文档库 最新最全的文档下载
当前位置:文档库 › 数学竞赛辅导--托勒密定理.(一)docx

数学竞赛辅导--托勒密定理.(一)docx

数学竞赛辅导--托勒密定理.(一)docx
数学竞赛辅导--托勒密定理.(一)docx

托勒密定理

Ptolemy(约公元85年~165年),希腊数大天文学家,他的主要著作《天文集》被后人称为“伟大的数学书”。

圆内接四边形中,两条对角线的乘积(两对角线所包矩形的面积)等于两组对边乘积之和。

已知:四边形ABCD内接于圆,如图,求证:AB·CD+BC·AD=AC·BD

证明:在∠BAD内作∠BAE=∠CAD,交BD于E。

因∠ABE=∠ACD,所以△ABE∽△ACD,

从而AB·CD =AC·BE ①;

易证△ADE∽△ACB,所以BC·AD=AC·DE②;

①+②得AB·CD+BC·AD=AC·BD。

托勒密定理的逆定理:如果凸四边形两组对边的积的和,等于两对角线的积,此四边

形必内接于圆。

已知四边形ABCD 满足AB·CD+BC·AD=AC·BD ,

求证:A 、B 、C 、D 四点共圆。

证明:构造相似三角形,即取点E ,使∠BCE =∠ACD ,且∠CBE =∠CAD ,则△CBE ∽△CAD 。所以BC·AD=AC·BE ①; 又CD

CA CE CB =,∠BCA =∠ECD ,所以△BCA ∽△ECD 。AB·CD =AC·DE ②;①+②得AB·CD+BC·AD=AC·(BE+DE )。显然有BE+DE≥DB。

于是AB·CD+BC·AD≥AC·DB。等号当且仅当E 在BD 上成立,结合已知条件得到此时等号成立,这时∠CBD =∠CAD ,即A 、B 、C 、D 四点共圆。

托罗密不等式在四边形ABCD 中, 有

AB·CD+AD·BC≥AC·BD. 并且当且仅当四边形内接于圆时,等式成立。

推论1(三弦定理) 如果A 是圆上任意一点,AB ,AC ,AD 是该圆上顺次的三条弦,则

sin sin sin AC BAD AB CAD AD CAB

?∠=?∠+?∠ 推论2(四角定理) 四边形ABCD 内接于O ,则

直线上的托勒密定理(或欧拉定理) 若A ,B ,C ,D

为一直线上依次排序的四点,则

B D

?+?=?

AB CD BC AD AC BD

一、直接应用托勒密定理

例1如图,P是正△ABC外接圆的劣弧上任一点(不与B、C重合),

求证:PA=PB+PC.

分析:此题证法甚多,一般是截长、补短,构造全等三角形,均为

繁冗.若借助托勒密定理论证,则有PA·BC=PB·AC+PC·AB,

∵AB=BC=AC.∴PA=PB+PC.

二、完善图形借助托勒密定理

例2证明“勾股定理”:在Rt△ABC中,∠B=90°,求证:AC2=AB2+BC2

证明:如图,作以Rt△ABC的斜边AC为一对角线的矩形ABCD,

显然ABCD是圆内接四边形.

由托勒密定理,有AC·BD=AB·CD+AD·BC.①

又∵ABCD是矩形,∴AB=CD,AD=BC,AC=BD.②

把②代人①,得AC2=AB2+BC2.

例3如图,在△ABC中,∠A的平分线交外接∠圆于D,连结BD,

求证:AD·BC=BD(AB+AC).

证明:连结CD,依托勒密定理,有AD·BC=AB·CD+AC·BD.

∵∠1=∠2,∴BD=CD.

故AD·BC=AB·BD+AC·BD=BD(AB+AC).

三、构造图形借助托勒密定理

例4若a、b、x、y是实数,且a2+b2=1,x2+y2=1.求证:ax+by≤1.证明:如图作直径AB=1的圆,在AB两边任作Rt△ACB和Rt△ADB,

使AC=a,BC=b,BD=x,AD=y.

由勾股定理知a、b、x、y是满足题设条件的.

据托勒密定理,有AC·BD+BC·AD=AB·CD.

∵CD≤AB=1,∴ax+by≤1.

四、巧变原式妙构图形,借助托勒密定理

例5已知a、b、c是△ABC的三边,且a

2=b(b+c),求证:∠A=2∠B.

分析:将a2=b(b+c)变形为a·a=b·b+bc,从而联想到托勒密定理,进而构造一个等腰梯形,使两腰为b,两对角线为a,一底边为c.

证明:如图,作△ABC的外接圆,以A为圆心,BC为半径作弧交圆于D,连结BD、

∴∠ABD=∠BAC.

DC、DA.∵AD=BC,ACD BDC

又∵∠BDA=∠ACB(对同弧),∴∠1=∠2.

依托勒密定理,有BC·AD=AB·CD+BD·AC.①

而已知a2=b(b+c),即a·a=b·c+b2.②

∴∠BAC=2∠ABC.

五、巧变形妙引线借肋托勒密定理

例6在△ABC中,已知∠A∶∠B∶∠C=1∶2∶4,

分析:将结论变形为AC·BC+AB·BC=AB·AC,把三角形和圆

联系起来,可联想到托勒密定理,进而构造圆内接四边形.

如图,作△ABC的外接圆,作弦BD=BC,边结AD、CD.

在圆内接四边形ADBC中,由托勒密定理,

有AC·BD+BC·AD=AB·CD

易证AB=AD,CD=AC,∴AC·BC+BC·AB=AB·AC,

作业

1.已知△ABC中,∠B=2∠C。求证:AC2=AB2+AB·BC。

2.证明:从圆周上一点到圆内接正方形的四个顶点的距离不可能都是有理数.

