文档库 最新最全的文档下载
当前位置:文档库 › 奇异摄动拟线性对流扩散问题的区域分解方法

奇异摄动拟线性对流扩散问题的区域分解方法

奇异摄动拟线性对流扩散问题的区域分解方法
奇异摄动拟线性对流扩散问题的区域分解方法

Robin型非重叠区域分解法的收敛性-LSEC

Robin型非重叠区域分解法的收敛性 秦理真 摘要 本文对Robin型非重叠区域分解法的收敛性作了系统的研究与总结.此方法在本文中被用来求解二阶线性椭圆方程. 自H.A.Schwarz提出以来,区域分解方法方法得到了极大的发展,现已成为偏微分方程求解的最有效的方法之一.本文所研究的Robin型非重叠区域分解法最初由P.L.Lions首次提出.作为一种非重叠型区域分解法,此方法以Robin条件为交界面传递条件,因此被称为Robin型方法.近年来,此方法已被推广而应用到其它类型的方程上去. Robin型方法在子区域之间传递的是Robin条件.它由迭代解在子区域交界面上的迹及关于交界面的外法向导数线性组合而得.此组合含有一个松弛参数λ.大量数值分析表明,Robin型方法的收敛率对于λ十分敏感.自Lions提出此方法以来,此方法的收敛率及最优参数的选取一直是令人关注的问题.本文将对此问题作系统的研究,并用数值实验来验证理论分析的结果. 对于连续问题的Robin型方法,本文遵循Deng的方法给出一个与Deng略有不同的证明.且本文还将给出两子区域情形的反例,来证明连续问题的Robin型方法在任何范数下都不可能几何收敛. 对于有限元离散问题的Robin型方法,本文改进了以往文献中的收敛率分析.当方程中低阶项系数b∈[O(H?2),O(h?2)]时,取λ=O(h?1/2b1/4),收敛率为1?O(h1/2b1/4).当b≥O(h?2)时,取λ=O(bh),收敛率为1?δ,其中δ为不依赖于h, H和b的常数.当环绕数N=1,且b∈[0,O(H?2)]时,取λ=O(h?1/2H?1/2),收敛率为1?O(h1/2H?1/2).根据我们对两子区域情形所作的细致的理论分析,可知以上结果不可改进.另外,当N>1,且b∈[0,O(H?2)]时,我们给出了此方法的两个上界1?O(h1/2H1/2b1/2)和1?O((C0)N h1/2H?1/2).以上h为有限元网格尺寸,H 为子区域尺寸,N为区域分解的环绕数,本文将给出它们的定义.需要指出的是,当N>1,且b=0时,Robin型方法的收敛率分析很困难.本文所给的此情形下的收敛率估计是这方面的第一个结果. 为了对收敛率的下界进行估计,本文系统地对D-N算子和离散D-N算子的作了谱分析.与以前这方面的工作相比,本文的工作更为细致而又不失一般性. 本文系统地介绍了Robin型方法的收敛性分析所采取的三种常用方法:直接求解法,能量估计法和改进的能量估计法.此三种方法的特点将在适当的应用中得以体现. 关键词:有限元,Robin型区域分解法,二阶椭圆问题,几何收敛,收敛率

对流扩散方程

徐州工程学院 课程设计报告 课程名称偏微分方程数值解 课题名称对流扩散方程 的迎风格式的推导和求解专业信息与计算科学 班级10信计3 姓名学号 指导教师杨扬 2013年 5 月23 日

