 塔型查资料基础型号查资料查资料查资料查资料检查日期**************** 序 号 项目性质标准设计值检查结果 1 地脚螺栓规格 数量 关键符合设计 设计值 4 (或8)× M*** 4 (或8)× M*** 4 (或8)× M*** 4 (或8)× M*** 实际值 符合设计要 求 符合设计要求 符合设计要 求 符合设计要 求 2 主筋规格数量关键符合设计 设计值数量×** 数量×**数量×**数量×** 实际值符合设计要 求 符合设计要求 符合设计要 求 符合设计要 求 3 坑底尺寸mm 关键-0.8% 设计值** ****** 实际值******** 4 基础坑深mm 重要+100, -50 设计值*** ********* 实际值************ 5 保护层厚度mm 重要设计值 -50 实测值************ 6 基础根开及对 角线尺寸mm 一般 ±1.6 ? 实测值 AB:**+** BC: **+** CD:**+** DA: **+** AC: **+** BD: **+** 7 同组地脚螺栓 间距 mm 一般 ±1.6 ? 设计值 **************** 查资料 8 钢筋绑扎质量一般符合设计符合设计要求符合设计要求符合设计要求符合设计要求 9 制模质量一般准确牢固准确牢固准确牢固准确牢固准确牢固 B C A D 备注 检查人: JZLX8旁站监理记录表样表(归档用表) 旁站监理记录表 工程名称:××××××××××××输电线路工程编号:JL**- 大号方向

特高压直流输电线路基本情况介绍

特高压直流输电线路基本情况介绍 问:直流输电线路有哪些基本类型? 答:就其基本结构而言,直流输电线路可分为架空线路、电缆线路以及架空——电缆混合线路三种类型。直流架空线路因其结构简单、线路造价低、走廊利用率高、运行损耗小、维护便利以及满足大容量、长距离输电要求的特点,在电网建设中得到越来越多运用。因此直流输电线路通常采用直流架空线路,只有在架空线线路受到限制的场合才考虑采用电缆线路。 问:建设特高压直流输电线路需要研究哪些关键技术问题? 答:直流架空线路与交流架空线路相比,在机械结构的设计和计算方面,并没有显著差别。但在电气方面,则具有许多不同的特点,需要进行专门研究。对于特高压直流输电线路的建设,尤其需要重视以下三个方面的研究: 1. 电晕效应。直流输电线路在正常运行情况下允许导线发生一定程度的电晕放电,由此将会产生电晕损失、电场效应、无线电干扰和可听噪声等,导致直流输电的运行损耗和环境影响。特高压工程由于电压高,如果设计不当,其电晕效应可能会比超高压工程的更大。通过对特高压直流电晕特性的研究,合理选择导线型式和绝缘子串、金具组装型式,降低电晕效应,减少运行损耗和对环境的影响。 2. 绝缘配合。直流输电工程的绝缘配合对工程的投资和运行水平有极大影响。由于直流输电的“静电吸尘效应”,绝缘子的积污和污闪特性与交流的有很大不同,由此引起的污秽放电比交流的更为严重,合理选择直流线路的绝缘配合对于提高运行水平非常重要。由于特高压直流输电在世界上尚属首例,国内外现有的试验数据和研究成果十分有限,因此有必要对特高压直流输电的绝缘配合问题进行深入的研究。 3. 电磁环境影响。采用特高压直流输电,对于实现更大范围的资源优化配置,提高输电走廊的利用率和保护环境,无疑具有十分重要的意义。但与超高压工程相比,特高压直流输电工程具有电压高、导线大、铁塔高、单回线路走廊宽等特点,其电磁环境与±500千伏直流线路的有一定差别,由此带来的环境影响必然受到社会各界的关注。同时,特高压直流工程的电磁环境与导线型式、架线高度等密切相关。因此,认真研究特高压直流输电的电磁

