文档库 最新最全的文档下载
当前位置:文档库 › 壳聚糖在医学上的应用研究进展1

壳聚糖在医学上的应用研究进展1

壳聚糖在医学上的应用研究进展1
壳聚糖在医学上的应用研究进展1

壳聚糖在医学上的应用研究进展

温利华

(广东海洋大学理学院,湛江 524088)

摘要壳聚糖来源丰富,制备简单,具有生物活性,且无毒,无抗原性,近年来由于其在生物技术、医药、生物医学工程等众多领域具有极大的潜在应用价值和广阔的发展前景而引起人们的重视。

关键词壳聚糖;医学;应用

一前沿

壳聚糖(chitosan)是甲壳类动物(如虾、蟹)、昆虫和其它无脊椎动物外壳中的甲壳质(chitin)经脱乙酰化制得的一种天然高分子多糖体,医学界将其誉为继糖、蛋白质、脂肪、维生素、矿物质(无机盐)之后人体必需的第六生命要素[1]。在医学领域,壳聚糖是一种新型生物材料,具有良好的组织相容性和生物可降解性,无毒性,无有害降解物,可调节免疫功能,促进组织修复,抑制纤维细胞增长,防止组织粘连,调节胆固醇代谢,而且具有止血和抑菌作用[2]。

由于壳聚糖具有很好的生物相容性,而且无毒,易生物降解,使其在医药、食品、日用化妆品、环保、农业等领域具有广泛的应用前景。本文就壳聚糖在医学上应用的研究进展进行综述。

二壳聚糖在医学上的应用

1 降血脂

壳聚糖能有效阻止消化系统吸收胆固醇和甘油三酯,防止胆固醇及脂肪酸在体内蓄积,促进这些物质从体内排出。用添加2%~5%壳聚糖的高脂肪混合饲料饲

喂雄鼠,20 d后,胆固醇明显降低25%~30%,避免了脂肪肝的发生,且不影响雄鼠对食物的摄取和生长[3]。顾云等[4]从门诊病人中筛选31例高脂血症患者进行了口服壳聚糖的试验,服用前停用降脂药及活血化瘀类药物2周,服用壳聚糖2 g/d,连续服1个月。服用壳聚糖后血清脂质比较显示,胆固醇(TC)下降(P<0.001),甘油三酯(TG)下降(P<0.05),低密度脂蛋白胆固醇(LDL)下降(P<0.05),高密度脂蛋白胆固醇(HDL)等无明显变化。

壳聚糖之所以能降脂和降胆固醇,可能是由于壳聚糖在胃的酸性环境下溶解,到了肠内碱性环境,形成溶胶,与脂肪、胆固醇结合包裹,从而妨碍了小肠对它们的吸收,随着粪便一道排出体外,同时阻断了肝肠胆酸的循环,起到了降脂和降胆固醇作用[3];也有人认为,壳聚糖是一种弱的阴离子交换树脂,在肠内能与胆酸、胆固醇结合使其不能吸收,随着粪便一起排出体外而起到降脂、降胆固醇作用。维生素C对壳聚糖抑制脂肪消化吸收起着协同作用,在胃的酸性环境下,维生素C能使壳聚糖黏度降低,便于壳聚糖与脂肪物质更充分地混合,在小肠的碱性环境下,维生素C能促进壳聚糖凝胶的形成,增强结合脂肪的能力以及降低胆固醇的活性,使脂肪和胆固醇不易被小肠吸收而排出体外。所以在服用壳聚糖的同时加服维生素C,对降脂将起协同作用。

2 抗肿瘤

抗肿瘤作用是目前壳聚糖研究的一个热点,报道很多。对于壳聚糖抗肿瘤的机理,一种说法是肿瘤细胞表面比正常细胞表面的负电荷要多得多,从而聚阴离子电解质能吸附到肿瘤细胞的表面而使电荷中和,抑制肿瘤细胞的生长和转移。另一说法是癌细胞周围为酸性,壳聚糖分子结构中的氨基可适当调节体内的pH值,并通过这种调节作用改变机体处于病态时的生物化学平衡,加强淋巴细胞的生理

活性,从而对癌细胞的繁殖产生抑制[3]。

壳聚糖具有直接抑制肿瘤细胞的作用[5],在含有1×105个癌细胞的溶液中,加入0.5 mg/ml壳聚糖溶液,24 h癌细胞全部死亡。王中和等[6]用平均为甲壳六糖的壳聚糖水解产物制备的口服液对癌症患者进行了临床观察:60例经病理确诊的癌症患者,按原发部位、病理类型和临床分期随机分为联合组和对照组。两组均采用60Co外放射治疗,放射剂量为55~70 Gy,分次量1.9 Gy,1周照射5次。联合组加服壳聚糖口服液,3次/d,每次10 ml,连服3~4周为1个疗程,放疗结束后不再服用。放疗结束后,患者精力、体力联合组显著好于对照组;两组食欲无显著差异;肿瘤消退联合组完全消失27例,肿瘤缩小50%以上的3例;对照组完全消失25例,肿瘤缩小50%以上的5例。1~3个月后,联合组肿瘤缩小50%以上的3例中有1例完全消失,2例仍带癌生存,对照组肿瘤缩小的50%以上的5例中,有3例完全消失,2例仍带癌生存;联合组白细胞总数和淋巴细胞数保持稳定,对照组则显著下降;外周血T细胞亚群放疗后联合组比值均有显著上升,而对照组持续低下;治疗前后自然杀伤细胞(NK)联合组保持稳定,而对照组有非常显著下降;治疗前后白细胞介素-2受体(IL-2R)的变化,联合组有显著差异,治疗后趋于正常;对照组无显著差异,继续异常。

从上述体外实验、临床观察可见,壳聚糖能有效提高机体的抗肿瘤免疫功能,减少肿瘤复发和转移,延长患者的生存期,用于肿瘤的辅助治疗具有良好前景。

3防治脂肪肝

脂肪肝的形成机理一般认为是肝脏脂肪的摄入、合成与排出、氧化分解之间的不平衡造成的。蒋莉和戚晓红等[7]通过建立大鼠脂肪肝模型,观察了壳聚糖对脂肪肝的防治作用。研究结果表明,壳聚糖正好可以调节这种平衡,使一部分脂肪在

壳聚糖的应用研究进展(综述性论文)