一、实验目的: 进一步巩固理论学习的结果,学习双曲型对流扩散方程的迎风格式的构造 方法,以及稳定的条件。从而进一步了解差分求解偏微分方程的一些基本概念,掌握数值求解偏微分方程的基本过程。在此基础上考虑如何使用Matlab 的软件进行上机实现,并针对具体的题目给出相应的数值计算结果。 二、实验题目: ?? ? ??-=-==<<<<+=+);2/1exp(),1();exp(),0();2/exp()0,(10,10,11t t u t t u x x u t x f u b u a u xx x t 其中a1=1,b1=2, ) 2/exp(),(t x t x f --=。 用迎风格式求解双曲型对流扩散方程,观差分解对真解的敛散性()2/exp(t x u -= 三、实验原理: 1、用迎风格式求解双曲型对流扩散方程,迎风格式为: ) 01(21 1 )01(2112 1 1112 1 11 1<++-=-+->++-=-+--+++-+-+a f h u u u b h u u a u u a f h u u u b h u u a u u n j n j n j n j n j n j n j n j n j n j n j n j n j n j n j n j τ τ 若令,/*1,/*12h b h a r τμτ== 则迎风格式可整理为: > <<++-+-+=><>++++--=-+++-+2)01()()21(1)01()()21(111111a f u u r u r u a f u u r u r u n j n j n j n j n j n j n j n j n j n j τμμμτμμμ2、稳定条件: ) () (01),*11*2/(01),*11*2/(2 2<-≤>+≤a h a b h a h a b h ττ(*) 四、数值实验的过程、相关程序及结果: 本次的实验题目所给出的边界条件是第一边界条件,直接利用所给的边界条件,我们可以给出界点处以及第0层的函数值,根据a1的正负性,使用相应的<1>或者<2>式,求出其他层的函数值。误差转化成图的形式,并输出最大值。 针对三种不同的输入对应输出结果 :

基于奇异值分解的人脸识别

人机交互大作业 ——人脸识别

“人脸识别”系统设计文档 人脸识别的意义及应用 人脸识别是指对视频或图像中的人脸进行发现,追踪,进而识别出是特定个体的一种生物特征技术,也是生物特征识别中最主要的研究方向之一。人脸识别在日常生活中有着非常广泛的应用市场。下面列举了一些人脸识别的主要应用:1.监控系统 监控系统在日常生活中非常常用,是防盗系统的主要组成部分之一。人工智能的监控系统的一大优势就是可以将人类从每天对着监视器的枯燥工作中解脱出来。将监视的工作交给计算机来做,有几个优势。一是可以365天,24小时不间断的工作。二是可以不知疲倦,不会因为时间长而分散注意力。但是人工智能的监控系统仍面临着很多问题,比如漏识别,识别误差等等。2.身份验证 身份验证系统可以应用的范围也很广。比如现有的银行存取款系统,当人的银行卡和密码同时丢失时,卡中的钱就可能被转走。但是如果在取款机上安装一个人脸识别系统,在提供银行卡和密码时,同时需要进行面部认证,这样就会大大降低个人财产损失的风险。 3.考勤系统 考勤系统通常用在公司里。传统的考勤系统需要给每个员工分配一张考勤卡,每天上下班需要去打卡。这样会给员工带来一定的不便。如果员工忘记带卡,或者卡有损坏,就会耽误打卡。而且专门设立打卡地点,不仅上下班打卡不方便,而且还会出现替打卡的情况。使用人脸识别系统,可以在不被觉察的情况下,自然地实现员工的考勤。减少了很多不必要的麻烦。 4.视频、图像检索 随着人们对图像,视频等需求的不断扩展,网络上的图像和视频信息量也在以极快的速度增长。在如此庞大的信息库中快速查找到用户需要的信息成了现在研究的一个重要方向。而现在最主流的方式是在视频和图像上附带描述信息。这种描述信息可以被发布人随意更改,很多时候会对用户产生误导,浪费了时间。而用人脸识别进行图像和视频的检索,在检索某些特定人相关的资源时,会大大提高搜索结果的质量。再配合上描述关键词,能使人更快速寻找到所需信息。 人脸识别的优势和困难 人脸识别相对于传统的身份验证技术,和现有的虹膜识别,指纹识别等技术有一个显著的优势,就是可以自然地获取识别对象的身份信息,而不需要识别对象刻意的配合。虹膜识别和指纹识别都需要识别对象的配合。在这种情况下,识别对象可以有意识的进行伪装和欺骗。而人脸识别是在人们不经意的时候对人们图像的采集和识别,不会引起识别对象的注意。因此从某种意义上更容易获得真实的信息。 虽然人脸识别有着不可比拟的优势,但是在实现方面还有着很大的困难。

