文档库 最新最全的文档下载
当前位置:文档库 › 基因工程菌在废水中的应用

基因工程菌在废水中的应用

基因工程菌在废水中的应用
基因工程菌在废水中的应用

基因工程菌在废水中的应用

摘要﹕

随着经济发展,生活水平的提高,环境污染问题日益成为人们关注的焦点,如何治理环境污染也成为我们面前的一个重要问题。微生物技术在治理环境污染中有着各种各样的优点,随着基因工程技术的发展,人们开始利用基因工程技术对微生物进行改造,从而使其在治理环境污染方面发挥更大的优势。本文结合我国的实际污染情况,主要介绍了基因工程技术在治理水污染中的应用。

关键词:基因工程微生物废水处理

1 基因工程技术治理废水的概念

利用基因工程技术提高微生物净化污染物的能力是现代生物技术用于废水治理的一项关键技术。20世纪50年代初,由于分子生物学和生物化学的发展,对生物细胞核中存在的脱氧核糖核酸的结构和功能有了比较清晰的阐述。20世纪70年代初实现了DNA重组技术,逐步形成了以基因工程为核心内容,包括细胞工程、酶工程、发酵工程的生物技术。这一技术发展到今天,正形成产业化并列为世界领先专业技术领域之一,广泛应用于食品、医药、化工、农业、环保、能源和国防等许多部门,并日益显示出其巨大的潜力,将为世界面临的水污染等问题的解决提供广阔的应用前景[1]。

将基因工程技术应用于重金属废水的治理,就是通过转基因技术,将外源基因转入微生物细胞中表达,使之表现出一些野生菌没有的优良的遗传性状,如对重金属离子高的富集容量以及对特定重金属离子高的选择性,从而实现对重金属离子高效的生物富集。与传统的生物吸附法不同,生物富集法一般被认为是利用活体菌的某些金属离子转运酶通过某些离子转运通道把金属离子转运到细胞内部的过程。虽然在活体菌的细胞壁处仍然会存在表面吸附现象,但主动运输过程占主导地位。对重金属离子的高容量富集或高选择性富集等优良性状与某些微生物对重金属离子的毒性所产生的抗性相关联,由这些微生物在特定的环境中不断进化、变异而获得。微生物由于存在的多样性以及受所生存的特定环境的影响,其对重金属的抗性也具有多样性,这种多样性主要体现在两个方面,一方面是通过在细胞中产生对金属离子具高结合容量的络合物以络合体内的重金属,以减少

毒性较大的活性游离态重金属离子存在,如真核微生物中大量存在的金属硫蛋白;另一方面则是通过一些特定的金属离子转运系统将胞内的重金属离子转运出去以减少对重金属离子的摄取,大多数原核微生物主要是以这种方式体现对重金属的抗性。因此,金属络合物和特定金属转运系统是基因工程技术应用于重金属废水治理的两个要素。

2 基因工程技术在废水处理中的应用

基因工程技术应用于废水处理是水处理领域一项具有广泛应用前景的新兴技术。常规的废水处理方法有物化法、生物法等。由于一般的物化方法只是污染物的转移,不能从根本上治理,且容易造成二次污染,成本也较高,生物法逐渐成为废水处理的主要方法。但是由于废水的多样性及其成分的复杂性,自然进化的微生物降解污染物的酶活性往往有限,如果能利用基因工程技术对这些菌株进行遗传改造,提高微生物酶的降解活性,并可大量繁殖,就可以定向获得具有特殊降解性状的高效菌株,方便有效地应用于水污染处理。因此,构建基因工程菌成为现代废水处理技术的一个重要研究方向,且日益受到人们的重视。

2.1 利用基因工程菌富集废水中的重金属离子

基因工程技术在重金属废水治理中的作用主要体现在提高微生物菌体细胞对重金属离子的富集容量以及提高菌体对特定重金属离子的选择性两个方面。基因工程菌的构建方式随研究者要达到的目标不同而不同。

2.1.1 提高重组菌对重金属离子的富集容量

若不考虑重组菌对特定重金属离子的选择性而只要提高菌体对重金属离子的富集容量,则通过在微生物细胞表面表达高容量金属结合蛋白或金属结合肽的方法就能很好地达到目的。从近年的研究进展来看,采用这种方式构建基因工程菌以提高重金属结合容量的报道较多。Weon Bae[2]等人利用基因工程技术在E.coli细胞壁上直接表达人工合成植物螯合肽2OQly与麦芽糖结合蛋白的融合蛋白MBP.EC20,结果表明基因工程菌对汞的富集能力达到46mg H+/g.dry cell,比原始宿主茵提高数十倍;K.Kuroda[3]等人在Saccharomycescerevisiae细胞表面表达含His的寡肽,该菌株对Cu2+的抗性得到提高,并且其Cu2+吸附能力与对比菌株相比提高了8倍多。Patrik等人在Staphylococcus xylosus和Staphylococcuscamosus菌株表面表达含His.Glu.His和His的嵌合蛋白,大幅提高

了对Ni+和Cd2+的结合能力。Carolina Sousat[5]等人构建表达LamB.MT的E.coli 基因工程菌,使其表达外膜蛋白LamB与酵母金属硫及哺乳动物金属硫蛋白的融合蛋白,对Cd2+的结合能力提高了l5-20倍。胡章立[4]等人研究了MT.1ike的基因衣藻的重金属抗性和结合能力,研究发现其对镉和铜的抗性和结合能力与野生品系相比有大幅提高,在重金属结合方面,在低浓度(5.101xmol/L)的镉溶液中,转基因衣藻的重金属结合能力是其野生菌株的1.5倍左右,在(30.501xmol/L)的镉溶液中,由于重金属对菌体的毒性,两者差异不大;在处理含铜工业废水时,其处理能力提高10%以上。值得注意的是几乎在所有的研究中,外源金属结合蛋白或金属结合肽在宿主菌中的表达都是以融合蛋白的形式进行的,这主要是因为大多数金属结合蛋白以及金属结合肽的半衰期很短,如金属硫蛋白的半衰期只有几分钟,而通过与其它蛋白融合的方式表达这些金属结合蛋白或金属结合肽就可大大增加它们的稳定性。除在微生物细胞表面表达金属结合蛋白或金属结合肽外,将经基因技术在菌体中表达的金属结合蛋白分离后固定在某些惰性载体表面同样也能达到对重金属离子高容量富集的目的。

2.2.2 同时提高重组蕾的富集容量和对特定金属离子的选择

要实现对废水中重金属离子的再资源化,回收过程中生物介质必须对特定重金属离子具有高选择性,这样才可能避免传统生物吸附法因洗脱液中金属离子成分复杂而无法有效再利用其中的重金属资源的问题。由于高容量金属结合蛋白和金属结合肽本身对金属离子没有选择性,因此重组菌对特定重金属离子的选择性就需要通过在细胞膜处表达特异性金属转运系统来实现,同时还必须使金属结合蛋白或金属结合肽在细胞内部表达以高容量富集由转运系统从胞外转入的重金属离子。通过特异性金属转运系统的表达,基因工程菌对目标重金属的富集作用就介于特异性蛋白与目标重金属之间才存在的生物亲和力,具有很高的排他性,与生物吸附法的表面吸附特性完全不同,这就使有效回收利用废水中重金属离子,使废水中重金属元素实现再资源化成为可能。目前已有一些研究者正在从事这方面的研究。Chen等人通过基因工程技术,在E.coli中同时表达转运系统及谷胱甘肽转移酶与金属硫蛋白的融合蛋白,该基因工程菌的抗汞能力显著提高,汞富集能力达91xmol/g.dry cell,比原始宿主菌提高7倍多,汞去除率达到80%以上,而且金属络合物如EDTA、柠檬酸盐、氰化物的存在对汞的富集没有影响。此外,该基因工程菌对Hg2+表现出很高的选择性,水体离子强度及pH的变化、共存离子的存在都基本上不影响重组菌的有效富集。Weon Bae[6]等人以E.coli为宿主菌

同时表达Hg2+转运系统及人工合成植物螯合肽20Gly与麦芽糖结合蛋白(MBP)的融合蛋白MBP—EC20,该基因工程菌对汞的富集能力都达到46mg H/g.dry cell,Ni的存在对重组菌的汞生物富集行为没有影响,显示了该重组菌对汞具有很高的亲合性和选择特异性。在对镍离子生物富集研究方面,Dengt[7]等人利用镍特异性结合蛋白编码基因nixA和金属硫蛋白编码基因转化大肠杆菌宿主菌E.coli JM109以富集水体中的Ni,结果表明基因工程菌对Ni的富集容量比宿主菌提高6倍多,在pH4 10的范围内富集行为基本不受pH变化的影响,最佳pH为7.0左右;钠、钙、镉、铅等离子对Ni2+富集量影响不大,但镁、铜和汞离子的存在将导致重组菌对Ni+的富集量有较大程度的下降。大多数研究者在考察基因工程菌对重金属离子的生物富集行为时,基本上都是以实验室配制的、组成己知的模拟废水作为考察对象真实废水的组成情况远比模拟废水复杂。Dengt[8]等人利用汞转运系统和金属硫蛋白构建基因工程菌在一个中空纤维膜反应器中处理某电解厂的真实电解废水,该电解废水直接取自电解厂的废水排放井,未经任何预处理,废水的pH值为9.6,除含有2.58mg/L的Ug外,1550mg/L的钠离子以及铁、锂、锌等十几种共存离子和少量的有机物质。电解废水经基因工程菌处理后,Ug+降到了5g/C以下,而其它共存离子的浓度基本保持不变,体现出该基因工程菌对电解废水优越的处理效果。

