文档库 最新最全的文档下载
当前位置:文档库 › 意法半导体最新MEMS资料大全

意法半导体最新MEMS资料大全

江苏高校的半导体物理复习资料(整理后)

一、填充题 1. 两种不同半导体接触后, 费米能级较高的半导体界面一侧带电 达到热平衡后两者的费米能级。 2. 半导体硅的价带极大值位于k空间第一布里渊区的中央,其导带极小值位于 方向上距布里渊区边界约0.85倍处,因此属于半导体。 3. 晶体中缺陷一般可分为三类:点缺陷,如;线缺陷, 如;面缺陷,如层错和晶粒间界。 4. 间隙原子和空位成对出现的点缺陷称为; 形成原子空位而无间隙原子的点缺陷称为。 5.杂质可显著改变载流子浓度;杂质可显著改变非平衡载流子的寿命,是有效的复合中心。 6. 硅在砷化镓中既能取代镓而表现为,又能取代砷而表现 为,这种性质称为杂质的双性行为。 7.对于ZnO半导体,在真空中进行脱氧处理,可产生,从而可获得 ZnO半导体材料。 8.在一定温度下,与费米能级持平的量子态上的电子占据概率为,高于费米能级2kT能级处的占据概率为。 9.本征半导体的电阻率随温度增加而,杂质半导体的电阻率随温度增加,先下降然后,再单调下降。

10.n型半导体的费米能级在极低温(0K)时位于导带底和施主能级之间处,随温度升高,费米能级先上升至一极值,然后下降至。 11. 硅的导带极小值位于k空间布里渊区的方向。 12. 受主杂质的能级一般位于。 13. 有效质量的意义在于它概括了半导体的作用。 14. 除了掺杂,也可改变半导体的导电类型。 15. 是测量半导体内载流子有效质量的重要技术手段。 16. PN结电容可分为和扩散电容两种。 17. PN结击穿的主要机制有、隧道击穿和热击穿。 18. PN结的空间电荷区变窄,是由于PN结加的是电压。 19.能带中载流子的有效质量反比于能量函数对于波矢k的, 引入有效质量的意义在于其反映了晶体材料的的作用。 20. 从能带角度来看,锗、硅属于半导体,而砷化稼 属于半导体,后者有利于光子的吸收和发射。 21.除了这一手段,通过引入也可在半导体禁带中引入能级,从而改变半导体的导电类型。 22. 半导体硅导带底附近的等能面是沿方向的旋转椭球面,载流 子在长轴方向(纵向)有效质量m l 在短轴方向(横向)有效质量m t 。 23.对于化学通式为MX的化合物半导体,正离子M空位一般表现

大功率半导体激光器件最新发展现状分析

大功率半导体激光器件最新发展现状分析 1 引言 半导体激光器由于具有体积小、重量轻、效率高等众多优点,诞生伊始一直是激光领域的关注焦点,广泛应用于工业、军事、医疗、通信等众多领域。但是由于自身量子阱波导结构的限制,半导体激光器的输出光束质量与固体激光器、CO2激光器等传统激光器相比较差,阻碍了其应用领域的拓展。近年来,随着半导体材料外延生长技术、半导体激光波导结构优化技术、腔面钝化技术、高稳定性封装技术、高效散热技术的飞速发展,特别是在直接半导体激光工业加工应用以及大功率光纤激光器抽运需求的推动下,具有大功率、高光束质量的半导体激光器飞速发展,为获得高质量、高性能的直接半导体激光加工设备以及高性能大功率光纤激光抽运源提供了光源基础。 2 大功率半导体激光器件最新进展 作为半导体激光系统集成的基本单元,不同结构与种类的半导体激光器件的性能提升直接推动了半导体激光器系统的发展,其中最为主要的是半导体激光器件输出光束发散角的降低以及输出功率的不断增加。 2.1 大功率半导体激光器件远场发散角控制 根据光束质量的定义,以激光光束的光参数乘积(BPP)作为光束质量的衡量指标,激光光束的远场发散角与BPP成正比,因此半导体激光器高功率输出条件下远场发散角控制直接决定器件的光束质量。从整体上看,半导体激光器波导结构导致其远场光束严重不对称。快轴方向可认为是基模输出,光束质量好,但发散角大,快轴发散角的压缩可有效降低快轴准直镜的孔径要求。慢轴方向为多模输出,光束质量差,该方向发散角的减小直接提高器件光束质量,是高光束半导体激光器研究领域关注的焦点。 在快轴发散角控制方面,如何兼顾快轴发散角和电光效率的问题一直是该领域研究热点,尽管多家研究机构相续获得快轴发散角仅为3o,甚至1o的器件,但是基于功率、光电效率及制备成本考虑,短期内难以推广实用。2010年初,德国费迪南德-伯恩研究所(Ferdinand-Braun-Inst itu te)的P. Crump等通过采用大光腔、低限制因子的方法获得了30o快轴发散角(95%能量范围),光电转换效率为55%,基本达到实用化器件标准。而目前商用高功率半导体激光器件的快轴发散角也由原来的80o左右(95%能量范围)降低到50o以下,大幅度降低了对快轴准直镜的数值孔径要求。 在慢轴发散角控制方面,最近研究表明,除器件自身结构外,驱动电流密度与热效应共同影响半导体激光器慢轴发散角的大小,即长腔长单元器件的慢轴发散角最易控制,而在阵列器件中,随着填充因子的增大,发光单元之间热串扰的加剧会导致慢轴发散角的增大。2009年,瑞士Bookham公司制备获得的5 mm腔长,9XX nm波段10 W商用器件,成功将慢轴发散角(95%能量范围)由原来的10o~12o降低到7o左右;同年,德国Osram公司、美国相干公司制备阵列器件慢轴发散角(95%能量范围)也达7o水平。 2.2 半导体激光标准厘米阵列发展现状 标准厘米阵列是为了获得高功率输出而在慢轴方向尺度为1 cm的衬底上横向并联集成多个半导体激光单元器件而获得的半导体激光器件,长期以来一直是大功率半导体激光器中最常用的高功率器件形式。伴随着高质量、低缺陷半导体材料外延生长技术及腔面钝化技术的提高,现有CM Bar的腔长由原来的0.6~1.0 mm增大到2.0~5.0mm,使得CM Bar输出功率大幅度提高。2008年初,美国光谱物理公司Hanxuan Li等制备的5 mm腔长,填充因子为83%的半导体激光阵列,利用双面微通道热沉冷却,在中心波长分别为808 nm,940 nm,980 nm处获得800 W/bar,1010W/bar,950 W/bar的当前实验室最高CM Bar连续功率输出水平。此外,德国的JENOPTIK公司、瑞士的Oclaro公司等多家半导体激光供应商也相续制备获得千瓦级半导体激光阵列,其中Oclaro公司的J. Müller等更是明确指出,在现有技术