绿色原料——壳聚糖的应用研究进展 09化学1班 XXX 指导老师:沈友教授 (惠州学院化学工程系,广东,惠州,516007) 摘要:本文综述了绿色原料壳聚糖的应用研究进展,着重介绍了壳聚糖在食品,水处理,生物药用,造纸业等方面的应用。 关键词:壳聚糖应用食品水处理 前言 原料在化学品的合成中非常重要,其可以成为影响一个化学品的制造、加工与使用的最大因素之一。如果一个化学品的原料对环境有负面的影响,则该化学品也很可能对环境具有净的负面影响。要实现绿色化学,在选择原料时应尽量使用对人体和环境无害的材料,避免使用枯竭或稀有的材料,尽量采用回收再生的原材料,采用易于提取、可循环利用的原材料,使用环境可降解的原材料。 自然界的有机物,数量最大的是纤维素,其次是蛋白质,排在第三位的是甲壳素,估计每年生物合成甲壳素100 亿t。甲壳素N-脱乙酰基的产物壳聚糖就是一种重要的绿色原料。 壳聚糖化学名称为聚葡萄糖胺(1-4)-2-氨基-B-D葡萄糖,壳聚糖的外观为白色或淡黄色半透明状固体, 略有珍珠光泽, 可溶于大多数稀酸如盐酸、醋酸、苯甲酸等溶液, 且溶于酸后,分子中氨基可与质子相结合, 而使自身带正电荷。自1859年,法国人Rouget首先得到壳聚糖后,这种天然高分子的生物官能性和相容性、血液相容性、安全性、微生物降解性等优良性能被各行各业广泛关注,在医药、食品、化工、化妆品、水处理、金属提取及回收、生化和生物医学工程等诸多领域的应用研究取得了重大进展。壳聚糖无毒无害,具有良好的保湿性、润湿性,能防止静电; 化学稳定性良好, 但吸湿性较强, 遇水易分解。对壳聚糖进行化学改性, 得到的壳聚糖衍生物在许多物化性质方面都得到改善,其应用也更加受到关注。本文着重介绍了壳聚糖在食品,医药,水处理方面的应用进展。

医用壳聚糖凝胶

术亿宁 医用几丁糖凝胶使用说明书 成份:本品内含的几丁糖,用生理平衡液配制而成。 作用机理:医用几丁糖是由蟹壳提纯的高分子化合物几丁质(),经脱乙酰基再深加工后制成的一种聚氨基葡萄糖,是一种具有良好生物相容性、生物可降解性及生物学活性的医用高分子多糖类物质。其防止术后组织粘连的机理有:()医用几丁糖具有选择性促进上皮细胞、内皮细胞生长而抑制成纤维细胞生长的生物学特性,从而促进组织生理性修复,抑制疤痕形成,减少组织粘连。()医用几丁糖具有局部止血作用及抑制血纤维蛋白束形成,从而减少了因血肿机化而造成的组织粘连。()医用几丁糖凝胶有润滑作用及生物屏障作用,能有效地阻止粘连发生。针对腹部手术肠腔内表面大,而且易发生粘连的浆膜粗糙面不易被发现等因素,为了使整个肠管、脏器表面都能均匀涂布上医用几丁糖凝胶,就必须增加使用剂量,从而能达到更为理想的防粘连效果。 适用范围:普通外科、妇产科等腹、盆腔手术,可预防术后肠粘连和盆腔粘连。 物理性状:本品为无色、透明粘稠状胶体。 用法:在关腹前将本品均匀涂布于腹、盆腔肠管、脏器表面和壁层腹膜,然后关腹。注意事项:.本品为无菌制品,应严格无菌操作。 .本品仅适用于局部使用,不得静脉注射。 .包装破损禁止使用。 .用于预防组织粘连,必须在充分止血条件下使用,否则会将低使用效果。禁忌症:目前未有明确禁忌。 副作用:本品为高度纯化、无毒、无致敏的天然聚糖,但医生应有使用任何天然生物材料具有潜在过敏性危险的意识。目前尚未发现其它不良反应。 规格:支,支, 支, 支 贮存:避光,~℃冷藏,不能冰冻。 有效期:两年。 生产企业许可证编号:冀食药监械生产许号 产品注册号:国食药监械(准)字第号 产品标准编号:国-《医用几丁糖凝胶》 生产批号:见产品标签或外包装盒。 生产企业名称:石家庄亿生堂医用品有限公司 注册、生产地址:石家庄市新石北路号号楼 售后服务单位:石家庄亿生堂医用品有限公司 邮编:服务电话:- 1 / 1

壳聚糖特性及其应用

壳聚糖特性及其应用 作者简介:孔佳琦,女,本科,西北民族大学化工学院,专业:制药工程。 力芬,女,本科,西北民族大学化工学院,专业:环境工程。 摘要:壳聚糖是自然界中储量丰富天然高分子化合物,壳聚糖及其衍生物具有各种优良的性质,本文主要介绍了壳聚糖的特性以及其在不同方面的应用情况,为壳聚糖的研究发展提供依据和思路。 关键词:壳聚糖;特性;应用 壳聚糖(chitosan)又称脱乙酰甲壳素,是由自然界广泛存在的几丁质(chitin)经过脱乙酰作用得到的,化学名称为聚葡萄糖胺(1-4)-2-氨基-B-D葡萄糖。纯甲壳素和纯壳聚糖都是一种白色或灰白色透明的片状或粉状固体,无味、无臭、无毒性,纯壳聚糖略带珍珠光泽。在特定的条件下,壳聚糖能发生水解、烷基化、酰基化、羧甲基化、磺化、硝化、卤化、氧化、还原、缩合和络合等化学反应,可生成各种具有不同性能的壳聚糖衍生物,从而扩大了壳聚糖的应用围。本文就壳聚糖的特性和应用进行阐述,为其研究和发展提供依据和思路。

1.特性 1.1抗菌性。壳聚糖是唯一一种天然的弱碱性多糖在弱酸溶剂中易于溶解,溶解后的溶液中含有氨基(NH2+),这些氨基通过结合负电子来抑制细菌。壳聚糖的抗菌性会随着其浓度的增加而增强。壳聚糖对大肠杆菌、金黄色葡萄球菌等有较强的抑制作用。 1.2吸附性。壳聚糖具有很强的吸附功能,特别是对重金属离子的吸附如对铜、汞、铅等离子的吸收。壳聚糖的吸附活性可以有选择地发挥作用。当然还可以吸附胆固醇、甘油三酯、胆酸、油脂[1]等。 1.3保湿性。壳聚糖衍生物分子中有许多活泼的亲水极性基团如-OH、-COOH及-NH2,这些基团可以使其显示出保湿性。对于羧基化壳聚糖,其羟基的含量远大于其他衍生物,且羧基的亲水性所以能够结合更多的水分。因此羧基化壳聚糖的吸湿、保湿性也就明显高于其他类型的壳聚糖衍生物。 1.4成膜性。壳聚糖是线性高分子聚合物,理化性能稳定,可生物降解,粘合性好,成纤成膜性能优良。吴国杰[2]等人研究了壳聚糖膜的制备方法和性能,探讨了壳聚糖溶液成膜的最佳工艺条件。 1.5调节作用。壳聚糖可激活体具有免疫功能的淋巴细胞,使其能分辨正常细胞和癌细胞,并杀死癌细胞。还能调

