文档库 最新最全的文档下载
当前位置:文档库 › NEX CG型X射线荧光分析仪简介

NEX CG型X射线荧光分析仪简介

NEX CG型X射线荧光分析仪简介
NEX CG型X射线荧光分析仪简介

能量色散型X射线荧光分析仪Energy Dispersive X-ray Fluorescence Spectrometer

?高灵敏度元素分析

?分析范围从钠(Na)至铀(U)元素

?样品类型:固态、液态、粉末和稀薄样品

EDXRF for high sensitivity elemental analysis of

Na to U in solids, liquids, powders and thin films

偏振式能量色散型X射线荧光分析仪简介

能量色散X射线荧光(EDXRF)分析的特点

l检测样品完全无损

l元素分析从钠(Na)至铀(U)

l适用于固态、液态、粉末及稀薄样品

l偏振式激发使检出限(LOD)更低

l无需标准样品即可进行半定量分析

l使用RPF-SQX软件减少对标样需求

l独特的光谱重叠处理方法使误差降低

l EZ分析程序用户界面简单

EDXRF技术适用于广泛的元素分析应用

能量色散X射线荧光(EDXRF)是一种常规的分析技术,广泛用于各种样品类型中主要元素及微量元素的半定量和精确定量分析。其广泛的适用性源于:快速、准确、无损的多元素分析;元素分析范围涵盖从钠(Na)至铀(U);含量分析范围从低的PPM级到高的百分含量(wt%)。

日本理学NEX CG功能多样,可以实现各种类型样品的常规分析。从均匀、低粘性的液态样品,到固态、金属、泥浆、粉末和胶状样品。特别适用于对成分完全未知的样品进行半定量分析。NEX CG强大的分析能力,灵活、方便的使用性,使其在科研、工业及现场监测领域有着广泛的需求。

EZ分析界面使日常分析更为简单

日本理学NEX CG分析软件的开发,基于强大的功能性和方便的使用性。特别适合非技术背景的操作人员。日常分析只需通过以下简单步骤即可完成:

1.选择样品位置并输入样品名称

2.选择分析方法

3.点击开始

分析软件功能完善,界面精致、简洁,用户操作、使用方便。EZ分析软件是日本理学公司数十年潜心开发成果的结晶。

如此简单的常规分析步骤:

1.样品制备

无需消解,仅需最小限度的样品制备

对于大多数材料,可直接进行完全无损的分析检测

2.放入样品,输入样品名

自动取样无需人工操作

3.点击开始按钮

快速获得多元素定量结果

强大的RPF-SQX软件减少标样的使用

RPF-SQX 软件减少对标样的需求

理学NEX CG 配置最先进的RPF-SQX 分析软件。采用理学峰形拟合技术(RPF),对各类样品在无需标样的情况下实现半定量分析,在有标样的情况下实现全定量分析。结合理学著名的散射FP 方法,分析软件可以自动估算无法测量的轻元素(H-F )的含量并做出适当的修正。

使用理学RPF-SQX 分析软件,与传统的EDXRF 分析软件相比,在进行常规含量范围校准曲线拟合时,可以大大减少所需标样的数量。由于标样非常昂贵,而且对于许多应用情况极难获得。所以使用理学RPF-SQX 分析软件,对于常规分析可以极大降低用户的运行成本和工作量。

解析处理提高信噪比

采用二次靶激发方式,偏振光使分析灵敏度获得改善

与传统的EDXRF 分析仪不同,理学NEX CG 采用二级靶激发方式,取代了传统的直接激发。通过独特设计的解析式光学结构,所产生的X 射线偏振光,使接收信号的耦合度大大增强,从而极大地提高了信噪比,使分析灵敏度获得改善。

(左图)传统EDXRF 采用直接激发 (右图)理学NEX CG 采用二次靶激发

(图下文字)

在RoHS 检测,分析聚合物标样BCR680时,Ti 、

Ba 、Cr 元素的谱峰重叠,经过理学RPF-SQX 分

析软件处理后,Cr 元素可以被分析。

(图右上文字)

黑点:原始数据

灰线:拟合结果

蓝线:Ba 元素

绿线:Ti 元素

红线:Cr 元素

从右边的谱图上看,理学NEX CG采用二次靶激发,使背景噪声显著降低,同时增强了元素的谱线峰值的高度。其结果使光谱仪分析能力增强,不仅能够分析常规的痕量元素,甚至对较难分析的样品类型也能从容应对。理学NEX CG有多达5个偏振二级靶可供选择,可分析的元素涵盖钠(Na)至铀(U),并且均具有上佳的灵敏度。

(图下文字:经过二次靶激发的谱线图(橙色),与传

统EDXRF激发的谱线图(蓝色)对比)

理学NEX CG的激励源采用50W钯阳极端窗式X光管。

为了得到最大限度的稳定性,光管前装配了一个快门,

可以使X光管可以一直保持开启状态,以获得最佳的

稳定性和耐久性,避免光管因频繁启动,影响使用寿

命。使用不间断电源(UPS)可以保持供电的稳定,也

延长了光管的使用寿命。采用超级能谱信号接受器件

和高稳定性的电路设计,使得NEX CG具有非凡的分析

性能。

硅漂移检测器使分析精度更为出众

硅漂移检测器(SDD)是目前世界上最昂贵、最先进的能谱信号接受器件,具有超高的计数率和极好的分辨率。这些特性,使NEX CG能够在尽可能短的测试时间里得到高精度的分析结果。

(SDD检测器工作原理简图:同心圆结构,使其对X射线具有非常高的计数速率)

通用的样品换样器结构

适用A4纸尺寸的大样品

足够大的样品池(直径38cm深10cm)可容纳并直接分析A4

纸大小的样品

15位样品换样器

大容量的15位换样器适用于直径32mm的样杯或样品。10位

换样器适用于直径35-40mm的样品

样品旋转器(选购件)

9位样品旋转器及换样器,适用于非均匀样品分析。

技术规格

激励源

·钯(Pd)阳极X射线管

·最大功率50W,最高电压50kV

·二次靶标准配置为4个,对应于不同应用,以获得最佳的样品激发

·第5个二次靶是选购配置,用于对Na、Mg元素获得最佳分析结果

检测器

·高性能的大面积硅漂移(SDD)检测器

·皮尔贴(Peltier)电子制冷

·提供大的有效探测面积

·实现光谱分辨率和高计数率的最佳匹配

样品池

·样品池可分析大块样品,直径38 cm,深10 cm

·标准配置,15位自动换样器(样杯直径32 mm)

·标准配置,10位自动换样器(样杯直径35-40 mm)

·选购件,9位自动旋转换样器,每个样品独立旋转,用于非均匀样品分析·对于不同类型的样品可以选择在大气环境下分析,也可以冲氦或抽真空

使用环境

·环境温度18-28℃(65-82℉)