2.2 利用基因工程菌降解废水中的有机污染物

生物处理法是废水中有机污染物降解的主要方法,但是部分难降解有机污染物需要不同降解菌之间的协同代谢或共代谢等复杂机制才能最终得以降解,这无疑降低了污染物的降解效率。首先,污染物代谢产物在不同降解菌间的跨膜转运是耗能过程,对细菌来说这是一种不经济的营养方式;其次,某些污染物的中间代谢产物可能具有毒性,对代谢活性有抑制作用;此外,将不同种属、来源的细菌的降解基因进行重组,把分属于不同菌体中的污染物代谢途径组合起来以构建具有特殊降解功能的超级降解菌,可以有效地提高微生物的降解能力[5]。

Satoshi Soda等[9]将基因工程菌P.putidaBH接种到SBR反应器的活性污泥中,用于处理500mg/L的苯酚废水,在大大提高苯酚去除率的同时改善了污泥沉降性能。南京大学、扬子石油化工有限责任公司、香港大学、国家环保总局南京环境科学研究所联合完成了跨界融合构建基因工程菌处理石化废水的生物工程技术。在优化调控技术的基础上,该菌株对二甲苯、苯甲酸、邻苯二甲酸、4-羧基苯甲醛和对苯二甲酸的降解率分别高达86%、94%、99%、97%和94%,比原工艺提

高了20%~30%,总有机碳去除率达到了94%;污水经过处理后,铜、锰、锌、硒的浓度符合国家规定排放标准,生物毒性明显降低。

刘春等[10]以生活污水为共基质,考察了基因工程菌在MBR和活性污泥反应器中对阿特拉津的生物强化处理效果,以及生物强化处理对污泥性状的影响。结果表明,基因工程菌在MBR中对阿特拉津具有很好的生物强化处理效果,阿特拉津平均出水浓度为0.84 mg/L,平均去除率为95%,最大去除负荷可以达到70mg/(L·d)。生物强化的MBR对生活污水中COD的平均去除率为71%,COD平均出水浓度65mg/L。

陈俊等[11]采用跨界原生质融合技术,构建基因工程特效菌Fhhh,实现廉价工业化生产Fhhh菌剂,在10m3/d精对苯二甲酸废水处理实验装置中,容积负荷率达到3.0 kg/(L·d)以上,生物负荷率达到1.42d-1,出水水质达到国家一类标准,与国内外同类装置相比,生物负荷率处于先进水平。

吕萍萍等[12]研究发现,克隆有苯降解过程中的关键基因--苯加双氧酶的基因工程菌E.coli.JM109(pKST11)对苯具有较高的降解效率和降解速度,应用于固定化细胞反应器中效果突出。在较短的水力停留时间内,可以将1500mg/L苯降解70%,降解速度为1.11mg/(L·s),延长水力停留时间,可以使去除率达到95%以上。该反应器对高浓度的苯具有突出的处理效果。同时所得到的产物为环己二烯双醇,可以被野生非高效菌快速利用。

2.3 重金属污染治理的基因工程抗性菌的构建及应用

存在于环境中的重金属可通过食物链在生物体内聚集,并极大地危害人类健康。传统治理重金属污染的方法有淋滤法、客土法、吸附法、沉淀法、鳌合树脂法和膜技术等物理方法以及络合浸提法等化学方法和生物修复,其中微生物修复具有治理效果好,无二次污染,运行费用低等特点受到人们普遍关注[13]。微生物之所以能耐受一定浓度重金属的毒性,是因为微生物的多样性及它们生存的特定环境导致了抗性具有多样性,这种多样性主要体现在两个方面: 一是通过在细胞中产生对金属离子具有高结合容量的络合物,以络合体内的重金属降低毒性较大的活性游离态重金属离子存在,如真核微生物中大量存在的金属硫蛋白;二是通过一些特定的金属离子转运系统将胞内的重金属离子转运出去,以减少对重金属离子的摄取,大多数原核微生物主要以这种方式体现对重金属的抗性。但单纯使用传统微生物法处理重金属在适应性和高效性等方面存在局限性。针对上述问题,研究者们通过基因工程技术对微生物的金属络合物和特定金属转运系统进行

了改良和改造,构建基因工程菌代替普通微生物处理重金属污染物是近年来研究的热点。

邵群等构建了含有完整的抗砷结构基因及其启动子的重组质粒,通过接合的方法将重组质粒转移到氧化硫硫杆菌中,筛选得到了接合子。接合子的抗砷水平比对照菌提高了2倍。但接合转移频率和接合子的抗砷能力,随受体菌的不同而有所差异。经抗砷性能力检测,与野生菌相比,构建的喜温硫杆菌工程菌抗砷能力明显提高了2倍,且重组质粒在喜温硫杆菌中具有较好的稳定性。但共存环境中影响工程菌抗砷能力的诸多因素有待进一步研究。邓旭等[13]将带有汞操纵子和金属硫蛋白编码基因的重组DNA质粒转化到大肠杆菌E.coli JM109中,得到了从废水中富集汞离子能力强的基因工程菌,且工程菌对pH 变化不敏感。但废水中其他共存离子的存在会导致菌体的平衡富集能力下降30%,从而影响了基因工程菌处理金属离子的效果。Chen等[14]也将带有汞转运系统和谷胱甘肽与豌豆金属硫蛋白融合基因的重组DNA质粒转化到大肠杆菌E.coli JM109中,使该菌的抗汞能力比原始菌株提高了7倍,还发现金属螯合剂EDTA和柠檬酸对汞的富集影响不明显。郑杨春等[15]也以大肠杆菌E.coli JM109为宿主菌同时表达汞转运系统和谷胱甘肽与金属硫蛋白融合基因,发现该基因工程菌可以在低Hg2 +浓度环境中仍可有效富集Hg2 +,并且利用连续操作搅拌槽式生物反应器,实现了对有机废水配伍的含汞废水的连续化处理。虽然金属螯合剂EDTA 对该菌生长抑制作用明显,但基本不影响柠檬酸对其生长富集耦合行为。Bae等[15]将汞转运系统和植物螯合肽与麦芽糖融合蛋白转化到大肠杆菌E.coli JM109中,使该工程菌对汞的富集能力显著提高,而且Ni2 +的存在对汞的富集无影响。上述基因工程菌对汞都具有很强的选择特异性和亲和性,但汞离子浓度、离子强度、络合物、共存金属离子等环境因素对其富集Hg2 +的影响却有所不同。

在对Ni2 +生物富集研究方面,邓旭等还通过电穿孔法将含有异性镍转运蛋白基因重组质粒和金属硫蛋白基因重组质粒对大肠杆菌JM109进行转化,得到了同时表达高特异性镍转运蛋白和金属硫蛋白的基因工程菌。该工程菌不仅对Ni2 + 的富集速率快,而且对镍富集能力提高了6倍。该工程菌对pH 值、离子强度的变化及其它共存重金属离子的影响都表现出更强的适应性,但Mg2 +、Hg2 +和Cu2 +对富集影响较大。张迎明等利用PCR 技术从一株金黄色葡萄球菌的基因组中扩增出镍钴转运酶基因,构建重组质粒,并转化到大肠杆菌BL21中,经筛选得到基因工程菌。该工程菌对镍的富集容量与原始宿主菌相比提高了3倍多,

表达的镍钴转运酶对镍具有较高的特异性。通过遗传稳定性试验,结果发现重组质粒具有良好的结构稳定性,基因工程菌对镍的富集能力也保持较好的稳定性。但Pb2 +和Cd2 +的存在对基因工程菌吸附Ni2 +的影响比较大。此外,Sousa等以大肠杆菌为宿主菌表达酵母金属硫蛋白、哺乳动物金属硫蛋白和外膜蛋白LamB 的融合蛋白,发现该基因工程菌对Cd2 +的富集能力比原始宿主菌提高了15-20倍。蔡颖等也将两种重组质粒转入大肠杆菌JM109,得到了同时表达高特异性镉结合转运蛋白和豌豆金属硫蛋白的基因工程菌。该工程菌具有较强的镉离子富集能力,但容易受其他重金属离子的影响。并且螯合剂EDTA对工程菌富集能力起较强的抑制作用。两种重组质粒能否长期共存还有待研究。