壳聚糖在国内外食品中的发展现状及其应用前景

壳聚糖在国内外食品中的发展现状及其应 用前景 摘要: 壳聚糖是一种可被生物体降解而对人体无毒的物质,不仅在食品领域有广泛的应用,在饲料行业、医药行业、以及环境保护等许多领域都有广泛的应用。本文主要概述了壳聚糖在国内外食品中的发展现状,并介绍了壳聚糖的性质、在食品中的应用及其化学改性,阐明了壳聚糖在食品开发方面的广阔前景。 关键词:壳聚糖,添加剂,改性,复合纳米粒子 Chitosan in the development situation of food at home and abroad and its application prospects Ma Zhengran Class 0804, School of Food of Science and Technology, Jiangnan University; 010******* Abstract: Chitosan is a biodegradable and non-toxic substances on the human body. It's not only widely use d in food industry, but also in feed industry, pharmaceutical industry, environmental protection a nd many other areas. This article is mainly about chitosan in the development situation of food at home and abroad,and describes the nature of chitosan, the application in food industry and che mical modification of chitosan and set out the broad development prospects of chitosan. Key words:chitosan; additives; modification; composite nanoparticles 引言 壳聚糖是自然界中唯一带正电荷、阳离子的膳食纤维,被称为挽救人类健康的神奇“电粉”。作为天然的可再生资源,壳聚糖具有广谱抗菌性、吸附性、成膜性、保湿性、生物可降解性、生物可相容性、无毒性以及极好的螯合能力,且能加速伤口愈合。大量应用实例证明,壳聚糖对人体的各项生理功能具有良好的调节作用,并显示出许多生命特征,如改善代谢内分泌功能,调节免疫功能;改善消化机能,降低胆固醇;调节人体酸碱平衡吸附,排除体内有害重金属;活化细胞,增强人体生命活力,延缓衰老等。近年来,随着食品工业的不断发展,国内外研究人员对壳聚糖的关注和重视也不断加强。本文主要论述壳聚糖在国内外食品工业中的各种研究应用及其发展前景。 1、壳聚糖的简介 甲壳素是一种带正电的碱性多糖,广泛存在于虾、蟹、昆虫的甲壳,以及真菌(酵母、霉菌)的细胞壁和植物(如蘑菇)的细胞壁中,是自然界中仅次于纤维素的第二大天然高分子化合物,是存在于自然界中唯一能够被生物降解的阳离子高分子材料。甲壳素经浓碱处理,脱去分子中的乙酰基后,转化为可溶性的脱乙酰甲壳素,又称壳聚糖(Chitosan),学名:几丁聚糖。其化学结构是由大部分氨基葡萄糖和少量的N一乙酰基葡萄糖通过β一1,4糖苷键连接起来的直链多糖。 分子式为:(C6H11NO4)n 结构: 2、壳聚糖在食品中的应用 2.1 抗菌剂

固定化酶的研究进展

固定化酶的研究进展 固定化酶是20世纪60年代发展起来的一项新技术。最初主要是将水溶性酶与不溶性体结合起来,成为不溶于水的酶衍生物,所以曾叫过“水不溶酶”和“固相酶”。但是,后来发现,也可以将酶包埋在凝胶内或置于超滤装置中,高分子底物与酶在超滤膜一边,而反应产物可以透过膜逸出。在这种情况下,酶本身仍是可溶的,只不过被固定在一个有限的空间内不能再自由流动。因此,用水不溶酶或固相酶的名称就不再恰当。在1971年第一届国际酶工程会议上,正式建议采用“固定化酶”的名称[1]。 一固定化酶的发展历程[1] 酶参与体内各种代谢反应,而且反应后其数量和性质不发生变换。作为一种生物催化剂,酶可以在常温常压等温和条件下高效地催化反应,一些难以进行的化学反应在酶的催化作用下也可顺利地进行反应,而且反应底物专一性强、副反应少等优点大大促进了人们对酶的应用和酶技术的研究。近年来,酶被人们广泛应用于食品生产与检测、生物传感器、医药工程、环保技术、生物技术等领域。 1916年美国科学家NELSON和GRIFFIN最先发现了酶的固定化现象;直到20世纪50年代,酶固定化技术的研究才真正有效地开展;1953年,德国科学家GRUB-HOFER 和SCHLEITH首先将聚氨基苯乙烯树脂重氮化,然后将淀粉酶、胃蛋白酶、羧肽酶和核糖核酸酶等与上述载体结合制备固定化酶;到20世纪60年代,固定化技术迅速发展;1969年日本千畑一郎利用固定化氨基酰胺酶从DL-氨基酸生产L-氨基酸,是世界上固定化酶大规模应用的首例;在1971年的第一届国际酶工程会议上,正式建议使用固定化酶(mimobilizedenzyme)这个名称。我国的固定化酶研究开始于1970年,首先是中国科学院微生物所和上海生化所的酶学工作者同时开始了固定化酶的研究工作 二固定化酶的特点[2] [3] 固定化酶具有许多优点:极易将固定化酶与底物、产物分开;可以在较长时间内进行分批反应和装柱连续反应;在大多数情况下,可以提高酶的稳定性;酶反应过程能够加以严格控制;产物溶液中没有酶的残留,简化了提取工艺;较水溶性酶更适合于多酶反应;可以增加产物的收率,提高产物的质量;酶的使用效率提高,成本降低。但是,固定化酶也有其不足之处,如固定化时,酶活力有损失;增加了固定化的成本,工厂开始投资大;只能用于水溶性底物,而且较适用于小分子。 三固定化酶固定化方法[3] [4] 由于所固定的酶或细胞的不同,或者固定的目的及固定用的载体的不同,使固定化方法大相径庭。根据固定的一般机理,可将之分为如下几种方法。酶的固定化方法有:

壳聚糖的制备方法及研究进展

龙源期刊网 https://www.wendangku.net/doc/cf16305909.html, 壳聚糖的制备方法及研究进展 作者:张立英 来源:《山东工业技术》2018年第02期 摘要:壳聚糖作为一种碱性多糖被广泛应用于食品、生物、化工、医疗等领域。本文重点介绍了壳聚糖的制备方法及其研究进展,并对其发展趋势进行了展望。 关键词:壳聚糖;碱性多糖;制备方法 DOI:10.16640/https://www.wendangku.net/doc/cf16305909.html,ki.37-1222/t.2018.02.016 壳聚糖本身的分子结构类似于纤维素,因其多了一个带正电荷的胺基,使其化学性质较为活泼。目前壳聚糖正因其优良的生理活性在食品、化妆品、医药、化工、污水处理等方面展现出广阔的应用前景,近十年来国内外对于壳聚糖的开发研究热度一直持续不减,各种新颖的制备方法也是层出不穷。 1壳聚糖的来源 壳聚糖通常是由甲壳素(又名几丁质)经脱乙酰基作用获得,甲壳素在自然界中广泛存在于高等真菌以及节肢动物(虾、蟹、昆虫等)的外壳中,其中虾壳、蟹壳是工业生产壳聚糖的主要原料。由于大分子间的氢键作用,天然存在的甲壳素构造坚固,化学性质稳定,不溶于水、酸碱和一般的有机溶剂,这也使得甲壳素的应用范围非常有限,因此甲壳素只有经脱乙酰基处理成壳聚糖才能获得广泛应用。 2壳聚糖的制备方法 (1)化学降解法。传统的壳聚糖生产多采用化学降解法。作为壳聚糖工业生产最常用的制备方法,化学降解法简便易行,效率高,整个生产过程容易控制,但该法环境污染较为严重,对周边环境具有一定的破坏性。欧阳涟等从蟹壳中获取甲壳素,并通过脱乙酰反应制备出了壳聚糖。试验探究了影响产物壳聚糖脱乙酰反应的各种因素,如反应温度、碱液含量及反应时间等,最终确定制备高脱乙酰度壳聚糖的条件为反应温度70℃,碱液质量分数47%,反应时间10 h。 (2)微生物培养法。微生物发酵法生产壳聚糖起源于美国,我国从上世纪90年代开始研究。其主要原理是利用微生物自身生产的酶进行催化,从而脱去甲壳素中的乙酰基,进而制备壳聚糖。目前该领域研究重点主要集中在优良菌株的选育和培养基的优化上。 贺淹才等首先采用电解法从培养的黑曲霉湿菌体中制得甲壳素,然后采用碱提取法从培养的黑曲霉湿菌体中制备壳聚糖。试验基于黑曲霉细胞壁的主要成分为蛋白质与甲壳素,而蛋白质带有可电离的基团,于溶液中可形成带电荷的阳离子和阴离子,在外加电场作用下发生迁