3.若a ≥b ≥c >0,且a <b +c ,解方程ax b x c c x b =-+-2222。

4.如图,圆O 外接于正方形ABCD ,P 为弧AD 上的任意一点, 求证

PB PC PA +为定值。

初中数学竞赛中常用重要定理

初中数学竞赛中常用重 要定理 Document number:WTWYT-WYWY-BTGTT-YTTYU-

数学竞赛中几个重要定理 1、 梅涅劳斯定理:如果在△ABC 的三边BC 、CA 、AB 或其延长线上有点 D 、 E 、 F 且D 、E 、F 三点共线,则 FB AF EA CE DC BD ??=1 2、 梅涅劳斯定理的逆定理:如果在△ABC 的三边BC 、CA 、AB 或其延长线 上 有点D 、E 、F ,且满足FB AF EA CE DC BD ??=1,则D 、E 、F 三点共线。 3、 塞瓦定理:设O 是△ABC 内任意一点,AO 、BO 、CO 分别交对边于N 、 P 、 M ,则 1=??PA CP NC BN MB AM 4、 塞瓦定理的逆定理:设M 、N 、P 分别在△ABC 的 边AB 、BC 、CA 上,且满足 1=??PA CP NC BN MB AM ,则AN 、BP 、CM 相交于一点。 5、 广勾股定理的两个推论: 推论1:平行四边形对角线的平方和等于四边平方和。

推论2:设△ABC 三边长分别为a 、b 、c ,对应边上中线长分别为m a 、m b 、m c 则:m a =2 222221a c b -+;m b =2 222221b c a -+;m c =2 222221c b a -+ 6、 三角形内、外角平分线定理: 内角平分线定理:如图:如果∠1=∠2,则有 AC AB DC BD = 外角平分线定理:如图,AD 是△ABC 中∠A 的外角平分线交BC 的延长线与D , 则有 AC AB DC BD = 7、 托勒密定理:四边形ABCD 是圆内接四边形,则有 AB ·CD+AD ·BC=AC ·BD 8、 三角形位似心定理:如图,若△ABC 与△DEF 位似,则通过对应点的三直线 AD 、BE 、CF 共点于P

初中数学竞赛定理大全

欧拉(Euler)线: 同一三角形的垂心、重心、外心三点共线,这条直线称为三角形的欧拉线; 且外心与重心的距离等于垂心与重心距离的一半。 九点圆: 任意三角形三边的中点,三高的垂足及三顶点与垂心间线段的中点,共九个点共圆,这个圆称为三角形的九点圆; 其圆心为三角形外心与垂心所连线段的中点,其半径等于三角形外接圆半径的一半。

费尔马点: 已知P为锐角△ABC内一点,当∠APB=∠BPC=∠CPA=120°时,PA+PB+PC的值最小,这个点P称为△ABC的费尔马点。 海伦(Heron)公式:

塞瓦(Ceva)定理: 在△ABC中,过△ABC的顶点作相交于一点P的直线,分别 交边BC、CA、AB与点D、E、F,则(BD/DC)·(CE/EA)·(AF/FB)=1;其逆亦真。 密格尔(Miquel)点: 若AE、AF、ED、FB四条直线相交于A、B、C、D、E、F六点, 构成四个三角形,它们是△ABF、△AED、△BCE、△DCF, 则这四个三角形的外接圆共点,这个点称为密格尔点。

葛尔刚(Gergonne)点: △ABC的内切圆分别切边AB、BC、CA于点D、E、F, 则AE、BF、CD三线共点,这个点称为葛尔刚点。 西摩松(Simson)线: 已知P为△ABC外接圆周上任意一点,PD⊥BC,PE⊥ACPF⊥AB,D、E、F为垂足, 则D、E、F三点共线,这条直线叫做西摩松线。

黄金分割: 把一条线段(AB)分成两条线段,使其中较大的线段(AC)是原线段(AB) 与较小线段(BC)的比例中项,这样的分割称为黄金分割。 帕普斯(Pappus)定理: 已知点A1、A2、A3在直线l1上,已知点B1、B2、B3在直线l2上,且A1 B2与A2 B1交于点X,A1B3与A3 B1交于点Y,A2B3于A3 B2交于 点Z,则X、Y、Z三点共线。

八年级数学竞赛讲座从勾股定理谈起附答案

第十三讲从勾股定理谈起 勾股定理揭示了直角三角形三边之间的关系,大约在公元前1100多年前,商高已经证明了普通意义下的勾股定理,在国外把勾股定理称为“毕达哥拉斯定理”. 勾股定理是平面几何中一个重要定理,其广泛的应用体现在:勾股定理是现阶段线段计算、证明线段平方关系的主要方法,运用勾股定理的逆定理,通过计算也是证明两直线垂直位置关系的一种有效手段.直角三角形是一类特殊三角形,有着丰富的性质:两锐角互余(角的关系)、勾股定理(边的关系),30°角所对的直角边等于斜边的一半(边角关系),这些性质在求线段的长度、证明线段倍分关系、证明线段平方关系等方面有广泛的应用. 例题求解 【例1】如图,以等腰直角三角形ABC的斜边AB为边向内作等边△ABD,连结DC,以DC为边作等边△DCE,B、E在CD的同侧,若AB=2,则BE= . (重庆市中考题) 思路点拨因BE不是直角三角形的边,故不能用勾股定理直接计算,需找出与BE相等的线段转化问题. 注千百年来,勾股定理的证明吸引着数学爱好者,目前有400多种证法,许多证法的共同特点是通过弦图的割补、借助面积加以证明,美国第20任总统加菲尔德(1831—1881)曾给出一个简单证法.勾股定理的发现是各族人民早期文明的特征,有人建议,将来与“外星人”交往,可以把勾股定理转化为光电讯号,传向异域,他们一定懂得勾股定理. 现已确定的2002年8月在北京举行的国际数学家大会的会标来源于弦图的图案.

【例2】 2002年8月在北京召开的国际数学家大会会标取材于我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形(如图所示).如果大正方形的面积是13,小正方形的面积是1,直角三角形的较短直角边为a ,较长直角边为b ,那么(a+b)2的值为( ) A .13 B .19 C .25 D .169 (山东省中考题) 思路点拨 利用勾股定理、面积关系建立a 、b 的方程组. 【例3】 如图,P 为△ABC 边BC 上的一点,且PC =2PB , 已知∠ABC =45°,∠APC =60°,求∠ACB 的度数. (“祖冲之杯”邀请赛试题) 思路点拨 不可能简单地由角的关系推出∠ACB 的度数,解本例的关键是由条件构造出含30°角的直角三角形. 【例4】如图,在Rt △ABC 中,∠ACB=90°,CD ⊥AB 于D ,设AC =b ,BC =a ,AB=c ,CD=h . 求证:(1)2221 1 1 h b a =+; (2) h c b a +<+ ; (3) 以b a +、h 、h c +为边的三角形,是直角三角形. 思路点拨 (1)只需证明1)1 1 (222=+b a h ,从左边推导到右边; (2)证明(22)()(h c b a +<+;(3)证明222)()(h c h h a +=++.在证明过程中,注意面积关系式ch ab =的应用. 【例5】 一个直角三角形的边长都是整数,它的面积和周长的数值相等,这样的直角三角形是否存在?若存在,确定它三边的长,若不存在,说明理由. (北京市竞赛题) 思路点拨 假设存在符合条件的直角三角形,它的三边长为a 、b 、c ,其中c 为斜边,则?? ???=++=+2222ab c b a c b a ,