3 基因工程菌发展趋势与展望

综上所述,在基因工程菌的研究方面,许多学者从不同领域进行了深入研究,并得到了一些有价值的研究成果,但在以下方面,还有待进一步研究,也是今后研究的重点和热点。

首先,彻底搞清基因工程菌遗传的稳定性。研究发现,基因工程菌在保存及发酵生产过程中表现出不稳定性。该问题的解决已成为基因工程的成果能否转变为生产力的关键因素之一。在影响重组质粒稳定性的诸多因素中,宿主细胞的遗传特性、重组质粒的组成和克隆菌所处的环境条件等三方面受到人们的重视,从分子水平讲,影响某些质粒稳定性的基因顺序以及定位;从细胞水平看,只有选择一些具有特定遗传背景的细胞作为宿主方可获得比较稳定的克隆菌。但还需从广度和深度上进一步研究,以期从根本上提高重组质粒的稳定性。另一方面,在目前还不完全清楚影响质粒稳定性的原因的情况下,从工程水平上探究决定重组质粒稳定性的各种因素及其对发酵生产的影响十分必要。

其次,是深入研究基因工程菌的安全性。在治理污染过程中,人们也提出了关于基因工程菌自身所造成的污染。由此,在一定条件下,是否可以诱导基因工程菌在完成使命后自身死亡,成为了热点问题。通过基因工程技术,将诱导自杀元件转入基因工程菌的细胞内。这一元件就是一个可控制的自杀系统,在温度、化学条件等达到要求时,基因工程菌就会失去活性而死亡。由此,建立相关的监测与评价指标体系,对于指导不同地区的基因工程菌修复实践以及基因工程菌修复技术的发展与完善都具有意义。

此外,利用生物信息技术探究基因工程菌的降解机理。通过建立环境微生物

的基因库,利用生物信息技术进行基因序列分析、基因定位、克隆新基因、蛋白功能分析及基因表达分析等,加快了人们对微生物降解机理和发育系统生物学等方面研究,其研究成果将成为环境污染综合治理的重要理论基础。

参考文献

[1]杨林,聂克艳,杨晓容,高红卫.基因工程技术在环境保护中的应用.西南农业学报,2007,

20(5):1130.

[2]邢雁霞,刘斌钰.基因工程技术的研究现状与应用前景.大同医学专科学校学报,2006年第

3期:48.

[3]Zhao,X. W.,M. H. Zhou,Q. B. Li,et al. Simultaneous mercury bioaccumulation and cell

propagation by genetically engineered Escherichia coli[J].Process Biochemistry,2005,40(5) :1 611-1 616.

[4]Carolina,S.,K.Pavel,R. Tomas,et al.Metalloadsorption by escherichia colicells displaying yeast

and mammalian metallo thioneins anchored to the outer membrane protein lamb[J].Journal of

Bacteriology,1998,180(9):2280-2 284.

[5]Kuroda,K.,S.Shibasaki,M.Ueda,et al.Cell surface-engineered yeast displaying a histidine oligopeptide

(hexa-His) has enhanced adsorption of and tolerance to heavy metal ions[J].Applied Microbiology and Biotechnology,2001,57(5—6):697-701

[6]Deng,X.,Q.B.Li,Y.H.Lu,et al.Bioaccumulation of nickel from aqueous solutions by

genetically engineered Escherichia coli[J].Water Research,2003,37(10):2 505-2511.

[7]赵肖为,李清彪,卢英华,等.高选择性基因工程菌E. coli SE5000生物富集水体中的镍离

子.环境科学学报. 2004年3月,第24卷,第2期:231-232.

[8]袁建军,卢英华.高选择性重组基因工程菌治理含汞废水的研究.泉州师范学院学报(自然科

学).2003年11月,第21卷,第6期:71-72.

[9]张迎明,尹华,叶锦韶,等.镍钴转运酶NiCoT基因的克隆表达及基因工程菌对镍离子的

富集.环境科学,2007年4月,第28卷,第4期:918-923.

[10]郭杨,王世和.基因工程菌在重金属及难降解废水处理中的应用.安全与环境工程. 2007

年12月,第14卷,第4期:58-59.

[11]Satoshi,S.,I. Michihiko. Effects of inoculation of a genetically engineered bacterium on performance

and indigenous bacteria of a sequencing batch activated s l u d g e p r o c e s s t r e a t i n g p h e n o l[J].J o u r n a l o f F e r m e n t a t i o n

a n d Bioengineering,1998,86(1):90-96.

[12]刘春,黄霞,孙炜,王慧.基因工程菌生物强化MBR工艺处理阿特拉津试验研究.环境科

学,2007年2月,第28卷,第2期:417-421.

[13]陈俊,程树培,王洪丽,等.基因工程菌在精对苯二甲酸废水处理中的应用.工业用水与

废水,2006年2月,37(1):32-35.

[14]蒋建东,顾立锋,孙纪全,等.同源重组法构建多功能农药降解基因工程菌研究.生物工

程学报. 2005年11月,21(6):884-891.

[15]刘智,洪青,徐剑宏,等.耐盐及苯乙酸、甲基对硫磷降解基因工程菌的构建.微生物学

报,2003年10月,43(5):554-559.

1.2基因工程的应用(第1课时)

1.2基因工程应用(第1课时) (一)基因工程应用编制:王曼审核:秦磊校对:张统省 【学习目标】 1.举例说出基因工程的应用 2.关注转基因生物的安全性问题 3.举例说出生物武器的危害 【自学质疑】 一、回顾: 1.基因工程基本操作的“五步曲”是什么?PCR扩增过程 2.基因表达载体的组成及各自作用 3.将目的基因导入植物细胞、动物细胞、微生物细胞的常用方法 4.目的基因的检测与鉴定的步骤 5.必记概念:基因组文库 cDNA文库基因的编码区和非编码区 启动子、终止子、起始密码、终止密码内含子、外显子 RNA聚合酶结合位点、结构基因与标记基因基因探针显微注射感受态细胞 二、导学 知识网络体系抗虫转基因植物 抗病转基因植物 转基因植物其他抗逆转基因植物 改良植物品质 提高动物生长速度 改善畜产品的品质 转基因动物用转基因动物生产药物 用转基因动物作器官移植的供体 基因工程药物 基因治疗 转基因生物的安全性问题(食品安全、生态安全) 生物武器的危害性 【质疑讨论】 1.植物、动物的基因工程技术主要在哪些方面取得成果? 2.抗虫基因、抗病基因、抗逆基因、改良植物品质的基因主要有哪些? 3.“乳腺生物发生器”的优缺点及基因工程的大体操作步骤。 4.基因治疗的概念、种类及治病原理 知识点归纳: 一、植物基因工程成果 1.抗虫转基因植物 杀虫基因:主要有Bt毒蛋白基因、蛋白酶抵制剂基因、淀粉酶抑制剂基因、植物凝集素基因等。 优点:降低生产成本,减少环境污染 2.抗病转基因植物 抗病基因:使用最多的是病毒外壳蛋白基因和病毒的复制酶基因;抗真菌转基因植物中可使用的基因有几丁质酶基因抗毒素合成基因。 3.其他抗逆转基因植物: 抗逆基因:调节渗透压的基因(使植物细胞渗透压升高以适应盐碱或干旱环境)、抗冻蛋白基因、抗除草剂基因。 作用:以提高植物对环境适应能力。 4.利用转基因改良植物的品质 举例:将必需氨基酸含量多的蛋白质编码基因导入植物中,或者改变这些氨基酸合成途径中某种关键酶的活性,以提高植物氨基酸含量。 二、动物基因工程 1.用于提高动物生长速度(生长激素基因) 2.用于改善畜产品的品质 3.用转基因动物生产药物(乳腺生物反应器) 优点:产量高;质量好;成本低;易提取。 缺点:只能是雌性个体在泌乳期时才行。 提示:①乳腺蛋白基因的启动子是一种特异性表达的启动子;受体细胞为受精卵。②有些可以导入膀胱壁细胞,从尿液中提取。 4.用转基因动物作器官移植的供体 原理:使移植器官的没有抗原,就不会发生免疫排斥反应 方法:将器官供体基因组导入某种调节因子,以抑制抗原决定基因的表达,或设法除去抗原决定基因。 5.基因工程药品 三、基因治疗 1.概念:把正常基因导入病人体内,使该基因的表达产物发挥功能,从而达到治疗疾病的目的,这是治疗遗传病的最有效手段。 2.种类:体外基因治疗和体内基因治疗。 3.原理:遗传病患者一般缺少正常基因,所以导入正常基因后,使其表达,即可对病情起到缓解作用。 提示:受体细胞一般为体细胞而不是受精卵,基因治疗后只有一部分细胞含有正常基因。基因治疗没有影响原有基因,所以细胞中两种基因同时存在。 【矫正反馈】 1.若利用基因工程技术培育能固氮的水稻新品种,其在环保上的重要意义是()A.减少氮肥的使用量,降低生产成本 B.减少氮肥的使用量,节约能源 C.避免氮肥过多引起环境污染 D.改良土壤结构 2.基因治疗是指() A.对有基因缺陷的细胞进行修复,从而使其恢复正常,达到治疗疾病的目的 B.把健康的外源基因导入到有基因缺陷的细胞中,达到治疗疾病的目的 C.运用人工诱变的方法,使有基因缺陷的细胞发生基因突变恢复正常 D.运用基因工程技术,把有缺陷的基因切除,达到治疗疾病的目的 3.疗白化病、苯丙酮尿症等人类遗传病的根本途径是() A.口服化学药物B.注射化学药物 C. 采用基因疗法替换致病基因 D.利用辐射或药物诱发致病基因突变 4.上海医学遗传研究所成功培育出第一头携带白蛋白的转基因牛,他们还研究出一种可大大提高基因表达水平的新方法,使转基因动物乳汁中的药物蛋白含量提高30多倍,转基因动物是指() A.提供基因的动物 B.基因组中增加外源基因的动物 C.能产生白蛋白的动物 D.能表达基因信息的动物 5.在基因诊断技术中,所用的探针DNA分子中必须存在一定量的放射性同位素,后者的作用是() A.为形成杂交的DNA分子提供能量B.引起探针DNA产生不定向的基因突变 C. 作为探针DNA的示踪元素D.增加探针DNA的分子量 6.诊断苯丙酮尿症所用的探针是() A.32P半乳糖甘转移酶基因B.荧光标记的苯丙氨酸羧化酶

