文档库 最新最全的文档下载
当前位置:文档库 › 合成 配位 铜

合成 配位 铜

合成 配位  铜
合成 配位  铜

Dicopper(II)Complexes of the Antitumor Analogues Acylbis(salicylaldehyde hydrazones) and Crystal Structures of Monomeric[Cu2(1,3-propanedioyl bis(salicylaldehyde hydrazone))(H2O)2]?(ClO4)2?3H2O and Polymeric[{Cu2(1,6-hexanedioyl bis(salicylaldehyde hydrazone))(C2H5OH)2}m]?(ClO4)2m?m(C2H5OH)

John D.Ranford,*,?Jagadese J.Vittal,and Yu M.Wang

Department of Chemistry,National University of Singapore,Lower Kent Ridge Road,Singapore119260

Recei V ed June26,1997

Salicylaldehyde hydrazones derived from acyldicarboxylic acids(H4L n,where n)0,1,2,4,6,8,10,14and is

the number of methylene units)of varying chain length have been prepared,and their dicopper(II)complexes

have been isolated as bis analogues of antitumor carboxylate hydrazones.The predominant structural form adopted

is polymeric,with[{Cu2L n}m]formed in neutral or basic solution,[{Cu2(H2L n)Cl2}m]from dilute HCl,and[{Cu2-

(H2L n)}m]?(ClO4)2m from dilute HClO4.The crystal structures of[Cu2(H2L1)(H2O)2]?(ClO4)2?3H2O and

[{Cu2(H2L4)(C2H5OH)2}m]?(ClO4)2m?m(C2H5OH)have been determined.The structure of[Cu2(H2L1)(H2O)2]?

(ClO4)2?3H2O consists of discrete di-Cu(II)molecules with nonsymmetry-related Cu(II)centers.The copper

atoms are square-planar with H2L1supplying two tridentate,monoanionic ONO domains and water completing

the coordination sphere.The two metal-binding domains are inclined at80°to each other.For[{Cu2(H2L4)(C2H5-

OH)2}m]?(ClO4)2m?m(C2H5OH)the symmetry-related copper atoms are square-pyramidal with the base composed

of H2L4,acting as a tridentate ONO chelator,and an O-bonded ethanol molecule.Axial phenolato bridges complete

the coordination sphere,linking molecules to give a https://www.wendangku.net/doc/cf16111859.html,pounds prepared have been characterized by

a range of physicochemical and spectroscopic techniques,and proton and metal ion stability constant data have

been determined.

Introduction

Investigation into the iron-binding potential of a range of hydrazone derivatives,1as drugs for genetic disorders such as thalassemia,led to the discovery that salicylaldehyde benzoyl-hydrazone(H2sb)inhibits DNA synthesis and cell growth.2 Intriguingly,the copper(II)complex was shown to be signifi-cantly more potent than the metal-free chelate,leading to the suggestion that the metal complex was the biologically active species.Prior to this,H2sb was found to possess mild bac-teriostatic activity.3Because of the biological interest in this type of chelate system,several structural studies have been carried out on copper4-6with H2sb and analogues.This class of diprotic ligand typically acts as tridentate,planar chelates coordinating through the phenolic and amide oxygens and the imine nitrogen.The actual ionization state is dependent upon the conditions and metal employed.6With Cu(II)in base,both the phenolic and amide protons are ionized;in neutral and mild acidic solution the ligands are monoanionic,whereas strongly acidic conditions are necessary to form compounds formulated with a neutral ligand.Such copper(II)complexes often exhibit antiferromagnetism which may be due to the structurally observed preference for planar,phenolato bridged dimers.5-7

Acylhydrazones of salicylaldehyde subsequently attracted attention.Salicylaldehyde acetylhydrazone(H2sa)displays ra-dioprotective properties,8and a range of acylhydrazones have

?E-mail:chmjdr@https://www.wendangku.net/doc/cf16111859.html,.sg.

(1)(a)Ponka,P.;Borova,J.;Neuwirth,J.;Fuchs,O.FEBS Lett.1970,

97,317-320.(b)Vitolo,M.L.;Webb,J.J.Inorg.Biochem.1984, 20,255-262.(c)Baker, E.;Vitolo,M.L.;Webb,J.Biochim.

Pharmacol.1985,34,3011-3017.(d)Ponka,P.;Richardson,D.;

Baker,E.;Schulman,H.M.;Edward,J.T.Biochim.Biophys.Acta 1988,967,122-129.

(2)(a)Johnson,D.K.;Murphy,T.B.;Rose,N.J.;Goodwin,W.H.;

Pickart,L.Inorg.Chim.Acta1982,67,159-165.(b)Pickart,L.;

Goodwin,W.H.;Burgua,W.;Murphy,T.B.;Johnson,D.K.Biochem.

Pharmacol.1983,32,3868-3871.(3)Offe,H.A.;Siefken,W.;Domagk,G.Z.Naturforsch.1952,7B,462-

468.

(4)(a)Aruffo,A.A.;Murphy,T.B.;Johnson,D.K.;Rose,N.J.;

Schomaker,V.Acta Crystallogr.,Sect.C1984,40,1164-1169.(b) Ainscough,E.W.;Brodie,A.M.;Dobbs,A.;Ranford,J.D.;Waters, J.M.Inorg.Chim.Acta1995,236,83-88.

(5)Chan,S.C.;Koh,L.L.;Leung,P.-H.;Ranford,J.D.;Sim,K.Y.

Inorg.Chim.Acta1995,236,101-108.

(6)Ainscough,E.W.;Brodie,A.M.;Dobbs,A.;Ranford,J.D.;Waters,

J.M.Inorg.Chim.Acta1998,267,27-38.

(7)Moubaraki,B.;Murray,K.S.;Ranford,J.D.;Robinson,W.T.;

Svensson,J.;Wu D.Q.Manuscript in preparation.

(8)Arapov,O.V.;Alferva,O.F.;Levocheskaya,E.I.;Krasil’nikov,I.

Radiobiologiya1987,27,843-846.

1226Inorg.Chem.1998,37,1226-1231

S0020-1669(97)00805-7CCC:$15.00?1998American Chemical Society

Published on Web02/26/1998

been shown to be cytotoxic,9the copper complexes again showing enhanced activity.Little is known on the mechanisms of bioactivity for any of these compounds.

The natural extension from this is to acyldihydrazones(H4L n)-and predominantly synthetic studies on selective ranges of ligands with transition metals have been carried out.10Nickel-(II),11dioxomolybdenum(VI),12and dioxouranium(VI)13com-plexes have been prepared to investigate the ligating properties of the system.With Cu(II),complexes were isolated from the potentially hexadentate chelates either with one metal ion per ligand(n)0)14and a normal magnetic moment or with two metal ions and low moments(n)0-4).15Structures were proposed on the basis of spectroscopic and magnetic susceptibil-ity data.

This paper reports the synthesis and characterization of an extended range of salicylaldehyde acyldihydrazone ligands (H4L n,n)0,1,2,4,6,8,10,14)and their dicopper(II) complexes formed from both neutral or basic([{Cu2L n}m])and dilute acid solutions([{Cu2(H2L n)Cl2}m]and[{Cu2(H2L n)}m]?(ClO4)2m).The crystal structures of monomeric[Cu2(H2L1)-(H2O)2]?(ClO4)2?3H2O and polymeric[{Cu2(H2L4)(C2H5OH)2}m]?(ClO4)2m?m(C2H5OH),the first for this ligand class with copper, are reported.Preliminary proton and copper(II)ion stability constant data have been determined for this system and for H2as for comparison.

Experimental Section

Caution:As these ligands are cytotoxic,they should be handled with necessary care.

Ligand Preparations.Except for oxalate bis(salicylaldehyde hy-drazone)(H4L0),which will be given separately,all ligands were prepared using a similar procedure;therefore,one general example will be given.

H4L n.To the diethyl ester of the diacid(37.6mmol)in absolute ethanol(5mL)was added hydrazine hydrate(7.29mL,150mmol), and the solution refluxed for10h.The resulting white dihydrazide was filtered,given a cursory wash with ethanol,and then dried in vacuo. To a suspension of the dihydrazide(13.5mmol)in ethanol(20mL) was added salicylaldehyde(2.90mL,27.7mmol),and the mixture was stirred in an ice bath for8h.The white precipitate of the desired dihydrazone was collected and washed with ethanol prior to drying in vacuo.

H4L0.The previous procedure was repeated using dimethyl ethandioate.However,after the addition of the salicylaldehyde,the reaction was stirred for4h as prolonged reaction results in a yellow coloration.The compound was recrystallized from DMF to give white product.Yield57%;mp321-322°C(lit.15>250°C);1H NMR [(CD3)2SO]δ6.79-7.57(m,8H),8.81(s,2H),11.00(s,2H),12.63 (s,2H).Anal.Calcd(Found):C,58.7(58.9);H,4.3(4.3);N,17.3 (17.2).

H4L1.Yield84%;mp234-236°C(lit.15230°C);1H NMR[(CD3)2-SO](isomer I50%+isomer II50%),δ3.61+3.90(s,2H),6.8-7.7 (m,8H),8.42+8.43(s,2H),11.40(s,4H),12.63(s,2H).Anal.Calcd (Found):C,60.0(60.0);H,4.6(4.7);N,16.5(16.5).

H4L2.Yield65%;mp273-275°C(lit.15230°C);1H NMR[(CD3)2-SO](isomer I41%+isomer II22%+isomer III22%+isomer IV 15%),2.55(t)+2.58(s)+2.91(s)+2.93(t)(4H),6.8-7.7(m,8H), 8.27+8.28+8.35(s,2H),11.16+11.20+11.26+11.28(s,2H), 10.13+11.68+11.70(s,2H).Anal.Calcd(Found):C,61.0(61.0); H,5.0(5.1);N,15.7(15.8).

H4L4.Yield76%;mp300-302°C(lit.15>250°C);1H NMR [(CD3)2SO](isomer I67%+isomer II33%),δ1.63(t,4H),2.26+ 2.62(t,4H),6.8-7.7(m,8H),11.19(s,2H),11.60+10.12(s,2H). Anal.Calcd(Found):C,62.6(62.8);H,5.8(5.8);N,14.3(14.6).

H4L6.Yield55%;mp220-223°C;1H NMR[(CD3)2SO](isomer I67%+isomer II33%),δ1.33(m,4H),1.59(m,4H),2.22+2.57 (t,4H),6.8-7.7(m,8H),8.33+8.25(s,2H),11.18(s,2H),11.56+ 11.14(s,2H).Anal.Calcd(Found):C,64.1(64.4);H,6.6(6.4);N, 13.7(13.7).

H4L8.Yield71%;mp206-208°C(lit.11213-4°C);1H NMR [(CD3)2SO](isomer I67%+isomer II33%),δ1.29(m,8H),1.58 (m,4H),2.21+2.56(t,4H),6.8-7.7(m,8H),8.33+8.24(s,2H), 11.20+11.17(s,2H),11.57+10.12(s,2H).Anal.Calcd(Found): C,65.6(65.7);H,6.9(6.9);N,12.9(12.8).

H4L10.Yield87%;mp231-232°C;1H NMR[(CD3)2SO](isomer I67%+isomer II33%),δ1.27(m,12H),1.57(m,4H),2.20+2.55 (t,4H),6.8-7.7(m,8H),8.33+8.24(s,2H),11.20+11.17(s,2H), 11.55+10.12(s,2H).Anal.Calcd(Found):C,66.5(66.9);H,7.3 (7.3);N,12.2(12.0).