·相对湿度≦75%

·震动度:不可为人体感知

·远离腐蚀性气体、灰尘及微粒

专用计算机系统

·外置专用PC计算机系统,配置分析应用软件

·微软Windows Vista操作系统

·键盘、鼠标

·显示器

·打印机

应用软件包

·基于菜单操作的软件,控制光谱仪的操作和数据分析

·内置应用模型,可用FP法对各类样品进行初步分析

·简单、清晰的流程向导,帮助你建立适合特定样品的分析方法

·RPF-SQX FP软件用于定性、定量分析

·匹配扩展的合金库,用于基本参数法(FP)分析

·自动光谱重叠校正

·经验法校准,自动补偿光谱重叠及基体效应

仪器主机参数

·单项AC 100/220V,15/7A(50/60Hz)

·选配UPS电源确保电压稳定

·尺寸:60(W)X60(D)X40(H)

·重量:80 kg(127磅)

选购件

·第5个二次靶,用于对Na、Mg元素的最佳激发和分析

·9位自动换样器,具有样品旋转功能

·冲氦装置,用于液体、粉末样品的分析

·真空系统,用于固态样品的精确定量分析

·不间断电源(UPS)

X射线荧光光谱仪国内厂家

X射线荧光光谱仪国内厂家 产品介绍 天瑞仪器公司是国内最大的X射线荧光光谱仪厂家,全球专业生产高性能X射线荧光光谱仪(XRF)的公司。2011年推出的高性能、台式X荧光合金分析仪EDX3600H,融汇全球领先的合金分析技术,配备合金测试效果最佳的智能真空系统,利用低能光管配合真空测试,可以有效的降低干扰,提高轻元素分辨率,大大提高合金中微量的Al、Si、P等轻元素的检测效果。 EDX3600H合金光谱仪是天瑞仪器公司为合金测试专门开发的仪器类型。 具有测试精度高、测试速度快、测试简单等特点。 同时具有合金测试、合金牌号分析、有害元素分析,土壤分析仪、贵金属分析等功能。 检测样品包括从钠至铀的所有合金、金属加工件、矿物、矿渣、岩石等,形态为固体、液体、粉末等。 性能特点 高效超薄窗X光管,指标达到国际先进水平 针对合金的测试而开发的专用配件 SDD硅漂移探测器,良好的能量线性、能量分辨率和能谱特性,较高的峰背比 天瑞仪器专利产品—信噪比增强器(SNE),提高信号处理能力25倍以上 低能X射线激发待测元素,对Pb、S等微含量元素激发效果好 智能抽真空系统,屏蔽空气的影响,大幅扩展测试的范围 自动稳谱装置保证了仪器工作的一致性; 高信噪比的电子线路单元 针对不同样品自动切换准直器和滤光片,免去手工操作带来的繁琐 多参数线性回归方法,使元素间的吸收、增强效应得到明显的抑制; 内置高清晰摄像头 液晶屏显示让仪器的重要参数(管压、管流、真空度)一目了然 标准配置 合金测试高效超薄窗X光管 超薄窗大面积的原装进口SDD探测器 信噪比增强器SNE 光路增强系统 高信噪比电子线路单元

原子荧光分光光度计

一、原子荧光分光光度计 技术参数 1、工作条件要求 1.1电源: 220V,50Hz 1.2温度: 15~35℃ 1.3相对湿度: 10-75% 2、技术能力要求 2.1用途:用于食品卫生检验、环境样品检验、城市给排水检测、农产品检验、地质冶金检验、化妆品检验、土壤肥料饲料检验等样品中As、Sb、Bi、Hg、Se、Te、Sn、Ge、Pb、Zn、Cd元素的痕量分析。 2.2分析方法:非色散光学系统,进行两道元素同时测量 *2.2.1氢化物发生进样方式:双注射泵联合进样,蠕动泵主动排废 2.2.2检测能力:适用于As、Hg、Se、Pb、Ge、Sn、Te、Bi、Sb、Cd、Zn等十一种元素的痕量测定 2.2.3检测限(D.L.):As、Pb、Se、Bi、Sn、Sb、Te、Hg≤0.01μg/L;Hg(冷原子测汞)、Cd≤0.001μg/L;Ge≤0.05μg/L;Zn≤1.0μg/L *2.2.4相对标准偏差(RSD):≤0.8% 2.2.5线性范围:≥三个数量级 *2.3光学光源系统:双光束、实时监控,脉冲恒流或集束脉冲供电,无色散光学系统,自识空心阴极灯 2.4气路设计(气路控制模块): 2.4.1控制方式:质量流量控制器(MFC) 2.4.2连续可调:气体流量控制,气路自动保护装置,自动控制气路并可自动诊断,关机可自动切断气源 2.4.3气路控制:载气、屏蔽气流量分别自动控制(控制精度可达1ml/min) *2.5双检测系统:高信噪比光电倍增管双检测系统 2.6内置式两个独立注射泵进样:一路进样品载流,一路进还原剂(自动配制标准曲线,高浓度自动稀释,自动清洗,单标自配标准曲线,在线智能提示,自动在线加载还原剂、掩蔽剂) 2.7 在线分析功能:自动炉高调节、自动负高压设置、自动气路设置、在线动态

X荧光光谱分析仪工作原理

X荧光光谱分析仪工作原理 用X射线照射试样时,试样可以被激发出各种波长的荧光X射线,需要把混合的X射线按波长(或能量)分开,分别测量不同波长(或能量)的X射线的强度,以进行定性和定量分析,为此使用的仪器叫X射线荧光光谱仪。由于X光具有一定波长,同时又有一定能量,因此,X射线荧光光谱仪有两种基本类型:波长色散型和能量色散型。下图是这两类仪器的原理图。 用X射线照射试样时,试样可以被激发出各种波长的荧光X射线,需要把混合的X射线按波长(或能量)分开,分别测量不同波长(或能量)的X射线的强度,以进行定性和定量分析,为此使用的仪器叫X射线荧光光谱仪。由于X光具有一定波长,同时又有一定能量,因此,X射线荧光光谱仪有两种基本类型:波长色散型和能量色散型。下图是这两类仪器的原理图。 现将两种类型X射线光谱仪的主要部件及工作原理叙述如下: 1.X射线管

两种类型的X射线荧光光谱仪都需要用X射线管作为激发光源。上图是X射线管的结构示意图。灯丝和靶极密封在抽成真空的金属罩内,灯丝和靶极之间加高压(一般为40KV),灯丝发射的电子经高压电场加速撞击在靶极上,产生X射线。X射线管产生的一次X射线,作为激发X射线荧光的辐射源。只有当一次X射线的波长稍短于受激元素吸收限lmin时,才能有效的激发出X射线荧光。笥?SPAN lang=EN-US>lmin的一次X射线其能量不足以使受激元素激发。 X射线管的靶材和管工作电压决定了能有效激发受激元素的那部分一次X射线的强度。管工作电压升高,短波长一次X射线比例增加,故产生的荧光X射线的强度也增强。但并不是说管工作电压越高越好,因为入射X射线的荧光激发效率与其波长有关,越靠近被测元素吸收限波长,激发效率越高。 X射线管产生的X射线透过铍窗入射到样品上,激发出样品元素的特征X射线,正常工作时,X射线管所消耗功率的0.2%左右转变为X射线辐射,其余均变为热能使X射线管升温,因此必须不断的通冷却水冷却靶电极。 2.分光系统