对流扩散方程引言

对流扩散方程的定解问题是指物质输运与分子扩散的物理过程和黏性流体流动的数学模型,它可以用来描述河流污染、大气污染、核污染中污染物质的分布,流体的流动和流体中热传导等众多物理现象。关于对流扩散方程的求解很也备受关注,因此寻找一种稳定实用的数值方法有着重要的理论与实际意义。 求解对流扩散方程的数值方法有多种,尤其是对流占优扩散方程,这些方法有迎风有限元法,有限体积法,特征有限体积法,特征有限差分法和特征有限元法,广义差分法,流线扩散法,以及这些方法与传统方法相结合的方法如迎风广义差分法,迎风有限体积法有限体积——有限元法等这些方法数值求解效果较好,及有效的避免了数值震荡,有减少了数值扩散,但是一般计算量偏大 近年,许多研究者进行了更加深入的研究,文献提出了对流扩散方程的特征混合元法,再次基础上,陈掌引入了特征间断混合元方法,还有一些学者将特征线和有限体积法相结合,提出了特征有限体积元方法(非线性和半线性),于此同时迎风有限元也得到较大的发展,胡建伟等人研究了对流扩散问题的Galerkin 部分迎风有限元方法和非线性对流扩散问题的迎风有限元,之后又有人对求解发展型对流扩散问题的迎风有限元法进行了理论分析 有限差分法和有限元是求解偏微分方程的常用数值方法,一般情况下考虑对流占优的扩散方程,当对流项其主导作用时,其解函数具有大梯度的过渡层和边界层,导致数值计算困难,采用一般的有限元或有限体积方法虽然具有形式上的高精度,不能解决数值震荡的问题,虽然我们不能简单的将对流占优扩散方程看做对流方程,但由于次方程中含有一阶不对称的导数,对流扩散方程仍会表现出“对流效应”,从而采用迎风格式逼近,尽量反应次迎风特点,此格式简单,克服了锋线前沿的数值震荡,计算结果稳定,之前的迎风格式只能达到一阶精度,我们采用高精度的广义迎风格式,此格式是守恒的,精度高,稳定性好,具有单调性,并且是特征线法的近似,有效的避免了锋线前沿的数值震荡。 有限体积是求解偏微分方程的新的离散技术,日益受到重视。有限体积与有限差分、有限元法最大的区别及优点在于有限体积将求解区域内的计算转化到控制体积边界上进行计算,而后二者均是直接(或间接)在域内计算,故有限体积有着明显的物理涵义,在很大程度上减少计算工作量又能满足计算精度要求,加快收敛速度。由于此方法讲散度的积分化为子域边界积分后子啊离散,数值解满足离散守恒,而且可以采用非结构网格,所以在计算物理特别是计算流体力学领域上有限体积有广阔的前景。 间断Galerkin(DG)方法是在1973年,Reed和Hill在求解种子迁移问题时,针对一阶双曲问题的物理特点提出的。之后C.Johnson,G.R.Richter等人对双曲问题的DG方法做了进一步的研究,并且得到了该机的误差分析结果,由于这种方法具有沿流线从“上游”到“下游”逐层逐单元计算的显示求解的特点,并且可以进行并行计算,所以被广泛应用于各类方程的求解。最近Douglas等人在{25}中处理二阶椭圆问题时,得到DG方法的有限元空间不需要满足任何连续性条件,因此空间构造简单,具有较好的局部性和并行性。DG发展的一个重要方面是对对流占优扩散方程的应用。G.R.Richter等在1992年提出利用DG方法求解定长对流扩散问题 近年DG方法有了新的发展,其中YeXiu提出间断体积元方法备受人们关注,2004年,她将有限体积法与DG相结合,提出了椭圆问题的间断有限体积法,此方法解除了逼近函数在跨越边界上连续的限制,之后更多的研究者应用到Stokes问题,抛物问题,双曲问题,并得到了较好的结果,该方法不但继承了有限体积的高精度计算简单及保持物理间局部守恒等优点,而且有限元空间无需满足任何连续性要求,空间构造简单,有较好的局部和并行性。 当对流扩散方程中的对流项占主导地位时,方程具有双曲方程的特点,这是由于对流扩散方程中的非对称的对流项所引起的迎风效应使对流扩散方程的数值求解更困难,用传统的中心差分法和标准的有限元求解会差生数值的震荡,从而使数值模拟失真,为了克服这一困难,早在20世纪50年代,就有人提出了迎风思想,由于使用迎风技巧可以有效的消除数值解不稳定性,因此吸引了众多学者的关注,从1977年,Tabata等人就针对对流扩散方程提出了三角形网格上的迎风格式{42,38},并进行了深入的研究,梁栋基于广义差分法,提出并分析了一类建立在三角网格上的广义迎风差分格式,袁益让2001年就多层渗流方程组合系统提出并分析了迎风分数步长差分方法,以上均是讨论的线性对流扩散问题,胡建伟等通过引入质量集中算子,构造并分析了一类基于三角网格的质量集中型的部分有限元方法处理线性和非线性对流扩散问

