文档库

最新最全的文档下载
当前位置:文档库 > 数学建模1例题解析

数学建模1例题解析

1.贷款问题

小王夫妇计划贷款20万元购买一套房子,他们打算用20年的时间还清贷款。目前,银行的利率是0.6%/月。他们采用等额还款的方式(即每月的还款额相同)偿还贷款。

(1)在上述条件下,小王夫妇每月的还款额是多少?共计付了多少利息?

(2)在贷款满5年后,他们认为他们有经济能力还完余下的款额,打算提前还贷,那么他们在第6年初,应一次付给银行多少钱,才能将余下全部的贷款还清?

(3)如果在第6年初,银行的贷款利率由0.6%/月调到0.8%/月,他们仍然采用等额还款的方式,在余下的15年内将贷款还清,那么在第6年后,每月的还款额应是多少?

(4)某借贷公司的广告称,对于贷款期在20年以上的客户,他们帮你提前三年还清贷款。但条件是:

(i)每半个月付款一次,但付款额不增加,即一次付款额是原付给银行还款额的1/2;

(ii)因为增加必要的档案、文书等管理工作,因此要预付给借贷公司贷款总额10%的佣金。

试分析,小王夫妇是否要请这家借贷公司帮助还款。

解答:

(1)贷款总月数为N=20*12=240,第240个月的欠款额为0,即A N =0。 利用式子x =A 0r (1+r )N

(1+r )N ?1=200000×0.006×(1+0.006)240

(1+0.006)240?1=1574.699=1574.70(元),

即每个月还款1574.70元,共还款1574.70×240=377928.00(元),共计付利息177928.00元。

(2)贷款5年(即5*12=60个月)后的欠款额为A 60,

利用公式:A k =A 0(1+r )k ?x 1+r k ?1 1+r ?1

, 所以,A 60=200000×(1+0.006)

60?1574.70× 1+0.006 60?10.006=173034.90(元) (3) A 60=173034.90元,即第六年初,贷款利率0.8%,所以余下的15年,每个月还款额为:x =A 60r (1+r )N

(1+r )N ?1=173034.9×0.008×(1+0.008)180

(1+0.008)180?1=1817.33(元)

(4)按照借贷公司的条件(i)每半个月付款一次,但付款额不增加,即一次付款额是原付给银行还款额的12 ,付款的时间缩短,但是前17年的付款总额不变。帮忙提前三年还清需要资金数:A 204=200000×(1+0.006)204?1574.70× 1+0.006 204?10.006=50847.64(元)。

对于条件(ii)佣金数:A 0×10%=20000(元)

分析:因为预付佣金20000元,按照银行存款利率0.6%/月,17年的存款本息为20000× 1+0.006×204 =44480 元 <50847.64(元)

即在第17年需要给付借贷公司的钱少于给付银行的钱。所以建议请这家借贷公司帮助还款。

2.冷却定律与破案

按照Newton冷却定律,温度为T的物体在温度为T0(T0

凌晨某地发生一起凶杀案,警方于晨6时到达案发现场,测得尸温26℃,室温10℃,晨8时又测得尸温18℃。若近似认为室温不变,估计凶杀案的发生时间。

解答:

=k T?T0根据Newton冷却定律,可知温度T的微分方程为:dT

dt

此方程为一阶线性微分方程,其通解为:T=C e kt+T0

根据题目已知:T0=10℃,t=6时,T=26℃;t=8,T=18℃;

带入通解中得:

26=C e6k+10

18=C e8k+10

解得:k=?0.3466,C=128.027。可知T=128.027e?0.3466t+10

人体正常体温为37℃,令T=37,得t=4.49,可估计凶杀发生时间为3:29。3.锻炼想象力、洞察力和判断力的问题(只简单回答出理由即可)

(1)某人早8时从山下旅店出发沿一条山路上山,下午5时到达山顶并留宿,次日8时沿同一路径下山,下午5时回到旅店。该人必在两天中的同一时刻经过路径中的同一地点,为什么?

(2)甲乙两站之间有汽车相通,每隔10分钟甲乙两站相互发一趟车,但发车时刻不一定相同。甲乙两站之间有一中间站丙,某人每天在随机时刻到达丙站,并搭乘最先经过丙站的那趟车。结果发现100天中约有90天到达甲站,大约10天到达乙站。问开往甲乙两站的汽车经过两站的时刻表是如何安排的?