高中数学竞赛定理

重 心 定义:重心是三角形三边中线的交点, 可用燕尾定理证明,十分简单。证明过程又是塞瓦定理的特例。 已知:△ABC 中,D 为BC 中点,E 为AC 中点,AD 与BE 交于O ,CO 延长线交AB 于F 。求证:F 为AB 中点。 证明:根据燕尾定理, S △AOB=S △AOC , 又S △AOB=S △BOC , ∴S △AOC=S △BOC , 再应用燕尾定理即得AF=BF ,命题得证。 重心的性质: 1、重心到顶点的距离与重心到对边中点的距离之比为2:1。 2、重心和三角形3个顶点组成的3个三角形面积相等。 3、重心到三角形3个顶点距离的平方和最小。 4、三角形到三边距离之积最大的点。 5、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均,即其坐标为((321x x x ++)/3,(321y y y ++)/3);空间直角坐标系——横坐标:(321x x x ++)/3 纵坐标:(321y y y ++)/3 竖坐标:(321z z z ++)/3 外 心 定义:外心是三角形三条边的垂直平分线的交点,即外接圆的圆心。 外心定理:三角形的三边的垂直平分线交于一点,该点叫做三角形的外心。 外心性质:三角形的外心是三边中垂线的交点,且这点到三角形三顶点的距离相等。 设1d ,2d ,3d 分别是三角形三个顶点连向另外两个顶点向量的数量积 1c =2d 3d ,2c =1d 3d ,3c =1d 2d ;c=1c +2c +3c 重心坐标:( (32c c +)/2c ,(31c c +)/2c ,(21c c +)/2c ) 垂 心 定义:三角形的三条高的交点叫做三角形的垂心。 性质: 锐角三角形垂心在三角形部 直角三角形垂心在三角形直角顶点 钝角三角形垂心在三角形外部

中学数学竞赛中常用的几个重要定理

数学竞赛中几个重要定理 1、 梅涅劳斯定理:如果在△ABC 的三边BC 、CA 、AB 或其延长线上有点D 、E 、F 且D 、E 、F 三点共线,则FB AF EA CE DC BD ? ?=1 2、 梅涅劳斯定理的逆定理:如果在△ABC 的三边BC 、CA 、AB 或其延长线上有点D 、E 、F ,且 满足FB AF EA CE DC BD ? ?=1,则D 、E 、F 三点共线. 【例1】已知△ABC 的重心为G ,M 是BC 边的中点,过G 作BC 边的平行线AB 边于X ,交AC 边于Y ,且XC 与GB 交于点Q ,YB 与GC 交于点P. 证明:△MPQ ∽△ABC j M Q G A C B X Y P

【例2】以△ABC的底边BC为直径作半圆,分别与边AB,AC交于点D和E,分别过点D,E作BC的垂线,垂足依次为F,G,线段DG和EF交于点M.求证:AM⊥BC 【例3】四边形ABCD内接于圆,其边AB,DC的延长线交于点P,AD和BC的延长线交于点Q,过Q作该圆的两条切线,切点分别为E,F.求证:P,E,F三点共线.

【练习1】设凸四边形ABCD 的对角线AC 和BD 交于点M ,过M 作AD 的平行线分别交AB ,CD 于点E ,F ,交BC 的延长线于点O ,P 是以O 为圆心,以OM 为半径的圆上一点. 求证:∠OPF=∠OEP 【练习2】 在△ABC 中,∠A=900,点D 在AC 上,点E 在BD 上,AE 的延长线交BC 于F. 若BE :ED=2AC :DC ,则∠ADB=∠FDC D

塞瓦定理:设O是△ABC内任意一点,AO、BO、CO分别交对边于N、P、M,则1= ? ? PA CP NC BN MB AM 塞瓦定理的逆定理:设M、N、P分别在△ABC的边AB、BC、CA上,且满足1= ? ? PA CP NC BN MB AM , 则AN、BP、CM相交于一点. 【例1】B E是△ABC的中线,G在BE上,分别延长AG,CG交BC,AB于点D,F, 过D作DN∥CG交BG于N,△DGL及△FGM是正三角形. 求证:△LMN为正三角形. G C L M E D F N

高中奥林匹克数学竞赛-几个重要定理

竞赛专题讲座-几个重要定理 《定理1》正弦定理 △ABC中,设外接圆半径为R,则 证明概要如图1-1,图1-2 过B作直径BA',则∠A'=∠A,∠BCA'=90°,故 即;同理可 得 当∠A为钝角时,可考虑其补角,π-A. 当∠A为直角时,∵sinA=1,故无论哪种情况正弦定理成立。 《定理2》余弦定理△ABC中,有关系 a2=b2+c2-2bccosA;(*) b2=c2+a2-2cacosB; c2=a2+b2-2abcosC; 有时也用它的等价形式 a=ccosB+bcosC; b=acosC+ccosA;(**) c=acosB+bcosA. 证明简介 余弦定理的证法很多,下面介绍一种复数证法 如图建立复平面,则有 =(bcosA-c2)+(bsinθ)2即 a2=b2+c2-2bccosA,同理可证(*)中另外两式;至于**式,由图3显见。 《定理3》梅涅(Menelaus)劳斯定理(梅氏线)直线截△ABC的边BC,CA,AB或其延长线 于D、E、F. 则本题可以添加平行线来证明,也可不添辅助线,仅用正弦定理来证明。在△FBD、△CDE、△AEF中,由正弦定理,分别有