基于奇异值分解的图像压缩及实现

基于奇异值分解的图像压缩及实现 本文利用奇异值分解方法,来对图片进行压缩,过程中我们 利用Matlab 编程来达到这个目的。 一:实验方法及原理 奇异值:矩阵A 的奇异值定义如下:设n *m r C A ?(r>0),且A A T 的特征值分别为 0n 1r r 21==??=≥≥??≥+λλλλλ (1) 则称i i λσ= (i=1,2,…,n )为A 的奇异值。 奇异值分解定理:设Σ=diag(r 21...σσσ,, ,),由式(1)可知,i σ(i=1,2,…,r )为A 的非零奇异值。U 为m 阶酉矩阵(n 阶复 方阵U 的n 个列向量是U 空间的一个标准正交基,则U 是酉矩阵),V 为n 阶酉矩阵,若满足矩阵等式 (2) 则称式(2)为A 的奇异值分解。若U 写成U =[m 21u ......u u ,, ,]的形式,V 写成V=[n 21v ......v v ,, ,]的形式,则式(2)可写成如下形式: (3) 由于大的奇异值对图像的贡献大,小的奇异值对图像的贡献小,所以可以从r 个奇异值生成矩阵中选取前k 个(k

(4) 近似表示图像A。 存储图像A需要mn个数值,存储图像k A需(m+n+1)k个数值,若取 (5) 则可达到压缩图像的目的,比率 (6) 称为压缩率 二:实验过程 1.实验数据来源: 本实验所需要的实验原图片是lena.bmp,处理后的图片设置为lena2.bmp。并获取图片的描述矩阵,为512*512阶8位的方阵。 设为A,同时也是原始矩阵,本实验主要是对A进行奇异值分解,用一个更小阶的矩阵来描述A,从而达到实验目的。 2.实验过程: 提取图像lena.bmp数据,将图片读入Matlab中,存储的是数据矩阵并且设置为512*512的矩阵A,将矩阵A中的数据转换为double型,以适应svd函数的要求,运用函数[U,S,V]=svd(A)进行图像的奇异值分解,分别得到对角奇异值矩阵S为512*1阶,以

基于奇异值分解的MVDR谱估计

现代信号处理 学号: 小组组长: 小组成员及分工: 任课教师: 教师所在学院:信息工程学院

2015年11月 论文题目 基于奇异值分解的MVDR方法及其在信号频率估计领域的 应用 摘要:本文主要是介绍和验证MVDR的算法,此算法应用于信号频率估计的领域中。我们通过使用经典的MVDR算法验证算法的可行性,再通过引用了奇异值分解的思想对MVDR方法进行了改进,在验证这种改进思想的方法可行性时,我们发现基于这种奇异值分解的MVDR方法在信号频率估计上具有提高检测精度的特性,这也说明了这种思想在应用信号频率估计时是可行的。 关键词:MVDR算法奇异值分解信号频率估计

论文题目(English) MVDR method based on singular value decomposition and its application in signal frequency estimation Abstract:In this paper, the algorithm of MVDR is introduced, and the algorithm is applied to the field of signal frequency estimation. By using the classical MVDR algorithm to verify the feasibility of the algorithm, and then through the use of the idea of singular value decomposition to improve the MVDR method, in the verification of the feasibility of the method, we found that the MVDR method based on the singular value decomposition has the characteristics of improving the detection accuracy in signal frequency estimation. It also shows that this idea is feasible in the application of signal frequency estimation. Key words: MVDR method Singular value decomposition Signal frequency estimation

对流扩散方程有限差分方法.