基因工程及其应用图文稿

基因工程及其应用文件管理序列号:[K8UY-K9IO69-O6M243-OL889-F88688]

第2节基因工程及其应用(第1课时)知识链接及考试地位 本知识与“DNA分子的结构与复制”、“基因突变和基因重组”、“DNA 重组技术的基本工具”、“基因工程的基本操作程序”等内容相联系,考试过程中常设计基因工程的原理、基本工具等基础知识,多以个别填空或选择题的形式呈现。 知识回顾 1、DNA分子的结构特点是什么? 2、什么是基因重组? 学习目标 1、简述基因工程的诞生。 2、简述基因工程的原理及技术。要明确基因工程操作的基本步骤和最基本的工具。 重难点 1.教学重点 基因工程的基本原理。 2.教学难点 基因工程的基本原理 新知探究

传统育种的方法一般只能在生物中进行,很难将一种生物的优良性状移植到生物身上。基因工程的出现使人类有可能按照自己的意愿地改变生物,培育出。 一、基因工程的原理 基因工程又叫做或。通俗地说,就是按照人们的意愿,把一种生物的某种基因提取出来,加以,然后放到另一种生物细胞里,地改造生物的遗传性状。基因工程是在DNA上进行的 水平的设计施工,基因的剪刀是指,简称限制酶。其作用特点是一种限制酶只能识别一种序列。基因的针线是 指。目前常用的运载体有、和等。质粒存在于许多以及等生物中,是细胞染色体外能够自主复制的小型分子。 基因工程的操作步骤是:、目的基因与运载体结合,目的基因导入受体细胞、目的基因的和。 二、基因工程的原理、操作对象各是什么? 三、限制性内切酶的分布、特点、作用部位和作用结果如何? 四、作为基因的运载体,需具备哪些条件? 五、DNA连接酶的作用对象、位置和结果如何? 六、基因工程的优点是什么? 七、基因重组与基因工程比较

选修三1.3基因工程的应用(徐新林)

专题1第3节基因工程的应用(P17) 【学习要求】 1.举例说出基因工程在农业、医疗、环境保护等方面的广泛应用及其发展前景2.关注基因工程的发展,认同基因工程的应用促进了生产力的提高 【学习重、难点】 重点:基因工程在农业、医疗、环境保护等方面的广泛应用难点:基因工程在农业、医疗、环境保护等方面的广泛应用 ?学习活动一举例说出植物基因工程成果 【自主学习】 阅读教材P17-19页,完成以下内容: 植物基因工程技术主要用于①提高农作物的能力,②改良农作物的③利用植物生产等方面。 (一)抗虫转基因植物 1.杀虫基因种类:①Bt毒蛋白基因、②抑制剂基因、③抑制剂基因、④植物凝集素基因等。 2.成果:抗虫植物:棉、玉米、马铃薯、番茄等。 (二)抗病转基因植物 1.植物的病原微生物:主要有、真菌和细菌等。 2.抗病基因种类 (1)抗病毒基因(使用最多):病毒基因和病毒的复制酶基因。 (2)抗真菌基因:基因和抗毒素合成基因。 (3)成果:烟草花叶病毒的转基因烟草和抗病毒的转基因小麦、甜椒、番茄等。 (三)其他抗逆转基因植物 1.抗逆基因:调节细胞基因使作物抗碱、抗旱;鱼的抗冻蛋白基因使作物耐寒;抗除草剂基因,使作物抗除草剂。 2.成果:烟草、大豆、番茄、玉米等。 (四)转基因改良植物品质 1.优良基因:必需氨基酸的蛋白质编码基因、控制番茄果实成熟的基因和植物花青素代谢有关的基因。 2.成果:转基因玉米、转基因延熟番茄和转基因矮牵牛。 【正误判断】 1.我国的转基因抗虫棉转入的抗虫基因是Bt毒蛋白基因() 2. 我国的转基因抗虫棉能抗所有的棉花害虫。 3.为培育抗除草剂的作物新品种,导入抗除草剂基因时只能以受精卵为受体() 4.目前,植物基因工程技术主要应用于提高农作物的抗逆性、生产某些天然药物、改良农作物的品质、作器官移植的供体() ?学习活动二举例说出动物基因工程成果 【自主学习】 阅读教材P20-21页,完成以下内容: (一)提高动物的生长速度 1.目的基因:外源基因。 2.成果:转基因绵羊、转基因鲤鱼。 (二)改善畜产品的品质 1.优良基因:肠乳糖酶基因。

1.3 基因工程的应用

1.3 基因工程的应用 1.举例说出基因工程的应用及取得的丰硕成果。(重点) 2.了解基因工程的进展。3.了解基因工程在农业和医疗等方面的应用。(难点)

一、植物基因工程的成果(阅读教材P17~P20) 植物基因工程技术主要用于提高农作物的抗逆能力,以及改良农作物的品质和利用植物生产药物等方面。 1.抗虫和抗病转基因植物 2. (1)抗逆基因:调节细胞渗透压的基因使作物抗盐碱、抗干旱;鱼的抗冻蛋白基因使作物耐寒;抗除草剂基因使作物抗除草剂。 (2)成果:烟草、大豆、番茄、玉米等。 3.利用转基因改良植物的品质

植物基因工程成果表现 “三抗一优良”,三抗是指“抗虫”“抗病”和“抗逆”,一优良是指转入的优良基因表达的性状表现优良。 二、动物基因工程的前景(阅读教材P20~P21)

三、基因工程药物(阅读教材P21~P23) 1.药物来源:转基因的“工程菌”。 2.成果:重组人胰岛素、细胞因子、抗体、疫苗、激素等。 四、基因治疗(阅读教材P23~P24) 1.概念:把正常基因导入病人体内,使该基因的表达产物发挥功能,从而达到治疗疾病的目的。 2.成果:将腺苷酸脱氨酶基因转入患者淋巴细胞中,治疗复合型免疫缺陷症。 3.方法 (1)体外基因治疗:先从病人体内获得某种细胞,如T淋巴细胞,进行培养。然后,在体外完成基因转移,再筛选成功转移的细胞扩增培养,最后重新输入患者体内。 (2)体内基因治疗:直接向人体组织细胞中转移基因的治病方法。 连一连 判一判

(1)转基因抗虫棉的Bt毒蛋白基因能抗病毒、细菌、真菌。(×) (2)“转基因植物”是指植物体细胞中出现了新基因的植物。(×) 分析:转基因植物是指细胞中被转入了外源基因的植物,并非出现新基因。 (3)(2018·宿迁高二检测)基因工程中,要培育转基因植物和动物,选用的受体细胞都是受精卵。(×) (4)利用工程菌可生产人的胰岛素等某些激素。(√) (5)(2018·绵阳高二期末)直接在患者组织细胞中,进行改造致病基因的方法为体内基因治疗。(×) (6)基因治疗又叫基因诊断。(×) 三种转基因生物的生产过程

精编高一下册《基因工程及其应用》知识点梳理:生物篇

精编高一下册《基因工程及其应用》知识点 梳理:生物篇 1.概念:按照人们的意愿,把一种生物的某种基因提取出来,加以修饰改造,然后放到另一种生物的细胞里,定向地改造生物的遗传性状。 2.原理基因重组 3.工具: A.基因的剪刀:限制性内切酶 ①分布:主要在微生物中。 ②作用特点:特异性,即识别特定核苷酸序列,切割特定切点。 ③结果:产生黏性未端(碱基互补配对)。 B.基因的针线:DNA连接酶 ①连接的部位:磷酸二酯键,不是氢键。 ②结果:两个相同的黏性未端的连接。 C.基因的运载工具:运载体 ①作用:将外源基因送入受体细胞。 ②具备的条件:a、能在宿主细胞内复制并稳定地保存。b、具有多个限制酶切点。

c、有某些标记基因。 ③种类:质粒、噬菌体和动植物病毒。 ④质粒的特点:质粒是基因工程中最常用的运载体。 4.基因操作的基本步骤: ①提取目的基因:人们所需要的特定基因,如人的胰岛素基因、抗虫基因、抗病基因、干扰素基因等 ②目的基因与运载体结合(以质粒为运载体):用同一种限制酶分别切割目的基因和质粒DNA(运载体),使其产生相同的黏性末端,将切割下的目的基因与切割后的质粒混合,并加入适量的DNA连接酶,使之形成重组DNA分子(重组质粒) ③将目的基因导入受体细胞常用的受体细胞:大肠杆菌、枯草杆菌、土壤农杆菌、酵母菌、动植物细胞 ④目的基因检测与表达 检测方法如:质粒中有抗菌素抗性基因的大肠杆菌细胞放入到相应的抗菌素中,如果正常生长,说明细胞中含有重组质粒。 表达:受体细胞表现出特定性状,说明目的基因完成了表达过程。如:抗虫棉基因导入棉细胞后,棉铃虫食用棉的叶片时被杀死;胰岛素基因导入大肠杆菌后能合成出胰岛素等。 5.转基因生物和转基因食品的安全性