X射线荧光光谱仪介绍

X-射线荧光光谱仪(XRF) 1、仪器介绍 X-射线荧光光谱仪(XRF),现有日本Rigaku公司生产的ZSX primus波长色散型XRF一台,及配套所必须的电源设备、冷循环水设备和前处理熔样机等。X射线荧光光谱分析技术制样简单、分析快速方便、应用广泛,可用于测定包括岩石、土壤、沉积物等在内的各种地质样品的化学组成。分析元素范围从Be(4)到U(92),最常见的是用于主量元素分析,如SiO2、Al2O3、CaO、Fe2O3T、K2O、MgO、MnO、Na2O、P2O5、TiO2、LOI等元素。 2、仪器功能和技术参数: (1) 功能:定性分析、半定量分析和定量分析; (2) X射线管:4KW超薄端窗型(30μm)、铑靶X射线管; (3) 分光晶体:LiF(200)、Ge(111)、PET、RX25、LiF(220); (4) 进样器:48位自动样品交换器; (5) 测角仪:SC:5-118度(2θ);PC:13-148度(2θ); (6) 分析元素范围:Be4-U92; (7) 线性范围:10-2 - 10-6; (8) 仪器稳定度:≤0.05%; (9) 测量误差:<5%。 3、应用和优势: XRF应用广泛,可用于岩石、矿物、土壤、植物、沉积物、冶金、矿业、钢铁、化工产品等样品中常量和痕量的定量分析。具有快速方便、制样简单、无损测量、分析元素宽、灵敏度高等优点。 X-ray Fluorescence Spectrometer (XRF) 1、I nstrument Introducation: The wavelength dispersion X-ray fluorescence spectrometer (XRF) is ZSX primus, made by Rigaku, Japan, with a set of instruments of electrical power unit, cold circulating water equipment and automatic fusion machine. XRF is widely used for geological element analysis, including rocks, soils, sediments, etc, which is simplicity and convenience of operation. Its analyzable elements range is from Be (4) to U (92). XRF is most common for the analysis of major elements, such as SiO2, Al2O3, CaO, Fe2O3T, K2O, MgO, MnO, Na2O, P2O5, TiO2 and LOI. 2、Instrument Technical Parameters: (1) Fucation: qualitative analysis, semi-quantitative analysis and quantitative analysis; (2) X-ray tube: 4KW ultrathin end-window (30μm) Rh target X-ray tube;

X荧光分析仪的检测器的种类及原理

X荧光分析仪的检测器的种类及原理 X射线检测器又称探测器,是种能量转换器,能对光子进行计数。在与光电子作用时,它可以储存每次入射光子的全部能量。光子流越弱,检测器工作的精度越高。目前常用的Ⅹ射线检测器有气体能量转化器、半导体能量转换器和闪烁计数器。 一、气体能量转化器 气体能量转化器也称充气型正比计数器(gas proportion counter ,PC),分为气流型和封闭型两种,气流型适用于轻元素的检测,而封闭型常用于高原子序数的元素,探测波长较长。以波长色散谱仪为例,气流型和封闭型充Xe气的正比计数管常常串联使用以提高Ti ~ Cu的K系线和La ~ W的L系线的灵敏度。气流型正比计数管通常用90%氩气和10%甲烷混合气体,其中甲烷起猝灭作用。对于原子序数很低的元素也可以用96%氦气和4%丁烷混合气体。封闭型正比计数管则可分别充氖、氪和氙气。 二、闪烁计数器 闪烁计数器适用于重元素的检测。闪烁计数器结构是由一片用tuo激活的且密封于Be窗口的dianhuana晶体和光电倍增管组成。当一入射X射线光子被Na晶体吸收时,便产生若千个数量的可见光子(闪烁),可见光子轰击光电倍增管,产生光电流。因此,每个入射X射线光子能在光电倍增管的输出端形成一个很大的脉冲电流。 闪烁计数器用于测量大于6kcV的X射线,对于低于6keV的X射线光子,由于光电倍增管极的噪声脉冲较大,对弱光子脉冲的检测会很困难。在闪烁计数器前附加一个气体正比计数器构成复合检测器,这时长波长的X射线用正比计数器检测,短波长的X射线则由闪烁计数器检测。闪烁计数器装在气体正比计数器旁边,缩短了它与晶体之间的距离达三倍,有效地提高了灵敏度, 三、半导体能量转换器 能量色散荧光光谱仪通常采用半导体能量转换器。硅中掺入少量的其他元素可形成晶体二极管。当探测器加上300~400V的电压时,无电流通过。当一个X射线光子射

原子荧光AF-640A参数

AF-640A全自动型原子荧光光谱仪技术关键指标 1.功能及用途: 1.1.功能:无机成分定量测定; 1.2.检测项目:汞(Hg)砷(As)锑(Sb)铋(Bi)硒(Se)碲(Te) 铅(Pb)锡(Sn)锗(Ge)锌(Zn)镉(Cd)11种元素的痕量或超痕量 分析; 1.3.用途:水及涉水产品、食品、化妆品、药品、金属制品、环境 等样品、临床医学、商检、药检中无机成分痕量分析。 2.技术指标: 2.1.测量方式:双通道测量; 2.2.检出限(DL):As Sb Bi Se Te Pb Sn ≤0.01 ng/ml Hg ≤0.001 ng/ml Ge ≤0.3 ng/ml Cd ≤0.001 ng/ml Zn ≤2.0 ng/ml *气态汞(空气、天然气、实验室工作现场等)<1.0 ng/m3; *水样中汞(饮用水、矿泉水、海水、地表水等)< 0.0003 μg/L; 2.3.精密度(RSD):≤ 1% 气态汞 < 5% 水样中汞 < 2%; 2.4.线性范围:3个数量级(103); *2.5.“高效除汞装置”环保型原子荧光光谱仪,汞的吸附率可达98%-100% 有效解决汞的污染,净化实验室环境,确保分析人员身体健康; *2.6.“气态汞”测定专用装置,检出限达1.0 ng/m3,可对实验室、大气、 天然气、及特定工作现场中的气态汞的含量进行测定; *2.7.“水样中超痕量汞”测定专用装置,检出限达0.0002 ng/ml,可测定 海水(Ⅰ类Ⅱ类),饮用水,矿泉水,地表水等水样中超痕量汞; *2.8.光源系统:可任意选用单阴极或双阴极通用空心阴极灯两种光源; *2.9.脉冲式供电,双阴极空心阴极灯的主电流与辅助电流由微机控制自 动匹配; *2.10.光学系统:短焦距透镜聚光无色散光学系统,全新设计的闭光式调 光系统; 2.11.检测系统:高效光电倍增管; *2.12.样品导入方式:单泵控制、四通混合模块结构的连续流动-间歇进 样方式; *2.13.氢化物\蒸汽反应系统:静力式喷流型结构三级气液分离装置,实现废液自动排出;