我国特高压交流输电线路发展现状与前景分析

【慧聪机械工业网】我国已经进入了大电网、大机组、高电压、高自动化的发展时期。随着经济的快速发展,电力需求也在快速增长,特高压输电逐渐进入到我国电力的建设当中。特高压输电能同时满足电能大容量、远距离、高效率、低损耗、低成本输送的基本要求,而且能有效解决目前500kV超高压电网存在的输电能力低、安全稳定性差、经济效益欠佳等方面的问题,所以,建设特高压电网已经成为我国电力发展的必然趋势。发电厂、输电网、配电网和用电设备连接起来组成一个整体,称之为电力系统。电力系统中输送和分配电能的部分称为电力网,电网是电能传输的载体,它包括升、降压变压器和各种电压等级的输电线路。电网是电能传输的载体,在发电厂发出电能后,如何将电能高效地传送给用户,就成为电网的主要功能。在对电力系统以及电网的基本概念及要求全面的了解的基础上,通过查阅资料了解我国特高压输电线路的发展现状以及我国引入特高压的必要性。 特高压的英文缩写为UHV。在我国,特高压是指交流1000千伏及以上和直流正负600千伏以上的电压等级。特高压能大大提升我国电网的输送能力。 第1页:无分页标题!第2页:无分页标题!第3页:无分页标题!第4页:无分页标题! 一、电力系统组成及电网的主要功能 1、电能的基本概念 电能是现代社会中最重要、也是最方便的能源。电能具有许多优点,它可以方便的转化为别种形式的能,例如,机械能、热能、光能、化学能等;它的输送和分配易于实现;它的应用模式也很灵活。因此,电能被极其广泛的应用于农业,交通运输业,商业贸易,通信以及人民的日常生活中。以电作为动力,可以促进工农业生产的机械化和自动化,保证产品质量,大幅度提高劳动生产率。 2、电力系统的概念、特点及其运行的要求 发电厂、输电网、配电网和用电设备连接起来组成一个整体,称之为电力系统。电力系统与其它工业系统相比有着明显的特点,主要有以下几个方面:(1)结构复杂而庞大。一个现代化的大型电力系统装机容量可达千万千瓦。世界上最大的电力系统装机容量达几亿千瓦,供电距离达几千公里。电力系统中各发电厂内的发电机、个变电站中的母线和变压器、各用户的用电设备等,通过许多条不同电压等级的电力线路结成一个网状结构,不仅结构十分复杂,而且覆盖辽阔的地理区域。(2)电能不能存储,电能的生产、输送、分配和消费实际上是同时进行的。电力系统中,发电厂在任何时刻发出的功率必须等于该时刻用电设备所需的功率、输送和分配环节中的功率损失之和。(3)电力系统的暂态过程非常短促。电力系统从一种运行状态到另一种运行状态的过渡极为迅速。(4)电力系统特别重要,电力系统与国民经济的各部门及人民日常生活有着极为密切的关系,供电的突然然中断会带来严重的后果。根据电力系统的这些特点,对电力系统运行的基本要求如下。(1)保证安全可靠的供电,供电中断会使生产停顿、生活混乱甚至危及人身和设备安全,造成十分严重的后果。停电给国民经济造成的损失远超过电力系统本身的损失。因此电力系统运行的首要任务是安全可靠的向用户供电。(2)要有合乎要求的电能质量,电能质量以电压、频率以及正弦交流电的波形来衡量。电压和频率过多的偏离额定值对电力用户和电力系统本身都会造成不良影响。这些影响轻则使电能减产或产生废品,严重时可造成设备损坏或危及电力系统的安全运行。(3)

柔性直流输电与高压直流输电的优缺点

柔性直流输电 一、常规直流输电技术 1. 常规直流输电系统换流站的主要设备。常规直流输电系统换流站的主要设备一般包括:三相桥式电路、整流变压器、交流滤波器、直流平波电抗器和控制保护以及辅助系统(水冷系统、站用电系统)等。 2. 常规直流输电技术的优点。 1)直流输送容量大,输送的电压高,最高已达到800kV,输送的电流大,最大电流已达到4 500A;所用单个晶闸管的耐受电压高,电流大。 2)光触发晶闸管直流输电,抗干扰性好。大电网之间通过直流输电互联(背靠背方式),换流阀损耗较小,输电运行的稳定性和可靠性高。 3)常规直流输电技术可将环流器进行闭锁,以消除直流侧电流故障。 3. 常规直流电路技术的缺点。常规直流输电由于采用大功率晶闸管,主要有如下缺点。 1)只能工作在有源逆变状态,不能接入无源系统。 2)对交流系统的强度较为敏感,一旦交流系统发生干扰,容易换相失败。 3)无功消耗大。输出电压、输出电流谐波含量高,需要安装滤波装置来消除谐波。 二、柔性直流输电技术

1. 柔性直流输电系统换流站的主要设备。柔性直流输电系统换流站的主要设备一般包括:电压源换流器、相电抗器、联结变压器、交流滤波器和控制保护以及辅助系统(水冷系统、站用系统)等。 2. 柔性直流输电技术的优点。柔性直流输电是在常规直流输电的基础上发展起来的,因此传统的直流输电技术具有的优点,柔性输电大都具有。此外,柔性输电还具有一些自身的优点。 1)潮流反转方便快捷,现有交流系统的输电能力强,交流电网的功角稳定性高。保持电压恒定,可调节有功潮流;保持有功不变,可调节无功功率。 2)事故后可快速恢复供电和黑启动,可以向无源电网供电,受端系统可以是无源网络,不需要滤波器开关。功率变化时,滤波器不需要提供无功功率。 3)设计具有紧凑化、模块化的特点,易于移动、安装、调试和维护,易于扩展和实现多端直流输电等优点。 4)采用双极运行,不需要接地极,没有注入地下的电流。 3. 柔性直流输电技术的缺点。系统损耗大(开关损耗较大),不能控制直流侧故障时的故障电流。在直流侧发生故障的情况下,由于柔性直流输电系统中的换流器中存在不可控的二极管通路,因此柔性直流输电系统不能闭锁直流侧短路故障时的故障电流,在故障发生后只能通过断开交流侧断路器来切除故障。可以使用的最佳解决方式是通过使用直流电缆来提高系统的可靠性和可用率。 三、常规直流输电技术和柔性直流输电技术的对比