基因工程菌的大规模培养及高密度发酵技术

生物工程下游技术实验模块实验一:基因工程菌的大规模培养及高密度发酵技术 创建人:时间:2013-04-17 【点击数: 482】 实验一:基因工程菌的大规模培养及高密度发酵技术 1.实验目的 (1)掌握工程菌大规模培养及高密度发酵技术的原理。 (2)学习工程菌高密度发酵的技术方法。 2.实验原理 重组大肠杆菌的高密度培养是增加重组蛋白产率的最有效的方法,高密度发酵在增加菌密度的同时提高蛋白的表达量,从而有利于简化下游的纯化操作。重组大肠杆菌高密度培养受表达系统、培养基、培养方式、发酵条件控制等多种因素的影响,在实际操作中需要对各种因素进行优化,建立最佳的发酵工艺。发酵工艺优化的研究可通过每次改变一个因素或同时改变几个参数来进行,然后运用统计学分析寻找它们之间的相互作用。 工程菌提高分裂速度的基本条件是必须满足其生长所需的营养物质,因此,培养基成分和浓度的选择就成为首要解决的问题,在成分选择上,要尽量选取容易被工程菌利用的营养物质,例如,普通培养基中一般是以葡萄糖为碳源,而葡萄糖需经过氧化和磷酸化作用,生成1,3-二磷酸甘油醛,才能被微生物利用,即用甘油作为培养基的碳源可缩短工程菌的利用时间,增加分裂增殖的速度。目前,普遍采用6g/L的甘油作为高密度发酵培养基的碳源。另外,高密度发酵培养基中各组分的浓度也要比普通培养基高2~3倍,才能满足高密度发酵中工程菌对营养物质的需求。当然,培养基浓度也不可过高,因为过高会使渗透压增高,反而不利于工程菌的生长。 补料的流加方式直接影响着发酵的效果。分批补料培养的特点是,在培养过程中不断补充培养基,使菌体在较长时间里保持稳定的生长速率,从而达到高密度生长。但是在补料流加过程中既不能加入得过快,也不能加入得过慢。过慢则无法满足逐渐增加的菌体生长需要,同时也使培养过程中产生的抑制性副产物大量积累;而过快则使携带目的蛋白的质粒没有充裕的时间复制,降低目的蛋白的表达量;而且快速的细菌生长还易引发质粒的不稳定性。 高密度发酵是工程菌剧烈生长繁殖的过程,这期间对氧气的需求量也大大提高,这就需要及时调整通风量和搅拌速度,一般的高密度发酵通风速度达18L/min(20L发酵罐),搅拌速度达500r/min以上,需保持60%以上的溶氧饱和度。此外,还需要考虑通风速度和搅

(完整word版)目的基因到工程菌的构建

目的基因到工程菌的构建 1基因工程的诞生 1972年,美国斯坦福大学的学者首先在体外进行了DNA改造的研究,他们把SV40(一种猴病毒)的DNA分别切割,又将两者连接在一起,成功构建了第一个体外重组的人工DNA分子。1973年,Cohen等人首次在体外将重组的DNA分子导入大肠杆菌中,成功地进行了无性繁殖,从而完成了DNA体外重组和扩增的全过程。在这个的基础上,基因工程诞生了。 SV40病毒

第一个重组体的构建 1.1基因工程技术的三大理论基础 一是20世纪40年代Avery等人通过肺炎球菌的转化实验证明了生物的遗传物质是DNA,而且证明了通过DNA可以把一个细菌的性状转移给另一个细菌。二是20世纪50年代Watson和Crick发现了DNA分子的双螺旋结构及DNA的半保留复制机理。三是20世纪60年代关于遗传信 息中心法则的确立,即生物体中遗传信息是按DN A→RNA→蛋白质的方向

进行传递的。 1.2基因工程技术的三大技术基础 三大基本技术问题:一是如何从生物体庞大的双链DNA分子中将所需的基因片段切割下来;二是如何将切割下来的DNA片段进行繁殖扩增;三是如何将所获得的基因片段重新连接。20世纪70年代,由Smith等人发现的核酸限制性内切酶、DNA连接酶和可以作为基因工程载体的细菌质粒的发现,解决了上述三大问题。 1.2.1 限制性核酸内切酶 限制性内切酶不切割自身DNA是因为原核生物中不存在酶的识别序列或识别序列已经被修饰。 1.2.2 DNA连接酶 作用实质:将具有末端碱基互补的2个DNA片段连接在一起,形成重组DNA分子,其起作用时不需要模板。 1.2.3 基因工程的载体-质粒 基因载体的作用是运载目的基因进入宿主细胞,使之能得到复制和进行表达。也就是说,离开染色体的外源DNA不能复制,而而插入复制子DNA的外源DNA可作为复制子的一部分在受体菌中进行复制,这种复

高三生物知识点归纳:基因工程及其应用

高三生物知识点归纳:基因工程及其应用 1.概念:按照人们的意愿,把一种生物的某种基因提取出来,加以修饰改造,然后放到另一种生物的细胞里,定向地改造生物的遗传性状。 高考生物知识点归纳 2.原理基因重组 3.工具: A.基因的”剪刀”:限制性内切酶 ①分布:主要在微生物中。 ②作用特点:特异性,即识别特定核苷酸序列,切割特定切点。 ③结果:产生黏性未端(碱基互补配对)。 B.基因的”针线”:DNA连接酶 ①连接的部位:磷酸二酯键,不是氢键。 ②结果:两个相同的黏性未端的连接。 C.基因的”运载工具”:运载体 ①作用:将外源基因送入受体细胞。 ②具备的条件:a、能在宿主细胞内复制并稳定地保存。b、具有多个限制酶切点。 c、有某些标记基因。 ③种类:质粒、噬菌体和动植物病毒。 ④质粒的特点:质粒是基因工程中最常用的运载体。 4.基因操作的基本步骤: ①提取目的基因:人们所需要的特定基因,如人的胰岛素基因、抗虫基因、抗病基因、干扰素基因等 ②目的基因与运载体结合(以质粒为运载体):用同一种限制酶分别切割目的基

因和质粒DNA(运载体),使其产生相同的黏性末端,将切割下的目的基因与切割后的质粒混合,并加入适量的DNA连接酶,使之形成重组DNA分子(重组质粒) ③将目的基因导入受体细胞常用的受体细胞:大肠杆菌、枯草杆菌、土壤农杆菌、酵母菌、动植物细胞 ④目的基因检测与表达 检测方法如:质粒中有抗菌素抗性基因的大肠杆菌细胞放入到相应的抗菌素中,如果正常生长,说明细胞中含有重组质粒。 表达:受体细胞表现出特定性状,说明目的基因完成了表达过程。如:抗虫棉基因导入棉细胞后,棉铃虫食用棉的叶片时被杀死;胰岛素基因导入大肠杆菌后能合成出胰岛素等。

基因工程及其应用完整版

基因工程及其应用集团标准化办公室:[VV986T-J682P28-JP266L8-68PNN]

第2节基因工程及其应用(第1课时) 知识链接及考试地位 本知识与“DNA分子的结构与复制”、“基因突变和基因重组”、“DNA重组技术的基本工具”、“基因工程的基本操作程序”等内容相联系,考试过程中常设计基因工程的原理、基本工具等基础知识,多以个别填空或选择题的形式呈现。 知识回顾 1、DNA分子的结构特点是什么? 2、什么是基因重组? 学习目标 1、简述基因工程的诞生。 2、简述基因工程的原理及技术。要明确基因工程操作的基本步骤和最基本的工具。 重难点 1.教学重点 基因工程的基本原理。 2.教学难点 基因工程的基本原理 新知探究 传统育种的方法一般只能在生物中进行,很难将一种生物的优良性状移植到生物身上。基因工程的出现使人类有可能按照自己的意愿地改变生物,培育出。 一、基因工程的原理 基因工程又叫做或。通俗地说,就是按照人们的意愿,把一种生物的某种基因提取出来,加以,然后放到另一种生物细胞里,地改造生物的遗传性状。基因工程是在DNA上进行的水平的设计施工,基因的剪刀是指,简称限制酶。其作用特点是一种限制酶只能识别一种序列。基因的针线是指。目前常用的运载体有、和等。质粒存在于许多以及等生物中,是细胞染色体外能够自主复制的小型分子。 基因工程的操作步骤是:、目的基因与运载体结合,目的基因导入受体细胞、目的基因的和。 二、基因工程的原理、操作对象各是什么? 三、限制性内切酶的分布、特点、作用部位和作用结果如何? 四、作为基因的运载体,需具备哪些条件? 五、DNA连接酶的作用对象、位置和结果如何? 六、基因工程的优点是什么?