对流扩散方程有限差分方法 求解对流扩散方程的差分格式有很多种,在本节中将介绍以下3种有限差分格式:中心差分格式、Samarskii 格式、Crank-Nicolson 型隐式差分格式。 3.1 中心差分格式 时间导数用向前差商、空间导数用中心差商来逼近,那么就得到了(1)式的中心差分格式]6[ 2 1 11 1122h u u u v h u u a u u n j n j n j n j n j n j n j -+-+++-=-+-τ (3) 若令 h a τ λ=,2h v τ μ=,则(3)式可改写为 )2()(2 111111 n j n j n j n j n j n j n j u u u u u u u -+-+++-+--=μλ (4) 从上式我们看到,在新的时间层1+n 上只包含了一个未知量1 +n j u ,它可以由时间层n 上的值n j u 1-,n j u ,n j u 1+直接计算出来。因此,中心差分格式是求解对 流扩散方程的显示格式。 假定),(t x u 是定解问题的充分光滑的解,将1 +n j u ,n j u 1+,n j u 1-分别在),(n j t x 处 进行Taylor 展开: )(),(),(211ττO t u t x u t x u u n j n j n j n j +??? ?????+==++ )(2),(),(3 22211 h O x u h x u h t x u t x u u n j n j n j n j n j +????????+????????+==++ )(2),(),(3 22211 h O x u h x u h t x u t x u u n j n j n j n j n j +????????+????????-==-- 代入(4)式,有 2 111 1122),(h u u u v h u u a u u t x T n j n j n j n j n j n j n j n j -+-+++---+-= τ )()()(2222 h O v x u v h O a x u a O t u n j n j n j ?-????????-?+????????++????????=τ )()()(222h O v a O x u v x u a t u n j n j n j ?-++????????-??? ?????+????????=τ

基于奇异值分解的MVDR谱估计

现代信号处理学号: 小组组长: 小组成员及分工: 任课教师: 教师所在学院:信息工程学院2015年11月

论文题目 基于奇异值分解的MVDR方法及其在信号频率估计领域的 应用 摘要:本文主要是介绍和验证MVDR的算法,此算法应用于信号频率估计的领域中。我们通过使用经典的MVDR算法验证算法的可行性,再通过引用了奇异值分解的思想对MVDR方法进行了改进,在验证这种改进思想的方法可行性时,我们发现基于这种奇异值分解的MVDR方法在信号频率估计上具有提高检测精度的特性,这也说明了这种思想在应用信号频率估计时是可行的。 关键词:MVDR算法奇异值分解信号频率估计

论文题目(English) MVDR method based on singular value decomposition and its application in signal frequency estimation Abstract:In this paper, the algorithm of MVDR is introduced, and the algorithm is applied to the field of signal frequency estimation. By using the classical MVDR algorithm to verify the feasibility of the algorithm, and then through the use of the idea of singular value decomposition to improve the MVDR method, in the verification of the feasibility of the method, we found that the MVDR method based on the singular value decomposition has the characteristics of improving the detection accuracy in signal frequency estimation. It also shows that this idea is feasible in the application of signal frequency estimation. Key words: MVDR method Singular value decomposition Signal frequency estimation

非线性对流扩散方程不同解法稳定性比较

2013—2014学年第二学期 《Matlab 编程技术》作业 专业班级 石工博13-02 研究方向 油气田开发 姓 名 王壮壮 学 号 B13020075

结合自己研究方向,运用Matlab编写科学计算及可视化或其它相关程序。要求: 1)将要解决的问题交代清楚(数学模型、目标等); 2)编写的程序的关键语句要有注释说明; 3)程序能顺利运行,运行结果和编写的m文件一并提交; 4)独立完成。