壳聚糖改性与在水处理方面的应用

《文献检索与科技论文写作》作业 壳聚糖的改性在水处理中的应用进展 年级: 学院: 专业:高分子材料 学生: 学号: 指导教师: 提纲

0 引言 壳聚糖是性能优异、应用广泛且具有开发价值的天然高分子絮凝剂。虽然在应用中有一些不足,但可以通过物理或化学改性来提高其性能,拓展其应用围。本文主要介绍壳聚糖改性后在水处理中的应用进展。 1 壳聚糖的改性在饮用水处理中的应用 从对氟离子的吸附及对浊度的降低介绍改性壳聚糖的应用效果; 2 壳聚糖的改性在工业废水中的应用 2.1 印染废水 从对偶氮染料的吸附及对阳离子染料的吸附介绍改性壳聚糖的应用; 2.2 重金属离子 2+、Th4+的吸附及对Cr(VI)的吸附,主要从对铜离子、对镍离子的吸附;对UO 2 来介绍改性壳聚糖的应用; 2.3 造纸废水 主要介绍接枝改性壳聚糖和壳聚糖微球对造纸废水的处理效果; 3 壳聚糖的改性在城市污水和海水中的应用 主要介绍改性壳聚糖对SS、浊度、BOD5及COD等的处理效果; 4 结语与展望 介绍目前的改性研究情况及未来研究的方向。 5 参考文献

壳聚糖的改性在水处理中的应用进展 --------大学材料科学与工程学院14级高分子材料专业马舒颜摘要:本文阐述了壳聚糖絮凝剂改性后在水处理方面的应用进展,着重说明其在重金属离子处理、印染废水处理中的应用。壳聚糖絮凝剂在水处理中应用极广,环境友好,从可持续发展角度来看有着巨大的发展潜力和研究意义。 关键词:壳聚糖的改性絮凝水处理 0 引言 水是人类生存最基本的需求,传统的水处理剂会在水中有残留,对人体健康及环境造成危害。因此,兼具环境友好、可再生、来源广泛的绿色水处理剂备受关注。而壳聚糖就是性能最为优异的的天然高分子材料之一。 壳聚糖是由自然界广泛存在的甲壳素经过脱乙酰作用得到的,又称脱乙酰甲壳素,一般而言,甲壳素的N-乙酰基脱去55%以上就可称为壳聚糖,其分子式为 (C 6H 11 NO 4 )N。壳聚糖结构中含有大量活泼的氨基和羟基,在酸性溶液中能形成阳离 子型聚电解质,有良好的絮凝作用;且可通过表面侵蚀、酶降解、溶解等多种降解方式进行可控性降解,无毒副作用;同时还具有很好的生物相容性、吸附性、吸湿性、成膜性、抵抗免疫反应性和抗菌性等,广泛应用于造纸、纺织、制革、工业废水处理;在医药、食品保健品等领域也发挥着巨大的作用。因此,壳聚糖是一种用途广泛且富开发价值的天然高分子絮凝剂。 然而,壳聚糖在实际应用中还存在一些不足,譬如:化学性质不活泼、溶解性较差、分子量相对较低等,在一定程度上限制了它的使用围。但因其结构中含有羟基、乙酰基和氨基等官能团,故可以利用烷基化、酯化、接枝、交联等改性方法来改善壳聚糖的性质,提高其性能,从而拓展应用围,得到更大的利用空间。 1 壳聚糖的改性在饮用水处理中的应用 饮用水的处理,目的是将水处理为对人体有生物安全性和化学安全性的水,同时水的浊度、色度、硬度、气味等给人的感受要好[1]。壳聚糖因其天然、无毒、安全性,在饮用水处理中显示了其独特的优越性。壳聚糖特有的分子结构,可有效去除水中的悬浮物、有机物、颜色和气味,可降低水中COD含量并减少水中毒副物质的产生;此外,壳聚糖可以有效吸附去除饮用水中重金属及其藻类物质;还可以去除无机絮凝剂处理后残留的铝离子,且能一定程度上抑制水中微生物的繁殖和生长,从而具有一定的杀菌作用[2]。 我国是世界上地方性氟中毒较严重的国家之一。氟离子是人体不可或缺的微