意法半导体(ST)

ROM,提高了产品制造的灵活性,缩短了从设计到制造的准备时间,同时90nm 技术还提高了成本效益。 新的ST21F系列产品使卡制造商能够对飞速变化的手机市场需求做出快速的注重成本效益的反应,然后在制造工序的智能卡个性化阶段自定义应用程序,用一个产品解决多家移动通信网络运营商(MNOs)的要求。因为与一个特定的运营商无关,所以新产品降低了供应链的风险和复杂性。 ST21F384的内核是一个8/16位CPU,线性寻址宽度16MB,典型工作频率21MHz。芯片内置7KB用户RAM存储器,以及128字节页面的384KB闪存,耐擦写能力与早期安全微控制器的EEPROM存储器相当。电流消耗完全符合2G和3G的电源规格,达到了(U)SIM的应用要求。该微控制器含有一个硬件DES (数据加密标准)加速器和用户可以访问的CRC (循环冗余代码)计算模块。 如果采用了这个闪存安全型微控制器,卡制造商将能够缩短在整个制造工序中从设计到投产的准备时间,验证卡上的操作系统(OS)和向运营商提供样片所需的时间会更短。因为可以库存没有编程的空白芯片,所以新产品还有助于缩短产品的量产周期,同时还会大幅度缩短操作功能升级和实现新的MNO要求所需的周期。 由于应用程序保存在闪存内,卡制造商无需再支付ROM掩模成本;此外,因为只需实现最终客户需要的功能,而不必设计一个标准解决方案,应用软件本身可以写得更小。ST的片上闪存装载器提供一个成本低廉的操作系统装载功能。 ST21F384的样片现已上市,定于2007年12月量产。ST的封装能力在业界堪称独一无二,其智能卡IC有两种封装形式:切割过的晶片和先进微型模块,其中模块的集成度和安全性都非常出色。 ST21F384产品分为切割过的晶片或没切割过的晶片,模块封装分为6触点(D17)和8触点(D95)两个规格,符合欧洲RoHS环保标准,触点排列符合ISO 7816-2标准。订购100000颗晶片,每颗0.45美元。

意法半导体发布迄今性能最强的电视系统芯片

意法半导体发布迄今性能最强的电视系统芯片 横跨多重电子应用领域、全球领先的半导体供应商、全球领先的数字 电视及机顶盒芯片提供商意法半导体(STMicroelectronics,简称ST)将在2012 中国国际广播电视信息网络展览会(CCBN)上展出Newman 电视系统芯片(System-on-Chip,SoC)系列的首款产品。新系列产品是意法半导体的业界领先的电视广播互联网服务多功能电视平台的一部分。代号为Newman Ultra 的新产品FLI7680 拥有市场上无与伦比的性能,亦代表了智能电视(Smart TV)系统芯片技术水平的一次巨大飞跃。 随着高价值内容不断演进,除第一代电视广播宽带上网综合服务外,电 视还需要支持全新的增值服务和产业生态系统,例如Google TV。Newman Ultra 系统架构具有市场领先的性能,让电视应用程序具有令人惊喜的反应速度,同时拥有极其出色的视频解码功能,远超市场同类产品。有了这款芯片,消费 者只需通过一台智能电视机即可播放多种视频源,运行大量应用软件。 意法半导体WAVE 产品部总经理Luigi Mantellassi 表示:随着智能电视的概念正在快速演进,对处理性能、功能集成度、设计灵活性和数据安全的要 求不断提高。凭借我们在全球市场的领先地位和机顶盒软件开发能力,Newman Ultra 系统芯片让我们的客户能够扩大品牌价值,研制一个集传统电视广播、视频点播(Video on Demand,VOD)、游戏以及社交网络于一体的终极娱乐平台。 在优化平板电视技术的同时,Newman Ultra 还将继续使用Faroudja 品牌的音视频处理创新技术,为消费者带来无与伦比的视听盛宴。从大屏幕投影影院,到4Kx2K 3D 大屏幕,Faroudja 仍然是市场公认的高品质标杆。

