文档库 最新最全的文档下载
当前位置:文档库 › 蛇形机器人的运动分析以及步态研究

蛇形机器人的运动分析以及步态研究

蛇形机器人的运动分析以及步态研究
蛇形机器人的运动分析以及步态研究

puma250机器人运动学分析

焊接机器人运动分析 摘要:针对puma250焊接机器人,分析了它的正运动学、逆运动学的问题。采用D-H坐标系对机器人puma250 建立6个关节的坐标系并获取D-H 参数,并对其运动建立数学模型用MATLAB编程,同时仿真正运动学、逆运动学求解和轨迹规划利用pro-e对puma250建模三维模型。 关键词:puma250焊接机器人;正逆解;pro-e;Matlab;仿真 一、建立机器手三维图 Puma250机器人,具有6各自由度,即6个关节,其构成示意图如图1。各连杆包括腰部、两个臀部、腕部和手抓。设腰部为1连杆,两个臀部分别为2、3连杆,腰部为4连杆,手抓为5、6连杆,基座不包含在连杆范围之内,但看作0连杆,其中关节2、3、4使机械手工作空间可达空间成为灵活空间。1关节连接1连杆与基座0,2关节连接2连杆与1连杆,3关节连接3连杆与2连按,4关节连接4连杆与3连杆,5关节连接5连杆与4连杆。各连杆坐标系如图 2 所示。

图1 puma250 机器人二、建立连杆直角坐标系。

三、根据坐标系确定D-H表。 四、利用MATLAB 编程求机械手仿真图。>>L1=Link([pi/2 0 0 0 0],'standard'); L2=Link([0 0 0 -pi/2 0],'standard'); L3=Link([0 -4 8 0 0],'standard'); L4=Link([-pi/2 0 8 0 0],'standard'); L5=Link([-pi/2 0 0 -pi/2 0],'standard'); L6=Link([0 2 0 -pi/2 0],'standard'); bot=SerialLink([L1 L2 L3 L4 L5 L6],'name','ROBOT'); ([0 0 0 0 0 0])

蛇形机器人的转弯和侧移运动研究

第40卷第10期机械工程学报v0140No.102004年lO月CHINESEJOURNALOFMECHANICALENGINEERING0ct.20O4 蛇形机器人的转弯和侧移运动研究+ 叶长龙 (中国科学院沈阳自动化研究所机器人学重点实验室沈阳110016) 马书根 (日本国立茨城大学工学部茨城316—8511日本) 李斌王越超 f中国科学院沈阳自动化研究所机器人学重点实验室沈阳110016) 摘要:介绍了沈阳自动化研究所研制的蛇形机器人机械结构和控制结构。在分析蛇形曲线的基础上,提出幅值调整法、相位调整法和侧移调整法三种新方法,来处理蛇形机器人侧向滑动带来的方位偏转和完成蛇形机器人自主转弯控制,并给出几种方法的量化关系,建立动力学仿真模型进行了运动仿真。幅值调整法虽然使蛇形机器人转弯角度受到限制但却保证了运动的连续性和稳定性。相位调整法能够使蛇形机器人准确地完成转弯运动。侧移调整法能够实现蛇形机器人前进过程中的侧向位置调整,同时保证运动方向的准确性。将上述方法应用到蛇形机器人的控制中,用仿真和试验验证了以上方法的有效性。 关键词:蛇形机器人蛇形曲线幅值调整法相位调整法侧移 中图分类号:TP24 方法验证了此规划。 0前言 1蛇形机器人结构 蛇形机器人的研究开创了~个新的仿生机器人 研究领域。自20世纪70年代日本的第一条蛇形机沈阳自动化所的蛇形机器人在机构上采用模块器人问世,各国的许多研究人员开始了该类机器人化设计(如图1所示),每个模块具有自由度,多个模的研究,提出大量的相关理论‘1嘲,制作了多台样机。块按一定方式连接可以组装成三维蛇形机器人(如近几年,我国科技工作者也开始研究蛇形机器人【-“。图2所示)。在控制上,选用cAN总线的控制方式实蛇是一种无肢动物,依靠细长身体的蜿蜒运动现一点对多点的控制,满足实时控制的需要(如图3推动自身高速运动。根据蛇的运动原理制作的蛇形所示)。每个模块都装有一片嵌入式16位单片机,各机器人,可以克服轮式机器人和腿式机器人的缺点,个单片机独立处理关节的运动信息和传感信息,为能够在多种环境中运动。例如:在草地中爬行,在机器人的分布式控制提供有利条件。蛇形机器人头水中游泳,在凸凹不平的地面运动,在沼泽中前进;部安装有GPs定位系统、无线通信系统和摄像头,作为操作臂完成各种危险作业,进入狭小空间完成向主控计算机提供位置信息、通信和图像信息。蛇修补和抢救工作。而且蛇形机器人机构简单,模块形机器人尾部安装有电池,为蛇形机器人运动提供 min。目前,化设计能够实现可重构。另外,蛇形机器人的节律能源,该能源可供机器人至少运动40 运动为其控制提供了有利条件。沈阳自动化所已制所有模块实现了集成。 作出两代蛇形机器人功能样机,在设计和试验中积 累了很多宝贵经验。 首先介绍蛇形机器人结构,包括机械结构和控 制结构。然后,说明蛇形曲线,并在此基础上,提 出有关蛇形机器人转弯的幅值调整法和相位调整 法,同时提出了侧移运动的相关规划。对提出的几 种运动方法作了量化分析。最后,用仿真和试验的 +国家863高科技资助项目f2001从42236001。20∞0901收到初稿 图1蛇形机器人机构20040420收到修改稿  万方数据