《定理4》塞瓦定理(Ceva) (塞瓦点) 设O 是△ABC 内任意一点,AB 、BO 、CO 分别交对边于D 、E 、F ,则 证法简介 (Ⅰ)本题可利用梅内劳斯定理证明: (Ⅱ)也可以利用面积关系证明 同理 ④ ⑤ ③×④×⑤得 《定理5》塞瓦定理逆定理 在△ABC 三边所在直线BC 、CA 、AB 上各取一点D 、E 、F ,若则AD 、BE 、CE 平行或共点。 证法简介 (Ⅰ)若AD∥BE(如图画5-1) 则 EA CE BD BC = 代入已知式:1=??FB AF BD BC DC BD 于是 CB DC FB AF = , 故 AD∥CF,从而AD∥BE∥CF (Ⅱ)若AD 、BE 交于O (图5-2),则连CO 交AB 于F’.据塞瓦定理,可得 1='??B F AF EA CE DC BD 而已知1=??FB AF EA CE DC BD 可见FB AF B F F A ='' 则 FB AF AF B F F A F A +='+'' AB FB AF B F F A =+='+'ΘAF F A ='Θ 即F '即F ,可见命题成立 《定理6》斯特瓦尔特定理

2018初中数学竞赛勾股定理讲解学习

精品文档 初中数学竞赛专题选讲 勾股定理 一、内容提要 1. 勾股定理及逆定理:△ABC 中 ∠C =Rt ∠?a 2+b 2=c 2 2. 勾股定理及逆定理的应用 ① 作已知线段a 的2,3, 5……倍 ② 计算图形的长度,面积,并用计算方法解几何题 ③ 证明线段的平方关系等。 3. 勾股数的定义:如果三个正整数a,b,c 满足等式a 2+b 2=c 2,那么这三个正整数a,b,c 叫做 一组勾股数. 4. 勾股数的推算公式 ① 罗士琳法则(罗士琳是我国清代的数学家1789――1853) 任取两个正整数m 和n(m>n),那么m 2-n 2,2mn, m 2+n 2是一组勾股数。 ② 如果k 是大于1的奇数,那么k, 212-k ,2 12+k 是一组勾股数。 ③ 如果k 是大于2的偶数,那么k, 122-??? ??K ,122+?? ? ??K 是一组勾股数。 ④ 如果a,b,c 是勾股数,那么na, nb, nc (n 是正整数)也是勾股数。 5. 熟悉勾股数可提高计算速度,顺利地判定直角三角形。简单的勾股数有:3,4,5; 5, 12,13; 7,24,25; 8,15,17; 9,40,41。 二、例题 例1.已知线段a a 5a 2a 3a 5 a 求作线段5a a 分析一:5a =25a =224a a + 2a ∴5a 是以2a 和a 为两条直角边的直角三角形的斜边。 分析二:5a =2492 a a - ∴5a 是以3a 为斜边,以2a 为直角边的直角三角形的另一条直角边。 作图(略) 例2.四边形ABCD 中∠DAB =60ο,∠B =∠D =Rt ∠,BC =1,CD =2 求对角线AC 的长 解:延长BC 和AD 相交于E ,则∠E =30ο

(推荐)高中数学竞赛平面几何中的几个重要定理

平面几何中几个重要定理及其证明 一、 塞瓦定理 1.塞瓦定理及其证明 定理:在?ABC 内一点P ,该点与?ABC 的三个顶点相连所在的三条直线分别交?ABC 三边AB 、BC 、CA 于点D 、E 、F ,且D 、E 、F 三点均不是?ABC 的顶点,则有 1AD BE CF DB EC FA ??=. 证明:运用面积比可得ADC ADP BDP BDC S S AD DB S S ????==. 根据等比定理有 ADC ADC ADP APC ADP BDP BDC BDC BDP BPC S S S S S S S S S S ??????????-=== -, 所以APC BPC S AD DB S ??=.同理可得APB APC S BE EC S ??=,BPC APB S CF FA S ??=. 三式相乘得 1AD BE CF DB EC FA ??=. A B C D E F P

注:在运用三角形的面积比时,要把握住两个三角形是“等高”还是“等底”,这样就可以产生出“边之比”. 2.塞瓦定理的逆定理及其证明 定理:在?ABC 三边AB 、BC 、CA 上各有一点D 、E 、F ,且D 、E 、 F 均不是?ABC 的顶点,若 1AD BE CF DB EC FA ??=,那么直线CD 、AE 、BF 三线共点. 证明:设直线AE 与直线BF 交于点P ,直线CP 交AB 于点D /,则据塞瓦定理有 / / 1AD BE CF D B EC FA ??=. 因为 1AD BE CF DB EC FA ??=,所以有/ /AD AD DB D B =.由于点D 、D /都在线段AB 上,所以点D 与D /重合.即得D 、E 、F 三点共线. 注:利用唯一性,采用同一法,用上塞瓦定理使命题顺利获证. A B C D F P D /

37-初中数学竞赛中常用重要定理

初中数学竞赛辅导 3、三角形的三条中线交于一点,并且,各中线被这个点分成2:1的两部分 4、四边形两边中心的连线的两条对角线中心的连线交于一点 5、间隔的连接六边形的边的中心所作出的两个三角形的重心是重合的。 6、三角形各边的垂直一平分线交于一点。 7、从三角形的各顶点向其对边所作的三条垂线交于一点 8、设三角形ABC的外心为O,垂心为H,从O向BC边引垂线,设垂足不L,则AH=2OL 9、三角形的外心,垂心,重心在同一条直线上。 10、(九点圆或欧拉圆或费尔巴赫圆)三角形中,三边中心、从各顶点向其对边所引垂线的垂足,以及垂心与各顶点连线的中点,这九个点在同一个圆上, 11、欧拉定理:三角形的外心、重心、九点圆圆心、垂心依次位于同一直线(欧拉线)上 12、库立奇*大上定理:(圆内接四边形的九点圆) 圆周上有四点,过其中任三点作三角形,这四个三角形的九点圆圆心都在同一圆周上,我们把过这四个九点圆圆心的圆叫做圆内接四边形的九点圆。 13、(内心)三角形的三条内角平分线交于一点,内切圆的半径公式: r=(s-a)(s-b)(s-c)ss为三角形周长的一半 14、(旁心)三角形的一个内角平分线和另外两个顶点处的外角平分线交于一点 15、中线定理:(巴布斯定理)设三角形ABC的边BC的中点为P,则有 AB2+AC2=2(AP2+BP2) 16、斯图尔特定理:P将三角形ABC的边BC内分成m:n,则有 n×AB2+m×AC2=(m+n)AP2+mnm+nBC2 17、波罗摩及多定理:圆内接四边形ABCD的对角线互相垂直时,连接AB中点M和对角线交点E的直线垂直于CD 18、阿波罗尼斯定理:到两定点A、B的距离之比为定比m:n(值不为1)的点P,位于将线段AB分成m:n的内分点C和外分点D为直径两端点的定圆周上 19、托勒密定理:设四边形ABCD内接于圆,则有AB×CD+AD×BC=AC 20、以任意三角形ABC的边BC、CA、AB为底边,分别向外作底角都是30度的等腰△BDC、△CEA、△AFB,则△DEF是正三角形, 21、爱尔可斯定理1:若△ABC和三角形△都是正三角形,则由线段AD、BE、CF的重心构成的三角形也是正三角形。 22、爱尔可斯定理2:若△ABC、△DEF、△GHI都是正三角形,则由三角形△ADG、△BEH、△CFI的重心构成的三角形是正三角形。 23、梅涅劳斯定理:设△ABC的三边BC、CA、AB或其延长线和一条不经过它们任一顶点的直线的交点分别为P、Q、R则有BPPC×CQQA×ARRB=1 初中竞赛需要,重要 24、梅涅劳斯定理的逆定理:(略) 25、梅涅劳斯定理的应用定理1:设△ABC的∠A的外角平分线交边CA于Q、∠C的平分线交边AB于R,、∠B的平分线交边CA于Q,则P、Q、R三点共线。