非线性对流扩散方程不同解法稳定性比较 流体力学基本方程组本身就是非线性的对流扩散方程,非线性Burgers 方程就是N-S 方程很好的模型方程,它的一维形式如下: L x x u x u u t u ≤≤??=??+??022μ (1) 边界条件为 ? ? ?====0,,00 u L x u u x (2) 初始条件是任意可以给出的。 我们知道,遇到对流项,我们用迎风格式是绝对没有问题,无论是一阶迎风还是二阶迎风格式都是能够解决非线性对流方程的,如果网格Peclet 数允许的话,中心差分也是可以考虑的。 不过,对于非线性对流,我们来看看另外两个G-S 格式,一个是G-S 型迎风半隐格式,另一个是G-S 型Samarskii 半隐格式,对于任何类型的对流扩散方程,可以收敛到定常解,并且是绝对稳定的,特别适合于解决定常问题。 对于式(1)这两个格式分别为 () 2 11 111111212h u u u R h u u u u u n i n i n i n i n i n i n i n i n i +-+++-+++-+=-+-μτ (3) 21 1 1111112112h u u u R R h u u u u u n i n i n i n i n i n i n i n i n i n i +-+++-+++-???? ??++=-+-μτ (4) 其中 μ 2h u R n i n i = 式(3)就是G-S 型迎风半隐格式,它具有一阶精度,是从一阶迎风格式发展而来的;式(4)是G-S 型Samarskii 半隐格式,具有二阶精度,它是从Samarskii 格式发展而来的。上面说过,它们只适用于求解定常解,因此上标的时层n 可以看作是迭代步,可以说它们没有时间精度,如果想用这两个格式求解非定常解,那可是徒劳的。 对于上两式,我们可以采用迭代法求解,把它们写成迭代式,分别为 ()[]( )( ) ( ) n i n i n i n i n i n i n i n i n i R h u h u u R u u u h u ++++++--= +-++-++142212*********τμτμτ (5)

一维对流扩散问题求解

Subjects : A property φ is transported by means of convection and diffusion through the one-dimensional domain. The governing equation is ()()d d d u dx dx dx φ ρφ=Γ; boundary conditions are 01φ= at x=0 and 0L φ= at x =L. Using five equally spaced cells and the central differencing scheme for convection and diffusion calculate the distribution of φas a function of x for (i)Case 1: u=0.1 m/s, (ii) Case2: Case 1: u=2.5 m/s, and compare the results with the analytical solution 00exp(/)1 exp(/)1L ux uL φφρφφρ-Γ-=-Γ-. (iii)Case 3: recalculate the solution for u=2.5m/s with 20 grid nodes and compare the results with the analytical solution, the following date apply: length L=1.0 m,31.0/,//kg m kg m s ρ=Γ=. ?=1x=0 ?=0x=L u

基于奇异值分解的MVDR谱估计

现代佶号处理学号: 小组组长: 小组成员及分工: 任课教师: 教师所疫学院:信息工程学院

2015年11月

基于奇畀值分鮮的MVDR方法及其在信号频率估计领城的 应用 摘要:本丈主要是介绍和验证MVDR的算出,此算岀应用于信号频率估计的领城中。我们通过使用经典的MVDR算去验证算比的可行性,再通过引用了奇异值分解的思想对MVDR方法进行了孜进,准.脸证这种改进思想的方法可行性肘,我们发现基于这种奇异值分鮮的MVDR 方岀在信号频率估计上具有提壽检测赫度的特性,这色说朗了这种思想>4应用信号频率估计肘是可行的。

论丈题tl (English丿 MVDR method based on singular value decomposition and its application in signal frequency estimation Abstract:In this paper, the algorithm of MVDR is introduced, and the algorithm is applied to the field of signal frequency estimation. By using the classical MVDR algorithm to verify the feasibility of the algorithm, and then through the use of the idea of singular value decomposition to improve the MVDR method, in the verification of the feasibility of the method, we found that the MVDR method based on the singular value decomposition has the characteristics of improving the detection accuracy in signal frequency estimation. It also shows that this idea is feasible in the application of signal frequency estimation. Key words:MVDR method Singular value decomposition Signal frequency estimatio n