仿生机器人的研究现状及其发展方向

第36卷第6期 上海师范大学学报(自然科学版)Vol.36,No.6 2007年12月 Journal of Shanghai Nor mal University(Natural Sciences)2007,Dec. 仿生机器人的研究现状及其发展方向 王丽慧,周 华 (上海师范大学机械与电子工程学院,上海201418) 摘 要:随着机器人智能化技术的进步,机器人应用领域的拓展,仿生机器人的研究正在引起世界各国研究者的关注.主要对仿生机器人的国内外研究状况进行了综述并对其未来的发展趋势作了展望. 关键词:仿生机器人;研究现状;发展方向 中图分类号:TP24 文献标识码:A 文章编号:100025137(2007)0620058205 人们对机器人的幻想与追求已有3000多年的历史,人类希望制造一种像人一样的机器,以便代替人类完成各种工作.1959年,第一台工业机器人在美国诞生,近几十年,各种用途的机器人相继问世,使人类的许多梦想变成了现实.随着机器人工作环境和工作任务的复杂化,要求机器人具有更高的运动灵活性和在特殊未知环境的适应性,机器人简单的轮子和履带的移动机构已不能适应多变复杂的环境要求.在仿生技术、控制技术和制造技术不断发展的今天,仿人及仿生物机器人相继被研制出来,仿生机器人已经成为机器人家族中的重要成员. 1 仿生机器人的基本概念 仿生机器人就是模仿自然界中生物的外部形状、运动原理和行为方式的系统,能从事生物特点工作的机器人.仿生机器人的类型很多,主要为仿人、仿生物和生物机器人3大类.仿生机器人的主要特点:一是多为冗余自由度或超冗余自由度的机器人,机构复杂;二是其驱动方式有些不同于常规的关节型机器人,通常采用绳索、人造肌肉或形状记忆合金等驱动. 2 仿生机器人的国内外研究现状 2.1 水下仿生机器人 水下机器人由于其所处的特殊环境,在机构设计上比陆地机器人难度大.在水下深度控制、深水压力、线路绝缘处理及防漏、驱动原理、周围模糊环境的识别等诸多方面的设计均需考虑.以往的水下机器人采用的都是鱼雷状的外形,用涡轮机驱动,具有坚硬的外壳以抵抗水压.由于传统的操纵与推进装置的体积大、重量大、效率低、噪音大和机动性差等问题一直限制了微小型无人水下探测器和自主式水下机器人的发展.鱼类在水下的行进速度很快,金枪鱼速度可达105k m/h,而人类最快的潜艇速度只有84km/h.所以鱼的综合能力是人类目前所使用的传统推进和控制装置所无法比拟的,鱼类的推进方式已成为人们研制新型高速、低噪音、机动灵活的柔体潜水器模仿的对象.仿鱼推进器效率可达到70%~ 收稿日期:2007209222 基金项目:上海师范大学理工科校级项目(SK200733). 作者简介:王丽慧(1972-),女,上海师范大学机械与电子工程学院副教授.

焊接机器人逆运动学位姿分析

1.1连杆的坐标系 应用D-H 法来建立机器人杆件的坐标系。在这种坐标系中,可以把机械手的任一连杆i (i=1,2,3···,n )看作是一个刚体,与它相邻的两个关节i 、i-1的轴线i 和i-1 之间的关系也由它确定,如图1,可以用以下四个参数描 式中,cθi =cosθi ,sθi =sinθi ,i=1,2,3,···,n 图1连杆坐标系{i}到{i-1}的变换 i αi-1/(rad )a i-1/(cm )d i /(cm 12340 90°090°042.5410014.520011.895.3表1机器人连杆参数表

定义了连杆坐标系和相应得连杆参数,就能建立运动学方程,焊接机器人末端关节的坐标系{n}相对于基础坐标系{0}中的齐次变换公式为: 对于6自由度的焊接机器人公式可以写为 (2 变换矩阵0 n T是关于n个关节变量的函数,这些变量 可以通过放置在关节上的传感器测得,则机器人末端连杆再基坐标系中的位置和姿态就能描述出来。 E n表示焊接机器人末端关节的姿态, 器人在世界坐标系中的位置。[3] 2机器人的逆运动学分析 逆运动学求解是已知机器人末端的位置和姿态即 求解机器人对应于该位置和姿态的关节角 只要0 n T表示的末端连杆坐标系的位置和姿态位于机 械手的可达空间内,则运动学方程至少有一个解, 达空间内,机械手具有任意姿态,导致运动学方程可能出现重解。 机器人的运动学方程是一组非线性方程式, 求解过程中,我们逐次在公式(4)的两端同时左乘一 即为 在上式两边的矩阵中寻找简单的表达式或常数, 对应相等,计算过程如下: ( ( ( ( ( (3求取各关节的解集 依靠D-H法求解关节角的过程是和焊接机器人本身的结构相关的,换句话说,也就是特定配置的机器人需要特定的解决方案。通过公式(6)-(16)可以看出每个关节角的结果是不唯一的,如果采用已有的求解方法,显而易见该过程是缓慢的,复杂的。本文提出了一种计算最终执行器位置的所有精确值的算法。该算法是在MATLAB 程实现的。通过该算法得到各节点的解是更快速、有效的。 用变换矩阵 6T定义一条具有两个端点A和B 轨迹,如公式(17)和(19)。从而θ能够被求出,如公式20)