X荧光光谱仪解疑

1、RoHS限制的六种物质是哪些? 答:六价铬、镉、汞、铅、多溴联苯和多溴联苯醚。 2、RoHS限制的六种物质的最高含量限制分别是多少? 答:六价铬是1000ppm、镉是100ppm、汞是1000ppm、铅是1000ppm、多溴联苯是1000ppm、多溴联苯醚是1000ppm。 3、E8-SPR能检测元素的范围是? 答:可以检测到从钠到铀之间的元素。 4、我们的设备可以做哪些测试? 答:可做ROHS检测、各种材料的全元素分析和测金属的镀层厚度。 5、EDX设备工作原理是什么? 答:原理:通过高压产生电子流打入到X光管中靶材产生初级X光,初级X光经过过滤和聚集射入到被测样品产生次级X射线,也就是我们通常所说的X荧光,X荧光被探测器探测到后经放大,数据换输入到计算机。计算机计算出我们需要的结果。 6、我们的设备是进口还是国产? 答:我们的设备是国产的。但重要部件是进口的,如:探测器、高压电源是美国进口的。 7、EDX设备是否会对人体造成伤害,对环境造成污染? 答:我们公司产品已经通过国家环境辐射研究与监测中心认证,而且辐射远远低于国家2500ngy【限量率】标准,同时仪器具有三重射线防护功能,对人体不会造成任何伤害,也不会对环境产生直接或间接的污染。 8、我们的设备是否进行过相关的安规和环保认证? 答:X荧光分析设备不属于强检产品。但我们的设备已经通过国家环境辐射研究与监测中心的认证。 9、仪器使用和软件操作复杂吗? 答:不复杂。针对不同的行业应用,我们有不同的软件应用,适应每个行业的要求,普通操作人员只要经过我们简单的培训后便能熟练操作使用。 10、可以测镀层吗? 答:可以。单镀层,双镀层及多镀层样品;而且,一次测量中测试所有镀层厚度,测试速度快,测试结果准确方便。 11、检测报告有英文和繁体的吗? 答:有英文的,有繁体的; 12、为什么会出现本底? 答:X荧光分析食品在测试时,会有散射,游离电子,线路干扰等都会造成出现本底,可以俗称“背景噪声”。13、什么是我们作为元素分析的基础? 答:特征X射线,其由被测量物质的基本组成元素决定,元素不同,其特征X射线能量不同。 14、仪器在五金行业、钢铁行业的分析检测的优势 答:快速、准确、无损样品、前处理简单,操作简单方便。 15、X荧光测试仪在重金属、石油勘探行业的应用实例讲解。 答:可以参看公司的宣传资料。 16、现在有些工厂和实验机构,已用什么方式测试元素的?好与坏? 答:测试方法很多,而且应用在不同的产品和行业,其检测方法也是不同的,每种仪器的优势也是各不相同,何种仪器好,还要看客户真正应用领域和实际测试的样品。 17、仪器检测后能提供测试报告和相关认证书吗? 答:能够提供测试报告,但不能提供报告的认证书。因为认证是对测试机构认证的,它不是对仪器进行认证的。因此它的报告也不具备权威性。 18、E8-SPR型号能检测一个完整的成品吗? 答:能检测一个完整的成品,按照欧盟和IEC的测试方法,必须将成品物理拆分到不可拆分的地步,再进行测试。 19、假如购买了你们仪器,在使用中对产品进行检测出来的报告能够做出担保吗? 答:不能,因为X荧光光谱仪是对比分析仪器,在RoHS检测中是一种粗测,测量结果只是作为企业内部控制的一种参考,没有权威性。同时,你公司的检测员的操作是否正常,都是决定其是否报告与权威机构相近,所以,

X荧光光谱仪建立分析方法的过程

Axios建立分析方法的过程 1.标准样品的选择和准备 采用自制内控标样建立工作曲线,数量不少于10个,且有一定的浓度梯度,可人工配制一些,再从生产线上自然取得一些。 2.样品制备程序 *取样人员应将分析试样研磨至120目以上。 *准确称量10克样品和0.5克甲基纤维素。 *将称好的样品和粘结剂倒入WC料钵中,再加入3滴三乙醇胺,于振动磨上混合180秒。 *压片条件:压力25吨;保压时间30秒。 3.汇编测量条件 *启动,输入用户名和口令。 *单击Application,再选择New Application弹出New Application对话框。 *为新的应用起一个名字,例如Clinker。 *单击,添加一个通道设置,建议此名称与应用名一致,例如仍为Clinker。 *单击OK,打开汇编条件窗口,例如。 *单击标签,做一个样品制备描述。 *单击标签,定义样品识别方案,一般选择发free。 *单击标签,定义Airlock抽真空时间(一般选择8秒)和延迟时间(一般选择0秒), 将前的对勾去掉。

*单击标签,定义样品类型(Pressed Powder)和样品杯(Steel 32mm)。输入样 品重量(10g), 单击,从化合物表中添加粘结剂名称,在Weight(g)单元格中输入粘结剂的的重量(0.5g),按回车键。 *单击标签,再单击按钮打开Add compound对话框,添加要分析的化合物名称。 *单击标签,将所有通道的kV和mA修改为50/48。 *找一个标准样品来检查角度和PHD。 *整行选中一个通道,单击,去掉前的对勾,再单击Measure。待扫描结束后,确定峰和背景的2 角,以及峰和背景的的测量时间,搜索干扰谱线。 确定测量时间通常有三种途径: ①输入样品中该元素的浓度,给定分析精度,加锁,然后计算其他未加锁的参数。 ②对于微量成分给定LLD,加锁,然后计算其他未加锁的参数。 ③根据你的经验直接给定测量时间,加锁,然后计算其他未加锁的参数。 加锁的参数在测量过程中是不变化的,未加锁的参数由智能化软件根据试样的浓度自动调整。 *单击,去掉前的对勾,再单击Measure。待扫描结束后,确定LL和UL,要注意逃逸锋、高次荧光及晶体荧光的甄别。

X荧光光谱分析仪工作原理

X荧光光谱分析仪工作原理标准化文件发布号:(9312-EUATWW-MWUB-WUNN-INNUL-DQQTY-

X荧光光谱分析仪工作原理 用X射线照射试样时,试样可以被激发出各种波长的荧光X射线,需要把混合的X射线按波长(或能量)分开,分别测量不同波长(或能量)的X射线的强度,以进行定性和定量分析,为此使用的仪器叫X射线荧光光谱仪。由于X光具有一定波长,同时又有一定能量,因此,X射线荧光光谱仪有两种基本类型:波长色散型和能量色散型。下图是这两类仪器的原理图。 用X射线照射试样时,试样可以被激发出各种波长的荧光X射线,需要把混合的X射线按波长(或能量)分开,分别测量不同波长(或能量)的X射线的强度,以进行定性和定量分析,为此使用的仪器叫X射线荧光光谱仪。由于X 光具有一定波长,同时又有一定能量,因此,X射线荧光光谱仪有两种基本类型:波长色散型和能量色散型。下图是这两类仪器的原理图。 现将两种类型X射线光谱仪的主要部件及工作原理叙述如下: 射线管