对流扩散方程背景

对流扩散方程背景 提出一种隐格式用于解决二维时间依赖的Burgers型方程。迎风单边差分格式被用于对流项离散;对扩散项用二阶中心差分格式离散。我们建立了全隐的数值有限差分格式,分析了无条件稳定性和严格推导了收敛性,在空间是二阶收敛的和时间一阶收敛的。给出数值结果验证理论正确性。 关键词:隐格式,单边差分逼近,Burgers方程,稳定性,收敛阶 对流扩散方程背景 对流扩散方程描述黏性流体的动力学行为,这在许多工程应用中发挥了重要作用。对流占优型扩散方程一般具有对流比扩散的系数大得多的特点,通常数值模拟具有一定难度,因为一方面,扩散系数比传输速度小,并且在另一方面,由于数值扰动容易出现边界层现象。许多格式已用于这些问题的模拟,并有大量成功的数值方法[1-3]。通过离散方法来解决对流扩散问题时,一般运用标准Galerkin有限元方法求解,但此方法会导致非物理特征扰动。为了解决这类缺陷,几种稳定的有限元方法已经在[4]中被提出了。 我们感兴趣的是建立非耗散方法来克服数值扰动,并有鲁棒性和二阶精度,尤其是对Burgers问题。Burgers问题通常被认为非线性流体的流动和扰动的经典模型。在二维非线性的情况下,可以描述对流和扩散的现象,Burgers方程代表一种最基本的非线性模型方程。从一个数值格式出发研究是相当有趣的,因为Burgers已出现在众多的流体方程中[5-7]。并已经由霍普夫-科尔计算出多种组合的初始条件和边界条件下的结果[10,11]。此外,对于非线性Burgers方程的解析解也可以通过Homotop Perturbation法[12]得到。 众所周知,单独的选择一种基本差分格式如中心差分或者迎风格式,来计算纯对流式的方程,扩散项通常只是中心近似。而解决问题的关键在于对流方面构造稳定的离散结构来克服数值扰动。虽然单边差分近似格式已经被提出了30年之久[13],人们却很少关注他们在计算流动问题。一阶或者二阶单边迎风有限差分

基于奇异值分解的图像压缩处理

矩阵奇异值分解在图像压缩中的应用 电子科技大学 微固学院 贾旺旺 [摘要]本文首先介绍了矩阵的奇异值分解(SVD)定理,然后讨论了基于矩阵奇异值分解的图像压缩编码原理,最后文中给出了实例,并用matlab 编程实现了图像的压缩和重构,发现随着图像压缩比的减小,图像传输时间增大,但重构后得到的图像失真度减小了。 [关键词]奇异值分解 图像压缩 压缩比 一.引言 随着网络的快速发展,数据量的增长也十分迅速,这使人们必须想办法如何能以最少的存储空间,最大的传输效率来进行数据的存储和传输。如在宇航中,拍摄得到的图像文件一般都比较大且数量也很多,它的存储,传输和处理会受到一定的限制,因此图像压缩就显得格外重要。图像压缩技术就是要减少图像数据中的冗余信息从而以更加高效的格式存储和传输数据。 图像压缩的基本方法包括无损压缩的行程长度编码,熵编码法;有损压缩的色度抽样法,变换编码,分形压缩等。近几年,基于矩阵奇异值分解的图像压缩方法也得到了很多学者的关注[1] 。因为图像的像素点具有矩阵的结构,我们可以利用奇异值分解来对任意阶数的矩阵操作。本文就是利用了矩阵的奇异值分解,达到了图像压缩的目的。 二. 矩阵奇异值分解原理[2] 引理 1 的非零特征值相同 的特征值均为非负实数,则有 设H H H H H H n m r AA A A AA A A AA rank A A rank A rank C A ,)3(,)2()()()()1(==∈? ) ()()()(00)(0 0)()1(:1111111A A rank A rank A A rank A rank Ax Ax Ax Ax A x Ax A x X k n Ax A k A A rank H H H H H H H H H =?≤?=?==?=?-=?=维,记为的解空间为设证明0 ),(),(),(),(0)2(≥?===≤?=λααλλααααααλααA A A A A A H H