半导体集成电路习题及答案

第1章 集成电路的基本制造工艺 1.6 一般TTL 集成电路与集成运算放大器电路在选择外延层电阻率上有何区别?为什么? 答:集成运算放大器电路的外延层电阻率比一般TTL 集成电路的外延层电阻率高。 第2章 集成电路中的晶体管及其寄生效应 复 习 思 考 题 2.2 利用截锥体电阻公式,计算TTL “与非”门输出管的CS r 2.2 所示。 提示:先求截锥体的高度 up BL epi mc jc epi T x x T T -----= 然后利用公式: b a a b WL T r c -? = /ln 1ρ , 2 1 2?? =--BL C E BL S C W L R r b a a b WL T r c -? = /ln 3ρ 321C C C CS r r r r ++= 注意:在计算W 、L 时, 应考虑横向扩散。 2.3 伴随一个横向PNP 器件产生两个寄生的PNP 晶体管,试问当横向PNP 器件在4种可能 的偏置情况下,哪一种偏置会使得寄生晶体管的影响最大? 答:当横向PNP 管处于饱和状态时,会使得寄生晶体管的影响最大。 2.8 试设计一个单基极、单发射极和单集电极的输出晶体管,要求其在20mA 的电流负载下 ,OL V ≤0.4V ,请在坐标纸上放大500倍画出其版图。给出设计条件如下: 答: 解题思路 ⑴由0I 、α求有效发射区周长Eeff L ; ⑵由设计条件画图 ①先画发射区引线孔; ②由孔四边各距A D 画出发射区扩散孔; ③由A D 先画出基区扩散孔的三边; ④由B E D -画出基区引线孔; ⑤由A D 画出基区扩散孔的另一边;

⑥由A D 先画出外延岛的三边; ⑦由C B D -画出集电极接触孔; ⑧由A D 画出外延岛的另一边; ⑨由I d 画出隔离槽的四周; ⑩验证所画晶体管的CS r 是否满足V V OL 4.0≤的条件,若不满足,则要对所作 的图进行修正,直至满足V V OL 4.0≤的条件。(CS C OL r I V V 00 ES += 及己知 V V C 05.00ES =) 第3章 集成电路中的无源元件 复 习 思 考 题 3.3 设计一个4k Ω的基区扩散电阻及其版图。 试求: (1) 可取的电阻最小线宽min R W =?你取多少? 答:12μm (2) 粗估一下电阻长度,根据隔离框面积该电阻至少要几个弯头? 答:一个弯头 第4章 晶体管 (TTL)电路 复 习 思 考 题 4.4 某个TTL 与非门的输出低电平测试结果为 OL V =1V 。试问这个器件合格吗?上 机使用时有什么问题? 答:不合格。 4.5 试分析图题4.5所示STTL 电路在导通态和截止态时各节点的电压和电流,假定各管的 β=20, BEF V 和一般NPN 管相同, BCF V =0.55V , CES V =0.4~0.5V , 1 CES V =0.1~0.2V 。 答:(1)导通态(输出为低电平) V V B 1.21= , V V B 55.12= ,V V B 2.13= ,V V B 5.04= ,V V B 8.05= ,

《半导体集成电路》考试题目及参考答案

第一部分考试试题 第0章绪论 1.什么叫半导体集成电路? 2.按照半导体集成电路的集成度来分,分为哪些类型,请同时写出它们对应的英文缩写? 3.按照器件类型分,半导体集成电路分为哪几类? 4.按电路功能或信号类型分,半导体集成电路分为哪几类? 5.什么是特征尺寸?它对集成电路工艺有何影响? 6.名词解释:集成度、wafer size、die size、摩尔定律? 第1章集成电路的基本制造工艺 1.四层三结的结构的双极型晶体管中隐埋层的作用? 2.在制作晶体管的时候,衬底材料电阻率的选取对器件有何影响?。 3.简单叙述一下pn结隔离的NPN晶体管的光刻步骤? 4.简述硅栅p阱CMOS的光刻步骤? 5.以p阱CMOS工艺为基础的BiCMOS的有哪些不足? 6.以N阱CMOS工艺为基础的BiCMOS的有哪些优缺点?并请提出改进方法。 7. 请画出NPN晶体管的版图,并且标注各层掺杂区域类型。 8.请画出CMOS反相器的版图,并标注各层掺杂类型和输入输出端子。 第2章集成电路中的晶体管及其寄生效应 1.简述集成双极晶体管的有源寄生效应在其各工作区能否忽略?。 2.什么是集成双极晶体管的无源寄生效应? 3. 什么是MOS晶体管的有源寄生效应? 4. 什么是MOS晶体管的闩锁效应,其对晶体管有什么影响? 5. 消除“Latch-up”效应的方法? 6.如何解决MOS器件的场区寄生MOSFET效应? 7. 如何解决MOS器件中的寄生双极晶体管效应? 第3章集成电路中的无源元件 1.双极性集成电路中最常用的电阻器和MOS集成电路中常用的电阻都有哪些? 2.集成电路中常用的电容有哪些。 3. 为什么基区薄层电阻需要修正。 4. 为什么新的工艺中要用铜布线取代铝布线。 5. 运用基区扩散电阻,设计一个方块电阻200欧,阻值为1K的电阻,已知耗散功率为20W/c㎡,该电阻上的压降为5V,设计此电阻。 第4章TTL电路 1.名词解释