为什么采用高压直流输电

问题63:为什么采用高压直流输电? 发布时间:2007-07-23 点击次数: 追溯历史,最初采用的输电方式是直流输电,于1874年出现于俄国。当时输电电压仅100V。随着直流发电机制造技术的提高,到1885年,直流输电电压已提高到6000V。但要进一步提高大功率直流发电机的额定电压,存在着绝缘等一系列技术困难。由于不能直接给直流电升压,输电距离受到极大的限制,不能满足输送容量增长和输电距离增加的要求。19世纪80年代末,人类发明了三相交流发电机和变压器。1891年,世界上第一个三相交流发电站在德国竣工。此后,交流输电普遍代替了直流输电。随着电力系统的迅速扩大,输电功率和输电距离的进一步增加,交流输电遇到了一系列技术困难。大功率换流器(整流和逆变)的研究成功,为高压直流输电突破了技术上的障碍,直流输电重新受到人们的重视。1933年,美国通用电器公司为布尔德坝枢纽工程设计出高压直流输电装置;1954年,建起了世界上第一条远距离高压直流输电工程。之后,直流输电在世界上得到了较快发展,现在直流输电工程的电压等级大多为±275~±500kV,投入商业运营的直流工程最高电压等级为 ±600kV(巴西伊泰普工程),我国计划在西南水电送出的直流工程中采用±800kV电压等级。 在现代直流输电系统中,只有输电环节是直流电,发电系统和用电系统仍然是交流电。在输电线路的送端,交流系统的交流电经换流站内的换流变压器送到整流器,将高压交流电变为高压直流电后送入直流输电线路。直流电通过输电线路送到受端换流站内的逆变器,将高压直流电又变为高压交流电,再经过换流变压器将电能输送到交流系统。在直流输电系统中,通过控制换流器,可以使其工作于整流或逆变状态。 我国目前建成的高压直流输电工程均为两端直流输电系统。两端直流输电系统主要由整流站、逆变站和输电线路三部分组成,如图5-1所示。

三大特高压直流输电线路背景资料

三大特高压直流输电线路背景资料 一、特高压直流线路基本情况 ±800kV复奉直流线路四川段起于复龙换流站,止于377#塔位,投运时间2009年12月,长度187.275km,铁塔378基,途径四川省宜宾市宜宾县、高县、长宁县、翠屏区、江安县、泸州市纳溪区、江阳区、合江县共8个区县,在合江县出境进入重庆境内。线路全部处于公司供区,途径地市公司供电所35个。接地极线路79公里,铁塔189基。±800kV 复奉线输送容量6400MW。 ±800kV锦苏直流线路四川段起于锦屏换流站,止于987#塔位,投运时间2012年12月,长度484.034km,铁塔988基,自复龙换流站起与复奉线同一通道走线,途径四川省凉山州西昌市、普格县、昭觉县、美姑县、雷波县、云南省昭通市绥江县、水富县、宜宾市屏山县、宜宾县、高县、长宁县、翠屏区、江安县、泸州市纳溪区、江阳区、合江县共16个区县,在合江县出境进入重庆境内。线路处于公司供区长度268.297公里、铁塔563基,途径地市公司供电所44个;另有0036#-0344#、0474#-0493#区段(长度153.268公里、铁塔320基)处于地方电力供区,0494#-0598#区段(长度62.469公里、铁塔105基)处于南方电网供区。接地极线路74公里,铁塔207基。±800kV锦苏线输送容量7200MW。

±800kV宾金直流线路工程四川段起于宜宾换流站,止于365#塔位,试运行时间2014年03月,长度182.703km,铁塔366基,途径四川省宜宾市宜宾县、珙县、兴文县、泸州市叙永县、古蔺县共5个区县,在古蔺县出境进入贵州境内。线路全部处于公司供区,途径地市公司供电所22个。接地极线路101公里,铁塔292基。±800kV宾金线输送容量8000MW。 线路名称线路长度 (km) 杆塔数量投运时间 途径区县数 量 途径属地公 司供电所 ±800kV 复奉直流 187.275 378 2009.12 8 35 复龙换流站 接地极线路 79.106 189 ±800kV 锦苏直流 484.034 988 2012.12 16 44 锦屏换流站 接地极线路 74.147 207 ±800kV 宾金直流 182.703 366 2014.03(试 运行)5 22 宜宾换流站 接地极线路 101.174 292

相关文档
相关文档 最新文档