1单元--snake-robot-蛇形机器人

1单元snake robot 蛇形机器人 space station 太空站seem possible 看起来可能 be able to (do) = can 能够 the World Cup 世界杯 2单元 look for 寻找keep out 不让……进入 in the future 在未来,在将来pay for 付款 come true (梦想)成为现实Teen Talk 青少年论坛 go skating 去滑冰in style 时髦的,流行的 fall in love with…爱上out of style 过时的 hundreds of 好几百,许许多多all kinds of 各种,多种 be free 免费on the one hand (在)一方面 in 100 years (用于将来时) 一百年后on the other hand (在)另一方面be in high school 上中学as…as possible 尽可能…地 live alone 独自居住=as…as sb can go swimming 去游泳get on with…与…相处,进展 see sb do sth 看见某人做…have a hair cut 理发 over and over again 一次又一次part-time job 兼职工作 get bored 厌烦call sb up=ring sb up 打电话给…… space rocket 太空火箭on the phone 在通话 electric toothbrush 电动牙刷What’s the matter (with)? 怎么了?computer programmer 电脑程序员What’s wrong (with)? 怎么了?live to be 200 years old 活到200岁the same as…与……同样的(书上重要表达)complain about 抱怨…… will be…将成为……argue with…与……争论 study on computer 在电脑上学习surprise sb 使…惊奇 as a reporter 作为一名记者borrow from…向……借 keep a pet 养一只宠物lend to…把…借给… during the week 在一周期间find out 发现,找出 wear a suit (uniform) 穿西装(制服)except me 除了我 at the weekend 在周末do wrong 做错事 on vacation 在假期under too much pressure 承受太多压力 predict the future 预测未来take part in 参加 the head of a company 公司负责人compare …with…把…和…比较need to do sth 需要做某事(书上重要表达) job interview 求职面视enough money 足够的钱 science fiction movie 科幻电影write sb a letter 给某人写信 just like…就像……a ball game 一场球赛 help with +名词帮助做某事talk about…谈论…话题 make sb do sth 使某人做……say sorry to…向…说对不起 It’s easy for sb to do sth 做某事很简单have a bake sale 卖烤点wake up 醒来buy….for…. 为…买… get a tutor 请家教get out of the shower 洗完澡 be popular at school 在学校受欢迎sleep late 睡懒觉

仿生机器人的研究综述

仿生机器人的研究综述 华明亚 (上海大学机电工程与自动化学院,上海200072) 摘要:在人类认识世界和改造世界的过程中,存在人类无法到达的地方和可能危及人类生命的特殊场合,如星球探测、深海探测、减灾救援和反恐活动等,而仿生机器人为解决上述问题提供了一条有效途径。随着机器人技术和仿生学的发展,仿生机器人的研究正受到学者们的普遍关注。在对仿生机器人进行分类的基础上,从地面仿生机器人、水下仿生机器人以及空中仿生机器人3个方而简要介绍了国内外典型仿生机器人的研究进展,并介绍其发展趋势。 关键词:仿生机器人;机器人运动;发展趋势; Research review on bionic robot Hua Mingya (School of mechanical engineering and automation, Shanghai University, Shanghai 200072, China) Abstract:: In the human understanding and transforming the world in the process, the existence of human beings can not reach the place and special occasions may endanger human life, such as planetary exploration, deep sea exploration,disaster relief and anti terrorist activities, and bionic robot provides an effective way for solving the above problems. With the development of robot technology and bionic, bionic robot research has received wide attention of scholars. In the classification based on bionic robot, bionic robot, bionic robot from air groundbionic robot, underwater 3 party and briefly introduced the research progress oftypical bionic robot at home and abroad, and introduces its development trend. Key words: Bionic robot; robot movement; development trend; 1 机器人的研究现状 1.1 机器人国外研究现状 由于仿生机器人所具有的灵巧动作对于人类的生产和科学研究活动有着极大的帮助,所以,自80年代中期以来,机器人科学家们就开始了有关仿生机器人的研究。 自1983年以来,美国Robotics Research Corporation以拟人臂组合化为设想,基于系列关节研制出K-1607等系列7自由度拟人单臂和K/ B 2017双臂一体机器人,其单臂K/ B 2017已用于空间站实验。

仿生四足机器人的研究:回顾与展望(3)