半导体物理习题及复习资料

复习思考题与自测题 第一章 1.原子中的电子和晶体中电子受势场作用情况以及运动情况有何不同, 原子中内层电子和外层 电子参与共有化运动有何不同。 答:原子中的电子是在原子核与电子库伦相互作用势的束缚作用下以电子云的形式存在,没有一个固定的轨道;而晶体中的电子是在整个晶体内运动的共有化电子,在晶体周期性势场中运动。当原子互相靠近结成固体时,各个原子的内层电子仍然组成围绕各原子核的封闭壳层,和孤立原子一样;然而,外层价电子则参与原子间的相互作用,应该把它们看成是属于整个固体的一种新的运动状态。组成晶体原子的外层电子共有化运动较强,其行为与自由电子相似,称为准自由电子,而内层电子共有化运动较弱,其行为与孤立原子的电子相似。 2.描述半导体中电子运动为什么要引入"有效质量"的概念, 用电子的惯性质量描述能带中电子运动有何局限性。 答:引进有效质量的意义在于它概括了半导体内部势场的作用,使得在解决半导体中电子在外力作用下的运动规律时,可以不涉及半导体内部势场的作用。惯性质量描述的是真空中的自由电子质量,而不能描述能带中不自由电子的运动,通常在晶体周期性势场作用下的电子惯性运动,成为有效质量 3.一般来说, 对应于高能级的能带较宽,而禁带较窄,是否如此,为什么? 答:不是,能级的宽窄取决于能带的疏密程度,能级越高能带越密,也就是越窄;而禁带的宽窄取决于掺杂的浓度,掺杂浓度高,禁带就会变窄,掺杂浓度低,禁带就比较宽。 4.有效质量对能带的宽度有什么影响,有人说:"有效质量愈大,能量密度也愈大,因而能带愈窄.是否如此,为什么? 答:有效质量与能量函数对于K的二次微商成反比,对宽窄不同的各个能带,1(k)随k的变化情况不同,能带越窄,二次微商越小,有效质量越大,内层电子的能带窄,有效质量大;外层电子的能带宽,有效质量小。 5.简述有效质量与能带结构的关系; 答:能带越窄,有效质量越大,能带越宽,有效质量越小。 6.从能带底到能带顶,晶体中电子的有效质量将如何变化?外场对电子的作用效果有什么不同;答:在能带底附近,电子的有效质量是正值,在能带顶附近,电子的有效质量是负值。在外电F

大功率半导体激光器的发展介绍

大功率半导体激光器的发展介绍 激光打标机、激光切割机、激光焊接机等等激光设备中激光器起着举足轻重的地位,在激光器的发展历程中,半导体激光器的发展尤为重要,材料加工用激光器主要要满足高功率和高光束质量,所以为了提高大功率半导体激光器的输出功率,可以将十几个或几十个单管激光器芯片集成封装、形成激光器巴条,将多个巴条堆叠起来可形成激光器二维叠阵,激光器叠阵的光功率可以达到千瓦级甚至更高。但是随着半导体激光器条数的增加,其光束质量将会下降。

另外,半导体激光器结构的特殊性决定了其快、慢轴光束质量不一致:快轴的光束质量接近衍射极限,而慢轴的光束质量却比较差,这使得半导体激光器在工业应用中受到了很大的限制。要实现高质量、宽范围的激光加工,激光器必须同时满足高功率和高光束质

量。因此,现在发达国家均将研究开发新型高功率、高光束质量的大功率半导体激光器作为一个重要研究方向,以满足要求更高激光功率密度的激光材料加工应用的需求。 大功率半导体激光器的关键技术包括半导体激光芯片外延生长技术、半导体激光芯片的封装和光学准直、激光光束整形技术和激光器集成技术。 (1)半导体激光芯片外延生长技术 大功率半导体激光器的发展与其外延芯片结构的研究设计紧密相关。近年来,美、德等国家在此方面投入巨大,并取得了重大进展,处于世界领先地位。首先,应变量子阱结构的采用,提高了大功率半导体激光器的光电性能,降低了器件的阈值电流密度,并扩展了GaAs基材料系的发射波长覆盖范围。其次,采用无铝有源区提高了激光芯片端面光学灾变损伤光功率密度,从而提高了器件的输出功率,并增加了器件的使用寿命。再者,采用宽波导大光腔结构增加了光束近场模式的尺寸,减小了输出光功率密度,从而增加了输出功率,并延长了器件寿命。目前,商品化的半导体激光芯片的电光转换效率已达到60%,实验室中的电光转换效率已超过70%,预计在不久的将来,半导体激光器芯片的电光转换效率能达到85%以上。 (2)半导体激光芯片的封装和光学准直 激光芯片的冷却和封装是制造大功率半导体激光器的重要环节,由于大功率半导体激光器的输出功率高、发光面积小,其工作时产生的热量密度很高,这对芯片的封装结构和工艺提出了更高要求。目前,国际上多采用铜热沉、主动冷却方式、硬钎焊技术来实现大功率半导体激光器阵列的封装,根据封装结构的不同,又可分为微通道热沉封装和传导热沉封装。

半导体物理学复习提纲(重点)

第一章 半导体中的电子状态 §1.1 锗和硅的晶体结构特征 金刚石结构的基本特征 §1.2 半导体中的电子状态和能带 电子共有化运动概念 绝缘体、半导体和导体的能带特征。几种常用半导体的禁带宽度; 本征激发的概念 §1.3 半导体中电子的运动 有效质量 导带底和价带顶附近的E(k)~k 关系()()2 * 2n k E k E m 2h -0= ; 半导体中电子的平均速度dE v hdk = ; 有效质量的公式:2 2 2 * 11dk E d h m n = 。 §1.4本征半导体的导电机构 空穴 空穴的特征:带正电;p n m m ** =-;n p E E =-;p n k k =- §1.5 回旋共振 §1.6 硅和锗的能带结构 导带底的位置、个数; 重空穴带、轻空穴 第二章 半导体中杂质和缺陷能级 §2.1 硅、锗晶体中的杂质能级