第7章 基因工程菌大规模培养

第7章基因工程菌的培养 7.1 工程菌的稳定性 一、工程菌不稳定的表现 工程菌的不稳定实际上包括质粒的不稳定及其表达产物的不稳定两个方面。具体表现为:质粒的丢失、重组质粒发生DNA片段脱落和表达产物的不稳定。 二、引起工程菌不稳定的一些因素及对策 工程菌稳定与否,取决于质粒本身的分子组成、宿主细胞的生理和遗传特性及环境条件等三个方面 工程菌不稳定的因素:控制基因的过量表达,菌体的比生长速率,培养温度,培养基的组成 1、培养基的组成 质粒在丰富培养基比在低限培养基中更加不稳定。合成培养基往往有利于宿主细胞的生长,但不利于外源基因的表达。 2、培养温度 进行工程菌培养时必须探索其最佳培养温度。通常低温有利于重组质粒的稳定遗传。 3、菌体的比生长速率 如果宿主菌的比生长速率比工程菌的大,质粒将严重丢失,导致工业上倒罐;如果宿主菌的比生长速率比工程菌小,大量繁殖时因竟争性利用基质,宿主细胞将会受到抑制,对发酵影响不大。 4、控制基因的过量表达 外源基因表达水平越高,重组质粒就越不稳定。可以采用两阶段培养法,即在发酵前期控制外源基因不过量表达,使质粒稳定遗传,到后期通过提高质粒的拷贝数和转录、转译效率使外源基因高效表达。 控制外源基因过量表达的方法: 1)如构建含可诱导启动子的工程菌,这种工程菌发酵生产时,可选择培养条件使启动子受阻遏制一定时间, 在此期间质粒稳定遗传,然后通过去阻遏(诱导)使质粒高效表达; 2)采用温度敏感型质粒,温度较低时质粒拷贝数少,当温度升高到一定时质粒大量复制、拷贝数剧增。 7.2 高密度培养 为了大量获得基因工程产品,通常采用高密度培养技术,即提高菌体的发酵密度,最终提高产物的比生产率(单位体积单位时间内产物的产量)的一种培养技术,通常指分批补料发酵技术。这样不仅可减少培养体积、强化下游分离提取,还可缩短生产周期、减少设备投资,最终降低生产成本。 一、重组大肠杆菌的高密度培养 重组大肠杆菌高密度发酵成功的关键是补料策略,即根据工程菌的生长特点及产物的表达方式采取合理的营养流加方案。在重组大肠杆菌高密度发酵中,合理流加碳源降低“葡萄糖效应”是成功的关键。常见的流加技术有:恒速流加、变速流加、指数流加和反馈流加。 1、恒速流加 限制性基质以恒定流速流加进入发酵罐中供细胞生长和代谢用的一种培养技术。通常以补料前的耗糖速率作为流加补料速率。 特点: 1)相对于发酵罐中的菌体来说,营养物的浓度逐渐降低; 2)比生长速率也慢慢降低; 3)菌体密度呈线性增加。 2、变速流加 限制性基质以变速或梯度增加流速流加进入发酵罐中供细胞生长和代谢用的一种培养技术。 特点: 1)这样可以克服恒速流加中营养物的浓度逐渐降低的缺陷,菌体在较高密度下通过流加更多营养物 质来促进菌体的生长,并对产物的表达有利。 2)比生长速率不断改变。

大肠杆菌基因工程菌常用类型

1、大肠杆菌DH5a菌株 DH5a是世界上最常用的基因工程菌株之一。由于DH5α是DNA酶缺陷型菌株,有利于基因克隆,保存质粒,但该菌株的蛋白酶没有缺陷,表达的蛋白容易被降解,因此通常不作为表达菌株。E.coli DH5a在使用pUC系列质粒载体转化时,可与载体编码的β-半乳糖苷酶氨基端实现α-互补。可用于蓝白斑筛选鉴别重组菌株。 基因型:F-,φ80dlacZΔM15,Δ(lacZYA-argF)U169,deoR,recA1,endA1,hsdR17(rk-,mk+),phoA,supE44,λ-,thi-1,gyrA96,relA1 2、大肠杆菌BL21(DE3) 菌株 该菌株用于高效表达克隆于含有噬菌体T7启动子的表达载体(如pET系列)的基因。T7噬菌体RNA聚合酶位于λ噬菌体DE3区,该区整合于BL21的染色体上。该菌适合表达非毒性蛋白。 基因型:F-,ompT,hsdS(rBB-mB-),gal,dcm(DE3) 3、大肠杆菌BL21(DE3) pLysS菌株 该菌株含有质粒pLysS,因此具有氯霉素抗性。PLysS含有表达T7溶菌酶的基因,能够降低目的基因的背景表达水平,但不干扰目的蛋白的表达。该菌适合表达毒性蛋白和非毒性蛋白。 基因型:F-,ompThsdS(rBB-mB-),gal,dcm(DE3,pLysS,Camr 4、大肠杆菌JM109菌株 该菌株在使用pUC系列质粒载体进行DNA转化或用M13 phage载体进行转染时,由于载体DNA产生的LacZa多肽和JM09编码的LacZΔM15进行α-互补,从而显示β-半乳糖苷酶活性,由此很容易鉴别重组体菌株。 基因型:recA1,endA1,gyrA96,thi-1,hsdR17,supE44,relA1,Δ(lac-proAB)/F’[traD36,proAB+,lacIq,lacZΔM15] 5、大肠杆菌TOP10菌株 该菌株适用于高效的DNA克隆和质粒扩增,能保证高拷贝质粒的稳定遗传。 基因型:F- ,mcrAΔ(mrr-hsd RMS-mcrBC),φ80 ,lacZΔM15,△lacⅩ74,recA1 ,araΔ139Δ(ara-leu)7697,galU,galK,rps,(Strr) endA1,nupG 6、大肠杆菌HB101菌株 该菌株遗传性能稳定,使用方便,适用于各种基因重组实验。 基因型:supE44,hsdS20(rB-mB-),recA13,ara-14,proA2,lacY1,galK2,rpsL20,xyl-5,mtl-1,leuB6,thi-1 7.XL10-Gold菌株:所制备的感受态细胞是目前转化效率最高的感受态细胞,缺失几乎所有已知的限制酶切系统;同时缺失核酸内切酶(endA),提高了质粒DNA的产量和质量;重组酶缺陷型(recA)减少插入片段的同源重组概率,保证了插入DNA的稳定性,提高感受态转化效率及大质粒转化能力的宿主菌基因型。

选修三专题一1.3《基因工程的应用》教案.doc

选修三专题一第3节基因工程的应用 一、教学目标 1.举例说出基因工程应用及取得的丰硕成果。 2.关注基因工程的进展。 3.认同基因工程的应用促进生产力的提高。 二、教学重点和难点 1.教学重点 基因工程在农业和医疗等方面的应用。 2.教学难点 基因治疗。 三、教学过程 1、转基因生物与目的基因的关系 转基因生物目的基因目的基因从何来 抗虫棉Bt毒蛋白基因苏云金芽孢杆菌抗真菌立枯丝核菌的烟草几丁质酶基因和抗毒素合成基因 抗盐碱和干旱作物调节细胞渗透压的基因 耐寒的番茄抗冻蛋白基因鱼 抗除草剂大豆抗除草剂基因 增强甜味的水果降低乳糖的奶牛 甜味基因肠乳糖酶基因 生产胰岛素的工程菌人胰岛素基因人 讨论: 1、用动物乳腺作为反应器,生产高价值的蛋白质(如教材中列举的血清白蛋白、抗凝血酶等)比工厂化生产的优越之处有哪些?(乳腺生物反应器的优点:①产量高;②质量好; ③成本低;④易提取。) 简介:动物乳腺生物反应器 1987年美国科学家戈登(Gordon)等人首次在小鼠的奶中生产出一种医用蛋白──tPA (组织