初中数学竞赛定理大全.docx

欧拉( Euler )线: 同一三角形的垂心、重心、外心三点共线,这条直线称为三角形 的欧拉线; 且外心与重心的距离等于垂心与重心距离的一半。 九点圆: 任意三角形三边的中点,三高的垂足及三顶点与垂心间线段的中点,共九个点共圆,这个圆称为三角形的九点圆; 其圆心为三角形外心与垂心所连线段的中点,其半径等于三角形外接圆半径的 一半。 费尔马点: 已知 P 为锐角△ ABC内一点,当∠APB=∠ BPC=∠ CPA=120°时, PA +P B+PC的值最小,这个点 P 称为△ ABC的费尔马点。 海伦( Heron)公式: 塞瓦( Ceva)定理: 在△ ABC中,过△ ABC的顶点作相交于一点P 的直线,分别 交边 BC、CA、AB与点 D、E、F,则(BD/DC)·(CE/EA) ·(AF/FB) =1;其逆亦真。密格尔( Miquel )点:

若 AE、 AF、ED、 FB四条直线相交于 A、B、C、 D、E、F 六点, 构成四个三角形,它们是△ABF、△ AED、△ BCE、△ DCF, 则这四个三角形的外接圆共点,这个点称为密格尔点。 葛尔刚( Gergonne)点 : △ABC的内切圆分别切边AB、BC、CA于点D、E、F, 则 AE、 BF、 CD三线共点,这个点称为葛尔刚点。 西摩松( Simson)线: 已知 P 为△ ABC外接圆周上任意一点, PD⊥BC,PE⊥ACPF⊥AB,D、E、F为垂足, 则 D、E、F 三点共线,这条直线叫做西摩松线。 黄金分割: 把一条线段 (AB) 分成两条线段,使其中较大的线段 (AC)是原线段(AB) 与较小线段 (BC)的比例中项,这样的分割称为黄金分割。 帕普斯( Pappus)定理: 已知点 A 、A 、A 在直线 l 1上,已知点 B 、B 、B 在直线 l 2 上, 123123 且 A1 B2与 A2 B 1交于点 X,A1B3与 A3B1交于点 Y,A2 B 3于 A3 B2交于 点 Z,则 X、Y、Z 三点共线。

初等数论中的几个重要定理高中数学竞赛

初等数论中的几个重要定理 基础知识 定义(欧拉(Euler)函数)一组数称为是模的既约剩余系,如果对任意的,且对于任意的,若=1,则有且仅有一个是对模 的剩余,即。并定义中和互质的数的个数, 称为欧拉(Euler)函数。 这是数论中的非常重要的一个函数,显然,而对于,就是1,2,…,中与互素的数的个数,比如说是素数,则有。 引理:;可用容斥定理来证(证明略)。 定理1:(欧拉(Euler)定理)设=1,则。 分析与解答:要证,我们得设法找出个相乘,由个数我们想到中与互质的的个数:,由于=1,从而 也是与互质的个数,且两两余数不一样,故 (),而()=1,故。 证明:取模的一个既约剩余系,考虑,由于与互质,故仍与互质,且有,于是对每个都能找到唯一的一个,使得,这种对应关系 是一一的,从而,。

,,故。证毕。 这是数论证明题中常用的一种方法,使用一组剩余系,然后乘一个数组组成另外一组剩余系来解决问题。 定理2:(费尔马(Fermat)小定理)对于质数及任意整数有。 设为质数,若是的倍数,则。若不是的倍数,则 由引理及欧拉定理得,,由此即得。 定理推论:设为质数,是与互质的任一整数,则。 定理3:(威尔逊(Wilson)定理)设为质数,则。 分析与解答:受欧拉定理的影响,我们也找个数,然后来对应乘法。 证明:对于,在中,必然有一个数除以余1,这是因为则好是的一个剩余系去0。 从而对,使得; 若,,则,,故对于,有。即对于不同的对应于不同的,即中数可两两配对,其积除以余1,然后有,使,即与它自己配对,这时,,或,或。 除外,别的数可两两配对,积除以余1。故。

定义:设为整系数多项式(),我们把含有的一组同余式 ()称为同余方组程。特别地,,当均为的一次整系数多项式时,该同余方程组称为一次同余方程组.若整数同时满足: ,则剩余类(其中)称为同余方程组的一个解,写作 定理4:(中国剩余定理)设是两两互素的正整数,那么对于任意整数,一次同余方程组,必有解,且解可以写为: 这里,,以及满足,(即为对模的逆)。 中国定理的作用在于它能断言所说的同余式组当模两两互素时一定有解,而对于解的形式并不重要。 定理5:(拉格郎日定理)设是质数,是非负整数,多项式 是一个模为次的整系数多项式(即),则同余方程至多有个解(在模有意义的情况下)。 定理6:若为对模的阶,为某一正整数,满足,则必为的倍数。 以上介绍的只是一些系统的知识、方法,经常在解决数论问题中起着突破难点的作用。另外还有一些小的技巧则是在解决、思考问题中起着排除情况、辅助分析等作用,有时也会起到