壳聚糖的应用及发展

壳聚糖的应用及发展 单位:贵阳中医学院姓名:代奎学号;s20085311019 摘要:高分子缓控释材料因其原材料来源广泛药剂应用能力强受环境影响因素多而成为调节药物释放载体材料的研究重点,极具发展前景分类祥述了壳聚糖的性质,生物活性,抗菌性,衍生物以及它们的性能特点和应用,并简明介绍了壳聚糖的研究价值与动向。 关键词:壳聚糖;降解;抗菌性;缓释材料;衍生物 壳聚糖(chitosan)又名β-1,4聚葡萄糖胺,是迄今为止发现的唯一天然碱性多糖,具有良好成膜性、安全性、生物降解性,在化工、食品、农业等领域有着广泛的用途。壳聚糖是一种新型的天然医用生物材料虾蟹类作为壳聚糖的原料,在我国具有分布量大,资源丰富的特点,从环保经济可持续发展的角度来考虑,1)壳聚糖作为一种天然的材料不仅无毒无污染,而且还具有很好的生物降解性和相容性因此非常有必要加大对壳聚糖的研究,以开发更多的产品本文综述了壳聚糖的结构性质制备体内降解过程及其在生物医用材料的应用等方面。 一、壳聚糖的生物活性 壳聚糖是一种天然无毒可生物降解的化合物,与机体之间有良好的生物相容性主要壳聚糖的研究进展物活性有:(1)壳聚糖属天然高分子化合物,其分子链上的游离氨基在弱酸溶中结合一个质子,生成阳离子聚合体,有很强的吸附能力,是一种良好的絮凝剂(2)带有正电荷的壳聚糖与带有负电荷的粘多糖蛋白多糖等相互发生静电作用,这一特性是相当有意义的,因为大量的细胞浆和生长因子的移动都和粘多糖有关,特别是对于肝磷脂和类肝素硫酸盐,包含有壳聚糖和粘多糖的支架借助于细胞繁殖可以维持和促进生长因子分泌(3)壳聚糖可以做成不同的几何结构,例如容易形成多孔结构,多孔支架可用于体内细胞生长和骨重建(4)壳聚糖具有抗菌性,研究表明它可以减缓实验白兔金葡萄球菌引起的骨髓炎感染壳聚糖在细菌细胞膜表面可以抑制生物合成,破坏穿过细菌细胞膜的能量传输,加快细菌的死亡此外,壳聚糖还可作为药物释放载体,如与羟基磷灰石等复合能够持续释放万古霉素和磷霉素,在骨科感染疗程中发挥作用2) 二、壳聚糖的抗菌性 壳聚糖具有广泛抗菌性, 对几十种细菌和霉菌生长都有明显的抑制作用。大分子壳聚糖通过正负电荷的相互作用吸附在细胞表面, 破坏细胞壁原有结构,造成细胞代谢混乱,从而起到抑菌杀菌的作用。小分子壳聚糖通过渗透进入细胞内, 与带有阴离子的生物大分子发生絮凝!的作用,扰乱细胞的正常生物功能, 改变核酸代谢,阻断DNA的生物合成,从而抑制细菌的繁殖。此外,甲壳素能诱导微生物产生甲壳素酶, 促使细胞分解, 从而抑制细胞生长。 三、壳聚糖及其衍生物的应用 1、促进凝血和伤口愈合 壳聚糖是一种新型天然高分子材料,生物兼容性好且可降解吸收, 有促进创 面愈合的作用。壳聚糖具有很强的可塑性, 可形成多种不同形式的止血材料。壳聚糖还具有抗菌、促进伤口愈合、防止腹膜粘连等一系列作用, 可用于伤口填料物质,具有灭菌、促进伤口愈合、吸收伤口渗出物、不易脱水收缩等作用。 2、作为药物的缓释基质 壳聚糖能被生物体内的溶菌酶降解生成天然的代谢物,具有无毒、能被生物体完全吸收的特点, 因此用它作药物缓释剂具有较大的优越性。国际上已有以壳聚糖作

壳聚糖降解研究进展

技术进展 Technology Progre ss 壳聚糖降解研究进展 李 治 刘晓非 杨冬芝 管云林 姚康德 (天津大学材料科学与工程学院,天津,300072) 提 要 壳聚糖已被广泛应用于化工、环保、医药等众多领域,将壳聚糖降解到需要的分子量是其应用的前提。 本文介绍并评述了化学降解、物理降解和生物降解等壳聚糖降解方法的研究进展。 关键词 壳聚糖,降解,分子量,低聚物 壳聚糖是甲壳素的脱乙酰化产物,在自然界中的储量非常丰富,广泛存在于虾、蟹和昆虫的外壳及藻类、菌类的细胞壁之中,是年产量仅次于纤维素的第二大天然高分子,也是迄今为止发现的唯一天然碱性多糖。壳聚糖是分子链由β2(104)222乙酰胺基2 D2葡糖单元和β2(104)222氨基2D2葡糖单元组成的共聚物,以分子量和脱乙酰化度来表征。 近年来随着研究的深入,壳聚糖在化工、 环 图1 壳聚糖 保、食品、印染、纺织、生物医药等方面展现出广 泛而独特的应用价值:可用作微量金属离子提取 剂、纸张添加剂、胶卷增感剂、废水处理中的高效 絮凝剂、化妆品中的保湿剂、食品添加剂和保藏剂 以及印染固色剂[1~4];可用于制造催化功能膜和各 种形式的能量转换膜,可提高巨噬细胞的吞噬功 能,抑制肿瘤生长[5~7];是肠道有益细菌双歧杆菌 的增殖因子,能降低胆固醇和血脂[8];可用于制造 药物可控释放膜、可吸收的手术缝合线以及人工透 析膜等等[9~11]。 但是,一般由甲壳素脱乙酰化制得的壳聚糖分 子量很大,并且有紧密的晶体结构,不溶于普通溶 剂,只能在某些酸性介质中溶解,这使壳聚糖的应 用受到极大限制;另外,研究表明分子量对壳聚糖 的性质有很大影响,不同分子量的壳聚糖性质差异 很大,有时甚至表现出截然相反的特性[12,13],而 壳聚糖的许多独特功能只有在分子量降低到一定程 度时才表现出来。因此,选择适当的方法对壳聚糖 进行降解就显得尤为重要。目前,国内外学者提出 的降解方法主要有化学降解、物理降解和生物降解 三大类。 1 化学降解 111 用N a N O2降解 将壳聚糖溶解于质量分数为10%乙酸溶液中, 在搅拌下缓慢滴入一定量的NaNO2溶液,于4℃下 静置一段时间,使—NH2发生重氮化反应,脱去一 分子N2,引起分子内重排使大分子链断裂,再用 NaBH4还原端基,完成降解反应[13]。反应过程如 图2所示。 这是传统的化学降解方法,降解产物的分子量 可以通过改变NaNO2的加入量和反应时间来控制, 国内常用此法降解壳聚糖并提取产物中的单糖组 分。该法的主要缺陷在于:(1)产品的分子量分布 太宽,均一性差;(2)降解过程中破坏了氨基,理 论上加入1摩尔NaNO2就要消耗1摩尔氨基,而壳 聚糖良好的生物相容性主要由氨基提供[14],同时 分子链上存在足够数量的氨基也是壳聚糖进行进一 步改性的重要前提,氨基数量的减少将会使壳聚糖 的应用受到限制;(3)生产的三废污染严重。 国家自然科学基金资助项目,N o.59773002。

《医用壳聚糖原料检验方法及指标要求》

《医用壳聚糖原料检验方法及指标要求》 团体标准征求意见稿编制说明 一、任务来源 本项目来源于广东省质量检验协会团体标准制修订计划,项目计划编号:GDAQI2019009号,项目名称为“医用壳聚糖原料检验方法及指标要求”。本项目计划完成时间为2019年12月。 二、编制背景、目的和意义 壳聚糖具有广谱抗菌性、生物相容性、生物可降解性、无毒性、无免疫原性等性能,在医用材料、口腔医学及中药制剂领域均具有良好的应用前景。目前国内高品质壳聚糖(灰分和蛋白质含量均应控制在小于1%)蛋白质含量检测技术并不成熟,有必要建立一种医用壳聚糖原料检验方法及要求标准,规定相关检验方法及指标。 三、编制思路和原则 (一)编制思路 本标准主要依据中华人民共和国药典(2015年版)等国内相关国家、行业标准内容进行编制,并对国内外同类产品的关键性能指标值进行了对比分析研究,结合行业实际情况,最终制定出该标准的内容和相关指标值。 主要依据: 中华人民共和国药典(2015年版)