(3)张先生家住在A市,在B市工作,每天下班后他乘城际火车于18:00抵达A市火车站,他妻子驾车至火车站接他回家。一日他提前下班,乘早一班火车于17:30抵达A市火车站,随即步行回家,他妻子像往常一样驾车前来,在半路相遇将他接回家。到家时张先生发现比往常提前了10分钟,问张先生步行了多长时间?

(4)一男孩和一女孩分别在距家2公里和1公里,方向相反的两所学校上学,每天同时放学后分别以每小时4公里和每小时2公里的速度步行回家.一小狗以每小时6公里的速度由男孩处奔向女孩,又从女孩处奔向男孩,如此往返直至回到家中.问小狗奔波了多少路程.如果男孩和女孩上学时,小狗也往返奔波在他们中间,问当他们到达学校时小狗在何处?

解答

(1)因为此人在两天的上下山的过程中所走过路程相同,所用时间相同,所以两天的过程如果发生在同一天,此人一定会在某一时间碰到另一个自己。也就是说如果是两个人,两人一定会在某一时间相遇,也即题目所说同一时刻经过路径中的同一地点。

(2)设从甲站出发的车为甲车,乙站出发的车为乙车。因为每隔十分钟甲乙两

站就互发一趟车,此人在丙站点等车,有0.9的概率等到的是甲车,0.1的概率等到的是乙车。即可知甲车与乙车到达中间站丙的时间间隔为一分钟或者九分钟,即过九分钟甲车通过,过一分钟乙车通过,再过九分钟甲车通过,依次类推。

假设甲乙车从车站到达中间站丙的时间相同,那么甲车发车一分钟后乙车发车,即可达到题目要求。

(3)张先生步行了25分钟。假设从家开车到车站所用时间为t,即可知其妻子从家出发时间为18:00?t,经过时间t到车站,接张先生再经过时间t到家,即到家时间为18:00+t。

张先生提前下班,17:30到达车站,设张先生步行时间为x,妻子从家出发时间为18:00?t,半路相遇后接回家比往常提前10分钟,可知妻子所用时间为

2t?10,单程时间为t?5。可列等式:

17:30+x+t?5=18:00+t?10

解得x=25分钟。

(4)两人回家所用时间相同,为0.5小时,小狗速度为每小时6公里,往返总路程为6×0.5=3公里。

如果男孩和女孩上学时,他们到达学校时小狗与男孩同时到达男孩的学校。

分析:如果男孩和女孩上学时,小狗往返的路程仍为3公里。此过程与放学过程为相反的两个过程,放学时,小狗从男孩处奔向女孩,最后男孩、女孩和小狗同时到家,逆过程为同时出发,最终小狗和男孩一起到达学校。

4考试作弊情况调查

一位教授要估算他班上的大三和大四高年级学生在大学期间的考试中从未作弊的概率,为了从学生那里得出真实的答案,他要求每个学生自己投掷一枚硬币,如果正面朝上,回答问题1:“你是即将毕业的大四学生吗?”;如果是正面朝下,回答问题2:“你曾经在考试中做过弊吗?”。每个学生在一张纸上回答“是”或“否”,然后回收这张纸,由教授来统计。答案是保密的,因为只有学生自己知道他回答的是哪一个问题。在参与这项试验的35名学生中,有20名大四学生,试验统计结果表明,有18名学生回答“是”,17名学生回答“否”利用这些信息估计该班的任何一名学生在过去的考试中从未作弊的概率。

解答:

此问题为不相关问题,根据不相关问题模型可知:

λ=pπ+(1?p)πB

其中,λ=回答“是”的概率,即λ=18

35

=0.5143;

p=正面朝上的概率,即p=0.5;

πB=大四学生的概率,即πB=20

35

=0.5714;

π=曾经做过弊的学生概率,为所求,可得

π=1

λ?1?pπB=

1

×0.5143?1?0.5×0.5714=0.4572

所以,可知从未做过弊的概率为1?π=1?0.4572=0.5428=54.28%。