两种类型的X射线荧光光谱仪都需要用X射线管作为激发光源。上图是X射线管的结构示意图。灯丝和靶极密封在抽成真空的金属罩内,灯丝和靶极之间加高压(一般为40KV),灯丝发射的电子经高压电场加速撞击在靶极上,产生X 射线。X射线管产生的一次X射线,作为激发X射线荧光的辐射源。只有当一次X射线的波长稍短于受激元素吸收限lmin时,才能有效的激发出X射线荧光。笥SPAN lang=EN-US>lmin的一次X射线其能量不足以使受激元素激发。 X射线管的靶材和管工作电压决定了能有效激发受激元素的那部分一次X 射线的强度。管工作电压升高,短波长一次X射线比例增加,故产生的荧光X 射线的强度也增强。但并不是说管工作电压越高越好,因为入射X射线的荧光激发效率与其波长有关,越靠近被测元素吸收限波长,激发效率越高。 X射线管产生的X射线透过铍窗入射到样品上,激发出样品元素的特征X 射线,正常工作时,X射线管所消耗功率的%左右转变为X射线辐射,其余均变为热能使X射线管升温,因此必须不断的通冷却水冷却靶电极。 2.分光系统

X射线荧光光谱分析基本原理及仪器工作原理解析

X射线荧光光谱分析基本原理 当能量高于原子内层电子电子结合能的高能X射线与原子发生碰撞时,驱逐一个内层电子而出现一个空穴,使整个原子体系处于不稳定的激发态,然后自发地由能量高的状态跃迁到能量低的状态。当较外层的电子跃迁到空穴时,所释放的能量随即在原子内部被吸收而逐出较外层的另一个次级光电子,此称为俄歇效应,亦称次级光电效应或无辐射效应,所逐出的次级光电子成为俄歇电子.它的能量是具有独一特征的,与入射辐射的能量无关.当较外层的电子跃入内层空穴所释放的能量不在原子内被吸收,而是以辐射形式放出,便产生X射线荧光,其能量等于两能级之间的能量差,因此,X射线荧光的能量或波长是特征性的,与元素有一一对应的关系。如图所示: K层电子被逐出后,其空穴可以被外层中任一电子所填充,从而可产生一系列的谱线,称为K系谱线:由L层跃迁到K层辐射的X射线叫Kα射线,由M层跃迁到K层辐射的X射线叫Kβ射线……。同样,L层电子被逐出可以产生L系辐射(见图10.2)。如果入射的X射线使某元素的K层电子激发成光电子后L层电子跃迁到K层,此时就有能量ΔE释放出来,且ΔE=E K-E L,这个能量是以X射线形式释放,产生的就是Kα射线,同样还可以产生Kβ射线, L系射线等。莫斯莱(H.G.Moseley) 发现,荧光X射线的波长λ与元素的原子序数Z有关,其数学关系如下: λ=K(Z-s)-2 这就是莫斯莱定律,式中K和S是常数,因此,只要测出荧光X射线的波长,就可以知道元素的种类,这就是荧光X射线定性分析的基础。此外,荧光X射线的强度与相应元素的含量有一定的关系,据此,可以进行元素定量分析。

用X射线照射试样时,试样可以被激发出各种波长的荧光X射线,需要把混合的X射线按波长(或能量)分开,分别测量不同波长(或能量)的X射线的强度,以进行定性和定量分析,为此使用的仪器叫X 射线荧光光谱仪。由于X光具有一定波长,同时又有一定能量,因此,X射线荧光光谱仪有两种基本类型:波长色散型和能量色散型。而我们天瑞仪器公司生产的X射线荧光光谱仪就属于能量色散型的。下面是仪器的工作原理图: 能量色散型X射线荧光光谱仪工作原理 仪器工作原理 通过高压工作产生电子流打入到X光管中靶材产生初级X射线,初级X射线经过过滤和聚集射入到被测样品产生次级X射线,也就是我们通常所说的X荧光,X荧光被探测器探测到后经放大,数模转换输入到计算机,计算机计算出我们需要的结果。

原子荧光的测定与注意事项

原子荧光的测定与注意事项 【摘要】科学技术日新月异,在我国原子荧光法成为了新型监测手段,原子荧光法可以对日常生活中涉及到的无机元素进行有效监测。但在进行原子荧光法监测时往往会受到一些因素的影响,如电倍增管负高压、观测高度、空心阴极灯灯电流、载气流量、屏蔽气流量等,如果任何因素没有达到监测条件,都会影响原子荧光监测的数据。本文首先介绍原子荧光的定义,并提出原子荧光测定中选择最佳的工作参数。 【关键词】原子荧光测定选择最佳工作参数 【Abstract】Science and technology change rapidly, in our atomic fluorescence method has become a new monitoring means, atomic fluorescence spectrometry can be effective monitoring of the inorganic elements involved indaily life. But in atomic fluorescence spectrometry monitoring is often affected by some factors, such as the photomultiplier high voltage, observation height,hollow cathode lamp current, flow rate of carrier gas, the shielding gas flow rate, if any factors did not achieve monitoring conditions, will influence theatomic fluorescence monitoring data. This paper introduces the definition of atomic fluorescence, and puts forward the choice of the best work parametersin the determination of atomic fluorescence. 【Keywords】to select the optimum parameters were determined by atomic fluorescence 引言:近20年来,科学技术的进步发展提高了对无机元素监测的技术,作为新型监测分析技术原子荧光法,以其据对的优势提高了对无机元素的监测,同时选择最佳的工作参数能够为原子荧光测定精确性提供有利依据,主要涉及到原子荧光测定中空心阴极灯、观测高度、载气流量、屏蔽气的具体流量、选择其他条件以及最佳的氢化反应条件的参数选择。 一、原子荧光的定义 原子荧光法是测定无机元素的仪器,主要是对原子在跃迁返回基态时,发散出的荧光。通常原子吸收也可以检定原子在能级跃迁高能态时,吸收的能量,但原子荧光法较之原子吸收有更大的优势,其分析技术本身具备了原子吸收法和发射光谱法两种方法的优点。 作为新型监测分析手段,原子荧光法的基本原理是当原子受到特征波长的光照射时,处于基态的电子跃迁到激发态,被激发的原子由激发态回到基态时,其吸收的能量将以特征波长的荧光放出,测得无机元素的成分。通常原子荧光可以测定各类样品中汞、砷、锑、铋、硒、碲、铅、锡、锗、锌、镉等11种元素的痕量或超痕量分析。 二、原子荧光分析技术发展状况 原子荧光分析技术在20 世纪60 年代被提出并且获得了迅速的发展,直至80 年代痕量分析技术才逐渐开始得到应用。原子荧光在1956 年逐步开始对物理与化学过程进行研究,在火焰中提出了激发原子的分析方法,以及测量存在于火焰中的共振双线荧光量子效率试验的相关设备,并且预计了原子荧光分析技术在未来的化学工作中获得应用。美国研究者在1963 年提出并且证实了一种全新的原子荧光火焰分析方法,同时,有关研究人员对原子荧光分析技术实行了更加深入的研究与改进,从此以后,原子荧光分析法进入了非常迅速的发展时期,凭借着一种基于仪器分析的全新方法逐渐应用在各个领域的多种元素之中,特别是在具有挥发性元素工作中具有强大实力。近些年来原子荧光领域的研究与应用非常活跃,在实际工作中获得的很好的成绩。 原子荧光分析法将原子荧光作为重要基础,也就是原子蒸汽通过吸收一定的辐射波长从而被激发,之后受激原子经过去活化,最后发射出原子荧光。原子荧光分析法拥有极高的灵