仿生四足机器人的研究:回顾与展望 摘要:本文侧重于仿生四足机器人。在这一领域的主要挑战是如何设计高动力性和高负载能力的仿生四足机器人。本文首先介绍了仿生四足机器人,尤其是具有里程碑意义的四足机器人的历史。然后回顾了仿生四足机器人驱动模式的现代技术。随后,描述了四足机器人的发展趋势。基于仿生四足机器人的技术现状,简要回顾了四足机器人的技术难点。又介绍了山东大学研制的液压四足机器人。最后是总结和展望未来的四足机器人。 一、导言 代替人类在复杂和危险的环境中工作的移动机器人的需求引起越来越多的关注,如煤矿井下,核电站,以及打击恐怖主义的战争。一般移动机器人可分为三种类型:空中机器人,水下机器人和地面机器人。地面机器人的开发主要是运用轨道或轮子。轮式和履带式机器人可以在平整地面工作,但大多数是无法在凹凸不平的地面上工作。换句话说,现有的地面机器人只能在部分地面工作。与轮式和履带式机器人相比,腿式机器人有可能适应更为广泛的地形,就像如同有腿的动物,几乎可以行走在所有的地形。例如,羚羊具有很强的运动能力,即便在高度复杂的环境中也一样。因此,近些年人们积极地投入腿式机器人的研究中。腿式机器人可以去动物能够到达的地方,应该要构建并运用于实际。尽管机器人技术领域取得了巨大成就,腿式机器人仍然远远落后于它们的仿生学 [1,2]。 基于机械结构,腿式机器人可分为步行机器人和爬行机器人。与爬行动物的机器人相比,步行机器人几乎与躯干垂直的腿被认为更适应载重。步行机器人可以有效地承受更大的载重。具有联合执行机构的步行机器人具有良好的行走速度和运输能力。因此,基于哺乳类动物的仿生机器人的研究已成为机器人领域的重要发展方向。 现已有一、二、三、四甚至更多条腿的腿式机器人。最普遍的是具有高效率步态和稳定性能的偶数条腿的腿式机器人[3]。在腿式机器人中,四足机器人具

仿生蜘蛛机器人的设计与研究

毕业设计(论文)仿生蜘蛛机器人的设计与研究 姓名:寇艳虎 学号: 专业:机械工程与自动化 系别:机械与电气工程系 指导教师:孔繁征 2021年4月

摘要 本文总结了背景和目标,仿生蜘蛛机器人的简单介绍。通过研究机器人的六足仿生的运动,这种设计已确定脚结构,使用3自由度的分析实现向前运动,把运动的机器人。想象的组件和装配映射仿生蜘蛛机器人以与相关部件的检查,确保机械设计的可行性都包含在总设计。 关键词:仿生;机器人;机构

ABSTRACT The paper has summarized the background and the goal of its topic and has made the simple introduction of the bionic hexapod robot. Through the research of the motion of the six feet of the robot, This design has determined the foot structure,using the analysis of 3 degrees of freedom realizes the forward motion and turning motion of the robot . Picturing of the component and assembly mapping of the bionic hexapod robot as well as the inspection of related parts which ensures the feasibility of the machinery design are both included in the total design. KEYWORDS:bionics ;hexapod robot ;machinery

浅谈仿生机器人的发展

《学科前沿》论文 浅谈仿生机器人的发展 机器人技术作为一门新兴学科,在工业飞速发展的今天扮演着非常重要的作用,而其发展与机械电子、机电一体化、控制原理等多学科的发展息息相关。仿生机器人作为机器人领域的一大分支,可以说是本世纪一个不可忽视的领域,也将是机器人日后发展的大方向。 仿生学是20世纪60年代出现的一门综合性边缘学科,它由生命科学与工程技术科学相互渗透、相互结合而成。它在精密雷达、水中

声纳、导弹制导等许多应用领域中都功不可没。仿生学将有关生物学原理应用到对工程系统的研究与设计中,尤其对当今日益发展的机器人科学起到了巨大的推动作用。当代机器人研究的领域已经从结构环境下的定点作业中走出来,向航空航天、星际探索、军事侦察攻击、水下地下管道、疾病检查治疗、抢险救灾等非结构环境下的自主作业方面发展.未来的机器人将在人类不能或难以到达的已知或未知环境里为人类工作。人们要求机器人不仅适应原来结构化的、已知的环境,更要适应未来发展中的非结构化的、未知的环。除了传统的设计方法,人们也把目光对准了生物界,力求从丰富多彩的动植物身上获得灵感,将它们的运动机理和行为方式运用到对机器人运动机理和控制的研究中,这就是仿生学在机器人科学中的应用。这一应用已经成为机器人研究领域的热点之一,势必推动机器人研究的蓬勃展。 自然界生物的运动行为和某些机能已成为机器人学者进行机器 人设计、实现其灵活控制的思考源泉,导致各类仿生机器人不断涌现。仿生机器人就是模仿自然界中生物的外部形状或某些机能的机器人 系统。仿生机器人的类型很多,按其模仿特性分为仿人类肢体和仿非人生物两大类。由于仿生机器人所具有的灵巧动作对于人类的生产和科学研究活动有着极大的帮助,所以,自80年代中期以来,机器人科学家们就开始了有关仿生机器人的研究。仿人型步行机器人是目前机器人技术的前沿课题,是具有挑战性的技术难题之一。日本本田公司和大阪大学联合推出的P2和P9型仿人步行机器人代表了当今世界的最高水平。仿非人生物机器人的研究近二十年来一直是一个非常活跃的