GB/T 191 包装储运图示标志 GB/T 16886.5 医疗器械生物学评价第5部分:体外细胞毒性试验 GB/T 16886.10 医疗器械生物学评价第10部分:刺激与迟发型超敏反应试验 GB/T 16886.12 医疗器械生物学评价第12部分:样品制备与参照样品 YY/T 0771.1 动物源医疗器械第1部分:风险管理应用 YY/T 0771.1 动物源医疗器械第2部分:来源、收集与处置控制 YBB 00132002 药用复合膜、袋通则 (二)编制原则 本标准制定遵循以下原则: 1、基础性原则 本标准的主要内容来源于相关技术规范,基础性强,覆盖面广,具有较强的操作性。 2、协调性原则 本标准符合国家的政策,贯彻国家的法律法规,与检验检测的相关标准协调一致、衔接配套。 3、合理性原则 本标准从全局出发,综合考虑行业的实际情况,合理可行,便于实施。 4、规范性原则 本标准按照GB/T 1.1-2009《标准化工作导则第1部分:标准的结构和编写》规定的格式进行编写。

改性壳聚糖的研究进展

改性壳聚糖的研究进展 1壳聚糖的理化性质 壳聚糖(chitosan,(1,4)-2-氨基-2-脱氧-β-D-葡聚糖)是甲壳素(chitin,(1,4)-2-乙酰氨基-2-脱氧-β-D-葡聚糖)部分脱乙酰化的产物。甲壳素广泛存在于蟹、虾以及藻类、真菌等低等动植物中,含量极其丰富,自然界每年产量约在100亿吨,是仅次于纤维素的第二大多糖。它是由葡萄糖结构单元组成的直链多糖,此多糖中含有数千个乙酰己糖胺残基,因此在分子间形成很强的氢键,导致其不溶于水和普通有机溶剂,这就大大限制了其应用范围。 将甲壳素在碱性条件下加热,脱去N-乙酰基后可生成壳聚糖。人们常将N-脱乙酰度和粘度(平均相对分子质量)作为衡量壳聚糖性能的两项指标。N-脱乙酰度是判定壳聚糖溶解性的依据,脱乙酰度越高,分子链上的游离氨基就越多,在酸中的溶解性就越好;而壳聚糖相对分子质量越大,分子之间的缠绕程度就越大,溶解度就越小。壳聚糖是自然界中唯一的一种碱性多糖,它一般是白色无定型、半透明、略有珍珠光泽的固体。壳聚糖可溶于大多数稀酸,如盐酸、醋酸、苯甲酸溶液,且溶于酸后分子中氨基可与质子结合,使自身带上正电荷。甲壳素及壳聚糖的结构式如图1所示:

图1壳寡糖与壳聚糖的结构式 甲壳素和壳聚糖在自然界可以被各种微生物降解。微生物中的甲壳素酶(chitinase)可以随机地水解甲壳素的N-乙酰-β-(1-4)糖苷键。而壳聚糖可以被多种酶水解,包括壳聚糖酶(chitosanase)、麦芽糖酶、脂肪酶、以及各种来源的蛋白酶。在人体内甲壳素酶和壳聚糖酶并非普遍存在,通过测定显示N-乙酰壳聚糖在人血清中可以被人体内普遍存在的溶菌酶(lysozyme)降解。 壳聚糖的主链结构中引入了2-氨基,化学性质区别于3,6-羟基,与甲壳素相比增加了反应选择性的功能基团。由于C6-OH是一级羟基,C3-OH是二级羟基,空间位阻不同反应活性也不同,再加上C2-NH2,壳聚糖就具有三个活性不同的可供修饰的基团。根据不同的需要,被修饰的壳聚糖作为一种功能大分子广泛用于各种领域。由于壳聚糖只在酸性水溶液中溶解,而在中性或碱性水溶液中以及多数有机溶剂中不溶,限制了它的应用范围,因此科学家们采用衍生化的方法对壳聚糖进行改性获得了多种水溶性和可溶解于某些有机溶剂的衍生物,大大扩展了壳聚糖的应用范围。其中包括对壳聚糖进行N-,O-酰化,含氧无机酸酯化,醚化,N-烷基化,C6-OH和C3-OH的氧化,以及鳌合、交联等,在此过程中获得了许多性能良好,甚至是

浅谈壳聚糖的发展概况

浅谈壳聚糖的发展概况 关键词:壳聚糖;壳聚糖制备;壳聚糖应用 引语:本文介绍了壳聚糖的性质、制备以及着重介绍了壳聚糖在水处理、分析化学、纺织工业、膜材料、液晶材料、医学材料方面的应用。 1壳聚糖 壳聚糖(chitosan)又称脱乙酰甲壳素,是由自然界广泛存在的几丁质(chitin)经过脱乙酰作用得到的,化学名称为聚葡萄糖胺(1-4)-2-氨基-B-D葡萄糖。自1859年,法国人Rouget首先得到壳聚糖后,这种天然高分子的生物官能性和相容性、血液相容性、安全性、微生物降解性等优良性能被各行各业广泛关注,在医药、食品、化工、化妆品、水处理、金属提取及回收、生化和生物医学工程等诸多领域的应用研究取得了重大进展。针对患者,壳聚糖降血脂、降血糖的作用已有研究报告。同时,壳聚糖被作为增稠剂、被膜剂列入国家食品添加剂使用标准GB-2760。[1] 1.1物理属性 纯甲壳素和纯壳聚糖都是一种白色或灰白色半透明的片状或粉状固体,无味、无臭、无毒性,纯壳聚糖略带珍珠光泽。生物体中甲壳素的相对分子质量为1×106~2×106,经提取后甲壳素的相对分子质量约为3×105~7×105,由甲壳素制取壳聚糖相对分子质量则更低,约2×105~5×105。在制造过程中甲壳素与壳聚糖相对分子质量的大小,一般用粘度高低的数值来表示。商品壳聚糖视其用途不同有三种不同的粘度,即高粘度产品为0.7~1Pa·s、中粘度产品为0.25~0.65Pa·s、低粘度产品<0.25Pa·s。制造纤维产品必须采用高粘度的甲壳素或壳聚糖。[2] 1.2化学性质 化学名:β-(1→4)-2-氨基-2-脱氧-D- 葡萄糖 分子式:(C6H11NO4)N