中学数学竞赛中常用的几个重要定理资料

中学数学竞赛中常用的几个重要定理

数学竞赛中几个重要定理 1、 梅涅劳斯定理:如果在△ABC 的三边BC 、CA 、AB 或其延长线上有点D 、E 、F 且D 、E 、F 三点共线,则FB AF EA CE DC BD ? ?=1 2、 梅涅劳斯定理的逆定理:如果在△ABC 的三边BC 、CA 、AB 或其延长线上有点 D 、 E 、 F ,且满足FB AF EA CE DC BD ? ?=1,则D 、E 、F 三点共线. 【例1】已知△ABC 的重心为G ,M 是BC 边的中点,过G 作BC 边的平行线AB 边于X ,交AC 边于Y ,且XC 与GB 交于点Q ,YB 与GC 交于 点P. 证明:△MPQ ∽△ABC j M Q G A C B X Y P

【例2】以△ABC的底边BC为直径作半圆,分别与边AB,AC交于点D和E,分别过点D,E作BC的垂线,垂足依次为F,G,线段DG和EF交于点M.求证:AM⊥BC 【例3】四边形ABCD内接于圆,其边AB,DC的延长线交于点P,AD和BC的延长线交于点Q,过Q作该圆的两条切线,切点分别为E,F.求证:P,E,F三点共线.

【练习1】设凸四边形ABCD的对角线AC和BD交于点M,过M作AD的平行线分 别交AB,CD于点E,F,交BC的延长线于点 O,P是以O为圆心,以OM为半径的圆上一点. 求证:∠OPF=∠OEP 【练习2】在△ABC中,∠A=900,点D在AC上,点E在BD 上,AE的延长线交BC于F. 若BE:ED=2AC:DC,则∠ADB=∠FDC D

塞瓦定理:设O 是△ABC 内任意一点,AO 、BO 、CO 分别交对边于N 、P 、M ,则 1=??PA CP NC BN MB AM 塞瓦定理的逆定理: 设M 、N 、P 分别在△ABC 的边AB 、BC 、CA 上,且满足 1=??PA CP NC BN MB AM ,则AN 、BP 、CM 相交于一点.

初二(下)数学竞赛辅导班讲义(勾股定理)

初二(下)数学竞赛辅导班讲义(勾股定理) 班级________学号____姓名________ 一、选择题: 1.如图,已知图中的小方格都是边长为1的正方形,那么四边形ABCD 的面积是( ) A .25 B .12.5 C .9 D .8.5 2.如图,AB ⊥CD 于B ,△ABD 和△BCE 都是等腰直角三角形,如果CD =17,BE =5,那么AC 的长为( ) A .12 B .7 C .5 D .13 3.如图,有一块直角三角形纸片,两直角边AC =6cm ,BC =8cm ,现将直角边AC 沿直线AD 折叠,使它落在斜边 AB 上,且与AE 重合,则CD 等于( ) A .2cm B .3cm C .4cm D .5cm 4.如图,△ABC 中,∠B =90°,AB =7,BC =24,三角形内有一点P 到各边的距离相等,则这个距离是( ) A .1 B .3 C .4 D .5 二、填空题: 5.直角三角形的三边长为连续偶数,则其周长为__________. 6.在△ABC 中,∠C =90°,斜边AB 的垂直平分线交BC 于D ,垂足是E .如果BC =32cm ,AE =20cm ,则AC 的 长度为__________cm ,DE 的长度为__________cm . 7.如图,直线l 上依次摆放着七个正方形,且斜放置的三个正方形的面积分别为1,2,3,其余四个正放置的正方 形的面积分别为S 1,S 2,S 3,S 4,则S 1+S 2+S 3+S 4=_________. 8.将一副三角板按照图①摆放,则A 1和A 2的面积之比为A 1:A 2=__________;若将这幅三角板按照图②摆放,则S 1和S 2的面积之比为S 1:S 2=__________. 9.在△ABC 中,AB =15,AC =13,BC 边上的高AD =12,那么△ABC 的周长为_________. 10.已知:每一个正方形的边长都为为1. ⑴ 如图①,可以计算出正方形的对角线长为2,则如图②中两个并排成的矩形的对角线的长为__________,那么n 个时的矩形的对角线的长为__________; ⑵ 若把③,④两图拼成如下“L ”形,过C 作直线交DE 于A ,交DF 于B .若DB =5 3,则DA 的长度为__________. E A B C D (第2题图) D C B A (第1题图) A C B E D (第3题图) C (第4题图) 图① 图② 图③ 图④ 图⑤ (第10题图) B A D C F 1 2 3 l S 3 S 2 S 1 S 4 (第7题) A 1 A 2 (第8题图①) S 2 S 1 (第8题图②)

高中数学竞赛平面几何中的几个重要定理

平面几何中几个重要定理及其证明 一、塞瓦定理 1.塞瓦定理及其证明 定理:在?ABC 内一点P ,该点与?ABC 的三个顶点相连所在的三条直线分别交?ABC 三边 AB 、BC 、CA 于点D 、E 、F ,且D 、E 、 F 三点均不是?ABC 的顶点,则有 1AD BE CF DB EC FA ??=. 证明:运用面积比可得ADC ADP BDP BDC S S AD DB S S ????==. 根据等比定理有 ADC ADC ADP APC ADP BDP BDC BDC BDP BPC S S S S S S S S S S ??????????-===-, 所以APC BPC S AD DB S ??=.同理可得APB APC S BE EC S ??=,BPC APB S CF FA S ??=. 三式相乘得1AD BE CF DB EC FA ??=. 注:在运用三角形的面积比时,要把握住两个三角形是“等高”还是“等底”,这样就可以产生出“边之比”. 2.塞瓦定理的逆定理及其证明 定理:在?ABC 三边AB 、BC 、CA 上各有一点D 、E 、 A B C D F P