H4L14.Yield88%;mp160-162°C;1H NMR[(CD3)2SO](isomer I67%+isomer II33%),δ1.24(m,20H),1.57(m,4H),2.21+2.51 (t,4H),6.8-7.7(m,8H),8.34+8.25(s,2H),11.19+11.16(s,2H), 11.54+10.13(s,2H).Anal.Calcd(Found):C,68.7(68.9);H,8.2 (8.1);N,10.7(10.7).

Complex Preparations.A general procedure will be given for each type of complex prepared.

Warning:Perchlorate salts are potentially explosi W e.

[{Cu2L n}m]?xm H2O.To a hot solution of the ligand(0.5mmol)in DMF(10mL)(for H4L14the solvent was1:3DMF/ethanol,20mL) was added LiOH(48mg,2.0mmol)in water(5mL).CuCl2?2H2O (176mg,1.03mmol)in absolute ethanol(7mL)was added dropwise to the resulting yellow solution.The precipitate that formed was stirred for2h with gentle heating,filtered,and then washed successively with water,ethanol,and diethyl ether prior to drying in vacuo.Yields ranged from47to94%.

[{Cu2(H2L n)Cl2}m]?xm H2O.Two drops of concentrated HCl were added to a hot solution of the ligand(0.5mmol)in DMF(10mL).To this was added CuCl2?2H2O(176mg,1.03mmol)in absolute ethanol (7mL),and the dark green solution that formed was left to evaporate until the brown or yellow-green precipitate appeared.The product was filtered,washed successively with acidified(HCl)ethanol and diethyl ether,and dried in vacuo.Yields ranged from22to37%.

[{Cu2(H2L n)(H2O)2}m]?(ClO4)2m?xm H2O.To a suspension of the ligand(0.5mmol)in ethanol(25mL)was added Cu(ClO4)2?6H2O(382

(9)Koh,L.L.;Kuan,W.L.;Lian,K.O.;Long,Y.C.;Ranford,J.D.;

Tan,L.C.;Tjan,Y.Y.,Submitted.

(10)(a)Umarov,B.B.;Khusenov,K.S.;Ishankhodzhaeva,M.M.;Parpiev,

N. A.;Gaibullaev,https://www.wendangku.net/doc/cf16111859.html,.Khim.1996,32,93-95.(b)

Aggarawal,R.C.;Singh,B.Curr.Sci.1978,47,679-680.(c)Narang,

K.K.;Lal,R.A.Transition Met.Chem.(London)1977,2,100-103.

(d)Zhang,X.-M.;You,X.-Z.Polyhedron1996,15,1793-1796.

(11)Sacconi,L.J.Chem.Soc.1954,Part I,1326-1328.

(12)(a)Wang,X.;Zhang,X.M.;Liu,H.X.Polyhedron1994,13,2611-

2614.(b)Wang,X.;Zhang,X.M.;Liu,H.X.Acta Crystallogr.,Sect.

C1994,50,1878-1880.

(13)(a)Lal,R.A.;Das,S.;Thapa,R.K.Inorg.Chim.Acta1987,132,

129-136.(b)Das,S.;Lal,R.A.Indian J.Chem.1988,27A,225-

230.(c)Husain,M.;Bhattacharjee,S.S.;Singh,K.B.;Lal,R.A.

Polyhedron1991,10,779-788.

(14)Narang,K.K.;Lal,R.A.Curr.Sci.1977,46,401-403.

(15)Lal,R.A.;Srivastava,K.N.;Das,S.Synth.React.Inorg.Met.-Org.

Chem.1988,18,837-848.

Dicopper(II)Complexes of Salicylaldehyde Hydrazones Inorganic Chemistry,Vol.37,No.6,19981227

mg,1.03mmol)followed by70%HClO4(0.5mL).The resulting emerald solution was refluxed for1.5h,filtered,and then left to evaporate at room temperature.The product was collected after ca.1 week and given a cursory wash with ethanol and then diethyl ether prior to drying in vacuo.Yields were ca.40%.

X-ray Crystallography. 1.[Cu2(H2L1)(H2O)2]?(ClO4)2?3H2O.(a) Crystal Data.C17H24Cl2Cu2N4O17,monoclinic,space group P21/n,a )9.7447(1)?,b)21.1248(2)?,c)16.2286(2)?, )95.034(1)°, U)3327.85(6)?3,Z)4,M)750.35g mol-1,D c)1.498g cm-3, absorption coefficient,1.509mm-1,λ)0.71073?,F(000))1512, crystal dimensions,0.40×0.33×0.23mm.

(b)Measurements.Data were collected at23°C on a Siemens SMART CCD diffractometer with Mo K R radiation(λ)0.71073?) with the crystal sealed in a glass capillary tube.Preliminary cell constants were obtained from45frames of data(width of0.3°inω). Final cell parameters were obtained by global refinements of reflections obtained from integration of all the frame data.A total of16598 reflections were collected in theθrange1.59-25.0°(h)-13to13; k)-20to27;l)-17to21)with a frame width of0.3°inωand

a counting time of20s per frame at a crystal-to-detector distance of

4.095cm.The collected frames were integrated using the preliminary cell-orientation matrix.The software used were SMART16for col-lecting frames of data,indexing reflections,and determination of lattice parameters;SAINT16for integration of intensity of reflections and scaling;SADABS17for absorption correction;and SHELXTL18for space group and structure determination,refinements,graphics,and structure reporting.

(c)Structural Analysis.The space group P21/n was determined from the systematic absences.All the non-hydrogen atoms in the neutral molecules were refined anisotropically.The two ClO were severely disordered.For one perchlorate anion the two ClO3fragments were anchored on a common oxygen atom O(1A).In the second perchlorate anion,three independent ClO4disorder models were included.The occupancies0.4,0.4,and0.2were arbitrary and were not https://www.wendangku.net/doc/cf16111859.html,mon isotropic thermal parameters were refined for the first two fragments,and the thermal parameter was fixed at0.08 for the third one.The option SADI was used to apply soft constraints on the Cl-O and O???O distances for ClO4fragments containing Cl(1) and Cl(1A).Ideal geometry was imposed on the other perchlorate anion using the option DFIX.About3water molecules were found in the crystal lattice.They were severely disordered,too,and sixteen positions were found in the difference Fourier routine.The occupancy ranges from0.25to0.125.No hydrogen atoms were added for these solvent oxygens atoms.However,individual isotropic thermal parameters were refined.The hydrogen atoms of the C’s and N’s were placed in the ideal positions using riding models.In the final least-squares refinement cycles on F2,the model converged at R1)0.0752,w R2)0.2322,and GOF)1.026for4628reflections with F o>4σ(F o)and416parameters, and R1)0.0922and w R2)0.2477for all5779data.In the final difference Fourier synthesis the electron density fluctuates in the range 0.73to-2.26e?-3.The top11peaks were associated with either disordered ClO4or with solvent molecules.In the final cycle,the maximum shift and shift/esd are0.080and0.003,respectively.An extinction correction was refined to0.0003(5).The positional and thermal parameters are given in the Supporting Information.Severe disorder present in the anions and the solvents are attributed to the poor agreement factors.However,the connectivities of the atoms in the cation are well established in this study.

2.[{Cu2(H2L4)(C2H5OH)2}m]?(ClO4)2m?m(C2H5OH).(a)Crystal Data.C26H38Cl2Cu2N4O15,triclinic,space group P1h,a)7.9024(1)?,b)10.6596(1)?,c)11.0574(1)?,R)7

3.664(1)°, )86.210-

(1)°,γ)87.668(1)°,U)891.64(2)?3,Z)1,M)844.58g mol-1,

D c)1.573g cm-3,absorption coefficient,1.41mm-1,λ)0.71073?,F(000))434,crystal dimensions,0.5×0.5×0.4mm.

(b)Measurements.Data were collected at23°C on a Siemens SMART CCD diffractometer with Mo K R radiation(λ)0.71073?), with the crystal sealed in a glass capillary tube.Preliminary cell constants were obtained from45frames of data(width of0.3°inω). Final cell parameters were obtained by global refinements of reflections obtained from integration of all the frame data.A total of5459 reflections were collected in theθrange1.92-29.02°(h)-5to10; k)-13to13;l)-14to14)with a frame width of0.3°inωand

a counting time of20s per frame at a crystal-to-detector distance of

5.027cm.Data treatment was as for the previous structure.

(c)Structural Analysis.The space group P1h was chosen in the triclinic system and for Z)1,a crystallographic inversion center was imposed.All the non-hydrogen atoms except the oxygens of the ClO were refined anisotropically.The perchlorate oxygen atoms were disordered,and four different sets of orientations(occupancies of0.3, 0.3,0.2,and0.2)were found in the difference Fourier maps.Attempts to refine the anisotropic thermal parameters of the O atoms were not satisfactory,therefore common isotropic thermal parameters were assigned for each set of oxygen atoms and were refined.The carbon atoms of the two ethanol molecules showed relatively high thermal parameters.The nonbonded ethanol molecule is disordered by virtue of its crystallographic symmetry.All H atoms were located success-fully.The positional and isotropic thermal parameter of the H atom attached to O(3)was refined,and a riding model was used to place the rest of the hydrogen atoms in their idealized positions.In the final least-squares refinement cycles on F2,the model converged at R1) 0.0587,w R2)0.1700,and GOF)1.096for3623reflections with F o >4σ(F

o

)and259parameters,and R1)0.0627and w R2)0.1741for all4017data.In the final difference Fourier synthesis the electron density fluctuates from1.23to-0.83e?-3.The top peak was associated with H(11A)at a distance of1.08A.The next peak with 0.69e?-3was near O(5C).In the final cycle,the maximum shift and shift/esd are0.002and0.069,respectively.An extinction correction was refined to0.001(4).The positional and thermal parameters are given in the Supporting Information.

Physical Measurements.Microanalyses were performed by the Microanalysis Laboratory at the National University of Singapore. Room-temperature magnetic susceptibility measurements were deter-mined on a Johnson-Matthey Magnetic Susceptibility balance MSB-Auto with Hg[Co(SCN)4]as standard.Corrections for diamagnetism were made using Pascal’s constants.19Infrared spectra were recorded as KBr disks on a Shimadzu IR470infrared spectrophotometer. Electronic transmittance spectra were recorded on a Shimadzu UV-240spectrophotometer as Nujol mulls.Conductance measurements were made using a Kyoto Electronics CM-115conductivity meter with a Kyoto Electronics conductivity cell on ca.1mM solutions.The1H NMR spectra were recorded on a Bruker ACF300Spectrometer at 300MHz for solutions in DMSO-d6with SiMe4as internal standard. Formation constants were determined at25(0.1°C,spectrophoto-metrically in30%DMSO solutions at a compound concentration of 10-5M as a function of measured pH using the program SQUAD.20 Tables of electronic,conductance,and IR data are given in the Supporting Information.