蛇形机器人在障碍物环境中的运动研究

摘要 蛇形机器人要走向实际应用,必须着力解决的首要问题是如何在复杂环境中运动以及实现适应环境的避障基础理论问题。本文致力于研究蛇形机器人在复杂环境中的避障运动。 目前蛇形机器人普遍采用模块化结构,以便于设计安装和节约成本。蜿蜒运动是蛇形机器人通过各个模块间规律性的振荡推动整个蛇体运动的一种运动步态,是蛇形机器人运动效率较高的一种运动方式[1]。这种运动方式不同于普通的行走机器人,维护模块之间的规律性振荡产生蜿蜒运动使运动控制变得复杂,更增加了复杂环境中路径规划的难度。本文在蜿蜒运动理论基础上,基于几何法、人工势能法和改进后的人工势能法对蛇机器人在障碍物环境下的运动进行规划。利用几何方法探讨了通过规划蛇头与规划整个蛇体对蛇形机器人运动路径的影响,得到更有利于运动稳定性的规划方法,为人工势能法奠定基础。应用人工势能法中将障碍物赋予高势能产生排斥力,将目标赋予低势能产生吸引力,使蛇形机器人在排斥力与吸引力的作用下避开障碍物到达目标。在人工势能法中,蛇形机器人在纵向方向偏移障碍物的距离过大,这不仅浪费了能量,而且增加了运动时间。综合蛇形机器人前进方向与障碍物势能的关系,对人工势能法进行改进。将障碍物产生的排斥力组成的等势面改成椭圆形,不仅缩短了运动路径更提高蛇形机器人的运动稳定性。分析外力对蛇形机器人的运动方向及运动稳定性的影响,建立了避障过程中的力学理论。最后,通过3D 动力学模型模拟真实机器人在障碍物环境中的避障运动,验证了避障方法的可行性。 本文的研究对蛇形机器人在障碍物环境中的路径规划具有推动作用,为蛇形机器人的应用奠定理论基础。 关键词:蛇形机器人;障碍物;人工势能;运动;动力学

仿生六足机器人研究报告学士学位论文

项目研究报告 ——小型仿生六足探测机器人 一、课题背景: 仿生运动模式的多足步行机器人具有优越的越障能力,它集仿生学原理、机构学理论、自动控制原理与技术、计算机软件开发技术、传感器检测技术和电机驱动技术于一体。 不论在何种地面上行走,仿生六足机器人的运动都具有灵活性与变化性,但其精确控制的难度很大,需要有良好的控制策略与精密的轨迹规划,这些都是很好的研究题材。 二、项目创新点: 作为简单的关节型伺服机构,仿生六足机器人能够实现实时避障,合理规划行走路线。 简单的关节型机器人伺服系统不仅具有可批量制造的条件,作为今后机器人群系统的基本组成,也可以作为探索复杂伺服机构的研究对象。 三、研究内容: 1.仿生学原理分析: 仿生式六足机器人,顾名思义,六足机器人在我们理想架构中,我们借鉴了自然界昆虫的运动原理。 足是昆虫的运动器官。昆虫有3对足,在前胸、中胸和后胸各有一对,我们相应地称为前足、中足和后足。每个足由基节、转节、腿节、胫节、跗节和前跗节几部分组成。基节是足最基部的一节,多粗短。转节常与腿节紧密相连而不活动。腿节是最长最粗的一节。第四节叫胫节,一般比较细长,长着成排的刺。第五节叫跗节,一般由2-5个亚节组成﹔为的是便于行走。在最末节的端部还长着两个又硬又尖的爪,可以用它们来抓住物体。 行走是以三条腿为一组进行的,即一侧的前、后足与另一侧的中足为一组。这样就形成了一个三角形支架结构,当这三条腿放在地面并向后蹬时,另外三条腿即抬起向前准备替换。 前足用爪固定物体后拉动虫体向前,中足用来支持并举起所属一侧的身体,后足则推动虫体前进,同时使虫体转向。 这种行走方式使昆虫可以随时随地停息下来,因为重心总是落在三角支架之内。并不是所有成虫都用六条腿来行走,有些昆虫由于前足发生了特化,有了其他功用或退化,行走就主要靠中、后足来完成了。 大家最为熟悉的要算螳螂了,我们常可看到螳螂一对钳子般的前足高举在胸前,而由后面四条足支撑地面行走。

仿生机器人的机构设计及运动仿真

前言 随着仿生学与机器人技术的飞速发展,仿生机器人已日益成为机器人领域的研究热点。仿生学将有关生物学原理应用到对工程系统的研究与设计中,尤其对当今日益发展的机器人科学起到了巨大的推动作用[3]。当代机器人研究的领域已经从结构环境下的定点作业中走出来,向航空航天、星际探索、海洋探索、水下洞穴探索、军事侦察、军事攻击、军事防御、水下地下管道探测与维修、疾病检查治疗、抢险救灾等非结构环境下的自主作业方面发展,未来的机器人将在人类不能或难以到达的已知或未知环境里工作。人们要求机器人不仅要适应原来结构化的、己知的环境,更要适应未来发展中的非结构化的、未知的环境。除了传统的设计方法,人们也把目光对准了生物界,力求从丰富多彩的动植物身上获得灵感,将它们的运动机理和行为方式运用到对机器人运动机理和控制的研究中,这就是仿生学在机器人科学中的应用。 本文结合当前仿生机器人的研究现状与未来发展方向,以慧鱼机器人模型为平台制作对机械本体结构、传动系统,控制系统的软件编程进行了系统设计及介绍。现对研究和实验当中取得的主要成果总结如下: 1.通过对甲虫六条腿的结构与功能的研究,设计了六足仿生机器人的足的结构,实现了机器人的结构仿生。 2.在对仿生模型的结构仿生与运动仿生分析的基础上,确定了采用慧鱼ROBO接口板作为控制器。 3.利用慧鱼ROBO接口板实现了电机和微动的控制,从而对机器人进行运动控制。 4.根据三角步态原理,设计了前进、后退以及转弯等不同运动状态。并对机器人进行了运动分析,得出了一般的结论。 5.以慧鱼公司开发的编程软件:ROBO PRO,对机器人进行软件编程,使它按规定的路线运动,实现对其运动的控制。 本次毕业设计的目的和意义是综合运用大学四年里所学到的基础理论知识达到设计目的并提高自己分析问题和解决问题的能力,提高机械控制系统设计、操纵机构的设计能力及运用PRO/E设计软件的建模能力,并增强自身的动手能力与计算机编程能力。 本课题的研究前景十分广阔。例如,可以通过对海蟹的研究,进行仿生设计,制造出海陆两用的仿生机器人,建立基于环境适应行为的智能运动控制策略。在此基础上,为未来智能化近海两栖作战新概念武器结构设计与分析提供新方法。 对于跟踪国际先进军事技术,建立新型作战武器有重要意义。同时,开展对海的