我所理解的奇异值分解

我所理解的奇异值分解SVD 1、 奇异值与奇异值分解定理 奇异值定理: 设m n A C ?∈,r=rank(A),则一定存在m 阶酉矩阵U 和n 阶酉矩阵V 和对角矩阵1212(,, ,)(1,2,,)r r i diag i r σσσσσσσ∑=≥≥≥=,且,而 ,使得H A U V =∑,称为A 的奇异值分解。 复数域内的奇异值: 设(0)m n H r A C r A A ?∈>,的特征值为1210r r n λλλλλ+≥≥ ≥>=== 则称1,2, ,)i i n σ==为A 的正奇异值;当A 为零矩阵时,它的奇异值都是零。易见,矩阵A 的奇异值的个数等于A 的列数,A 的非零奇异值的个数等于rank(A)。 2、 奇异值分解的理解 奇异值σ跟特征值类似,在矩阵Σ中也是从大到小排列,而且σ的减少特别的快,在很多情况下,前10%甚至1%的奇异值的和就占了全部的奇异值之和的99%以上了。也就是说,我们也可以用前r 大的奇异值来近似描述矩阵。 r r r T r r r T v u v u v u V U V U A σσσ+++=∑=∑= 222111即A 可表示为r 个秩为一的举证的和,这是A 得奇异值分解的紧凑格式。 3、 奇异值分解特征 奇异值分解的第一个特征是可以降维。A 表示 n 个 m 维向量 ,通过奇异值分解可表示成 m + n 个 r 维向量 ,若A 的秩 r 远远小于 m 和 n ,则通过奇异值分解可以大大降低 A 的维数。可以计算出 ,当 r

对流扩散方程.

A

对流扩散方程的求解 对流扩散问题的有效数值解法一直是计算数学中重要的研究内容,求解对流扩散方程的数值方法主要是有限差分法(FDM)、有限元法(FEM)、有限体积法(FVM)、有限解析法(FAM)、边界元法(BEM)、谱方法(SM) 等多种方法。但是对于对流占优问题,用通常的差分法或有限元法进行求解将出现数值震荡。 为了克服数值震荡,80年代,J.Douglas,Jr.和T.F.Russell 等提出特征修正技术求解对流扩散占优的对流扩散问题,与其它方法相结合,提出了特征有限元方法、特征有限差分方法、特征混合元方法;T.J.Hughes和A.Brooks提出过一种沿流线方向附加人工黏性的间断有限元法,称为流线扩散方法(SDM)。有限差分法、有限元法、有限体积法是工程应用中的主要方法。 对流扩散方程的特点 对流扩散方程右端第一项为扩散项,左端第二项则是对流项。由于其方程本身的特点,给建立准确有效的数值求解方法带来一定的困难。对流和扩散给流体中由流体携带的某种物理量的变化过程,可以通过一个无量纲的特征参数(Peclet数)来描述,Peclet数Pe的定义为:Pe=|ν|L/D。这里v是来流速度,L是特征长度,D是物质的扩散系数。如果Pe数较小,即对流效应相对较弱,这类问题中,扩散占主导地位,方程是椭圆型或抛物线型;

如果Pe数较大,即溶质分子的扩散相对于流体速度而言是缓慢的,这类问题中,对流占优,方程具有双曲型方程的特点。 对于对流占优问题的求解,采用常规的Galerkin有限元方法,为了避免求解结果产生数值振荡,获得稳定解,则应使每个单元的局部Peclet数,Peh=|ν|h/D≤2,这里h为单元的最大尺寸,|v|为单元中的最大速度分量值。因此,用本文方法求解对流占优对流扩散问题,要得到稳定解,则要通过加密有限元网格来实现。

相关文档