F ,且D 、E 、F 均不是?ABC 的顶点,若1AD BE CF DB EC FA ??=,那么直线CD 、AE 、BF 三线共点. 证明:设直线AE 与直线BF 交 于点P ,直线CP 交AB 于点D /,则 据塞瓦定理有 //1AD BE CF D B EC FA ??=. 因为 1AD BE CF DB EC FA ??=,所以有//AD AD DB D B =.由于点D 、D /都在线段AB 上,所以点D 与D /重合.即得D 、E 、F 三点共线. 注:利用唯一性,采用同一法,用上塞瓦定理使命题顺利获证. 二、梅涅劳斯定理 3.梅涅劳斯定理及其证明 定理:一条直线与?ABC 的三 边AB 、BC 、CA 所在直线分别交 于点D 、E 、F ,且D 、E 、F 均不 是?ABC 的顶点,则有 1AD BE CF DB EC FA ??=. A B C D F P D / A B C D E F G

初中数学竞赛——勾股定理及其应用

初中数学竞赛勾股定理与应用 勾股定理直角三角形两直角边a,b的平方和等于斜边c的平方,即a2+b2=c2. 勾股定理逆定理如果三角形三边长a,b,c有下面关系: a2+b2=c2 那么这个三角形是直角三角形. 早在3000年前,我国已有“勾广三,股修四,径阳五”的说法.关于勾股定理,有很多证法,在我国它们都是用拼图形面积方法来证明的.下面的证法1是欧几里得证法. 证法1 如图2-16所示.在Rt△ABC的外侧,以各边为边长分别作正方形ABDE,BCHK,ACFG,它们的面积分别是c2,a2,b2.下面证明,大正方形的面积等于两个小正方形的面积之和.过C引CM∥BD,交AB于L,连接BG,CE.因为 AB=AE,AC=AG,∠CAE=∠BAG, 所以△ACE≌△AGB(SAS).而 所以 S AEML=b2.① 同理可证 S BLMD=a2.② ①+②得 S ABDE=S AEML+S BLMD=b2+a2, 即 c2=a2+b2. 证法2 如图2-17所示.将Rt△ABC的两条直角边CA,CB分别延长到D,F,使AD=a,BF=b.完成正方形CDEF(它的边长为a+b),又在DE上截取DG=b,在EF上截取EH=b,连接AG,GH,HB.由作图易知 △ADG≌△GEH≌△HFB≌△ABC, 所以 AG=GH=HB=AB=c, ∠BAG=∠AGH=∠GHB=∠HBA=90°, 因此,AGHB为边长是c的正方形.显然,正方形CDEF的面积等于正方形AGHB的面积与四个全等的直角三角形(△ABC,△ADG,△GEH,△HFB)的面积和,即 化简得 a2+b2=c2. 证法3 如图2-18.在直角三角形ABC的斜边AB上向外作正方形ABDE,延长CB,自E作EG⊥CB延长线于G,自D作DK⊥CB 延长线于K,又作AF, DH分别垂直EG于F,H.由作图不难证明,下述各直角三角形均与Rt△ABC全等: △AFE≌△EHD≌△BKD≌△ACB. 设五边形ACKDE的面积为S,一方面 S=S ABDE+2S△ABC,① 另一方面 S=S ACGF+S HGKD+2S△ABC.② 由①,② 所以 c2=a2+b2. 关于勾股定理,在我国古代还有很多类似上述拼图求积的证明方法,我们将在习题中展示其中一小部分,它们都以中国古代数学家的名字命名. 利用勾股定理,在一般三角形中,可以得到一个更一般的结论. 定理在三角形中,锐角(或钝角)所对的边的平方等于另外两边的平方和,减去(或加上)这两边中的一边与另一边在这边(或其延长线)上的射影的乘积的2倍.

初中数学公式定理比赛

九年级基础知识竞赛 班级 姓名 学号 1. 小数是无理数 2.2a = a m .a n = (a m ) n = a 0 = a p -= 3. 一个单项式中,所有字母的指数的 叫做这个单项式的次数。 4.因式分解的常用方法(1)提公因式法:ab-bc = (2)运用公式法: a 2 - b 2 = a 2-2ab+b 2 = 5、分式的分子和分母都乘以(或除以)同一个 的整式,分式的值不变。 分式的分子、分母与分式本身的符号,改变其中任何 个,分式的值不变。 6.一元二次方程)0(02≠=++a c bx ax 的求根公式:x= 7.一元二次方程)0(02≠=++a c bx ax 中根的判别式,通常用“?”来表示,即?= 8. 如果方程)0(02≠=++a c bx ax 的两个实数根是21x x ,,那么x 1+x 2= x 1x 2= 9.、不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向 、不等式两边 都乘以(或除以)同一个正数,不等号的方向 、不等式两边都乘以(或除以)同一个负 数,不等号的方向 。 10.在一组数据,,,,21n x x x 这组数据的方差。通常用“2s ”表示,即2s = 11.点P(x,y)到x 轴的距离等于 ,点P(x,y)到y 轴的距离等于 ,点P(x,y)到原点的距离 等于 12.一般地,如果y= ,那么y 叫做x 的一次函数。y= ,y 叫做x 的正 比例函数。一次函数的图像都是 .一次函数有下列性质:(1)当k>0时,y 随x 的增 大而 (2)当k<0时,y 随x 的增大而 13、反比例函数中反比例系数的几何意义,过反比例函数)0(≠=k x k y 图像上任一点P 作x 轴、y 轴的垂线PM ,PN ,则所得的矩形PMON 的面积S= 。 14二次函数的解析式有三种形式:(1)一般式:y= (2)顶点式:y= (3)交点式:y= 15如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值),即 当x= 时y= 。 16一元二次方程中的ac 4b 2-=?,在二次函数中表示图像与x 轴是否有交点。当?>0时, 图像与x 轴有 交点;当?=0时,图像与x 轴有 交点;当?<0时,图像与x 轴 交点。 17、线段垂直平分线上的点和这条线段 相等。和一条线段 相 等的点,在这条线段的垂直平分线上。 18.角平分线上的点到这个角的 相等。到一个角的 相等的点在这个角 的平分线上。 19过一点 一条直线与已知直线垂直. 直线外一点与直线上各点连接的所有线段中, 最短。