SCARA机器人的运动学分析

电子科技大学 实验报告 学生姓名: 一、实验室名称:机电一体化实验室 二、实验项目名称:实验三SCARA 学号: 机器人的运动学分析 三、实验原理: 机器人正运动学所研究的内容是:给定机器人各关节的角度,计算机器人末端执行器相对于参考坐标系的位置和姿态问题。 各连杆变换矩阵相乘,可得到机器人末端执行器的位姿方程(正运动学方程) 为: n x o x a x p x 0T40T1 11T2 22T3 d3 n y o y a y p y ( 1-5)3T4 4= o z a z p z n z 0001 式 1-5 表示了 SCARA 手臂变换矩阵0 T4,它描述了末端连杆坐标系{4} 相对基坐标系 {0} 的位姿,是机械手运动分析和综合的基础。 式中: n x c1c2c4s1 s2 c4 c1 s2s4s1 c2 s4,n y s1c2 c4c1 s2 c4s1 s2 s4c1c2 s4 n z0 , o x c1c2 s4s1 s2 s4 c1 s2 c4s1c2c4 o y s1c2 s4c1 s2 s4s1 s2 c4c1c2c4 o z0 , a x0 , a y0 , a z1 p x c1 c2 l2s1s2l 2c1l 1, p y s1c2 l 2 c1 s2 l 2 s1l1, p z d3 机器人逆运动学研究的内容是:已知机器人末端的位置和姿态,求机器人对应于这个位置和姿态的全部关节角,以驱动关节上的电机,从而使手部的位姿符合要求。与机器人正运动学分析不同,逆问题的解是复杂的,而且具有多解性。

1)求关节 1: 1 A arctg 1 A 2 l 12 l 22 p x 2 p y 2 arctg p x 式中:A p x 2 ; p y 2l 1 p y 2 2)求关节 2: 2 r cos( 1 ) arctg ) l 1 r sin( 1 式中 : r p x 2 p y 2 ;arctg p x p y 3). 求 关节变 量 d 3 令左右矩阵中的第三行第四个元素(3.4)相等,可得: d 3 p z 4). 求 关节变 量 θ 4 令左右矩阵中的第二行第一个元素(1.1,2.1 )相等,即: sin 1 n x cos 1n y sin 2 cos 4 cos 2 sin 4 由上式可求得: 4 arctg ( sin 1 n x cos 1 n y )2 cos 1 n x sin 1 n y 四、实验目的: 1. 理解 SCARA 机器人运动学的 D-H 坐标系的建立方法; 2. 掌握 SCARA 机器人的运动学方程的建立; 3. 会运用方程求解运动学的正解和反解; ( 1-8) ( 1-9) ( 1-10 )

仿生机器人关键技术

仿生机器人关键技术 “仿生机器人”是指模仿生物、从事生物特点工作的机器人。,涉及到机械设计、计算机、传感器、自动控制、人机交互、仿生学等多个学科。因此,机器人领域中需要研究的问题非常多。主要研究问题包括以下五个方面: 1 建模问题 仿生机器人的运动具有高度的灵活性和适应性。其一般都是冗余度或超冗余度机器人,结构复杂,运动学和动力学模型与常规机器人有很大差别,且复杂程度更大。为此,研究建模问题,实现机构的可控化是研究仿生机器人的关键问题之一。 2 控制优化问题 机器人的自由度越多,机构越复杂,必将导致控制系统的复杂化。复杂巨系统的实现不能全靠子系统的堆积,要做到整体大于组分之和,同时要研究高效优化的控制算法才能使系统具有实时处理能力。 3 信息融合问题 在仿生机器人的设计开发中,为实现对不同物体和未知环境的感知,都装备有一定量的传感器。多传感器的信息融合技术是实现其具有一定智能的关键。信息融合技术把分布在不同位置的多个同类或不同类的传感器所提供的局部环境的不完整信息加以综合,消除多传感器信息之间可能存在的冗余和矛盾,从而提高系统决策、规划、反应的快速性和正确性。 4 机构设计问题 合理的机构设计是仿生机器人实现的基础。生物的形态经过千百万年的进化,其结构特征极具合理性,而要用机械来完全仿制生物体几乎是不可能的,只有在充分研究生物肌体结构和运动特性的基础上提取其精髓进行简化,才能开发全方位关节机构和简单关节组成高灵活性的机器人机构。 5 微传感和微驱动问题 微型仿生机器人有些已不是传统常规机器人的按比例缩小,它的开发涉及到电磁、机械、热、光、化学、生物等多学科。对于微型仿生机器人的制造,需要解决一些工程上的问题,如动力源、驱动方式、传感集成控制以及同外界的通讯等。实现微传感和微驱动的一个关键技术是机电光一体结合的微加工技术。同时,在设计时必须考虑到尺寸效应、新材料、新、工艺等问题。