Results and Discussion

Acylbis(salicylaldehyde hydrazones),H4L n,may be consid-ered as two salicylaldehyde hydrazones linked via a methylene chain of variable length.As such there are potentially four ionizable protons,two each from the phenol and the amide moieties.By analogy with salicylaldehyde acetylhydrazone (H2sa),the H4L n ligands can potentially act as hexadentate chelators,binding two Cu(II)ions,one in each tridentate domain. In contrast to H2sa where addition of nonbasic Cu(II)salts gives monoanionic ligand species Cu(Hsa)+,H4L n results in immediate precipitation of[{Cu2L n}m]where both the phenolic and amide moieties are deprotonated.This is presumably driven by the

(16)SMART&SAINT Software Reference Manuals,Version4.0;Siemens

Energy&Automation,Inc.,Analytical Instrumentation:Madison,WI, 1996.

(17)Sheldrick,G.M.SADABS;Software for empirical absorption cor-

rection;University of Go¨ttingen:Go¨ttingen,Germany,1996. (18)SHELXTL Reference Manual,Version 5.03;Siemens Energy&

Automation,Inc.,Analytical Instrumentation:Madison,WI,1996.(19)Earnshaw,A.Introduction to Magnetochemistry;Academic Press:

London,1968;p48.

1228Inorganic Chemistry,Vol.37,No.6,1998Ranford et al.

very low solubility of the latter complexes in common solvents.However,solubilization does occur in DMSO and certain coordinating solvents.21Addition of mineral acid to a suspen-sion of [Cu 2L n ]in ethanol results in dissolution due to protonation of the coordinated ligand and the increased charge on the complex.It proved difficult to control the protonation state of the ligand and therefore to isolate pure material.However,addition of dilute HCl during synthesis gave [{Cu 2-(H 2L n )Cl 2}m ](n )2,4,8,10)or HClO 4gave [{Cu 2(H 2L n )}m ]?(ClO 4)2m (n >1).For other ligands no analytically pure product was isolated.Microanalytical data for all complexes are listed in Table 1together with colors and magnetic moments.

Crystal Structure of [Cu 2(H 2L 1)(H 2O)2]?(ClO 4)2?3H 2O (1).An ORTEP diagram (with 50%probability thermal ellipsoids)giving the unique atom labeling is shown in Figure 1.Selected bond distance and angle data are given in Tables 2and 3,respectively.The crystallographically independent Cu(II)cen-ters are square-planar and coordinated by the tridentate ligand domains,with the final site being occupied by water.Bonding data agree with those for related ligands 12,22and Cu(II)complexes.5,6The planar domains are linked via the methylene C9and are inclined at 80°to each other.Domains from adjacent molecules stack nearly parallel to each other with an average separation of 3.32?,resulting in significant πoverlap between rings (Figure 2).The Cu(II)centers within a given ligand are

6.390(2)?apart;however,stacked domains give a separation of 4.14?which could facilitate weak interactions.

Crystal Structure of [{Cu 2(H 2L 4)(C 2H 5OH)2}m ]?(ClO 4)2m ?m (C 2H 5OH)(2).An ORTEP diagram (with 50%probability thermal ellipsoids)giving the unique atom labeling is shown in Figure 3.Selected bond distance and angle data are given in Tables 2and 3,respectively.The two monoanionic,tridentate domains of the ligand adopt a trans configuration,and each coordinates a copper(II)ion forming a dimetal complex.

(20)Leggett,D.J.;McBryde,W.A.E.Anal.Chem .1975,47,1065-1070.

(21)Ranford,J.D.;Vittal,J.J.;Wang,Y.M.Manuscript in preparation.(22)Zhang,X.M.;You,X.Z.Polyhedron 1996,15,1793-1796.

Table 1.Elemental Analysis,Colors,and Effective Magnetic Moments of Complexes

analysis (%)a

complex

color C H N μeff b /μB [{Cu 2L 0}m ]?2m H 2O khaki 39.9(39.6) 2.9(2.9)11.8(11.6) 1.50[{Cu 2L 1}m ]?5m H 2O

brown 36.5(36.9) 3.6(4.0)10.0(10.1) 1.59[Cu 2(H 2L 1)(H 2O)2]?(ClO 4)2?5.5H 2O c green 25.6(25.5) 3.5(3.6) 6.9(7.0) 1.78[{Cu 2L 2}m ]?m H 2O

green 43.4(43.6) 3.1(3.3)11.0(11.3) 1.49[{Cu 2(H 2L 2)Cl 2}m ]?0.5m H 2O brown 38.3(38.6) 2.8(3.1)9.7(10.0)d 1.37[{Cu 2(H 2L 2)}m ]?(ClO 4)2m green 31.7(31.8) 2.5(2.4)8.2(8.3)e 1.33[{Cu 2L 4}m ]?2.5m H 2O

green 43.9(43.6) 4.1(4.2)10.0(10.2) 1.58[{Cu 2(H 2L 4)Cl 2}m ]?1.5m H 2O green 40.0(39.7) 3.8(3.8)8.8(9.2)f 1.44[{Cu 2(H 2L 4)}m ]?(ClO 4)2m ?2m H 2O

green 32.2(32.3) 3.3(3.3)7.4(7.5)g 1.35[{Cu 2(H 2L 4)}m ]?(ClO 4)2m ?m (C 2H 5OH)?3m H 2O h green 32.6(32.8) 4.2(4.0) 6.8(6.9) 1.46[{Cu 2L 6}m ]?2m H 2O

green 46.7(46.4) 4.3(4.6)9.7(9.8) 1.60[{Cu 2(H 2L 6)}m ]?(ClO 4)2m ?1.5m H 2O green 34.7(34.7) 3.6(3.6)7.3(7.4)i 1.33[{Cu 2L 8}m ]?2.5m H 2O

green 47.5(47.5) 5.1(5.1)9.6(9.3) 1.53[{Cu 2(H 2L 8)Cl 2}m ]?6m H 2O

green 38.9(38.8) 5.1(5.4)7.4(7.5)j 1.84[{Cu 2(H 2L 8)}m ]?(ClO 4)2m ?2.5m H 2O green 35.6(35.7) 4.3(4.1) 6.9(6.9)k 1.29[{Cu 2L 10}m ]?2.5m H 2O

green 49.3(49.2) 5.1(5.5)8.7(8.8) 1.68[{Cu 2(H 2L 10)Cl 2}m ]?2.5m H 2O

green 44.1(44.1) 5.2(5.2)8.3(7.9)l 1.94[{Cu 2(H 2L 10)}m ]?(ClO 4)2m ?m (C 2H 5OH)green 40.5(40.2) 4.7(4.6)7.1(6.7)m 1.32[{Cu 2L 14}m ]?m C 2H 5OH

green 55.4(55.5) 6.3(6.4)7.9(8.1) 1.55[{Cu 2(H 2L 14)}m ]?(ClO 4)2m ?1.5m H 2O

green

41.2(41.2)

4.7(4.9)

6.1(6.4)n

1.24

a

Calculated value in parentheses.Satisfactory Cu analyses were obtained for all complexes.b At 298K per metal ion.c X-ray structure gives [Cu 2(H 2L 1)(H 2O)2]?2(ClO 4)?3H 2O;%Cl,9.2(8.9).d %Cl,12.7(12.4).e %Cl,9.9(10.5).f %Cl,11.7(10.7).g %Cl,10.1(9.6).h X-ray structure gives [{Cu 2(H 2L 4)(C 2H 5OH)2}m ]?(ClO 4)2m ?m (C 2H 5OH);%Cl,8.9(8.8).i %Cl,9.2(9.3).j %Cl,11.2(9.6).k %Cl,8.9(8.8).l %Cl,12.1(10.0).m %Cl,8.6(8.5).n %Cl,7.9(8.1).

Figure 1.Structure of the monomeric [Cu 2(H 2L 1)(H 2O)2]2+cation of 1showing the numbering scheme.

Figure 2.Diagram illustrating the significant πoverlap of adjacent cations of 1to give zigzag chains,with partial numbering only.Table 2.Selected Bond Lengths (?)for

[{Cu 2(H 2L 4)(C 2H 5OH)2}m ]?(ClO 4)2m ?m (C 2H 5OH)(2)and

[Cu 2(H 2L 1)(H 2O)2]?(ClO 4)2?3H 2O (1)with Estimated Standard Deviations in Parentheses

12

Cu1-O1 1.901(3) 1.894(4)Cu2-O4 1.899(4)Cu1-N1 1.932(3) 1.929(6)Cu2-N4 1.926(5)Cu1-O5 1.964(4) 1.955(5)Cu2-O6 1.958(4)Cu1-O2 1.978(3) 1.985(4)Cu2-O3 1.979(5)Cu1-O1A 2.437(3)s

s

s

O1-C1 1.336(5) 1.337(9)O4-C17 1.323(8)C6-C7 1.435(6) 1.457(10)C12-C11 1.422(10)C7-N1 1.295(5) 1.291(8)C11-N4 1.296(8)N1-N2 1.393(5) 1.391(8)N4-N3 1.390(7)N2-C8 1.343(6) 1.328(9)N3-C10 1.323(9)C8-O2 1.252(6) 1.249(8)C10-O3 1.243(8)C8-C9 1.503(6) 1.495(9)C10-C9 1.503(9)C9-C10 1.516(7)s s s C10-C10B 1.531(8)s s s O5-C11 1.414(7)s s s C11-C12 1.514(6)s

s s Cu ???CuA

3.220(1)

6.390(2)

s

s

Dicopper(II)Complexes of Salicylaldehyde Hydrazones

Inorganic Chemistry,Vol.37,No.6,19981229

Centrosymmetric,axial phenolato(O1)bridges link adjacent domains into a linear stepped polymer giving a Cu???Cu separation of3.220(1)?.The structure5of[{Cu(Hsa)(py)-(NO3)}2]also has such a dimeric stacked arrangement but with a weaker axial interaction,thereby resulting in a Cu???Cu distance of3.610(2)?.The Cu(II)ion is coordinated in the plane by a tridentate ligand domain and a bound ethanol molecule.A more weakly bound bridging phenolate(Cu-O1A, 2.437(3)?)completes the coordination sphere in an axial site. The in-plane and ligand metric parameters may be considered normal,vide supra.The polymeric chain extends approximately along the[011]plane and stacks along the a axis with ClO and ethanol solvate filling the gap.

Physicochemical Studies.The position of the ligand to Cu(II)charge-transfer transition for complexes with n>0fall in the range380-420nm and is typical for acylhydrazones9,13b and arylhydrazones.6For[{Cu2L0}m]?2m H2O this transition occurs at lower energy(450nm),possibly a result of the extended conjugation possible in this https://www.wendangku.net/doc/cf16111859.html,l et al.reported15 this transition for[Cu2L0]?4H2O at355nm where we find only a number of ligand internal transitions.The d-d transitions generally fall below700nm and are more consistent with square-pyramidal and square-planar geometries23about the Cu(II)as seen for1(650nm)and2(650nm)and related complexes.5,6The exception is[{Cu2(H2L2)Cl2}m]?0.5m H2O (730nm)which is likely to be tetragonal,indicating axial ligand coordination of anion or solvent.5,6

Most complexes display low magnetic moments(Table1) indicative of antiferromagnetic interactions.Analogues H2sa5 and H2sb6with Cu(II)and structurally related systems7often adopt dimeric,phenolato bridged structures which all have abnormalμeff values.The ligands in this study have two tridentate domains,therefore the complexes formed are likely to be based on oligomeric chains with bridging phenolates,as shown in Figure4.This would give Cu???Cu separations of ca.3?with a coplanar geometry favoring magnetic orbital overlap.The trans arrangement,as depicted,is likely to exist for short methylene chains due to steric interactions between aromatic rings as seen in2(Figure3).The structure of1has monomeric Cu(II)ions(Figure1)which are magnetically dilute, accounting for the normal magnetic moment(1.78μB).Mag-netic data for2were unreliable due to rapid complex decom-position.