型纤溶酶原激活物),展示了用动物乳腺生产高附加值产品的可能性。利用动物乳腺生产高价值产 品的方式称为动物乳腺反应器。 为什么要用动物乳腺作为反应器生产高价值的蛋白质产品呢?这是因为动物乳房是一种高度分化的专门化腺体,合成蛋白质的能力非常强,尤其是一些经过长期的遗传改良,专门产奶的乳用动物品种,蛋白质合成能力更是惊人。一头优质奶牛,一年可产奶10 000 kg。即便是一只奶山羊,一年也可产奶2 000 kg。 动物乳腺生物反应器归纳起来有四大优点:①产量高,且易收获目标产品,可以随乳汁分泌而排出动物体外;②目标产品的质量好。动物乳腺组织不仅具有按遗传信息流向合成蛋白质的能力,而且具备一整套对蛋白进行修饰和加工的能力,如糖基化、羧化、磷酸化以及分子组装等,而微生物和植物系统都不具备这种全面的蛋白质后加工能力;③产品成本低;④从奶牛中提取产品,操作比较简单。 正因为利用动物乳腺生物反应器生产高附加值的产品有上述优点,目前利用动物乳腺生物反应器生产医用蛋白质已成为一种风险投资产业,受到科学家、商界和医药界的高度重视。目前瞄准的目标医药产品有:①血液蛋白质,如表1-2所示,这些血液蛋白质有巨大的经济效益,其中利用奶牛生产的凝血酶Ⅲ已通过第三期临床实验,即将投放市场。②第二代医用蛋白质,主要有抗体、降钙素、人的生长激素、胰岛素等药物蛋白,乳白蛋白、乳铁蛋白等营养蛋白,疫苗,组织修复物等。③生产“人源化牛奶”,即用成人的乳蛋白基因替代牛的乳蛋白基因,使牛奶变成像人奶的一种基因工程奶。 动物乳腺生物反应器的做法与转基因动物的操作是相同的,只是为了将目标产品在乳汁中形成,需要使用乳腺组织中特异表达的启动子,即在目标产品蛋白质编码框的前面加上乳腺组织中特异表达的启动子等,构建成表达载体后通过注射导入受精卵中,再将其送入母体动物内,发育成动物个体,这个转基因动物就会在奶中产生所需要的目标产品。 2、用基因工程技术实现动物乳腺生物反应器的操作过程是怎样的? 用基因工程技术实现动物乳腺生物反应器的操作过程与转基因动物操作过程相同。 不同之处:为了将目标产品在奶中形成,需要使用乳腺组织中特异表达的启动子,要在编码目的蛋白质的基因序列前加上乳腺组织中特异表达的启动子构建成表达载体。 操作过程大致归纳为:获取目的基因(例如血清白蛋白基因)→构建基因表达载体(在血清白蛋白基因前加特异表达的启动子)→显微注射导入哺乳动物受精卵中→形成胚胎→将胚胎送入母体动物→发育成转基因动物(只有在产下的雌性个体中,转入的基因才能表达)。

基因工程菌大规模培养

第7章基因工程菌的培养 工程菌的稳定性 一、工程菌不稳定的表现 工程菌的不稳定实际上包括质粒的不稳定及其表达产物的不稳定两个方面。具体表现为:质粒的丢失、重组质粒发生DNA片段脱落和表达产物的不稳定。 二、引起工程菌不稳定的一些因素及对策 工程菌稳定与否,取决于质粒本身的分子组成、宿主细胞的生理和遗传特性及环境条件等三个方面 工程菌不稳定的因素:控制基因的过量表达,菌体的比生长速率,培养温度,培养基的组成 1、培养基的组成 质粒在丰富培养基比在低限培养基中更加不稳定。合成培养基往往有利于宿主细胞的生长,但不利于外源基因的表达。 2、培养温度 进行工程菌培养时必须探索其最佳培养温度。通常低温有利于重组质粒的稳定遗传。 3、菌体的比生长速率 如果宿主菌的比生长速率比工程菌的大,质粒将严重丢失,导致工业上倒罐;如果宿主菌的比生长速率比工程菌小,大量繁殖时因竟争性利用基质,宿主细胞将会受到抑制,对发酵影响不大。 4、控制基因的过量表达 外源基因表达水平越高,重组质粒就越不稳定。可以采用两阶段培养法,即在发酵前期控制外源基因不过量表达,使质粒稳定遗传,到后期通过提高质粒的拷贝数和转录、转译效率使外源基因高效表达。 控制外源基因过量表达的方法: 1)如构建含可诱导启动子的工程菌,这种工程菌发酵生产时,可选择培养条件使启动子受阻遏制一定时间, 在此期间质粒稳定遗传,然后通过去阻遏(诱导)使质粒高效表达; 2)采用温度敏感型质粒,温度较低时质粒拷贝数少,当温度升高到一定时质粒大量复制、拷贝数剧增。 高密度培养 为了大量获得基因工程产品,通常采用高密度培养技术,即提高菌体的发酵密度,最终提高产物的比生产率(单位体积单位时间内产物的产量)的一种培养技术,通常指分批补料发酵技术。这样不仅可减少培养体积、强化下游分离提取,还可缩短生产周期、减少设备投资,最终降低生产成本。 一、重组大肠杆菌的高密度培养 重组大肠杆菌高密度发酵成功的关键是补料策略,即根据工程菌的生长特点及产物的表达方式采取合理的营养流加方案。在重组大肠杆菌高密度发酵中,合理流加碳源降低“葡萄糖效应”是成功的关键。常见的流加技术有:恒速流加、变速流加、指数流加和反馈流加。 1、恒速流加 限制性基质以恒定流速流加进入发酵罐中供细胞生长和代谢用的一种培养技术。通常以补料前的耗糖速率作为流加补料速率。 特点: 1)相对于发酵罐中的菌体来说,营养物的浓度逐渐降低; 2)比生长速率也慢慢降低; 3)菌体密度呈线性增加。 2、变速流加 限制性基质以变速或梯度增加流速流加进入发酵罐中供细胞生长和代谢用的一种培养技术。 特点: 1)这样可以克服恒速流加中营养物的浓度逐渐降低的缺陷,菌体在较高密度下通过流加更多营养物 质来促进菌体的生长,并对产物的表达有利。 2)比生长速率不断改变。

基因工程的应用

基因工程技术的应用和前景 【摘要】基因工程问世以来短短的二十年,显示出了巨大的活力,今后基因工程将重点开展基因组学、基因工程药物、动植物生物反应器和环保等方面的研究,展望未来,基因工程的前景将是更加灿烂辉煌。基因工程研究和应用范围涉及农业、工业、医药、能源、环保等许多领域。【关键词】基因工程技术前景现状 随着基因工程技术的迅速发展,通过克隆或筛选出来的富基因,转到作物中进行表达,已取得很大的进展。由于基因工程运用DNA分子重组技术,能够按照人们预先的设计创造出许多新的遗传结合体,具有新奇遗传性状的新型产物,增强了人们改造动植物的主观能动性、预见性。而且在人类疾病的诊断、治疗等方面具有革命性的推动作用,对人口素质、环境保护等作出具大贡献。所以,各国政府及一些大公司都十分重视基因工程技术的研究与开发应用,抢夺这一高科技制高点。其应用前景十分广阔。我国基因工程技术尚落后于发达国家,更应当加速发展,切不可坐失良机。 但是,任何科学技术都是一把“双刃剑”,在给人类带来利益的同时,也会给人类带来一定的灾难。比如基因药物,它不仅能根治遗传性疾病、恶性肿瘤、心脑血管疾病等,甚至人的智力、体魄、性格、外表等亦可随意加以改造;还有,克隆技术如果不加限制,任其自由发展,最终有可能导致人类的毁灭。还有,尽管目前的转基因动植物还未发现对人类有什么危害,但不等于说转基因动植物就是十分安全的,毕竟这些东西还是新生事物,需要实践慢慢地检验。转基因生物和常规繁殖生长的品种一样,是在原有品种的基础上对其部分性状进行修饰或增加新性状,或消除原来的不利性状,但常规育种是通过自然选择,而且是近缘杂交,适者生存下来,不适者被淘汰掉。而转基因生物远远超出了近缘的范围,人们对可能出现的新组合、新性状会不会影响人类健康和环境,还缺乏知识和经验,按目前的科学水平还不能完全精确地预测。所以,我们要在抓住机遇,大力 1、植物基因工程成果丰硕 自1983年首次获得转基因烟草、马铃薯以来,短短十余年间,植物基因工程的研究和开发进展十分迅速。国际上获得转基因植株的植物已达100种以上,包括水稻、玉米、马铃薯等作物;棉花、大豆、油菜、亚麻、向日葵等经济作物;番茄、黄瓜、芥菜、甘蓝、花椰菜、胡萝卜、茄子、生菜、芹菜等蔬菜作物;首楷、白三叶草等牧草;苹果、核桃、李、木瓜、甜瓜、草荀等瓜果;短牵牛、菊花、香石竹、伽蓝菜等花卉以及杨树造林树种。转基因植物研究取得了令人鼓舞的突破性发展。十

基因工程的应用及前景

高二生物导学案班级 班级姓名使用时间 一、学习目标 1.举例说出基因工程应用及取得的丰硕成果。 2.关注基因工程的进展。 3.认同基因工程的应用促进生产力的提高。 二、学习重点 1.DNA重组技术的基本工具(三方面) 2.基因工程的基本操作程序(四方面) 三、学习难点 1.DNA重组技术的基本工具(三方面) 2.基因工程的基本操作程序(四方面) 一、植物基因工程硕果累累 提高农作物的(如)能力、改良农作物的,和利用植物生产等。