六自由度机器人运动分析及优化

本 科 毕 业 论 文(设 计) 题目(中文 学学 完 成 日 期 2017 年 3 月

摘要 当今世界,工业化日趋成熟,机器人被广泛的应用于各行各业,最常用到的有四自由度,六自由度机器人。其中,自动化水平较高的汽车制造业和电子装配业经常常常要使用到六自由度机器人。因此对其实施运动学分析,是进行科学设计的基础,也是降低机器人生产成本,优化机器人运动轨迹的前提。此外,运动分析过程有效的模拟了机器人运动的真实情况,有助于提供有效可行的优化方案。本文主要探讨六自由度机器人的运动分析,基于经典运动学以及动力学的研究方法概念,首先通过solidworks做出机械臂各部分零件的三维图,然后通过SolidWorks装配出六自由度机器人机械臂的三维模型。通过该模型,选取其中一个关节和底座,并用SolidWorks进行运动学分析,对六自由度机器人的运动学和动力学计算方法进行了仿真验证。最后得到六自由度机器人的其中一个自由度的运动仿真实例。通过对该运动仿真实例的分析,得出最佳优化方案,优化机器人的运动轨迹提高机器人的工作效率,降低机器人生产成本。 关键词:六自由度机器人;运动分析;运动学;动力学;

目录 摘要 ...................................................................................................................... I Abstract ............................................................................... 错误!未定义书签。 1 绪论 (1) 1.1课题背景及研究的目的和意义 (1) 1.2机器人国内外发展现状及前景展望--------------------------1 2 六自由度机器人运动学分析 (3) 2.1六自由度机器人的结构-------------------------------------1 2.2运动学分析----------------------------------------------1 3 六自由度机器人动力学分析 (5) 3.1综述----------------------------------------------------3 3.2机器人动力学研究方法------------------------------------3 3.2.1几项假设-------------------------------------------3 3.2.2目标-----------------------------------------------4 3.2.3数学工具-------------------------------------------5 3.3动力学原理----------------------------------------------3 3.3.1动量矩定理---------------------------------------------------------------6 3.3.2能量守恒定理--------------------------------------6 3.3.3牛顿—欧拉方程------------------------------------7 3.3.4达朗贝尔原理--------------------------------------8 3.3.5拉格朗日方程--------------------------------------9 4 六自由度机器人运动分析 (8) 4.1运动分析的软件背景---------------------------------------3 4.2运用solidworks建立六度机器人机械臂三维模型--------------9 4.3运用Solidworks对进行运动学分析-------------------------4 5 结论 (14)

基于MATLAB的仿人焊接机械手运动学分析和仿真_王求

作者简介:王求(1978-),男,在读硕士研究生;研究方向为焊接机器人运动学,材料焊接及其数值模拟。 合肥工业大学材料科学与工程学院 王求 胡小建 李雷阵 摘 要:关键词:针对在狭小空间或密闭容器内以及危险作业环境中焊接的特殊要求,以UG软件为基础设计了一种仿人焊接 机械手。采用D-H方法建立了焊接机械手的运动学方程,并讨论了该机械手的运动学问题。然后运用MATLAB软件对机械手的运动学进行了仿真,通过仿真观察到机械手各个关节的运动,并得到所需的数据,说明了所设计参数的合理性和运动算法的正确性,为焊接机械手的动力学、控制及轨迹规划的研究提供了可靠的依据。焊接机械手;运动学;仿真;Matlab 基于MATLAB的仿人焊接机械手运动学分析和仿真 机器人技术作为信息技术和先进制造技术的典型代表和主要技术手段,已成为世界各发达国家竞相发展的高技术,其发展水平已经成为衡量一个国家技术发展水平的重要标志之一。焊接是制造业中最重要的工艺技术之一,它在机械制造、核工业、航空航天、能源交通、石油化工及建筑和电子等行业中的应用越来越广泛。从21世纪先进制造技术的发展要求来看,焊接自动化生产已是必然趋势,而焊接机器人是焊接自动化的革命性进步 。但是现阶段的焊接机器人都是具 有固定底座的机械手(臂),只能在固定位置完成一定范围内的操作,适应性较低。进行复杂苛刻条件(如小直径的容器内径中焊接)和危险环境(如有辐射等作业环境)中焊接作业时,要求可以代替人类从事焊接作业的机器人,而焊接机械手是实现焊接机器人的关键技术,因此设计出一种小型焊接机械手,可以作为仿人焊接机器人的执行末端,也可以直接作为 [1] [2] 焊接的执行末端,能代替焊工实现在狭小空间或者密闭容器内以及危险作业环境中的焊接。本文根据预定要求对焊接机械手进行机械结构设计,以UG软件进行造型,然后运用D-H坐标系理论为基础建模,讨论了机械手的运动学问题,并运用Matlab中的Ro-boticsToolbox完成了机械手的运动学仿真和轨迹规划。 机械手主要用于点焊或弧焊,其 末端载荷要求不高,能够承受焊枪质量即可,以抓持力1kg为依据进行设计。考虑机械手的工作条件,机械手本体质量小于10kg。机械手本体由基座、肩部、大臂、小臂、手腕、末端执行器所组成,共6个自由度,其中前3个自由度用于控制焊枪端部的空间位置,后3个自由度用于控制焊枪的空间姿态。机械手共6个关节,6个关节全部为转动关节,每个关节实现1个自由度,6个关节实现的运动分别是:1-肩部回转;2-大臂俯仰;3-小臂俯仰;4-小臂回转;5-手腕俯仰;6-手腕 [3] [4] 1焊接机械手结构设计 回转,如图1所示。根据机械手的设计要求,对机械手进行整体设计,使用UG软件进行机械手的三维建模,三维造型如图2所示。 机械手的运动学主要研究机械手 相对于固定参考系的运动,特别是研究机械手末端执行器位置和姿态与关节空间变量的关系。机械手运动学要 2运动学分析 [5]Analysis and simulation of kinesiology of simulated welding mechanical hand based on MATLAB