基本概念:施主杂质,受主杂质,杂质的电离能,杂质的补偿作用。 §2.2 Ⅲ—Ⅴ族化合物中的杂质能级 杂质的双性行为 第三章 半导体中载流子的统计分布 热平衡载流子概念 §3.1状态密度 定义式:()/g E dz dE =; 导带底附近的状态密度:() () 3/2 * 1/2 3 2()4n c c m g E V E E h π=-; 价带顶附近的状态密度:() () 3/2 *1/2 3 2()4p v V m g E V E E h π=- §3.2 费米能级和载流子的浓度统计分布 Fermi 分布函数:()01 ()1exp /F f E E E k T = +-???? ; Fermi 能级的意义:它和温度、半导体材料的导电类型、杂质的含量以及能量零点的选取有关。1)将半导体中大量的电子看成一个热力学系统,费米能级F E 是系统的化学势;2)F E 可看成量子态是否被电子占据的一个界限。3)F E 的位置比较直观地标志了电子占据量子态的情况,通常就说费米能级标志了电子填充能级的水平。费米能级位置较高,说明有较多的能量较高的量子态上有电子。 Boltzmann 分布函数:0()F E E k T B f E e --=; 导带底、价带顶载流子浓度表达式: 0()()c c E B c E n f E g E dE '= ?

半导体激光器的发展与运用

半导体激光器的发展与运用 0 引言激光器的结构从同质结发展成单异质结、双异质结、量子 阱 (单、多量子阱)等多种形式, 制作方法从扩散法发展到液相外延(LP日、气相外延(VPE)、分子束外延(MBE)、金属有机化合物气相淀积(MOCVD)、化学束外延(CBE 以及它们的各种结合型等多种工艺[5].半导体激光器的应用范围十分广泛,而且由于它的体积小,结构简单,输入能量低,寿命长,易于调制和价格低等优点, 使它已经成为当今光电子科学的核心技术,受到了世界各国的高度 重视。 1 半导体激光器的历史 半导体激光器又称激光二极管(LD)。随着半导体物理的发展,人们早在20 世纪50 年代就设想发明半导体激光器。 20 世纪60 年代初期的半导体激光器是同质结型激光器, 是一种只能以脉冲形式工作的半导体激光器。在1962 年7 月召开的固体器件研究国际会议上,美国麻省理工学院林肯实验室的两名学者克耶斯(KeyeS和奎斯特(Quist、报告了砷化镓材料的光发射现象。 半导体激光器发展的第二阶段是异质结构半导体激光器,它是由两种不同带隙的半导体材料薄层,如GaAs,GaAIAs所组成的激光器。单异质结注人型激光器(SHLD,它是利用异质结提供的势垒把注入电子限制在GaAsP 一N 结的P 区之内,以此来降低阀值电流密度的激光

器。 1970 年,人们又发明了激光波长为9 000? 在室温下连续工作的双异质结GaAs-GaAlAs(砷化稼一稼铝砷)激光器. 在半导体激光器件中,目前比较成熟、性能较好、应用较广的是具有双异质结构的电注人式GaAs 二极管激光器. 从20 世纪70 年代末开始, 半导体激光器明显向着两个方向发展,一类是以传递信息为目的的信息型激光器;另一类是以提高光功率为目的的功率型激光器。在泵浦固体激光器等应用的推动下, 高功率半导体激光器(连续输出功率在100W 以上,脉冲输出功率在5W 以上, 均可称之谓高功率半导体激光器)在20 世纪90 年代取得了突破性进展,其标志是半导体激光器的输出功率显著增加,国外千瓦级的高功率半导体激光器已经商品化,国内样品器件输出 已达到600W另外,还有高功率无铝激光器、红外半导体激光器和量子级联激光器等等。其中,可调谐半导体激光器是通过外加的电场、磁场、温度、压力、掺杂盆等改变激光的波长,可以很方便地对输出 光束进行调制。 20 世纪90 年代末,面发射激光器和垂直腔面发射激光器得到了迅速的发展。 目前,垂直腔面发射激光器已用于千兆位以太网的高速网络,为了满足21 世纪信息传输宽带化、信息处理高速化、信息存储大容量以及军用装备小型、高精度化等需要,半导体激光器的发展趋势主要是向高速宽带LD大功率LD短波长LD盆子线和量子点激光器、中红外LD