Dianionic ligand complexes with perchlorate have molar conductivity values indicating1:1or greater electrolyte behavior. The crystal structures of1and2have nonbonded ClO4 indicating that partial association of perchlorate with complex may occur in DMSO solution.For the chloro anion complexes ([Cu2(H2L n)Cl2];n)2,4,8,10),molar conductivity values indicate partial ionization only,therefore the anions are formu-lated as bound,presumably in axial sites due to the low magnetic moments.All tetraanionic complexes are nonelectrolytes. The possibility of Cu(II)interacting with more than one tridentate domain,either from two different ligands or from the two ends of one ligand folding back,is not expected.Attempts to form such compounds for these ligands as well as H2sa and H2sb have all been unsuccessful,due presumably to the restricted bite angle of the binding domain coupled with the Jahn-Teller distortions for Cu(II),which would require the second binding domain to have longer apical interactions.

The ligands show IR bands assigned toν(OH)(ca.3300 cm-1),ν(C d O)(1647-1667cm-1),andν(C d N)+amide(II) (1521-1619cm-1).As well,aliphaticν(CH),which is not observed for H4L0,becomes progressively more intense as the length of the methylene chain increases.On complexation the ν(C d O)andν(C d N)+amide(II)bands for the dianionic (23)Lever,A.B.P.Inorganic Electronic Spectroscopy;Elsevier:Am-

sterdam,1984.

Figure3.Structure of polymeric[{Cu2(H2L4)(C2H5OH)2}m]2+and symmetry-related cations of2showing the numbering scheme. Table3.Selected Bond Angles(deg)for

[{Cu2(H2L4)(C2H5OH)2}m]?(ClO4)2m?m C2H5OH(2)and

[Cu2(H2L1)(H2O)2]?(ClO4)2?3H2O(1)with Estimated Standard Deviations in Parentheses

1

2

O1-Cu-N192.5(1)93.2(2)O4-Cu2-N492.9(2) O1-Cu-O2173.6(1)174.3(2)O4-Cu2-O3173.9(2) O1-Cu-O590.4(2)93.9(2)O4-Cu2-O694.3(2) O1-Cu-O1A85.0(1)s s s

N1-Cu-O281.9(1)81.2(2)N4-Cu2-O381.1(2) N1-Cu-O5161.6(2)168.9(2)N4-Cu2-O6171.4(2) N1-Cu-O1A108.4(1)s s s

O2-Cu-O595.9(2)91.9(2)O3-Cu2-O691.6(2) O2-Cu-O1A94.0(1)s s s

O5-Cu-O1A89.9(2)s s s

Cu-O1-C1126.0(3)126.8(4)Cu2-O4-C17127.5(4) Cu-O1-CuA95.1(1)s s

C1-O1-CuA113.2(2)s s

O1-C1-C2117.6(4)118.3(7)O4-C17-C16118.4(6) O1-C1-C6124.4(3)124.5(6)O4-C17-C12124.1(6) C1-C6-C7123.7(4)124.3(6)C17-C12-C11123.6(6) C5-C6-C7117.4(4)116.8(7)C13-C12-C11117.4(7) C6-C7-N1122.7(4)121.6(6)C12-C11-N4123.7(6) C7-N1-Cu128.8(3)129.4(5)C11-N4-Cu2128.3(5) C7-N1-N2120.0(4)118.9(6)C11-N4-N3120.3(6) N1-N2-C8114.8(3)114.4(5)N4-N3-C10114.6(5) N2-N1-Cu111.0(3)111.6(4)N3-N4-Cu2111.4(4) N2-C8-O2120.1(4)120.6(6)N3-C10-O3120.5(6) N2-C8-C9117.5(4)118.6(6)N3-C10-C9118.9(6) C8-O2-Cu112.2(3)112.2(4)C10-O3-Cu2112.3(4) O2-C8-C9122.4(4)120.7(6)O3-C10-C9120.6(6) C8-C9-C10111.8(4)110.2(6)s s

C9-C10-C10B111.5(5)s s s

Cu-O5-C11125.5(4)s s s

O5-C11-C12119.1(7)s s s Figure4.Proposed structure for oligomeric[{Cu2L n}m].

1230Inorganic Chemistry,Vol.37,No.6,1998Ranford et al.

ligands shift,showing that coordination involves the carbonyl O and imine N.For the tetraanionic ligands these bands shift and split,being characteristic for this type of ligand and indicating the formation of a diimine-like moiety5,6(see Figure 4).These results indicate that the ligand exists in a keto form in the solid state but that on metal binding the deprotonated chelator has considerable enol character.

Because of the biological activity of these compounds24and the important role Cu(II)plays in this activity,the protonation constants for selected ligands(H4L n,with n)1,2,4,8,and H2as)and their formation constants with Cu(II)were determined (Table4).Due to poor aqueous solubility of the ligands, formation constants were investigated spectrophotometrically in30%DMSO(the minimum at which all ligands stayed in solution over the pH ranges investigated)at a concentration of 10-5M and are thus tentative.Four ionization processes are observed for the H4L n ligands.Although the two tridentate domains of the ligands are separated via a methylene linker, the p K values of the pairs of equivalent protons(p K1and p K2; p K3and p K4)do not start to converge with increasing linker length.The first phenolic proton is most acidic with an average p K4of6.9,indicating that at a physiological pH of7.4the ligands exist predominantly as(H3L n)-.The second phenol proton has a mean p K3value of9.25,which is2.35pK units higher than p K4.For H2as the first ionization has a p K of9.1, significantly higher than H4L n and similar to p K3,whereas for H2sb and H2pb(pyridoxal benzoylhydrazone)these are6.77and 7.68,respectively,25consistent with these ligands higher degree of conjugation and stabilization of the resultant anion.A study26 of H4L n(n)1,2,3)in95%DMF gave p K1and p K2values separated by ca.0.2log units with an average value of7.8. The amide protons have average p K2and p K1values of12.8 and14.4,respectively,comparable to H2as(13.6);for H2sb and H2pb this is reduced(9.11and11.40,respectively). Protonation constants and p K2for the di-Cu(II)complexes could not be assessed accurately due to complex precipitation above ca.pH7;however,chemical properties show chelation with Cu(II)results in the phenol becoming a strong acid and the amide requiring the presence of dilute mineral acid to ensure its protonation.The average stability constants of18.1for p K1 show the ligands to bind Cu(II)strongly,as expected for such a tridentate,dianionic domain.The reported26average stability constants in95%DMF of Cu(II)with H4L n(n)1,2,3)of4.3 for p K1and3.3for p K2therefore seem unreasonably low. Conclusions

H4L n ligands have two tridentate metal binding domains.We have prepared dicopper(II)complexes of both the di-and tetraanionic forms of the antitumor ligand analogues H4L n.Poly-meric complexes predominate,with copper domains being either stacked,as found in[{Cu2(H2L4)(C2H5OH)2}m]?(ClO4)2m?m(C2H5-OH),or adopting a side-by-side arrangement,consistent with the antiferromagnetic magnetic exchange coupling observed. Monomeric structures are also possible as seen for[Cu2(H2L1)-(H2O)2]?(ClO4)2?3H2O where significantπoverlap between planar,metal binding domains occurs.The magnetic moment for the monomeric complex is normal,and may be tentatively used to give information on complex geometry.Proton stability constant data shows the ligands would exist predominately as monoanions at physiological pH.On complexation to Cu(II) the very weakly acidic amide protons are sufficiently acidic to require the presence of mineral acid to ensure their protonation. The planar,tridentate domain coupled with Jahn-Teller distor-tions for Cu(II)allow only one domain to bind per metal.This may play an important role in the biological activity of such species when compared to metals which will form octahedral complexes.

Acknowledgment.Support for this work by the National University of Singapore(Grant RP950651)is greatly appreci-ated.

Supporting Information Available:Tables detailing the X-ray data collection and refinement,complete positional and thermal parameters, atomic coordinates,bond distances and angles,anisotropic thermal parameters,torsion angles,and hydrogen atom coordinates for1and 2,and IR,electronic,and molar conductance data(24pages).Ordering information is given on any current masthead page.

IC970805G

(24)Lian,K.O.;Long,Y.C.;Ranford,J.D.;Wang,Y.M.Manuscript in

preparation.

(25)(a)Dubois,J.E.;Fakhrayan,H.;Doucet,J.P.;El Hage Chahine,J.

M.Inorg.Chem.1992,31,853-859.(b)Fakhrayan,H.;Doucet,J. P.;El Hage Chahine,J.M.Bull.Soc.Chim.Belg.1993,102,377-389.(26)Cho,H.K.;Cha,B.H.;Hur,Y.A.;Choi,K.S.J.Kor.Chem.Soc.

1995,39,281-287.

Table4.Protonation and Formation Constants with Cu(II)for Selected Ligands a

p K n

ligand b

p K1p K2p K3p K4Cu(II)c p K

H4L114.5(1)12.7(1)9.3(2) 6.7(3)19.0(2)

H4L214.4(1)13.4(1)9.2(1) 6.8(1)18.1(1)

H4L414.2(1)12.4(2)9.2(2) 6.9(2)17.9(1)

H4L814.5(1)12.6(2)9.3(2)7.2(3)18.3(1)

H2as s13.6(1)s9.1(1)16.2(2)

H2sb d s9.11(4)s 6.77(4)s

H2pb d s11.40(4)s7.68(4)s

a All work carried out at25.0(0.1°C.Values obtained from

electronic spectra.b H4L n:p K1,H++L4-)HL3-;p K2,H++HL3-

)H

2

L2-;p K3,H++H2L2-)H3L-;p K4,H++H3L-)H4L.H2as,

H2sb,H2pb:p K1,H++L2-)HL-;p K2,H++HL-)H2L.c Cu2+

+L)CuL.d From ref25.Formation constants with Cu(II)not

reported.