六轴运动机器人运动学求解分析

六轴联动机械臂运动学及动力学求解分析 V0.9版 随着版本的不断更新,旧版本文档中的一些笔误得到了修正,同时文档内容更丰富,仿真程序更完善。 作者朱森光 Email zsgsoft@https://www.wendangku.net/doc/cd7054491.html, 完成时间 2016-02-28

1引言 笔者研究六轴联动机械臂源于当前的机器人产业热,平时比较关注当前热门产业的发展方向。笔者从事的工作是软件开发,工作内容跟机器人无关,但不妨碍研究机器人运动学及动力学,因为机器人运动学及动力学用到的纯粹是数学和计算机编程知识,学过线性代数和计算机编程技术的人都能研究它。利用业余时间翻阅了机器人运动学相关资料后撰写此文,希望能够起到抛砖引玉的作用引发更多的人发表有关机器人技术的原创性技术文章。本文内容的正确性经过笔者编程仿真验证可以信赖。 2机器建模 既然要研究机器人,那么首先要建立一个机械模型,本文将以典型的六轴联动机器臂为例进行介绍,图2-1为笔者使用3D技术建立的一个简单模型。首先建立一个大地坐标系,一般教科书上都是以大地为XY平面,垂直于大地向上方向为Z轴,本文为了跟教科书上有所区别同时不失一般性,将以水平向右方向为X轴,垂直于大地向上方向为Y轴,背离机器人面向人眼的方向为Z轴,移到电脑屏幕上那就是屏幕水平向右方向为X轴,屏幕竖直向上方向为Y轴,垂直于屏幕向外为Z轴,之所以建立这样不合常规的坐标系是希望能够突破常规的思维定势训练在任意空间建立任意坐标系的能力。 图2-1 图2-1中的机械臂,底部灰色立方体示意机械臂底座,定义为关节1,它能绕图中Y轴旋转;青色长方体示意关节2,它能绕图中的Z1轴旋转;蓝色长方体示意关节3,它能绕图中的Z2轴旋转;绿色长方体示意关节4,它能绕图中的X3轴旋转;深灰色长方体示意关节5,它能绕图中的Z4轴旋转;末端浅灰色机构示意关节6即最终要控制的机械手,机器人代替人的工作就是通过这只手完成的,它能绕图中的X5轴旋转。这儿采用关节这个词可能有点不够精确,先这么意会着理解吧。 3运动学分析 3.1齐次变换矩阵 齐次变换矩阵是机器人技术里最重要的数学分析工具之一,关于齐次变换矩阵的原理很多教科书中已经描述在此不再详述,这里仅针对图2-1的机械臂写出齐次变换矩阵的生成过程。首先定义一些变量符号,关节1绕图中Y轴旋转的角度定义为θ0,当θ0=0时,O1点在OXYZ坐标系内的坐标是(x0,y0,0);关节2绕图中的Z1轴旋转的角度定义为θ1,图中的θ1当前位置值为+90度;定义O1O2两点距离为x1,关节3绕图中的Z2轴旋转的角度定义为θ2,图中的θ2当前位置值为-90度;O2O3两点距离为x2,关节4绕图中的X3轴旋转的角度定义为θ3, 图中的θ3当前位置值为0度;O3O4两点距离为x3,关节5绕图中的Z4轴旋转的角度定义为θ4, 图中的θ4当前位置值为-60度;O4O5两点距离为x4,关节6绕图中的X5轴旋转的角度定义为θ5, 图中的θ5当前位置值为0度。以上定义中角度正负值定义符合右手法则,所有角度定义值均为本关节坐标系相对前一关节坐标系的相对旋转角度值(一些资料上将O4O5两点重合在一起即O4O5两点的距离x4退化为零,本文定义x4大于零使得讨论时更加不失一般性)。符号定义好了,接下来描述齐次变换矩阵。 定义R0为关节1绕Y轴的旋转矩阵 =cosθ0 s0 = sinθ0 //c0 R0 =[c0 0 s0 0 0 1 0 0 0 c0 0 -s0 0 0 0 1] 定义T0为坐标系O1X1Y1Z1相对坐标系OXYZ的平移矩阵 T0=[1 0 0 x0 0 1 0 y0 00 1 0 0 0 0 1] 定义R1为关节2绕Z1轴的旋转矩阵 R1=[c1 –s1 0 0 s1 c1 0 0

相关文档