意法ST系列芯片型号

ST(意法半导体)提供全系列具备各种外设的稳定型8位单片机以及高性能32位ARM芯片。ST系列单片机的8位ST6系列一直以来都是面向简单强劲的成本敏感型应用的安全并受到广泛欢迎的选择,其中包括家庭应用、数字消费类设备和电机控制。ST6器件采用16引脚到28引脚封装,内部集成了1到4KB的OTP(一次性可编程)或ROM存储器。 ST62E系列单片机: ST62E01, ST62E01C, ST62E01CF1, ST62E10, ST62E18, ST62E18C, ST62E18CF1, ST62E20, ST62E20B, ST62E20C, ST62E20CF1, ST62E25, ST62E25C, ST62E25CF1, ST62E28CF1, ST62E28C6, ST62E30B, ST62E30BF1, ST62E32BF1, ST62E40BG1, ST62E42BG1, ST62E46BG1, ST62E60B, ST62E60C, ST62E62CF1, ST62E62B, ST62E62C, ST62E65B, ST62E65C, ST62E65CF1, ST62E80B, ST62E80BG1, ST62E85BG1; ST62T系列单片机: ST62T00, ST62T01, ST62T03, ST62T08, ST62T09, ST62T10, ST62T15, ST62T18, ST62T20, ST62T25, ST62T28, ST62T30, ST62T32, ST62T40, ST62T42, ST62T46, ST62T52, ST62T53, ST62T55, ST62T60, ST62T62, ST62T63, ST62T65, ST62T80, ST62T85; ST62系列单片机:ST6200C, ST6201C, ST6203C, ST6210C, ST6220C, ST6225C, ST6260C, ST6262C, ST6265C; ST63E系列:ST63E73 …… ST7系列单片机解密: ST7FOXF1, ST7FOXK1, ST7FOXK2, ST7FOXA0; ST7LITE0, ST7LITE2, ST7LITE49K2, ST7LITE39F2, ST7LITE30F2, ST7LITE35F2, ST7LITE49M, ST7LITE1xB, ST7LITEU09, ST7LITEU05, ST7LITEUS5, ST7LITEUS2; ST72260G, ST72262G, ST72264G, ST72321, ST7232A, ST72321B, ST72321M, ST72325, ST72323, ST72323L, ST72340, ST72344, ST72345, ST72324B, ST72324BL, ST72361, ST72521B, ST72561, ST7260, ST7263B, ST7265, ST7267R8, ST7267C8, ST72681, ST72682; ST72C216 ST7LCRE4U1, ST7LCRDIE6, ST7SCR1R4, ST7SCR1E4; ST7GEME4, ST7LNB0V2Y0, ST72F521, ST72F324L; ST7LNB1Y0, ST7MC1, ST7MC2, ST7DALIF2, ST7SUPERLITE; ST10系列单片机解密: 新ST10闪存系列:ST10F271Z1, ST10F272Z2, ST10F273Z4, ST10F276Z5; ST10传统闪存系列:ST10F168S, ST10F269, ST10F269Z1, ST10F269Z2; ST10 ROMless 系列:ST10R172L, ST10R272L, ST10R167-Q; STR7系列ARM芯片解密: STR750F:STR755FV2, STR755FV1, STR755FV0, STR755FR2, STR755FR1, STR755FR0, STR752FR2, STR752FR1, STR752FR0, STR751FR2, STR751FR1, STR751FR0, STR750FV2, STR750FV1, STR750FV0; STR71x:STR715FR0, STR712FR2, STR712FR0, STR711FR2, STR712FR1, STR711FR1, STR711FR0, STR710RZ, STR710FZ2, STR710FZ1; STR73xF:STR736FV2, STR736FV1, STR736FV0, STR735FZ2, STR735FZ1, STR731FV2, STR731FV1, STR731FV0, STR730FZ2, STR730FZ1; STR9系列ARM芯片解密: STR91xFA:STR912FAZ44, STR912FAZ42, STR912FA W44, STR912FA W42, STR911FA W44, STR911FA W42, STR911FAM44, STR911FAM42, STR910FAZ32, STR910FA W32, STR910FAM32;

半导体集成电路制造PIE常识

Question Answer & PIE

PIE 1. 何谓PIE? PIE的主要工作是什幺? 答:Process Integration Engineer(工艺整合工程师), 主要工作是整合各部门的资源, 对工艺持续进行改善, 确保产品的良率(yield)稳定良好。 2. 200mm,300mm Wafer 代表何意义? 答:8吋硅片(wafer)直径为200mm , 直径为300mm硅片即12吋. 3. 目前中芯国际现有的三个工厂采用多少mm的硅片(wafer)工艺?未来北京的Fab4(四厂)采用多少mm的wafer工艺? 答:当前1~3厂为200mm(8英寸)的wafer, 工艺水平已达0.13um工艺。未来北京厂工艺wafer将使用300mm(12英寸)。 4. 我们为何需要300mm? 答:wafer size 变大,单一wafer 上的芯片数(chip)变多,单位成本降低200→300 面积增加2.25倍,芯片数目约增加2.5倍 5. 所谓的0.13 um 的工艺能力(technology)代表的是什幺意义? 答:是指工厂的工艺能力可以达到0.13 um的栅极线宽。当栅极的线宽做的越小时,整个器件就可以变的越小,工作速度也越快。 6. 从0.35um->0.25um->0.18um->0.15um->0.13um 的technology改变又代表的是什幺意义? 答:栅极线的宽(该尺寸的大小代表半导体工艺水平的高低)做的越小时,工艺的难度便相对提高。从0.35um -> 0.25um -> 0.18um -> 0.15um -> 0.13um 代表着每一个阶段工艺能力的提升。 7. 一般的硅片(wafer)基材(substrate)可区分为N,P两种类型(type),何谓N, P-type wafer? 答:N-type wafer 是指掺杂negative元素(5价电荷元素,例如:P、As)的硅片, P-type 的wafer 是指掺杂positive 元素(3价电荷元素, 例如:B、In)的硅片。 200mm300mm 8〞12〞