Dicopper(II)Complexes of Salicylaldehyde Hydrazones Inorganic Chemistry,Vol.37,No.6,19981231

配位聚合物材料

配位聚合物材料 配位聚合物是指通过有机配体和金属离子间的配位键形成的,并且具有高度规整的无限网络结构的配合物。配位聚合物的设计与合成是配位化学研究的重要内容。 配位聚合物研究需要把有机配体的结构和不同配位能力的给体原子与具有不同配位倾向性的金属离子综合考虑,是无机、有机、固态、材料化学的交叉科学。由有机配体和金属离子形成任何复合物物种原则上都是一个自组装过程,配体聚合物的设计重点在于配体的设计和金属离子的选择,二者相互作用产生重复单元,按被控方式形成确定的结构。在自发过程中,充分利用了两类组分的结构和配位性质:金属离子一方面像结合剂一样把具有特定功能和结构的配体结合在一起;另一方面,又作为中心把配体定位在特定的方位上。虽然配位聚合物的结构也有可能展现出不同于组成成分的性质,但是设计最终目的仍是通过预先设计结构单元来控制最终产物的结构和功能,在非线性光学材料、磁性材料、超导材料及催化等多方面都有极好的应用前景。 配位聚合物在多孔材料、催化、发光、磁学、药物存储和运输等方面具有潜在白勺应用价值,是当今化学、材料科学、生命科学等分析领域白勺热点课题之一。羧酸类配体配位才能强、配位方式灵敏,还可以将金属离子连接成刚性次级构造单元(SBU),和金属离子配位组装可以生成许多构造新颖、性质共同白勺配位聚合物材料。本论文在配位聚合物晶体工程白勺指导下,分别以1,5-二硝基萘-3,7-二甲酸(H2NNDC)和2,2',4,4'-联苯四甲酸(2,2’,4,4’-H4bptc)为桥联配体,同过渡金属离子或者镧系金属离子配位组装,或引入联吡啶类中性桥联配体或螯合配体辅助配位,构筑了32个新颖白勺零维、一维、二维和三维构造白勺化合物,在晶体构造分析白勺基础上分析了部分配位聚合物白勺磁性、稳定性和发光性质。分析工作主要分为以下几个部分:1.1,5-二硝基萘-3,7-二甲酸配合物:以H2NNDC为桥联配体,或者辅以不同长度白勺联吡啶类桥联共配体(4,4'-联吡啶(4,4’-bipy)、1,2-二吡啶基乙烯(bpe)、1,4-二氮杂二环[2.2.2]辛烷(dabco))和螯合端基共配体(1,10-邻菲啰啉),通过水热、溶剂热法分别合成了25个零维、维、二维和三维构造白勺配合物,测定了它们白勺晶体构造,从晶体工程角度讨论了合成方法、反响条件和共配体对配合物构造白勺影响,并分析了其中多孔材料白勺热稳定性、客体分子交换性质以及部分配合物白勺磁学性质。(1)以H2NNDC为桥联配体,分别同Co(Ⅱ)、Ni(Ⅱ)、Cu(Ⅱ)和Mn(Ⅱ)合成了一系列构造各异白勺配合物。配合物1中白勺NNDC配体白勺羧基氧和Co(Ⅱ)双齿配位,在氢键和π-π堆积作用下形成共同白勺三维超分子构造,磁性测试表示配合物1具有铁磁性。配合物2和3是一维链构造,配合物2依靠氢键形成简单立方白勺三维超分子拓扑网络,配合物3则依靠氢键和π-π堆积作用形成共同白勺三维超分子梯子构造。配合物4是具有线性白勺三核锰单元([Mn3(COO)6])白勺简单立方拓扑网络,羧基采用syn-syn方式桥联Mn(Ⅱ),配合物4存在反铁磁耦合作用。(2)在以H2NNDC为

醋酸甲酯羰基合成醋酐的工艺进展

所谓羰基合成醋酐就是指醋酸甲酯与CO进行羰基合成过程。根据羰基合成所处的状态可分为液相法和气相法,反应的起始原料可以是甲醇(直接法),也可以是醋酸甲酯(间接法)。以甲醇为原料生产醋酐有两条路线,一是甲醇与醋酸先酯化,然后醋酸甲酯羰基化生产醋酐;二是醋酸甲酯羰基化生产醋酐,部分醋酐产品与甲醇反应提供原料醋酸甲酯。 液相羰化法依斯曼柯达公司采用反应蒸馏工艺制造醋酐。醋酸(含水量小于0.5%)与甲醇在塔式反应器内进行酯化反应,生成的醋酸甲酯产品直接由塔顶蒸出,用硫酸作催化剂。自羰化工序循环的醋酸进入反应蒸馏塔的上部,新鲜的由塔底部进入,两种反应物料逆向流动,酯化反应蒸发在每块板上进行。由于反应蒸馏在每个塔板上蒸发除去醋酸甲酯,这就大大促进了酯化反应,提高了转化率。原料甲醇和酯化反应生成的水与产物醋酸甲酯形成共沸物,如醋酸甲酯95%与水5%;醋酸甲酯81%与水19%(均为质量分数)。原料醋酸也是萃取剂,又可以把剩余的共沸物中的甲醇反应掉。因此产品很容易提纯。这种反应蒸

馏技术要比其它类型酯化技术先进合理,国内也有很多单位在研究。在反应区塔盘上的停留时间的选择是很重要的参数,它直接影响到萃取的效率,这些逆流塔盘可以是高效的金属丝网、泡罩塔和逆流的槽式塔盘,均具有较长的停留时间,可达到24h。产品纯度非常之高,转换率也很高,反应产物与反应物分子比较接近化学当量。反应段的温度控制在65~85℃之间、塔的操作压力为大气压,催化剂硫酸浓度为95%~98% (质量分数),在塔的萃取蒸馏段的底部进入,与醋酸的质量比为0.01,反应物的停留时间随硫酸浓度增加而增加。由于反应物是高腐蚀性的,所以塔的再沸器需要特种材料。反应蒸馏的塔顶冷凝器采用部分冷凝,冷凝液回流进塔,未冷凝的气相醋酸甲酯供给羰基化反应工序。回流比控制在1.5~1.7,回流比超过2.0时转化率会迅速下降。 反应产物与H2/CO物质的量比有密切相关,氢的比例增大,羰化产率也增大。因为H2能使[Rh(CO)2I4]-还原为具有活性的[Rh(CO) I2]-,但过高的H2浓度会增加副产物醋酸乙烯,一般原料CO中含 2 H22%~7%,可以增加催化剂的活性与寿命。在羰化工序中来自酯化工序的醋酸甲酯与等当量的碘甲烷混合进入进料罐中,用泵将催化剂复合物经进料预热器将物料温度升到180℃,然后将此液相物料从反应器(带有搅拌器)上部进入反应器,操作压力2.45MPa,反应气体(主要是CO和少量H2)由循环压缩机打循环,以保持催化剂的活性。反应转换率为75%,选择性大于95%,反应温度以循环的反应液通过废热锅炉来控制。未反应气体通过冷凝后除去冷凝液,由循环压缩机压入反应器内。反应产物经控制后进入带有夹套的闪蒸器中,闪蒸器压力降至

配位化学教材全文版

第1章配位化学导论 配位化学(coordination chemistry)是无机化学的一个重要分支学科。配位化合物(coordination compounds)(有时称络合物complex)是无机化学研究的主要对象之一。配位化学的研究虽有近二百年的历史,但仅在近几十年来,由于现代分离技术、配位催化及化学模拟生物固氮等方面的应用,极大地推动了配位化学的发展。它已广泛渗透到有机化学、分析化学、物理化学、高分子化学、催化化学、生物化学等领域,而且与材料科学、生命科学以及医学等其他科学的关系越来越密切。目前,配位化合物广泛应用于工业、农业、医药、国防和航天等领域。 配位化学发展简史 历史上记载的第一个配合物是普鲁士蓝。它是1704年由柏林的普鲁士人迪斯巴赫(Diesbach)制得,它是一种无机颜料,其化学组成为Fe4[Fe(CN)6]3·nH2O。但是对配位化学的了解和研究的开始一般认为是1798年法国化学家塔萨厄尔()报道的化合物CoCl3·6NH3,他随后又发现了CoCl3·5NH3、CoCl3·5NH3·H2O、CoCl3·4NH3以及其他铬、铁、钴、镍、铂等元素的其他许多配合物,这些化合物的形成,在当时难于理解。因为根据经典的化合价理论,两个独立存在而且都稳定的分子化合物CoCl3和NH3为什么可以按一定的比例相互结合生成更为稳定的“复杂化合物”无法解释,于是科学家们先后提出多种理论,例如,布隆斯特兰德()在1869年、约尔更生()在1885年分别对“复杂化合物”的结构提出了不同的假设(如“链式理论”等),但由于这些假设均不能圆满地说明实验事实而失败。 1893年,年仅27岁的瑞士科学家维尔纳()发表了一篇研究分子加合物的论文“关于无机化合物的结构问题”,改变了此前人们一直从平面角度认识配合物结构的思路,首次从立体角度系统地分析了配合物的结构,提出了配位学说,常称Werner配位理论,其基本要点如下: (1) 大多数元素表现有两种形式的价,即主价和副价; (2) 每一元素倾向于既要满足它的主价又要满足它的副价;

由对苯二甲酸构筑的铜的配位聚合物的水热 合成及晶体结构

J I A N G S U U N I V E R S I T Y 本科毕业论文 由对苯二甲酸构筑的铜的配位聚合物的水热 合成及晶体结构 Hydrothermal Synthesis and Crystal Structure of a Copper Complex with Terephthalic acid and Medpq Ligands 学院名称:化学化工学院 专业班级:化学工程与工艺12级 学生姓名: 学号: 指导教师姓名: 指导教师职称: 2014 年3 月

江苏大学本科毕业论文 目录 第一章文献综述 (1) 1.1配位聚合物及其研究意义简介 (1) 1.2配合物的研究现状 (2) 1.3邻菲啰啉配合物的研究现状 (4) 1.3.1对1,10-邻菲啰啉配合物的研究 (4) 1.3.2 1,10-邻菲啰啉作为第二配体的配合物的研究 (5) 1.3.3 关于1,10-邻菲啰啉衍生物的配合物的工作 (6) 1.4芳香羧酸配合物的结构 (6) 1.5铜芳香羧酸配合物 (6) 1.6铜芳香羧酸配合物的合成 (7) 1.6.1常规溶液反应法 (7) 1.6.2水热法 (7) 1.6.3 溶胶-凝胶法 (7) 1.6.4 流变相反应法 (8) 1.7论文的立题依据及研究方案 (8) 第二章由对苯二甲酸构筑的铜的配位聚合物的水热合成及晶体结构 (9) 2.1引言 (9) 2.2实验方法 (9) 2.2.1药品和试剂 (9) 2.2.2 仪器和设备 (9) 2.2.3 实验步骤 (10) 2.3晶体结构的测定及讨论 (11) 2.3.1 晶体结构的测定 (11) 2.3.2晶体结构及讨论 (13) 2.4热失重的研究 (14) 第三章结论 (15) 致谢 (16) 参考文献 (17) —I—

配位化学第一组第三章作业

第三章配合物在溶液中的稳定性作业 1.下列各组中,哪种配体与同一种中心离子形成的配合物稳定性较高,为什么? (1)Cl- , F-和Al3+(2)Br-,I-和Hg2+ (3)2CH3NH2,en和Cu2+(4)Br-,F- 和Ag+ (5)RSH,ROH和Pt2+(6)Cl-,OH-和Si4+ (7)RSH,ROH和Mg2+ 解(1)F-与Al3+形成配合物更稳定,因为F-电负性大,离子半径更小(2)I-与Hg2+更稳定,因为碘离子的电负性较大,离子半径更小(3 )2CH3NH2与Cu2+形成的配合物更稳定,因为它的碱性比en更强与形成的配合物更稳定 (4)Br-与Ag+形成的配合物更稳定,因为与Ag+形成配合物Br-变形性比F-强 (5)RSH与Pt2+形成配合物更稳定,因为在与Mg2+形成配合物时S 的半径小于O的半径 (6)OH-与Si4+形成的配合物更稳定,因为在与Si4+形成配合物时OH-的电荷比更多 (7)RSH与Mg2+形成配合物更稳定,因为在与Mg2+形成配合物时S 的半径小于O的半径 2.写出下列,配体与中心离子形成的配合物的稳定次序。 解(1)CH3NH2,en,NH2-NH2,NH2-OH和Cu2+ en > CH3NH2 > NH2-NH2 > NH2OH