怎样正确使用X荧光分析仪

怎样正确使用X荧光分析仪 X射线荧光分析仪是通过X射线管产生的X射线作为激光源,激发样品产生荧光X射线。根据荧光X射线的波长和强度来确定样品的化学组成。 作为一种质量检测手段,我国大,中型水泥厂(新型干法)几乎都配套使用了X射线荧光分析仪。X射线荧光分析过程中产生误差的原因主要有操作方面、仪器方面、以及试样本身等三方面因素。 一、操作方面带来误差的因素: 1.粉磨时未设定好粉磨时间和压力,达不到要求的粉磨粒度或相应的料度分布。实验表明当粉磨时间短于试验设定时间,测定结果就会产生波动。同时,粉磨时未按规定加适量助磨剂或所加助磨剂中含有所要分析的元素,都会给测定结果带来较大影响。磨头和磨盘里留有前期样品或被其它物质污染),结果也会产生误差。 2.压片时,未设定好时间和压力,压力效果不好或压片时样品布入不均匀而产生了样品的堆积分布不均,或压片板(压片头)不洁净(或上面粘有前期样品)等,都会影响分析结果。 3.制样未保护好,制样装入试样盒的位置不当,结果给分析带来误差。制样未保护好有两层含义:A.未保护好制样光洁度。如用手指摸分析面、或用手指甲划、用口吹、用湿毛巾擦分析面等;B.制样在空气中放置太久,使分析面与空气中物质发生了物理化学变化。制样装盒位置不当,把测样片装倒了或测样片表面与试样盒表面成一倾斜角等,都会影响到射线管与分析面的距离,从而产生误差。 4.荧光分析中,由于分析面上的样品灰未除掉,久之影响到仪器真空度;或由于操作者粗心,分析程序选错,如测生料时用上测熟料的分析曲线或用了测石灰石的曲线,显然结果不正确。 二、仪器方面的误差因素:

1.压片板(或压片头)不光洁,导致分析面不光滑,从而影响测量结果。 2.光路真空度不合适,分光晶体、滤光片选择不佳,使各种射线产生干扰,影响分析。 3.X射线管电压、电流不稳定,从而产生结果波动。 4.随着时间的延长,X光管内部元件尺寸位置变化引起初级X射线强度的变化,或X射线管阳极出现斑痕,靶元素在窗口沉积,给分析结果带来误差。 5.温度的变化,引起分光晶体晶面间距变化,从而影响分光效率。正比计数管高压漂移,温度变化引起管内气体成分变化,影响放大倍数。 6.电子电路的漂移,计数的统计误差,检测过程的时间损失引入的计数误差等。 7.气体的压力、氮气、甲烷气体的流量、温度等辐射通道条件的变化,都会影响光路中气体对X射线的吸收。因此,气瓶的减压阀一旦调好,不要随意再动,特别是更换新气时,一定要尝试着多次调气压,否则,由于气流、气压不稳,使结果产生误差。 三、试样本身的误差因素: 1.试样易磨性。有的试样易磨性较差,对测定构成影响。 2.试样成分。有的试样基本组成成分与标准试样组成成分不一致,也会影响测定结果。 3.基体效应。基体中其它元素对分析元素的影响,包括吸收和增强效应,吸收效应直接影响对分析元素的激发和分析元素的探测强度。增强效应使分析元素特征辐射增强。 4.不均匀性效应。X射线强度与颗粒大小有关,大颗粒吸收大,小颗粒吸收小,这是试样粒度的影响。

X荧光分析仪安全操作规程正式版

Guide operators to deal with the process of things, and require them to be familiar with the details of safety technology and be able to complete things after special training. X荧光分析仪安全操作规 程正式版

X荧光分析仪安全操作规程正式版 下载提示:此操作规程资料适用于指导操作人员处理某件事情的流程和主要的行动方向,并要求参加 施工的人员,熟知本工种的安全技术细节和经过专门训练,合格的情况下完成列表中的每个操作事 项。文档可以直接使用,也可根据实际需要修订后使用。 1、X荧光分析仪第一次使用或间隔多日未用,再度使用前,X射线管必须按规定进行一次训机,才能正常使用。 2、操作时应先接水源,后开电源,待机预热5分钟,方可开高压。开高压时应先缓慢上升管电流,再缓慢上升管电压;当烽鸣器发生预报信号,先缓慢降管电压,后缓慢降管电流直至切断高压开关。 3、X荧光分析仪正常使用,管电流不能超过机器最大允许值。 4、如果情况特殊,需关闭管压、管流,必须按X荧光分析仪开、关机方法操

作; 5、注意保护X荧光分析仪,不使受到剧烈振动。 6、所有的试样盒在放入仪器上进行分析前,一定要检查是否拧到位,拧不到位绝对不能测量; 7、经常保持X光机整洁,每天下班前将X光机擦干净。 8、禁止洒水在电气设备和线路上,以免漏电。 9、严禁用湿手分、合开关或接触电气设备。 ——此位置可填写公司或团队名字——