半导体集成电路课程教案

半导体集成电路课程教案 西安理工大学教案(首页) 学院(部):自动化学院系(所):电子工程系 1 课程代码 04110680 总学时:64 学时课程名称半导体集成电路学分 4 讲课:64 学时 上机: 0 学时必修课( ? ) 校级任选课( ) 课程类别实验:0 学时院级任选课( ) 学位课( ? ) 授课专业电子科学与技术授课班级电子、微电 任课教师高勇余宁梅杨媛乔世杰职称教授/副教授通过本课程的教学~要求学生全面掌握各种集成电路包括双极集成电路、MOS集成电路和Bi-CMOS电路的制造工艺~集成电路中元器件的结构、特性及各种寄生效应,学会分析双极IC、数字CMOS集成电路中的倒相器的电路特性~掌握一定的手算分析能力~熟悉版图,掌握静态逻辑、传输门教学目的逻辑及动态逻辑电路的工作原理及特点,了解触发器电路及存储器电路,和要求掌握模拟电路的基本子电路(如电流源~基准源等)的工作原理和特性~掌握基本运算放大器的性能分析和设计方法,掌握AD/DA电路的类型及工作原理~基本了解AD/DA变换器的设计方法。为后继专业课的学习、将来在集成电路领域从事科研和技术工作奠定良好的理论基础。教学的重点是帮助学生在电子技术的基础上建立半导体集成电路的概念。重点讲述集成电路的寄生效应、典型的TTL单元电路以及MOS集成电路的基本逻辑单元和逻辑功能部件,尤其是CMOS集成电路(由于现在的教学重集成电路主流工艺为CMOS集成电路)。难点在于掌握集成电路中的各种点、难点寄生效应,另外,集成电路的发展很快,很多最新发展状态在书本上找不到现成的东西,比如随着集成电路特征尺寸的减小带来

的一些其他二级效应,以及各种不同的新型电路结构各自的特点和原理分析计算。 (1)朱正涌,半导体集成电路,清华大学出版社社 (2)张延庆,半导体集成电路,上海科学技术出版社 (3)Jan M.Rabaey, Anantha Chandrakasan, etc. Digital Integrated Circuits数字集成电路设计透视(影印版.第二版),清华大学出版社(译本:周润德译电子工业出版社) (4)蒋安平等译,数字集成电路分析与设计,深亚微米工艺,电子工业出版社 教材和参(5)王志功等译,CMOS数字集成电路-分析与设计(第三版),电子工业出考书版社(原书名:CMOS Digital Integrated Circuits:Analysis and Design, Third Edition,作者:Sung-Mo Kang, Yusuf Leblebici[美],McGraw-Hill出版社) (6)陈贵灿等译, 模拟CMOS集成电路设计, 西安交通大学出版社(原书 2 名:Design of Analog CMOS Integrated Circuits,作者:毕查德.拉扎维[美],McGraw-Hill出版社) 西安理工大学教案(章节备课) 学时:2学时章节第0章绪论 通过本章内容学习~帮助学生建立半导体集成电路的概念~使学生了解并教学目的掌握集成电路的发展历史、现状和未来。明确本课程教学内容及教学目标~和要求提出课程要求。要求学生通过本章学习~能够明确学习目标。 重点:集成电路的概念~集成电路的发展规律~集成电路涵盖的知识点重点及集成电路的分类。难点难点: 集成电路的宏观发展与微观发展的关联。 教学内容: 1 集成电路 1.1 集成电路定义

半导体物理复习资料附答案

第一篇 习题 半导体中的电子状态 1-1、 什么叫本征激发?温度越高,本征激发的载流子越多,为什么?试定性说 明之。 1-2、 试定性说明Ge 、Si 的禁带宽度具有负温度系数的原因。 1-3、 试指出空穴的主要特征。 1-4、简述Ge 、Si 和GaAS 的能带结构的主要特征。 1-5、某一维晶体的电子能带为 [])sin(3.0)cos(1.01)(0ka ka E k E --= 其中E 0=3eV ,晶格常数a=5х10-11m 。求: (1) 能带宽度; (2) 能带底和能带顶的有效质量。 第一篇 题解 半导体中的电子状态 1-1、 解:在一定温度下,价带电子获得足够的能量(≥E g )被激发到导带成为 导电电子的过程就是本征激发。其结果是在半导体中出现成对的电子-空穴对。 如果温度升高,则禁带宽度变窄,跃迁所需的能量变小,将会有更多的电子被激发到导带中。 1-2、 解:电子的共有化运动导致孤立原子的能级形成能带,即允带和禁带。温 度升高,则电子的共有化运动加剧,导致允带进一步分裂、变宽;允带变宽,则导致允带与允带之间的禁带相对变窄。反之,温度降低,将导致禁带变宽。 因此,Ge 、Si 的禁带宽度具有负温度系数。 1-3、 解: 空穴是未被电子占据的空量子态,被用来描述半满带中的大量电子 的集体运动状态,是准粒子。主要特征如下: A 、荷正电:+q ; B 、空穴浓度表示为p (电子浓度表示为n ); C 、E P =-E n D 、m P *=-m n *。 1-4、 解: (1) Ge 、Si: a )Eg (Si :0K) = 1.21eV ;Eg (Ge :0K) = 1.170eV ; b )间接能隙结构 c )禁带宽度E g 随温度增加而减小;

(完整word版)半导体物理知识点及重点习题总结

基本概念题: 第一章半导体电子状态 1.1 半导体 通常是指导电能力介于导体和绝缘体之间的材料,其导带在绝对零度时全空,价带全满,禁带宽度较绝缘体的小许多。 1.2能带 晶体中,电子的能量是不连续的,在某些能量区间能级分布是准连续的,在某些区间没有能及分布。这些区间在能级图中表现为带状,称之为能带。 1.2能带论是半导体物理的理论基础,试简要说明能带论所采用的理论方法。 答: 能带论在以下两个重要近似基础上,给出晶体的势场分布,进而给出电子的薛定鄂方程。通过该方程和周期性边界条件最终给出E-k关系,从而系统地建立起该理论。 单电子近似: 将晶体中其它电子对某一电子的库仑作用按几率分布平均地加以考虑,这样就可把求解晶体中电子波函数的复杂的多体问题简化为单体问题。 绝热近似: 近似认为晶格系统与电子系统之间没有能量交换,而将实际存在的这种交换当作微扰来处理。