一、动物基因工程前景广阔 二、基因工程药物异军突起 1、方式:利用基因工程培育来生产药品。 2、成果:利用工程菌可生产、、、等。 3、什么是工程菌? 四、基因治疗 1、概念:把导入病人体内,使该基因的表达产物发挥功能,从而达到治疗疾病的目的。 2、成果:将导入患者的淋巴细胞。 3、途径:分为和。 4、注意:基因治疗治疗疾病的最有效手段。 5、基因治疗用于临床治疗了么? 作业:1.下列关于基因工程的应用,说法正确的是() A.我国转基因抗虫棉是转入了植物凝集素基因培育出来的 B.可用于转基因植物的抗虫基因只有植物凝集素基因和蛋白酶抑制剂基因 C.抗真菌转基因植物中,可使用的基因有几丁质酶基因和抗毒素合成基因 D.提高作物的抗盐碱和抗干旱的能力,与调节渗透压的基因无关 2.运用现代生物技术,将苏云金芽孢杆菌的抗虫基因整合到棉花细胞中,为检测实验是否成功,最方便的方法是检测棉花植株是否有()

A.抗虫基因B.抗虫基因产物 C.新的细胞核D.相应性状 3.科学家已能运用基因工程技术,让羊合成并由乳腺分泌抗体,相关叙述中正确的是() ①该技术将导致定向变异 ②DNA连接酶能把目的基因与载体黏性末端的碱基对连接起来 ③蛋白质中的氨基酸序列可为合成目的基因提供材料④受精卵是理想的受体 A.①②③④B.①③④ C.②③④D.①②④ 4.下列不.属于基因工程药物的是() A.从大肠杆菌体内获取的白细胞介素B.从酵母菌体内获取的干扰素 C.从青霉菌体内获取的青霉素D.从大肠杆菌体内获取的胰岛素 5.在转基因植物(如抗虫棉)的培育中,成功与否最终要看() A.用什么方法获得目的基因B.选择运载体是否得当 C.重组DNA分子的结构和大小D.是否赋予了植物抗性 6.若利用基因工程技术培育能固氮的水稻新品种,其在环境保护上的最重要意义是() A.减少氮肥使用量,降低生产成本B.减少氮肥生产量,节约能源 C.避免使用氮肥过多引起的环境污染D.改良土壤的群落结构 7.利用基因工程技术将生长激素基因导入绵羊体内,转基因绵羊生长速度比一般的绵羊提高30%,体型大50%,在基因操作过程中生长激素基因的受体细胞最好采用() A.乳腺细胞B.体细胞C.受精卵D.精巢 8.采用基因工程技术将人凝血因子基因导入山羊受精卵,培育出转基因羊。但是,人凝血因子只存在于该转基因羊的乳汁中。以下有关叙述,正确的是() A.人体细胞中凝血因子基因编码区的碱基对数目,等于凝血因子氨基酸数目的3倍B.可用显微注射技术将含有人凝血因子基因的重组DNA分子导入羊的受精卵 C.在该转基因羊中,人凝血因子基因存在于乳腺细胞,而不存在于其他体细胞中D.人凝血因子基因开始转录后,DNA连接酶以DNA分子的一条链为模板合成mRNA 9.“工程菌”是指() A.用物理或化学方法诱发菌类自身某些基因得到高效表达的菌类细胞株系 B.用遗传工程的方法,把相同种类不同株系的菌类通过杂交得到新细胞株系 C.用基因工程的方法,使外源基因得到高效表达的菌类细胞株系 D.从自然界中选取能迅速增殖的菌类 10.抗病毒转基因植物成功表达后,以下说法正确的是() A.抗病毒转基因植物可以抵抗所有病毒 B.抗病毒转基因植物对病毒的抗性具有局限性或特异性 C.抗病毒转基因植物可以抗害虫 D.抗病毒转基因植物可以稳定遗传,不会变异 11.要彻底治疗白化病必须采用() A.基因治疗B.医学手术C.射线照射D.一般药物 12.下列与基因诊断有关的一组物质是() A.蛋白质、核酸B.放射性同位素、蛋白质 C.荧光分子、核酸D.放射性同位素、糖类 13.下列关于基因工程成果的概述错误的是() A在医药卫生方面主要用于诊断治疗疾病

优秀教案(基因工程及其应用 第2课时)

第2课时 ●教学过程 [课前准备] 1.教师准备 (1)教师将听证会规则、程序、角色扮演的程序和具体要求以及评价标准复印好,分发给各学习小组。 (2)教师整理《转基因生物和转基因食品利弊争论的要点》,印发给各学习小组。 (3)收集转基因生物和转基因食品安全性的资料信息,转基因生物技术的利弊关系的资料,请有关专家学者到学校做有关基因工程知识的讲座。 (4)教师设计并参与制作计算机教学课件,在校园网上制作网页,查找大量资料,完善网页内容,建立内容丰富的“基因工程知识资源库”。 (5)教师根据学生的资料准备状况、知识的准确性、抢答的积极性、讲述的条理性、姿态的自然性、课件的美观性编制《学生听课记录和评价表》。 (6)教师编制《研究性学习课题研究专题报告》。 2.学生准备 (1)学生预习教材,对教材中的内容做宏观地了解。 (2)利用课余时间,通过看书、看报及看电视,收集有关基因工程的成果与发展前景的资料或信息并制成课件,也可以走访有关的专家、学者了解该内容。 (3)分组预习并完成教师下发的有关资料。 (4)按听证会的要求摆好课桌椅,根据各小组的选择按辩论的正方和反方分成左右两个大组。 [情境创设] 教师:通过课件向学生展示基因工程给人类带来巨大成就的图片。同时述说如下:基因工程自1973年诞生后,由于基因工程技术具有可以直接控制基因,将基因从一个物种转移至另一个物种,创造出新的物种或新的品种的显著特点,也就是说,可按照人们的主观愿望,创造出自然界中原先并不存在的新的生物类型,使人类从单纯地认识生物和利用生物的传统模式跳跃到随心所欲改造生物和创造生物的新时代。经过30多年的发展历程,取得了惊人的成绩,特别是近10年来,基因工程的发展更是突飞猛进。基因转移、基因扩增多技术的应用,不仅使生命科学的研究发生了前所未有的变化,而且在实际应用领域中,为农牧业、食品工业、医药卫生、环境保护等方面开拓了广阔的发展前景。 今天就由同学们来阐述自己的认识和看法。 [师生互动] 教师:首先请各小组汇报课前收集到的有关基因工程应用的事例资料。 学生分组汇报并交流课前收集资料的情况。 学生1:基因工程在农业上的应用主要表现在两方面: (1)通过基因工程技术获得高产、稳产和具有优良品质的农作物。 (2)用基因工程的方法可培育出具有各种抗逆性的作物新品种。现在已培育出一批分别具有抗病、抗虫、抗除草剂、抗盐碱、抗病毒、抗干旱等性状的转基因农作物。1996至2000年的短短五年间,全球转基因作物从170×104 hm2发展到4 420×104 hm2,其推广速度是前所未有的…… 学生2:基因工程在畜牧养殖业中的应用 基因工程在畜牧养殖业上的应用也具有广阔的前景,科学家将某种特定基因与病毒DNA构成重组DNA,然后,通过感染或显微注射技术将重组DNA转移到动物受精卵中,并由这种受精卵发育成新个体,这就是我们在前面提到的转基因动物。通过转基因动物人们

基因工程及其应用

基因工程及其应用 一:【考点解读】 1、简述基因工程的基本原理 2、举例说出基因工程在农业、医药等领域的应用 3、关注转基因生物和转基因食品的安全性 【学习重点:】基因工程的基本原理和安全性问题 【学习难点:】基因工程的基本原理和转基因生物与转基因食品的安全性 二:【知识梳理】 1. 基因工程概念: 2.原理: 3.基因工程的基本工具:(1).基因的“剪刀” 限制性内切酶能够对DNA分子进行切割,它具有和特异性。即一种内切酶只对DNA分子内特定的碱基序列中的特定位点发生作用,把它切开。(2.)基因的“针线”能够将限制酶切开的黏性末端连接起来,从而使两个DNA片段连接起来。 注:限制酶与连接酶作用的位点都是键 (3).基因的运载体作用:将外源基因送入受体细胞 种类:和。其中质粒是基因工程中最常用的运载体,最常用的质粒是大肠杆菌的质粒。特点:是细胞染色体外能的很小的环状DNA 分子,存在于许多细菌及酵母菌等生物中。 条件:(1)能在宿主细胞内并稳定保存,并对宿主细胞正常生活没有影响; (2)具有个限制酶切点,便于与外源基因连接 4.基因工程的基本步骤: 三:【例题精析】 在植物基因工程中,用土壤农杆菌中的Ti质粒作为运载体,把目的基因重组入Ti质粒上的T—DNA 片段中,再将重组的T—DNA插入植物细胞的染色体DNA中。 (1)科学家在进行上述基因操作时,要用同一种分别切割质粒和目的基因,质粒的黏性末端与目的基因DNA片段的黏性末端就可通过而黏合。 (2)将携带抗除草剂基因的重组Ti质粒导入二倍体油菜细胞,经培养、筛选获得一株有抗除草剂特性的转基因植株。经分析,该植株含有一个携带目的基因的T—DNA片段,因此可以把它看作是杂合子。理论

相关文档