(2)R3CCOOH,CH3COOH,Cl3CCOOH,I3CCOOH和Fe3+ R3CCOOH > CH3COOH > I3CCOOH > Cl3CCOOH (3)NH3,NH2-NH2,NH2-OH,R-OH和Ag+ NH3 > NH2-NH2 > NH2-OH > R-OH (4)N, NH2 与Zn2+ N> NH2 (5)NH2 O2N, NH2 C H3, NH2 NO2与Cu2+ NH2 C H3> NH2 NO2> NH2 O2N (6) N OH, N OH CH3 与Ni2+ N OH CH3 > N OH CH3 3.下列二组试剂与同一种金属离子形成螯合物时,估计lg k的大小次序:

醋酸乙烯

1 概述 1.1 醋酸乙烯的性质 1.1.1 醋酸乙烯的物理性质 醋酸乙烯(Vinyl Acetate,简称VA或VAc),又称醋酸乙烯酯,乙酸乙烯或乙酸乙烯酯。相对密度()0.9317g/cm3,熔点-93.2℃,沸点72.2℃,折射率(n D)1.3953,闪点(开杯)-1.0℃[1]。醋酸乙烯是无色透明液体,有甜的醚香味,容易燃烧;毒性低,有麻醉性和刺激作用,高浓度蒸汽可引起鼻腔发炎、眼睛出现红点,皮肤长期接触有产生皮炎的可能[1]。 醋酸乙烯与乙醇混溶,能溶于乙醚、丙酮、氯仿、四氯化碳等有机溶剂,不溶于水。在20℃时,醋酸乙烯在水中的饱和溶液含有醋酸乙烯2.0~2.4%(wt),水在醋酸乙烯中为0.9~1.0%(wt);在50℃时,醋酸乙烯在水中的溶解比20℃时多0.1%(wt),但水在醋酸乙烯中则为2.0%(wt)[2]。 1.1.2 醋酸乙烯的化学性质 醋酸乙烯是不饱和的羧酸酯,其化学式为 醋酸乙烯的化学反应主要涉及分子内的不饱和键及酯基。醋酸乙烯分子中的碳碳双键很容易发生聚合反应,聚合反应是醋酸乙烯最重要的化学反应,工业上常用的聚合方法包括本体、悬浮、溶液和乳液聚合。醋酸乙烯的反应除聚合反应外还有加成反应、水解反应、乙烯基转移反应、氧化反应等。 1.2 醋酸乙烯的用途 醋酸乙烯是一种重要的有机原料,更是世界上最重要的50种有机化工原料之一。在实际运用中,醋酸乙烯通过自身聚合或与其他单体聚合,可以生成主要聚醋酸乙烯(PVA)、聚乙烯醇(PVOH)、醋酸乙烯-乙烯共聚乳液(EVA)、醋酸乙烯-氯乙烯共聚物(EVC)、聚乙烯腈共聚单体以及缩醛树脂等衍生物。这些衍生物在涂料、浆料、粘合剂、维纶、薄膜、皮革加工、合成纤维、土壤改良等方面具有广泛用途,如聚乙烯醇主要用于生产维纶、纺织浆料、涂料、粘合剂、纸张增强剂及涂层、产业聚合助剂等;醋酸乙烯-乙烯共聚树脂、醋酸乙烯-氯乙烯共聚物可广泛用于发泡鞋材、功能性棚膜、包装膜、热熔胶、电线电缆、玩具等生产领域。在中国,醋酸乙烯主要用来生产PVA,约占总需求量的80%[3]。近几十年来,随着物质文化的需求量逐渐增大,醋酸乙烯的应用扩展和需求量也在大幅度的加速增加,与此同时,伴随科学技术的不断发展与提高,很多工业现场也优化发展并采用这些先进的生产技术,但是,在生产工艺中还存在着很多缺点与不足,尤其是在我们这样一个生产和需求量极大的发展中国家。 1.3 国内外醋酸乙烯的供需现状及发展趋势 1.3.1 国外供需现状 1912年,在由乙炔和乙酸制备亚乙基二乙酸酯时首次发现醋酸乙烯,醋酸乙烯成为主要副产物,1925年开始有了工业规模的生产[2]。近年来,世界醋酸乙烯的生产能力稳步增长,现有生产装置40多套。截止到2009年底,全世界醋酸乙烯的总生产能力已经达到约685.0万吨,同比增长约4.9%,生产主要集中在北美、西欧和亚太地区,其中,亚太地区的生产能力为341.4万吨/年,约占世界醋酸乙烯总生产能力的49.8%;北美地

二维层状铜(I)配位聚合物的合成与晶体结构

文章编号: 1673‐9965(2013)08‐657‐07 二维层状铜(I)配位聚合物的合成与晶体结构倡 高 霞,张国春 (商洛学院/陕西省尾矿资源综合利用重点实验室化学与化学工程系,商洛726000) 摘 要: 以自制的柔性1,6桘双(苯并三氮唑)烷烃为桥连配体,以溴离子为第二桥连配体,以期与d10过渡金属Cu(I)通过自组装反应获得具有新颖结构和优良荧光性能的配位聚合物.在乙醇溶剂热条件下,合成了一个结构新颖的配位聚合物:{[CuBr]4(BBTH)}n.X桘射线单晶分析表明配位聚合物属于单斜晶系,空间群为C2/c,晶胞参数a=12.7298(13)闭A,b=15.4556(16)闭A,c=12.9395(13)闭A,β=94.5380(10)°,V=2537.8(4)闭A3,Z=4.配位聚合物的两个中 心铜原子均采取变形的四面体配位模式分别与一个来自配体(BBTH)的氮原子和三个桥联溴原子进行配位,每个Cu+或Br-连接相邻的三个Br-或Cu+形成一个新颖的梯子链状结构,进而通过配体(BBTH)的连接形成二维层状结构.通过元素分析、X桘射线粉末衍射、红外光谱、热重分析、固体荧光光谱等手段对配位聚合物进行了全面的表征.热重分析结果表明,配位聚合物在300℃以下无分解反应,耐热性好.室温固态荧光测试显示,配位聚合物在392nm(λmax)处具有较强的荧光发射. 关键词: 配位聚合物;铜(I);柔性配体;晶体结构 中图号: O634 文献标志码: A 配位聚合物具有性质独特、结构多样化、组分可调控性强等特点,所以它们在非线性光学材料、磁性材料、超导材料及催化等诸多方面表现出较好的应用前景[1桘13].对配位聚合物的研究需要综合考虑有机配体的形状、配位原子的配位能力、辅助配体、抗衡离子、溶剂以及金属离子的配位喜好等[14].在有机配体的选择方面,由于柔性配体的自由度较高,构型上配位点之间的柔性基团可以随着条件的变化而发生自由的扭动,这就使得相关配位聚合物构筑的难度加大,很难预测和控制.因此,目前人们对柔性配体构筑的配位聚合物的研究还较少,相关的报道不是很多[15桘23].但是,实际上正是由于柔性配体这种特殊的构型特点,才更有利于构筑具有新颖结构的金属有机骨架配位聚合物.目前次外层为d10的金属配位聚合物的光谱学、光物理和光化学的研究受到广泛的重视[24桘30],特别是Cu(I)配位聚合物的光化学更倍受注意[10,29],其中Cu(I)桘氮杂环配体配位聚合物大多数都具有优良的光学性能,是很好的功能材料,许多还是生物体正常运行必不可少的组分,因而成为化学家研究的重点.由于铜离子配位几何学的多样性和卤素离子之间键合模式的多变性,因此大量由不同的有机配体与卤化亚铜形成的配位聚合物引起科学家们的广泛兴趣,并且这些配位聚合物在电学材料、光学材料以及催化材料方面具有潜在的应用价值.本文在乙醇溶剂热条件下,以自制的柔性1,6桘双(苯并三氮唑)己烷为配体,研究其与过渡金属Cu(I)盐的自组装反应,以期获得具有新颖结构和优良荧光性能的配位聚合物.最终通过1,6桘双(苯并三氮唑)己烷配体与CuBr和NaBr反应得到一个结构新颖的二维配位聚合物,对所得到的配位聚合物进行了单晶结构、元素分析、粉末衍射、红外 第33卷第8期2013年8月 西 安 工 业 大 学 学 报 JournalofXi’anTechnologicalUniversity Vol.33No.8 Aug.2013 倡收稿日期:2013‐04‐23 基金资助:国家自然科学基金(21273171),陕西省教育厅专项科研计划项目(11JK0578) 作者简介:高 霞(1983桘),女,商洛学院讲师,主要研究方向为配位化学.E桘mail:xiagao2007@163.com.

醋酸甲酯项目建议书

醋酸甲酯项目 建议书 规划设计/投资分析/实施方案

摘要 醋酸甲酯作为一种新型的溶剂,具有一系列优良品质如低沸点、强溶解力、无公害等正逐步被用户认同青睐,用途极为广泛,市场使用量正逐年放大。同时醋酸甲酯和可以用于合成醋酸,醋酐、丙烯酸甲酯、以及乙酰胺等等,是一种用途广泛的基础性的精细化工原材料,位于精细化工行业产业链相对上游的位置,具有较为重要的地位。 该醋酸甲酯项目计划总投资6650.18万元,其中:固定资产投资5456.01万元,占项目总投资的82.04%;流动资金1194.17万元,占项目总投资的17.96%。 本期项目达产年营业收入11509.00万元,总成本费用8650.23万元,税金及附加129.76万元,利润总额2858.77万元,利税总额3382.84万元,税后净利润2144.08万元,达产年纳税总额1238.76万元;达产年投资利润率42.99%,投资利税率50.87%,投资回报率32.24%,全部投资回收期4.60年,提供就业职位190个。

醋酸甲酯项目建议书目录 第一章概述 一、项目名称及建设性质 二、项目承办单位 三、战略合作单位 四、项目提出的理由 五、项目选址及用地综述 六、土建工程建设指标 七、设备购置 八、产品规划方案 九、原材料供应 十、项目能耗分析 十一、环境保护 十二、项目建设符合性 十三、项目进度规划 十四、投资估算及经济效益分析 十五、报告说明 十六、项目评价 十七、主要经济指标

第二章建设背景 一、项目承办单位背景分析 二、产业政策及发展规划 三、鼓励中小企业发展 四、宏观经济形势分析 五、区域经济发展概况 六、项目必要性分析 第三章投资方案 一、产品规划 二、建设规模 第四章选址方案 一、项目选址原则 二、项目选址 三、建设条件分析 四、用地控制指标 五、用地总体要求 六、节约用地措施 七、总图布置方案 八、运输组成 九、选址综合评价

配位聚合物的研究

配位聚合物的研究 早在1706年,第一个具有三维网状结构的配位聚合物普鲁士蓝就己经被发现,然而它的结构直到1972年才被Lude 等人确定下来(Fig. 1.1)[2,3]。受普鲁 士蓝结构的启发,研究工作者们以Cd(CN)2- 4 、Zn(CN)2- 4等金属氰基阴离子为结构 单元,陆续合成出一系列具有一维、二维和三维网络结构的配位聚合物[4]。然而这一阶段配位聚合物发展很缓慢,为了更好地实现多维体系的空间组装,人们在配位聚合物的合成中引入了晶体工程的概念。所谓“晶体工程”就是通过控制构筑单元间相互作用的类型、强度及几何性质以获得预期网络结构和性能的晶体 [5]。A. F. Wells 在固体特别是无机化合物的整体结构领域的研究工作为配位聚合物的研究奠定了拓扑理论基础[6,7]。他将晶体结构按照它们的拓扑结构简化为一系列具有几何构型(平面三角,四面体等)的节点(nodes ),这些节点相互连接形成具有一定拓扑结构的化合物。拓扑学的应用为人们分析、理解配位聚合物的结构带来了极大的方便。但是,直到二十世纪九十年代Wells 的方法才在实验上取得了丰硕的成果。1989年,R. Robson 首次将Wells 在无机网络结构中的工作拓展到有机、金属有机化合物和配位聚合物领域,并提出如下设想:以一些简单矿物的结构为网络原型,用几何上匹配的分子模块代替网络结构中的节点,用分子链接代替其原型网络中的单个化学键,以此来构筑具有矿物拓扑的配位聚合物,从而实现该配位聚合物在离子交换、分离和催化方面的潜在应用。他们以4,4',4",4"'-四氰基苯甲烷(TCPM )为配体成功合成出具有金刚石拓扑的亚铜氰基配位聚合物(Fig. 1.2),同时预言该类材料可能产生比沸石分子筛更大的孔道[8,9]。Robson 的设想和开创性的工作为配位聚合物的研究指明了发展方向,并为配位聚合物的发展历史翻开了崭新的一页。 Fig. 1.1 3D network of prussian blue(Left). Fig. 1.2 The diamond network of Cu I (TCPM)BF 4(Right).