原子荧光光谱仪

原子荧光光谱仪 原子荧光光谱仪,测量元素的原子蒸气在辐射能激发下所发射的荧光强度,以测定物质成分中元素含量的仪器。 编辑摘要 由激发光源(高强度空心阴极灯或无极放电灯),原子化器,单色仪或用干涉滤光片配合使用“日盲”光电倍增管和光电检测系统组成。其原理是:分析试样在原子化器中转化为低能级的原子蒸气,吸收由一合适的激发光源发射出的同类原子特征光辐射后,一部分被激发至高能级,在跃迁至低能级的过程中,以辐射的形式释放出能量,形成原子荧光。原子荧光经光电检测系统转换为电信号被记录下来。原子荧光的强度与激发态的原子数有关,也即与试样中分析元素的浓度成正比。原子荧光光谱仪的优点是能同时测定多种元素,特别是As,Sb,Bi,Cd,Hg等元素。一般情况下,测定下限比原子吸收法低。在地质学中用于测定岩石、矿石和矿物中易挥发元素和硒、碲等元素。 原子荧光光谱仪- 原子荧光光谱仪-概述 atomic fluorescence spectrometry 利用原子荧光谱线的波长和强度进行物质的定性与定量分析的方法。原子蒸气吸收特征波长的辐射之后,原子激发到高能级,激发态原子接着以辐射方式去活化,由高能级跃迁到较低能级的过程中所发射的光称为原子荧光。当激发光源停止照射之后,发射荧光的过程随即停止。原子荧光可分为3类:即共振荧光、非共振荧光和敏化荧光,其中以共振原子荧光最强,在分析中应用最广。共振荧光是所发射的荧光和吸收的辐射波长相同。只有当基态是单一态,不存在中间能级,才能产生共振荧光。非共振荧光是激发态原子发射的荧光波长和吸收的辐射波长不相同。非共振荧光又可分为直跃线荧光、阶跃线荧光和反斯托克斯荧光。直跃线荧光是激发态原子由高能级跃迁到高于基态的亚稳能级所产生的荧光。阶跃线荧光是激发态原子先以非辐射方式去活化损失部分能量,回到较低的激发态,再以辐射方式去活化跃迁到基态所发射的荧光。直跃线和阶跃线荧光的波长都是比吸收辐射的波长要长。反斯托克斯荧光的特点是荧光波长比吸收光辐射的波长要短。敏化原子荧光是激发态原子通过碰撞将激发能转移给另一个原子使其激发,后者再以辐射方式去活化而发射的荧光。

X荧光分析仪中英文对照

DZX-600 X荧光分析仪 X荧光分析仪是我公司最新研制的分析仪,适用于水泥、矿山、不锈钢、铝合金、铜锌合金、铅合金等,耐火材料、铁合金、玻璃等行业 仪器特点: 1.同时分析测量多种元素(根据客户要求配置从Na到U的任意多种元素); 2.可检测固体﹑液体﹑粉末,无需复杂的制样过程; 3.采用进口SI-PIN探测器,分析速度快; 4.精确度高,稳定性好,故障率低; 5.采用多层屏蔽保护,辐射安全性可靠; 6.基于WINDOWS XP/VISTA 中文应用软件功能丰富,独特先进的分析方法,各种图表和趋势图为操作者提供直观的支持,操作简单,使用方便,分析结果可直接输出到Excel,便于进行统计分析。 主要技术指标: 1多功能置样装置 X荧光分析仪的置样装置具有可容纳各种形态被测样品的样品室。 A.样品种类:固体﹑液体﹑粉末。 B.样品室的环境:可选择空气﹑真空。由软件自动控制,无需人工操作。 2 X射线管激发系统 系统采用50KV的低功率正高压X射线发生器作为激发源。由高电压发生器,X射线发生器及控制显示系统等部分构成。 A.高压发生器:电压与电流采用软件自动控制及显示。 电压范围:0V至50kV连续可调。 电流范围:0mA至1mA连续可调。 B. X射线发生器:采用低功率﹑自然冷却﹑高寿命的X光管,并根据实际应用需要选择靶材。3进口的高分辨率SI-PIN探测器系统 SI-PIN电制冷高分辨率高计数率探测器。 4 系统软件 A.操作: WINDOWS XP操作系统软件,功能强大,使用方便。 B.功能:能谱显示,分析元素设置,能量刻度,X光高压、电流自动控制,自动真空控制。C.分析方法:线性拟合,二次曲线,强度校正,含量校正,基本参数方法。 D.仪器的漂移自动修正:保证仪器的分析结果长期稳定。 DZX - 600 X fluorescence analyzer X-ray fluorescence analyzer is a newly developed analyzer of our company, applicable to the cement, mining, stainless steel, aluminum alloy, copper zinc alloy, lead alloy, refractories, ferrosilicon and glass industries, etc Instrument characteristics: 1. Analysis and measure various elements (Allocation any elements from Na to U according to the customer request) at the same time; 2. Can detect the solid, liquid, powder, without complex sample preparation process; 3. Adopt imported SI - PIN detector, with fast analysis speed; 4. High precision, good stability, low failure rate;

X射线荧光光谱仪结构和原理

X射线荧光光谱仪结构和原理 第一章 X荧光光谱仪可分为同步辐射X射线荧光光谱、质子X射线荧光光谱、全反射X射线荧光光谱、波长色散X射线荧光光谱和能量色散X射线荧光光谱等。 波长色散X射线荧光光谱可分为顺序(扫描型)、多元素同时分析型(多道)谱仪和固定道与顺序型相结合的谱仪三大类。顺序型适用于科研及多用途的工作,多道谱仪则适用于相对固定组成和批量试样分析,固定道与顺序式相结合 则结合了两者的优点。 X射线荧光光谱在结构上基本由激发样品的光源、色散、探测、谱仪控制和 数据处理等几部分组成。 § 1.1激发源 激发样品的光源主要包括具有各种功率的X射线管、放射性核素源、质子 和同步辐射光源。波长色散X射线荧光光谱仪所用的激发源是不同功率的X射线管, 功率可达4~4.5kW,类型有侧窗、端窗、透射靶和复合靶。能量色散X射线荧光光谱仪用 的激发源有小功率的X射线管,功率从4~1600W,靶型有侧窗和端窗。靶材主要有Rh、Cr、W、Au、Mo、Cu、Ag等,并广泛使用二次靶。现场和便携式谱仪则主要用放射性核素源。 激发元素产生特征X射线的机理是必须使原子内层电子轨道产生电子空位。可使内层轨道电子形式空穴的激发方式主要有以下几种:带电粒子激发、电磁辐射激发、内转换现象 和核衰变等。商用的X射线荧光光谱仪中,目前最常用的激发源是电磁辐射激发。电磁辐射激发源主要用X射线管产生的原级X射线谱、诱发性核素衰变时产生的Y射线、电子俘 获和内转换所产生X射线和同步辐射光源。 § 1.1.1 X射线管 1、X射线管的基本结构 目前在波长色散谱仪中,高功率X射线管一般用端窗靶,功率3~4KW,其结构示意图 如下: X 光管本质上是一个在高电压下工作的二极管,包括一个发射电子的阴极和一个收集电子的阳极(即靶材),并