医用壳聚糖创面修护膜治疗效果观察

医用壳聚糖创面修护膜治疗效果观察 发表时间:2016-09-07T11:50:51.333Z 来源:《医药前沿》2016年9月第25期作者:罗伶俐 [导读] 随着时代的进步,现代科技的崛起,交通以及建筑业的快速发展,皮肤创伤越来越多见。 罗伶俐 (广西壮族自治区人民医院广西南宁 530022) 【摘要】目的:观察医用壳聚糖创面修护膜治疗效果。方法:将100例皮肤创伤患者随机分为实验组和对照组,先对这100例患者进行彻底的清创,然后给予实验组患者采用医用壳聚糖,给予对照组患者采用常规抗炎处理方法,比较两组患者创面的修复效果。结果:对照组患者的总体平均愈合时间(8.4±0.8)天要明显长于实验组的总体愈合时间(6.2±1.1)天,其差异有统计学意义(P<0.05),对照组患者的炎症反应发生率(12%)明显高于实验组患者(0),其差异有统计学意义(P<0.05)。结论:对于轻度创伤创面的修复,医用壳聚糖创面修护膜可以明显的减少愈合时间及创面的炎症反应,预防疤痕的形成,值得推广。 【关键词】医用壳聚糖;创面修复;疗效 【中图分类号】R751 【文献标识码】A 【文章编号】2095-1752(2016)25-0081-02 随着时代的进步,现代科技的崛起,交通以及建筑业的快速发展,皮肤创伤越来越多见,对于皮肤创伤后的组织修复就成为了在临床上一个重要的课题。对于轻度的仅限于皮肤表皮层的创伤,我们可以通过一些抗炎和促进创面愈合的药物进性治疗,临床上较常用的是苏肤医用壳聚糖创面修复膜,为了进一步了解苏肤医用壳聚糖修复膜临床创面修复效果,特进行此次试验,试验结果报告如下。 1.资料与方法 1.1 一般资料 将在我院2014年8月~2015年6月的100例皮肤创伤患者随机分为实验组和对照组,分别为50例,其中试验组患者男29例,女21例,年龄在16~56岁,平均年龄(34.8±3.4)岁,有皮肤擦伤患者15例,皮肤烧伤患者18例,皮肤烫伤患者17例;对照组患者男32例,女18例,年龄在20~54岁,平均年龄(36.2±2.7)岁,有皮肤擦伤患者18例,皮肤烧伤患者20例.皮肤烫伤患者12例。两组患者性别、年龄、及创伤原因的差异不具有统计学意义(P>0.05),有可比性。 1.2 方法 先对患者进行彻底清创处理:0.9%生理盐水冲洗创面后,清除创面上的异物及坏死组织,至能够看到新鲜的组织。然后给予实验组患者使用苏肤医用壳聚糖创面修复膜(厂家:武汉大正高科生物医药有限公司,批准文号:鄂食药监械(准)字2014第2641959号)喷雾型;给予对照组患者采用常规抗炎处理。 1.3 观察指标 观察两组患者皮肤创面的愈合时间以及炎症反应的发生率。 1.4 统计学分析 对收集到的数据根据SSPS 18.0软件进行统计学分析,对年龄、愈合时间等计量资料用(x-±s)表示,采用t检验,性别、创伤原因例数及炎症反应发生率等计数资料采用卡方检验。P<0.05为差异具有统计学意义。 2.结果 2.1 两组患者愈合时间对比: 实验组患者中皮肤擦伤患者的愈合时间为3~5天,平均愈合时间为4.2天,皮肤烧伤患者的愈合时间为4~8天,平均愈合时间为6.1天.皮肤烫伤患者的愈合时间为6~9天,平均愈合时间为7.8天,总体平均愈合时间为(6.2±1.1)天;对照组患者中皮肤擦伤患者的愈合时间为5~7天,平均愈合时间为6.5天,皮肤烧伤患者的愈合时间为6~12天,平均愈合时间为9.6天.皮肤烫伤患者的愈合时间为8~11天,平均愈合时间为9.4天,总体平均愈合时间为(8.4±0.8)天,对照组患者的总体平均愈合时间要明显长于实验组的总体愈合时间,其差异有统计学意义(P<0.05)。 2.2 两组患者创面的局部炎症反应发生率对比: 实验组患者在治疗过程中没有出现红肿等局部的炎症反应,其局部炎症反应发生率为0,对照组患者有6例出现了红肿的炎症反应,其余无炎症反应的发生,其炎症反应发生率为12%。对照组患者的炎症反应发生率明显高于实验组患者,其差异有统计学意义(P<0.05)。 3.讨论 医用壳聚糖创面修复膜是一种以壳聚糖为主要材料,并且配以适量的聚乙烯醇(PVA)、明胶、甘油、纯化水制成的,其中壳聚糖质量浓度≥1.0%,这种喷雾型的产品是由喷雾器及溶液组成的,溶液具有无菌性,在喷涂15分钟内即可形成膜。对于创面有覆盖隔离、抑菌保护创面的作用,并且能够促进创面的愈合,缩短创面愈合时间,防止疤痕的形成[1]。壳聚糖又称为脱乙酰甲壳素,化学名称为聚葡萄糖胺(1-4)-2-氨基-B-D葡萄糖,这种自然界唯一带正电荷的天然高分子物质,具有良好的相容性、安全性高,可以提高患者的免疫力、抗菌能力,加速机体组织修复,抑制瘢痕形成[2]。在上述实验中,我们可以看到:对照组患者的总体平均愈合时间(8.4±0.8)天要明显长于实验组的总体愈合时间(6.2±1.1)天,对照组患者的炎症反应发生率(12%)明显高于实验组患者(0)。说明医用壳聚糖创面修复膜适用于很多的创伤,包括:烧伤、烫伤、擦伤等,并且比常规抗炎处理方法具有更好的疗效,可以在创面有效止血,缩短渗血、渗液时间,从而减少愈合时间,愈合后瘢痕不明显,并可以尽早进行抗疤除疤治疗;同时具有抑菌的作用,可以降低创面炎症反应的发生率,减少抗生素的使用时间,并且在给患者应用上较为便利,并且在使用过程中不会给患者造成不适感。在总之,对于轻度创伤患者,采用医用壳聚糖创面修复膜,能够明显的减少愈合时间及创面的炎症反应,预防疤痕的形成,值得推广。 【参考文献】 [1]袁丹波.壳聚糖抗菌生物医用膜在烧伤创面中的临床应用[J].微生物学免疫学进展.2012.40(1):35-37. [2]鲜华,尤婷婷,谭杜勋,赵子雷,郑永达.壳聚糖创面修复膜凝胶门诊治疗Ⅱ度烧伤的临床疗效研究[J].重庆医学.2014.43(36): 4959-4961.

甲壳素和壳聚糖的性质及应用

附件1:外文资料翻译译文 甲壳素和壳聚糖的性质及应用 摘要甲壳素主要存在于海洋中的甲壳类,虾和蟹中,是世界上第二种最重要的天然聚合物。甲壳素在碱性的固态中,利用选定好的应用方法进行表征和化学改性来评鉴多糖是比较难的。P.Austin,S.Tokura和S.Hirano,他们在甲壳素应用方面贡献很突出,尤其是在纤维形态方面。壳聚糖是甲壳素最重要的衍生物,下面我们对壳聚糖在表征方法和使用中遇到的主要问题进行概括。壳聚糖可溶于酸性的水溶液中,应用于许多领域(食品,化妆品,生物医学和药学)。我们简要的描述一下,在某些领域壳聚糖的化学改性已经被初步提出,但在工业方面却尚未开发。近几年的论文都着重评论了高附加值的材料在医药和化妆品上的应用。 关键词甲壳素结构壳聚糖结构壳聚糖衍生物生物材料壳聚糖基材料化妆品 1 引言 甲壳素,其化学名称(β-(1-4)-N-乙酰基-D-氨基葡萄糖),是一种重要的天然多糖,其在1884年首次被发现(图1)。这种聚合物是由大量的活性有机体合成,并且在世界上每年的产量都很大的,它的产量仅次于纤维素。甲壳素在自然界中存在于节肢动物的外壳中或真菌和酵母的细胞壁中,并以有序的微纤维晶体形式出现。它也存在一些低等的植物界和动物界中,同时许多功能上还需要强化。