全国初中数学竞赛辅导(初2)第11讲 勾股定理与应用

第十一讲勾股定理与应用 在课内我们学过了勾股定理及它的逆定理. 勾股定理直角三角形两直角边a,b的平方和等于斜边c的平方,即 a2+b2=c2. 勾股定理逆定理如果三角形三边长a,b,c有下面关系: a2+b2=c2 那么这个三角形是直角三角形. 早在3000年前,我国已有“勾广三,股修四,径阳五”的说法. 关于勾股定理,有很多证法,在我国它们都是用拼图形面积方法来证明的.下面的证法1是欧几里得证法. 证法1 如图2-16所示.在Rt△ABC的外侧,以各边为边长分别作正方形ABDE,BCHK,ACFG,它们的面积分别是c2,a2,b2.下面证明,大正方形的面积等于两个小正方形的面积之和. 过C引CM∥BD,交AB于L,连接BG,CE.因为 AB=AE,AC=AG,∠CAE=∠BAG, 所以△ACE≌△AGB(SAS).而 所以 S AEML=b2.①

同理可证 S BLMD=a2.② ①+②得 S ABDE=S AEML+S BLMD=b2+a2, 即 c2=a2+b2. 证法2 如图2-17所示.将Rt△ABC的两条直角边CA,CB分别延长到D,F,使AD=a,BF=b.完成正方形CDEF(它的边长为a+b),又在DE上截取DG=b,在EF上截取EH=b,连接AG,GH,HB.由作图易知 △ADG≌△GEH≌△HFB≌△ABC, 所以 AG=GH=HB=AB=c, ∠BAG=∠AGH=∠GHB=∠HBA=90°, 因此,AGHB为边长是c的正方形.显然,正方形CDEF的面积等于正方形AGHB的面积与四个全等的直角三角形(△ABC,△ADG,△GEH,△HFB)的面积和,即 化简得 a2+b2=c2.

竞赛常用定理--数学

几何篇 梅涅劳斯定理:当直线交三角形ABC三边所在直线BC、AC、A于点D、E、F时,(AF/FB)×(BD/DC)×(CE/EA)=1 以及逆定理:在三角形ABC三边所在直线上有三点D、E、F ,且(AF/FB)×(BD/DC)×(CE/EA)=1 ,那么D、E、F三点共线。 角元形式梅捏劳斯定理: (sin∠BAD/sin∠DAC)×(sin∠ACF/sin∠FCB)×(sin∠CBE/sin∠EBA)=1 塞瓦定理:指在△ABC内任取一点O,直线AO、BO、CO分别交对边于D、E、F,则(BD/DC)×(CE/EA)×(AF/FB)=1。 角元塞瓦定理:AD,BE,CF交于一点的充分必要条件是: (sin∠BAD/sin∠DAC)*(sin∠ACF/sin∠FCB)*(sin∠CBE/sin∠EBA)=1 逆定理:在△ABC的边BC,CA,AB上分别取点D,E,F, 如果(AF/FB)(BD/DC)(CE/EA)=1那么直线AD,BE,CF相交于同一点。”

正弦定理:在△ABC中,角A、B、C所对的边长分别为a、b、c,三角形外接圆的半径为R。则有: a/sinA=b/sinB=c/sinC=2R 余弦定理: ,在△ABC中,余弦定理可表示为: c2=a2+b2-2ab cosC a2=b2+c2-2bc cosA b2=a2+c2-2ac cosB 托勒密定理:指圆内接凸四边形两对对边乘积的和等 于两条对角线的乘积。 三弦定理:由圆上一点引出三条弦,中间一弦与最大角 正弦的积等于其余每条弦与不相邻角正弦的积之和。用图表述;圆上一点A,引出三条弦AB(左)、AC(右)、及中间弦AD,BC与AD交于P,根据《三弦定理》,有以下关系, ABsin∠CAP +ACsin∠BAP= ADsin∠BAC。 西姆松定理:过三角形外接圆上异于三角形顶点的 任意一点作三边的垂线,则三垂足共线。(此线常称为西 姆松线) 斯特瓦尔特定理设已知△ABC及其底边上B、C两 点间的一点D,则有 AB2·DC+AC2·BD-AD2·BC=BC·DC·BD。

初二数学竞赛辅导资料 勾股定理

初二数学竞赛辅导资料勾股定理 内容提要 1.勾股定理及逆定理:△ABC中∠C=Rt∠a2+b2=c2 2.勾股定理及逆定理的应用 1 作已知线段a的,,……倍 2 计算图形的长度,面积,并用计算方法解几何题 3 证明线段的平方关系等. 3.勾股数的定义:如果三个正整数a,b,c满足等式a2+b2=c2,那么这三个正整数a,b,c 叫做一组勾股数. 4.勾股数的推算公式 4 罗士琳法则(罗士琳是我国清代的数学家1789――1853) 任取两个正整数m和n(m>n,那么m2-n2,2mn,m2+n2是一组勾股数. 5 如果k是大于1的奇数,那么k,,是一组勾股数. 6 如果k是大于2的偶数,那么k,,是一组勾股数. 7 如果a,b,c是勾股数,那么na,nb,nc (n是正整数也是勾股数. 5.熟悉勾股数可提高计算速度,顺利地判定直角三角形.简单的勾股数有:3,4,5;5,12,13;7,24,25;8,15,17;9,40,41. 例题

例1.已知线段a a a 2a 3a a 求作线段 a a 分析一:a==2a ∴a是以2a和a为两条直角边的直角三角形的斜边. 分析二:a= ∴a是以3a为斜边,以2a为直角边的直角三角形的另一条直角边.作图(略) 例2.四边形ABCD中∠DAB=60,∠B=∠D=Rt∠,BC=1,CD=2 求对角线AC的长 解:延长BC和AD相交于E,则∠E=30 ∴CE=2CD=4, 在Rt△ABE中 设AB为x,则AE=2x 根据勾股定理x2+52=(2x2, x2=

在Rt△ABC中,AC===例3.已知△ABC中,AB=AC,∠B=2∠A 求证:AB2-BC2=AB×BC 证明:作∠B的平分线交AC于D, 则∠A=∠ABD, ∠BDC=2∠A=∠C ∴AD=BD=BC 作BM⊥AC于M,则CM=DM AB2-BC2=(BM2+AM2)-(BM2+CM2) =AM2-CM2=(AM+CM)(AM-CM) =AC×AD=AB×BC 例4.如图已知△ABC中,AD⊥BC,AB+CD=AC+BD 求证:AB=AC 证明:设AB,AC,BD,CD分别为b,c,m,n 则c+n=b+m, c-b=m-n ∵AD⊥BC,根据勾股定理,得 AD2=c2-m2=b2-n2 ∴c2-b2=m2-n2, (c+b(c-b=(m+n(m-n

相关文档
相关文档 最新文档