国内醋酸乙烯的生产路线

1 生产工艺醋酸乙烯生产工艺路线主要有石油乙烯法、天然气乙炔法和电石乙炔法3 种。 其中石油乙烯法由于工艺性、经济性好而占据主导地位,世界上采用该方法生产醋酸乙烯的生产能力占总生产能力的70% 以上;天然气乙炔法和电石乙炔法在经济上不如石油乙烯法,但在电石和天然气资源比较丰富的地区,乙炔法仍具有相当的竞争力,仍被采用。1.1 石油乙烯法该方法采用乙烯和醋酸一步氧化合成醋酸乙烯。乙烯、氧气和醋酸蒸汽在贵金属 Pd-Au、Pd-Pt及Pd-Cd负载型催化剂及醋酸钾催化剂作用下,在100~200C、 0.6~0.8 MPa 条件下,在固定床反应器中反应,载体主要为硅胶和氧化铝,用冷凝和洗涤方法回收醋酸乙烯,再蒸馏提纯。 在BP 公司Leap 流化床技术中,催化剂可连续除去和加入,延长了运转周期,还可节省投资费用30% Praxair公司推出的专利,使用99.95%纯度的氧气,以降低反应器中惰性物质的用量,并可提高产率高达5%。 由于乙烯原料清洁干净,因此此法生产的醋酸乙烯杂质较少。 1.2 电石乙炔法 该方法通过电石与水反应生成乙炔,然后乙炔和醋酸在一定条件下,通过醋酸锌活性炭催化剂而生成醋酸乙烯。整个生产过程包括乙炔的生成和净化,以及醋酸乙烯的合成和精制。 1.3 天然气乙炔法该方法的乙炔原料来自于天然气。因天然气本身的乙炔含量很少,所以必须经过天然气的氧化裂解而生成乙炔。整个生产过程包括天然气脱硫、氧化裂解、乙炔提浓、净化,以及醋酸乙烯的合成和精制。

储呈半富+分布不雯需人量进□.易受[3 界石油能源影响悴油价波幼影响酷粧乙坏合成 合成反应器怫腾床反应帑,不易犬型访1定庠反应髒「大租 化苓产能小化.产能大 他化剂活性低.与命周期5-6 个月)(2Y 佯) 杂质较多?质就较斧杂质少?质戢好 由表1可见:与电石乙炔法相比,石油乙烯法具有许多优点,如产品杂质少,质量好;蒸汽消耗低;工艺流程较短,设备较少;装置大型化。 电石乙炔法工艺技术成熟,原料资源丰富易得,但综合能耗高,环境污染较为严重,湿法电石废渣处理难度大是电石乙炔法的主要缺陷和不足。湿法电石废渣制水泥取得成功,解决了电石废渣的使用问题和蒸汽凝结水回收利用,进一步降低了能耗。 我国能源结构的特点是“贫油、少气、煤炭资源相对丰富”,只有在原油价格较低,或在天然气富集的地区,石油乙烯法和天然气乙炔法生产醋酸乙烯才有成本优势。在目前石油价格高位的环境下,采用电石乙炔法工艺路线生产醋酸乙烯,具有成本优势。

配位化学现状及发展

配位化学的现状及发展 专业班级:化学(师范类)一班姓名:刘楠楠课程名称:配位化学 摘要:配位化学已成为当代化学的前沿领域之一。它的发展打破了传统的有机化学和无机化学之间的界线。其新奇的特殊性能在生产实际中得到了重大的应用,花样繁多的价健理论及空间结构引起了结构化学和理论化学家的深切关注。它和物理化学、有机化学、生物化学、固体化学、环境化学相互渗透,使其成为贯通众多学科的交叉点。本文将介绍配位化学在近几年的现状和发展。 关键词:配位化学;现状;发展 配位化学是在无机化学基础上发展起来的一门交叉学科,50年代以来配位化学以其与有机合成化学和结构化学相结合为特点,开始了无机化学的复兴时期,从而在实际上打破了传统的无机、有机和物理化学间的界限,进而成为各化学分支的结合点。配合物以其花样繁多的价键和空间结构促进了基础化学的发展,又以其特殊的性质在生产实践和科学实验中取得了重大的应用。配位化学是化学学科中最活跃的,具有很多生长点的前沿学科之一,它的近期发展趋势如下。 1.具有特殊性质和特殊结构配合物的合成、结构及性能的研究 各种大环、夹心、多核、簇状、非常氧化态、非常配位数、混合价态及各种罕见构型配合物的合成、结构、热力学、动力学和反应性的研究正在深入。其中巨型原子簇的研究已成为阐明金属原子化学和固体金属化学异同的桥梁;新型球型大环,聚邻苯酚脂大环配体对某些金属离子具有特殊高的选择性;在CO,CO2,H2和CH4等小分子配合物及活化方面,已发现用Co+,Li+双核配合物不仅可与CO2配位,并使其活化,而形成C—C键;此外H2的配合物研究及H2的活化亦在深入。 配合物合成、结构和性能研究方面,近年来的一个引人注目的动向是配位化学和固体化学的交叉[1]。一系列具有链状、层片状和层柱状特殊结构的配合物已经合成。对它们的性质和结构,正在进行系统研究。 2.溶液配位化学研究 溶液配位化学研究正在继续深入,但已具有新的内容。在取代反应动力学及机理方面,近年工作集中在金属碳基配合物的研究上。已知配体的空间效应,电

铜(I)配位聚合物的用途的制作方法

图片简介: 本技术介绍了一种铜(I)配位聚合物的用途。具体而言,本技术的铜(I)配位聚合物的化学式为[Cu6I2(μ4I)2(μ45phpymt)2]n,其中5phpymt为5苯 基2巯基嘧啶中的巯基失去质子后形成的阴离子,n为任一正整数。该配位聚合物能够在可见光照射下催化芳基硼酸类化合物至酚类化合物的转化,具有转化效率高、适用范围广、反应条件温和等特点。转化反应结束后,从反应体系中离心分离出铜(I)配位聚合物,经简单水洗即可进行下一轮反应,至少循环5次后仍能保持稳定,并且其催化活性也未出现明显降低。 技术要求 1.铜(I)配位聚合物在光催化芳基硼酸类化合物制备酚类化合物中的用途;所述铜(I)配位聚合物的化学式为[Cu6I2(μ4-I)2(μ4-5-phpymt)2]n,其中5-phpymt为5-苯基-2-巯基嘧啶中的巯基失去质子后形成的阴离子,n为任一正整数。 2.根据权利要求1所述的用途,其特征在于: 所述铜(I)配位聚合物的晶体属于单斜晶系,空间群为C2/m,晶胞参数为a = 12.5100(9) ?,b = 9.4515(6) ?,c = 12.0472(9) ?,α = 90.00 °,β= 107.004(8) °,γ = 90.00°,V = 1362.16(17) nm3,Z = 1。 3.根据权利要求1所述的用途,其特征在于:所述的铜(I)配位聚合物的制备方法包括如下步骤: 按照碘化亚铜:5-苯基-2-巯基嘧啶=2~5:1的摩尔比,将碘化亚铜、5-苯基-2-巯基嘧啶和溶剂加入到反应容器中,通入惰性气体0.5~1小时后,密闭反应容器,加热至100~140℃并反应24~72小时;反应结束后,将反应体系的温度降至室温,经过滤、洗涤、干燥,得到所述铜(I)配位聚合物。 4.根据权利要求3所述的用途,其特征在于: 所述碘化亚铜和所述5-苯基-2-巯基嘧啶之间的摩尔比为4:1。 5.根据权利要求3所述的用途,其特征在于: 所述惰性气体选自氮气、氖气、氩气中的任意一种; 所述溶剂为乙腈和N,N-二甲基甲酰胺的混合溶剂; 所述加热通过烘箱来完成; 所述反应的温度为120℃,时间为48小时。 6.根据权利要求1所述的用途,其特征在于:

醋酸甲酯羰基法合成醋酐法设计说明书

4万t/a 醋酐生产工艺设计 摘要 醋酐是重要的有机化工原料,涉及各个领域并对社会的发展起着重要的作用,因此制备醋酐成了工业生产的重要工作,目前工业上生产醋酐主要有三种方法:乙醛氧化联产法、乙烯酮法和醋酸甲酯羰基合成法。虽然醋酐的应用广,实用强,但是如不适当处理及储存就会对环境有危害,对水体造成污染,严重时可危机人的生命。 通过对醋酐生产的研究,目前较适合推广及环保的生产是醋酸甲酯羰基化合成法,该方法不仅符合未来的发展趋势,在成本方面也大大降低了投资,是目前生产醋酐最具前景的方法。考虑到生产醋酐的意义及应用前景,进而提出了生产醋酐的具体工艺流程和设备的选型。 关键词:物料衡算能量衡算热量衡算装置布置

With an Annual Output of 40 Thousand t/a Acetic Anhydride Production Process Design Abstract Acetic anhydride is the important organic chemical raw materials, involving various fields and on social development plays a important role, therefore of preparation of acetic anhydride into the important work of industrial production, the industrial production of acetic anhydride are three main methods: oxidation of acetaldehyde generation method, ethylene ketone method and acetic acid methyl ester carbonyl synthesis method. Although the wide application of acetic anhydride, practical strong, but if not properly handle and store it is harmful to the environment, the water pollution caused by serious crisis of human life. Through the study of acetic anhydride production. It is suitable for promotion and environment-friendly production is acetic acid methyl ester carbonyl compound method, this method not only conforms to the trend of development in the future, in terms of cost is also greatly reduced the investment, the acetic anhydride production the most promising method. Considering the production of acetic anhydride significance and application prospect, and puts forward the specific selection of acetic anhydride production process and equipment. Keywords: environmental protection methyl acetate carbonylation acetic anhydride