图1 (a)甲壳素的化学结构,化学式是N-乙酰-β-D-氨基葡萄糖,(b)是壳聚糖,化学式是D-氨基葡萄糖,(c)是部分乙酰化的壳聚糖,其特征是在于,它的DA共聚物的平均乙酰化程度。 尽管甲壳素的存在范围广泛,但到目前为止甲壳素最主要的商业来源是虾和蟹的外壳。在工业加工方面,甲壳素是从甲壳类动物中提取出来的,经酸处理溶解于碳酸钙中,再经碱萃取溶解,从而得到蛋白质。此外,脱色工序往往是去除残留的颜料,而得到无色的产品。由于原料的超微结构存在差异,所以,这些处理方式必须适合于每种甲壳素的来源。(甲壳素的提取和预处理不在这篇论文的描述)。对于进一步利用时,所产生的剩余的蛋白质和剩余的色素,可能会导致问题,因此人们在纯度和颜色方面对甲壳素进行分级,特别是生物医药产品。在应用方面甲壳素在碱性条件下脱乙酰基,获得壳聚糖,它是最重要的甲壳素衍生物。 这篇论文的目的是介绍在当今技术的水平上认识甲壳素和壳聚糖的形态,并且提出在溶液或固态中表征的最佳方法。过去十年的发展以及甲壳素的扩大利用,在化学改性方法上给予研究。 2 甲壳素 2.1 甲壳素在固态中的结构 根据甲壳素的来源,甲壳素以两种结晶多型异构体的形式出现,即α形式和β形式[1,2],它们可以通过红外光谱、固相核磁共振光谱和X射线衍射加以区分。经过详细的分析,人们也发现第三种异构体γ-甲壳素[1,3],它只是α-甲壳素的另一种形式[4]。α-甲壳素是最为丰富,它存在于真菌和酵母菌的细胞壁中、磷虾,龙虾和螃蟹肌腱和壳中、虾壳中、以及昆虫的表皮中。它也分布或存在于各种海洋生物中。在这方面,例如圆锥形钉螺[5]、脊椎前部的耳石[6~8]、海藻喷射出的丝状物[9]等。自从证明了α-甲壳素的特殊结构,与具有丰富甲壳素的节肢动物相比,其中一些结构呈现出非常高的结晶度连有较高的纯度[10]。除了天然的甲壳素以外,α-甲壳素的体系由溶液中析出的晶体[11~12]、体外生物合成[13~14]或酶促聚合[15]这三个方面形成的。 β-甲壳素较罕见,其分布在乌贼的顶骨内[1,3]和管状虫的交联蛋白质中,通过蠕虫蠕动而合成[16~17]。它也存在于北美豹蝶的刚毛中[18]以及在海藻或原生动物的兜

壳聚糖抗菌剂研究进展

Bioprocess 生物过程, 2017, 7(4), 41-48 Published Online December 2017 in Hans. https://www.wendangku.net/doc/cf16305909.html,/journal/bp https://https://www.wendangku.net/doc/cf16305909.html,/10.12677/bp.2017.74006 Research Progress on Chitosan Antimicrobial Maotao Wu SunRui Marine Environment Engineering Co., ltd, Qingdao Shandong Received: Nov. 20th, 2017; accepted: Dec. 1st, 2017; published: Dec. 7th, 2017 Abstract Chitosan is a nature macromolecule. With the investigation, its applications are broad. The article summarizes the research and application of chitosan as an antimicrobial, the mechanism and the infective factors, and the development foreground of the chitosan antimicrobial is prospected. Keywords Chitosan, Antimicrobial, Mechanism, Prospect 壳聚糖抗菌剂研究进展 吴茂涛 青岛双瑞海洋环境工程股份有限公司,山东青岛 收稿日期:2017年11月20日;录用日期:2017年12月1日;发布日期:2017年12月7日 摘要 壳聚糖是一种天然的高分子,随着研究的深入发展,应用范围越来越广泛。本文概述了壳聚糖在抗菌剂领域的研究应用情况,归纳总结了其抗菌机理及其影响因素,同时展望了壳聚糖抗菌剂的发展前景。 关键词 壳聚糖,抗菌剂,机理,展望

甲壳素, 壳聚糖开发和研究进展

甲壳素, 壳聚糖开发和研究进展 摘要 作为一种资源丰富, 用途广泛的天然高分子化合物, 甲壳素?壳聚糖的开发研究和应用范围越来越受到重视, 本文对该领域开发和研究进展进行简要评述。 关键词甲壳素; 壳聚糖 甲壳素(Chitin) 又名甲壳质、几丁质、壳多糖、聚乙酰氨基葡萄糖等[ 1 ] , 是1, 4—连接 的2—乙酰基—2—脱氧—B—D —葡萄糖, 广泛存在于昆虫、甲壳纲动物外壳及真菌细胞壁中[ 2 ] , 是自然界中仅次于纤维素的多糖。在甲壳素分子中, 因其内外氢键的相互作用, 形成了有序的大分子结构, 溶解性能很差, 这限制了它在很多方面的应用。就目前的研究情况, 除了少量用作医用敷料外, 在其它方面的应用很少, 而甲壳素经脱乙酰化处理的产物—壳聚糖(Chitosan) , 却由于其分子结构中大量游离氨的存在, 溶解性能大大改观, 具有一些独特的物化性质及生理功能, 在医药、食品、化妆品、农业及环保诸方面具有广阔的应用前景。本文将介绍甲壳素?壳聚糖产品的开发研究进展情况。 1 甲壳素?壳聚糖产品的开发研究概况 自80 年代以来, 在全球范围内形成了甲壳素?壳聚糖的开发研究热潮, 各国都加大了对甲 壳素?壳聚糖的开发研究力度, 其中又以日本走在各国的前列。日本政府曾投资60 亿日元委托数十家高校及科研机构历时10 余年进行甲壳素?壳聚糖产品的开发研究, 取得了大量的科研成果, 并将部分成果实现了产业化, 仅以壳聚糖为主要原料的保健品就有20 个左右的品种上市。 我国早在50 年代就对甲壳素的制备及其应用进行了研究。1958 年起, 国内首先将乙酰化甲壳素应用于印染工业, 从1977 年起, 每隔几年召开一次关于甲壳素及壳聚糖的国际会议, 极大的促进了这方面的研究。进入90 年代, 中国对于甲壳素?壳聚糖资源的开发研究也越来越重视, 如在甲壳素?壳聚糖的酶法降解方面、壳聚糖的溶液性质、壳聚糖净化用作药用絮凝剂、壳聚糖降解制备低聚壳聚糖及更低分子量的水溶性壳聚糖等方面进行研究, 现又将研究领域扩展到甲壳素?壳聚糖在化妆品、医药敷料等方面的应用研究, 尤其是壳聚糖的高分子微包囊药物释放体系, 成为新一轮研究的热点。

相关文档