1.2克龙尼克—潘纳模型解释能带现象的理论方法 答案: 克龙尼克—潘纳模型是为分析晶体中电子运动状态和E-k关系而提出的一维晶体的势场分布模型,如下图所示 利用该势场模型就可给出一维晶体中电子所遵守的薛定谔方程的具体表达式,进而确定波函数并给出E-k关系。由此得到的能量分布在k空间上是周期函数,而且某些能量区间能级是准连续的(被称为允带),另一些区间没有电子能级(被称为禁带)。从而利用量子力学的方法解释了能带现象,因此该模型具有重要的物理意义。 1.2导带与价带 1.3有效质量 有效质量是在描述晶体中载流子运动时引进的物理量。它概括了周期性势场对载流子运动的影响,从而使外场力与加速度的关系具有牛顿定律的形式。其大小由晶体自身的E-k 关系决定。 1.4本征半导体 既无杂质有无缺陷的理想半导体材料。

半导体激光器的研究进展

半导体激光器的研究进展 摘要:本文主要述写了半导体激光器的发展历史和发展现状。以及对单晶光纤激光器进行了重点描述,因其在激光医疗、激光成像、光电对抗以及人眼安全测照等领域具有重大的应用价值,近年来成为新型固体激光源研究的热点。 一、引言。 激光是20 世纪以来继原子能、电子计算机、半导体之后人类的又一重大发明。半导体激光科学与技术以半导体激光器件为核心,涵盖研究光的受激辐射放大的规律、产生方法、器件技术、调控手段和应用技术,所需知识综合了几何光学、物理光学、半导体电子学、热力学等学科。 半导体激光历经五十余年发展,作为一个世界前沿的研究方向,伴随着国际科技进步突飞猛进的发展,也受益于各类关联技术、材料与工艺等的突破性进步。半导体激光的进步在国际范围内受到了高度的关注和重视,不仅在基础科学领域不断研究深化,科学技术水平不断提升,而且在应用领域上不断拓展和创新,应用技术和装备层出不穷,应用水平同样取得较大幅度的提升,在世界各国的国民经济发展中,特别是信息、工业、医疗和国防等领域得到了重要应用。 本文对半导体激光器的发展历史和现状进行了综述,同时因单晶光纤激光器在激光医疗、激光成像、光电对抗以及人眼安全测照等领域具有重大的应用价值,本文也将对其做重点描述。 二、大功率半导体激光器的发展历程。 1962 年,美国科学家宣布成功研制出了第一代半导体激光器———GaAs同质结构注入型半导体激光器。由于该结构的激光器受激发射的阈值电流密度非常高,需要5 × 104~1 ×105 A /cm2,因此它只能在液氮制冷下才能以低频脉冲状态工作。从此开始,半导体激光器的研制与开发利用成为人们关注的焦点。1963 年,美国的Kroemer和前苏联科学院的Alferov 提出把一个窄带隙的半导体材料夹在两个宽带隙半导体之间,构成异质结构,以期在窄带隙半导体中产生高效率的辐射复合。随着异质结材料的生长工艺,如气相外延( VPE) 、液相外延( LPE) 等的发展,1967年,IMB 公司的Woodall 成功地利用LPE 在GaAs上生长了AlGaAs。在1968—1970 年期间,美国贝尔实验室的Panish,Hayashi 和Sμmski成功研究了AlGaAs /GaAs单异质结激光器,室温阈值电流密度为8.6 × 103 A /cm2,比同质结激光器降低了一个数量级。

ST意法半导体代理

意法半导体-万联芯城全国供应,电子元器件采购网,就找万联芯城,万联芯城专售原装进口现货电子元器件,与国内外原厂达成深度合作,坐拥三千平方米现代化仓库,解决终端生产研发物料问题,专为客户节省采购成本。 点击进入万联芯城 意法半导体代理_ST代理是一家法国 - 意大利跨国电子和半导体制 造商,总部位于瑞士日内瓦。它通常被称为意法半导体代理_ST代

理,它是欧洲大的基于收入的半导体芯片制造商。虽然意法半导体代理_ST代理公司总部和EMEA地区总部设在日内瓦,但控股公司意法半导体代理_ST代理 N.V.在荷兰阿姆斯特丹注册。 意法半导体代理_ST代理的美国总部位于德克萨斯州的Coppell。亚太地区总部位于新加坡,日本和韩国业务总部位于东京。大中华区的公司总部位于上海。 意法半导体代理_ST代理成立于1987年,由意大利的半导体公司SGS Microelettronica(SocietàGeneraleSemiconduttori)和法国Thomson的半导体部门Thomson Semiconducteurs合并而成。在合并时,意法半导体代理_ST代理被称为SGS-THOMSON,但在Thomson SA 作为所有者撤回后于1998年5月取得现在的名称-意法半导体代理 _ST代理。 SGS Microelettronica和Thomson Semiconducteurs都是历史悠久的半导体公司。 SGS Microelettronica始于1972年,此前两家公司合并: ATES(Aquila Tubi e Semiconduttori),一家真空管和半导体制造商,总部位于阿布鲁兹市的拉奎拉市,于1961年更名为Azienda

相关文档
相关文档 最新文档