配位化学 翻译

锆—吡咯基配合物的合成与结构:对吡咯基配 体配位方式影响因素的计算分析 □ 文/Joseph M.Tanski ,Gerard Parkin*(约瑟.坦斯基,杰拉德.帕金) 纽约哥伦比亚大学化学学院,纽约10027 2001.11.20 收稿 摘要:具有η1和η5吡咯基配 位方式的锆配合物的一系列结构特点已有初步研究报道。确切的说,2,5 - 二芳基-吡咯[pyr Ar2]配体(Ar= 苯基 ,2,4 – 二甲苯基)已经被用来制备[pyr Ar2]Zr(NMe 2)3(NMe 2H), [pyr Ar2]Zr(NMe 2)3,, [pyr Ar2]Zr(NMe 2)I 2和 [η 5-pyr Ar2]2ZrCl 2.。密度泛函计算结果表明,各种配位方式相对的稳定性可以被立体因素及金属中心的路易斯酸性所影响。 毫无疑问,环戊二烯配 体,在有机过渡金属化学的发展中起到了关键作用。通过和环戊邻二苯基比较,相关等电 子杂环吡咯配体,[pyr Rn ],1已不大适用于过渡金属化学。2关于锆化学,通过X 射线衍射实验,一些吡咯配合物的结构已经得到认证,观察到吡咯配体和戊二烯配体相似,只能通过氮原子结合η1-模式,3而不是η5-模式。在本文中,我们报道了一系列单一和二度(吡咯)锆配合物的合成和结构特征在吡咯配体的η5-配位中起重要的作用,而且计算分析研究致力于找到影响吡咯配体于这些衍生物中η5和η1对抗配位方式的因素。 吡咯配体芳基的2 - 5位取代以前未应用于早期的过渡金属化学。然而,我们认为这样的取代基会提供有助于像[η5-pyr Ar2]2二卤化锆类型的二茂锆化合物的类似物的稳定的合成和隔离。确实,[pyr Ar2]2ZrCl 2(Ar= 苯基,2,4 – 二甲苯基)可能是由四氯化锆和[pyr Ar2] Li 4(方案1)反应得到的。因此提供吡咯相对物到已知的弯曲插入的环戊二烯基复合物,(CP R )2-ZrCl 2。同样,易得到的半插入锆吡咯配合物是由 Zr(NMe 2)4和[pyr Ar2]H 反应得到[pyr Ar2]Zr(NMe 2)3的,通过二甲胺加成[pyr Ar2]Zr(NMe 2)3(NMe 2H)。[pyr Ar2]Zr(NMe 2)3是其他锆吡咯配合物的前体。因此,[pyr Ar2]Zr(NMe 2)3和2当量的Me 3SiI 合成二碘化物[pyr Ar2]Zr(NMe 2)I 2,然而和3当量的会导致配体重新分配,形成[pyr Ar2]2ZrI 2(Ar= 苯基)。因此,二氯化合物[pyr Ar2]2ZrCl 2可以由[pyr Ar2]Zr(NMe 2)3和过量的Me 3SiCl 反应得到。(Me=甲基,pyh=吡咯基,注释中有,下文不再赘

醋酸乙烯合成的物料衡算

第五章 醋酸乙烯合成的物料衡算 5、1 反应器的物料衡算 设计要求: 年产11万吨聚乙烯醇,产品平均聚合度为1795,生成产时间为每年330天。 产品分子式为:CH 2─CHOH n CH 2─CHOCOCH 3 m 由多品种聚乙烯醇质量指标(Q/OWAL001-1999)可得,PVA 的聚合度为400~2800,本项目平均聚合度为1700,醇解度选取95%得: ??? ??=?+=+%95%1001700m n n n m 解可得: m=85 n=1615 平均分子量: kmol kg O H C O H C M m n pvc /78372285861615442)()(26422=+?+?=++= 产品产量h kmol F PVA /1611.078372 2433010101078372243303 4=????=??=年产量 所需单体量 h kmol F n m F PVC VAC /87.2731611.01700)(=?=+= h t h kg F M W PVC PVC VAC /55.23/82.2355287.27386==?=?= 工艺条件假设(数据参考马延贵 .《聚乙烯醇生产技术》.纺织工业出版社.1988): 乙炔单程转化率 %151=X 以乙炔计算的醋酸乙烯的选择性 %901=S 醋酸转化率 %352=X 以醋酸计算醋酸乙烯的选择性 %12.962=S 乙醛收率%3106.01=Y 巴豆醛收率 % 0621.02=Y

则:乙炔收率 ??? ? ???=?===?=?=%65.442686 %5.13%5.1315.09.011Z p m M M Y Y X S Y 质量收率:摩尔收率: 由方程式 : VAC HAC H C →+22 乙炔进料= h t Y W m VAC /74.52% 65.4455.23== 根据反应器入口各组分的组成可计算总进料量 52.74 W 109.4248.2% = =总 依次计算其他组分进料数量如表5-1 表5-1 反应器的进料表 出口组成计算 由下列方程式计算 22H C +HAC VAC 26 60 86 x y 23.55 2COOH CH 3 O H CO CO CH 2223)(++ 120 58 44 18 48.69?35%-16.43 m n p

中级无机化学[第三章配位化学] 山东大学期末考试知识点复习

第三章配位化学 1.配合物 配合物:由提供孤对电子或多个不定域电子的一定数目的离子或分子(配体)和接受孤对电子或多个不定域电子的原子或离子(统称中心原子)按一定组成和空间构型所形成的化合物。其中,与中心原子直接相连的原子称为配位原子,与同一中心原子连接的配位原子数目称为配位数;由中心金属离子和配体构成的络合型体称为内界,通常用“[]”标出。 配合物的命名:配体名称在先,中心原子名称在后。阴离子名称在先,阳离子名称在后,两者间用“化”或“酸”相连。不同配体名称的顺序与化学式的书写顺序相同,相互间以圆点隔开,最后一种配体名称之后加“合”字。配体个数在配体名称前用中文数字表示。中心原子的氧化态在元素名称之后用括号内的罗马数字表示。 2.配合物的异构 立体异构:包括几何异构和旋光异构。配合物内界中两种或两种以上配体在空间的排布方式不同所产生的异构现象称为几何异构。若由配体在空间的排布方式不同所产生的异构体之间互为对映体,则这种异构现象称为旋光异构。 电离异构:配合物在溶液中电离时,由于内界和外界配体发生交换而生成不同配离子的异构现象称为电离异构。 键合异构:含有多种配位原子的单齿配体用不同的配位原子参与配位而产生的异构现象称为键合异构。 配位异构:在配阴离子与配阳离子形成的配合物盐中,配阴离子与配阳离子中配体与中心离子出现不同组合的现象称为配位异构。 3.配合物的常用制备方法 加成反应:路易斯酸碱之间直接反应,得到酸碱加合型配合物。加成后配位

数增大。 取代反应:用一种适当的配体(通常是位于光谱化学序列右边的配体)取代配合物中的某些配体(通常是位于光谱化学序列左边的配体)。取代后配位数通常不变。 氧化还原反应:伴随有中心金属氧化态变化的制备反应,在许多情况下同时伴随有配体的取代反应。 热解反应:在升高温度时,配合物中易挥发的配体失去,外界阴离子占据失去配体的配位位置,相当于固相取代反应。 4.配合物的化学键理论 (1)晶体场理论理论要点: (a)中心金属离子具有电子结构,配体视为无电子结构的阴离子或偶极子,二者之间存在的静电吸引作用产生配位键。 (b)中心金属离子的电子与配体电子之间存在排斥作用。由于配体在中心离子周围的分布具有方向性,配体的静电场作用使中心离子的d轨道发生能级分裂。分裂的方式与分裂的程度取决于配位场的类型及配体、中心离子的性质。 (c)中心离子的电子在配位场能级中的占据结果,使配合物获得一个晶体场稳定化能(CFSE)。 晶体场理论可以定性解释配合物的吸收光谱、稳定性、磁性、结构畸变等,但无法解释金属与配体间的轨道重叠作用,不能很好地解释光谱化学序列。 (2)配位场理论理论要点:配体的存在使中心金属离子与配体之间存在的化学键作用既包括静电作用也包括共价作用(既有σ成键作用也有π成键作用)。金属离子的d电子局限在金属原子核附近运动,不进入配体范围,但是配位场负电荷的影响使中心金属离子的d轨道能级分裂。在配位场中,分裂能既决定于静电作用,又决定于共价作用(其中首先包括σ成键作用,其次包括π成键作用)。

配位化学的应用

浅谈配位化学在各领域的应用 摘要配位化学已经深入到了工业、农业、生命科学、自然科学等诸多领域如可以应用在磁性,荧光,非线性等,配位化学对经济的发展、人们的生活等有着重要的影响。 关键词配合物应用药物工业化妆品 1、配合物在生物化学中的作用。 1.1配合物在有机体中存在着相当重要的作用。 人类每天除了需要摄入大量的空气、水、糖类、蛋白质及脂肪等物质以外,还需要一定的“生命金属”,它们是构成酶和蛋白的活性中心的重要组成部分。当“生命金属”过量或缺少,或污染金属元素在人体大量积累,均会引起生理功能的紊乱而致病,甚至导致死亡。因此显然配位化学在,越来越越显示出其重要作用。 某些分子或负离子,如CO或CN-,可以与血红蛋白形成比血红蛋白?O2更稳定的配合物,可以使血红蛋白中断输O2,造成组织缺O2而中毒,这就是煤气(含CO)及氰化物(含CN-)中毒的基本原理。另外,人体生长和代谢必须的维生素B12是Co的配合物,起免疫等作用的血清蛋白是Cu和Zn的配合物;植物固氮菌中的的固氮酶含Fe、Mo的配合物等。 1.2配合物在药学上的应用 1.2.1抗癌金属配合物的研究 癌症是危害人类健康的一大顽症,专家预计癌症将成为人类的第

一杀手。化疗是治疗癌症的重要手段,但是其毒副作用较大, 于是寻求高效、低毒的抗癌药物一直是人们孜孜以求、不懈努力的奋斗目标。自1965年Rosenberg等人偶然发现顺铂具有抗癌活性以来, 金属配合物的药用性引起了人们的广泛关注, 开辟了金属配合物抗癌药物研究的新领域。随着人们对金属配合物的药理作用认识的进一步深入, 新的高效、低毒、具有抗癌活性的金属配合物不断被合成出来,其中包括某些新型铂配合物、有机锡配合物、有机锗配合物、茂钛衍生物、稀土配合物、多酸化合物等。 顺铂为顺式-二氯二氨合铂(II)的俗称,其抗癌作用是美国生理学家Rosenberg B于1965年偶然发现的。顺铂为平面四边形结构的 配合物,虽然顺铂已经应用于临床, 有较好的疗效, 但由于它水溶小,使肿瘤细胞产生获得性耐药性, 有很强的毒副作用,为了减少它的活性, 人们尝试对它作结构上的修饰,卡铂便是其中之一。卡铂化学为1, 1-环丁二羧酸二氨合铂(II)。结构式中引入了亲水性的1, 1-环丁二羧酸作为配体,因此肾毒性和引发的恶心呕吐均低于顺铂, 其作用机理与顺铂相同,虽然其化学稳定

相关文档