原子荧光形态分析仪技术参数

原子荧光形态分析仪技术参数 1、用途与要求 根据元素形态分析的特殊要求设计的一体化机,可实现对包括色谱泵、消解系统、蒸气发生和检测系统的统一协同自动控制。同时具备砷(As)、汞(Hg)、硒(Se)、锑(Sb)等元素形态分析功能和砷(As)、锑(Sb)、铋(Bi)、汞(Hg)、硒(Se)、碲(Te)锗(Ge)、锡(Sn)、铅(Pb)、锌(Zn)、镉(Cd)等元素的总量分析功能。 2、技术性能指标要求 2.1 内置式管内在线消解装置:全封闭一体化结构,管内在线消解,无需氧化剂,大大缩短管路,避免柱后峰形展宽,提高仪器分析性能。 2.2 气液分离装置:降低进入原子荧光检测器的水汽含量,提高分析灵敏度,降低噪声,降低检测限。 2.3 专用的液相色谱和氢化物发生原子荧光光谱仪接口:可以把柱后流出液和氢化物发生液体混合。 2.4 配接专用的液相色谱-原子荧光检测软件,可以实现连续的检测,实时采集数据,实现软件的统一协同自动控制。 2.5 数据处理也可以直接配接色谱工作站,具有谱图处理功能,操作简单方便。 2.6 可检测的砷形态 可定性定量检测: 砷酸盐[As(V)]、亚砷酸盐[As(III)]、一甲基砷酸[MMA(V)]、二甲基砷酸[DMA(V)]、砷甜菜碱(AsB)、砷胆碱(AsC)、饲料中的有机砷制剂(阿散酸p-ASA和洛克沙生Roxarsone) 可定性半定量检测: 一甲基亚砷酸[MMA(III)]、二甲基亚砷酸[DMA(III)]、二甲基砷酸的硫代物 可定性检测: 砷糖(AsS) 以上均须有使用该型号仪器实际分析样品图谱举例。 2.7 可检测的硒形态

可定性定量检测: 亚硒酸盐[Se(IV)]、硒酸盐[Se(VI)]、硒代胱氨酸(SeCys)、硒甲基硒代半胱氨酸(SeMeCys)、硒代蛋氨酸(SeMet) 以上均须有使用该型号仪器实际分析样品图谱举例。 2.8 可检测的汞形态 可定性定量检测: 无机汞(Hg2+)、甲基汞(MetHg)、乙基汞(EtHg)、苯机汞(PhHg) 以上均须有使用该型号仪器实际分析样品图谱举例。 2.9可检测的锑形态 可定性定量检测: 锑酸盐[Sb(V)]、三价锑[Sb(III)] 以上均须有使用该型号仪器实际分析样品图谱举例。 2.10 技术指标 2.10.1、检出限: As(Ⅲ)<0.04ng、DMA<0.08 ng、MMA<0.08 ng、As(Ⅴ)<0.2 ng SeCys<0.3 ng、SeMeCys<1 ng、Se(IV) <0.1 ng、SeMet<2 ng Hg(II) <0.05 ng、MeHg<0.05 ng、EtHg<0.05 ng、PhHg<0.1 ng Sb(III) <0.1ng Sb(V) <0.5ng 2.10.2、精密度<5% 2.10.3、线性范围三个数量级 2.10.4、相关系数:>0.999 3. 液相泵技术参数 3.1输送模式: 具有主动和辅助活塞的双柱塞输送泵,具有突出的流速稳定性; 3.2柱塞反冲: 虹吸自动冲洗; 3.3可更换泵头式设计,10ml与50ml泵头两种可选; 3.4.溶剂接触材料:宝石、PEEK和不锈钢; 3.5.流速范围: 10 ml 泵头0.001 –9.999 ml/min; 3.6.流量精度: <0.1%(1ml/min,12 MPa);

原子荧光光谱仪

原子荧光光谱仪 原子荧光光度计利用惰性气体氩气作载气,将气态氢化物和过量氢气与载气混合后,导入加热的原子化装置,氢气和氩气在特制火焰装置中燃烧加热,氢化物受热以后迅速分解,被测元素离解为基态原子蒸气,其基态原子的量比单纯加热砷、锑、铋、锡、硒、碲、铅、锗等元素生成的基态原子高几个数量级。 基本介绍 利用原子荧光谱线的波长和强度进行物质的定性与定量分析的方法。原子蒸气吸收特征波长的辐射之后,原子激发到高能级,激发态原子接着以辐射方式去活化,由高能级跃迁到较低能级的过程中所发射的光称为原子荧光。当激发光源停止照射之后,发射荧光的过程随即停止。 原子荧光可分为 3类:即共振荧光、非共振荧光和敏化荧光,其中以共振原子荧光最强,在分析中应用最广。共振荧光是所发射的荧光和吸收的辐射波长相同。只有当基态是单一态,不存在中间能级,才能产生共振荧光。非共振荧光是激发态原子发射的荧光波长和吸收的辐射波长不相同。非共振荧光又可分为直跃线荧光、阶跃线荧光和反斯托克斯荧光。直跃线荧光是激发态原子由高能级跃迁到高于基态的亚稳能级所产生的荧光。阶跃线荧光是激发态原子先以非辐射方式去活化损失部分能量,回到较低的激发态,再以辐射方式去活化跃迁到基态所发射的荧光。直跃线和阶跃线荧光的波长都是比吸收辐射的波长要长。反斯托克斯荧光的特点是荧光波长比吸收光辐射的波长要短。敏化原子荧光是激发态原子通过碰撞将激发能转移给另一个原子使其激发,后者再以辐射方式去活化而发射的荧光。 根据荧光谱线的波长可以进行定性分析。在一定实验条件下,荧光强度与被测元素的浓度成正比。据此可以进行定量分析。原子荧光光谱仪分为色散型和非色散型两类。两类仪器的结构基本相似,差别在于非色散仪器不用单色器。色散型仪器由辐射光源、单色器、原子化器、检测器、显示和记录装置组成。辐射光源用来激发原子使其产生原子荧光。可用连续光源或锐线光源,常用的连续光源是氙弧灯,可用的锐线光源有高强度空心阴极灯、无极放电灯及可控温度梯度原子光谱灯和激光。单色器用来选择所需要的荧光谱线,排除其他光谱线的干扰。原子化器用来将被测元素转化为原子蒸气,有火焰、电热、和电感耦合等离子焰原子化器。检测器用来检测光信号,并转换为电信号,常用的检测器是光电倍增管。显示和记录装置用来显示和记录测量结果,可用电表、数字表、记录仪等。原子荧光光谱分析法具有设备简单、灵敏度高、光谱干扰少、工作曲线线性范围宽、可以进行多元素测定等优点。在地质、冶金、石油、生物医学、地球化学、材料和环境科学等各个领域内获得了广泛的应用。 基本原理 原子荧光光谱法是通过测量待测元素的原子蒸气在辐射能激发下产生的荧光发射强度,来确定待测元素含量的方法。 气态自由原子吸收特征波长辐射后,原子的外层电子从基态或低能级跃迁到高能级经过约10-8s,又跃迁至基态或低能级,同时发射出与原激发波长相同或不同的辐射,称为原子荧光。原子荧光分为共振荧光、直跃荧光、阶跃荧光等。 发射的荧光强度和原子化器中单位体积该元素基态原子数成正比,式中:I f为荧光强度;φ为荧光量子效率,表示单位时间内发射荧光光子数与吸收激发光光子数的比值,一般小于1;Io为激发光强度;A为荧光照射在检测器上的有效面积;L为吸收光程长度;ε为峰值摩尔吸光系数;N为单位体积内的基态原子数。 原子荧光发射中,由于部分能量转变成热能或其他形式能量,使荧光强度减少甚至消失,该现象称为荧光猝灭。 分析方法

相关文档
相关文档 最新文档