文档库 最新最全的文档下载
当前位置:文档库 › 基于Smith圆图的射频功放电路的设计与分析

基于Smith圆图的射频功放电路的设计与分析

基于Smith圆图的射频功放电路的设计与分析
基于Smith圆图的射频功放电路的设计与分析

第5卷 第6期信息与电子工程Vo1.5,No.6 2007年12月INFORMATION AND ELECTRONIC ENGINEERING Dec.,2007 文章编号:1672-2892(2007)06-0409-05

基于Smith圆图的射频功放电路的设计与分析

宋汉斌,陈晓光,王 超

(复旦大学通信科学与工程系,上海 200433)

摘要:基于Smith圆图设计射频匹配电路,提出了大功率射频放大电路的设计方法,采用MRF9060芯片,运用如Pspice和ADS等开发软件,实现了包括直流偏置电路、保护电路、匹配滤

波电路以及射频放大电路在内的整体设计,并给出了对系统增益、回波损耗等指标的仿真结果。

关键词:射频放大器;Smith圆图;匹配网络;增益;MRF9060芯片

中图分类号:TN722.7+5 文献识别码:A

Design and Analysis of RF Power Amplifying Circuit Based on Smith Chart

SONG Han-bin,CHEN Xiao-guang,WANG Chao

(Dept. of Communication Science and Engineering,Fudan University,Shanghai 200433,China)

Abstract:Based on Smith chart to design RF match network,a high-power RF power amplifying circuit is designed. By using Motorola MRF9060,and the commerce softwares such as Pspice and

Advanced Design System(ADS),further development is carried out. An integrated system including DC

bias circuit, the protection circuit,RF match network and RF power amplifying circuit has been

implemented. Meanwhile the simulation results of system gain,return loss,etc. are presented.

Key words:RF power amplifying circuit;Smith chart;matching network;gain;MRF9060 chip

1 引言

随着通信和计算机技术的迅速发展,工作频率的日益增高,射频(RF)电路得到更加广泛的应用,高频电路的设计方法也得到不断的发展,这个领域的发展也被工业界给予更大程度的关注。新型半导体器件的不断诞生,使得高频模拟系统不断扩张,在无线通信、雷达以及相关电子工程中的应用也在不断增加。在数字电视这个新兴领域,对射频放大器提出了新的要求:具有更大的功率、更高的增益以及更好的线性度,而这些要求都是在射频放大电路的设计中所必须考虑的。

利用摩托罗拉公司MRF9060功放模块设计了偏置电路、射频匹配滤波电路及可应用在数字电视发射系统中的75 W射频放大电路。MRF9060是一款射频放大模块,它的最高工作频率可以达到1 000 MHz,尤其在宽带大信号的情况下,该芯片具有非常好的放大性能。该电路设计要求其工作频率为170 MHz~230 MHz,增益达到20 dB,-1 dB压缩点为75 W,三阶互调在-20 dB以下。

2 直流偏置电路

射频电路中必不可少的部分就是有源或者无源的偏置网络,其最大作用就是在特定的工作条件下,为有源射频元件提供适当的静态工作电压;同时还具有能够抑制射频元件离散性以及抑制由于温度变化而导致的工作点漂移的作用,从而保持恒定的工作特性;还应能够在工作电压过大时对整个电路做出保护,防止电路出现危险[1]。因此,在直流偏置电路的设计过程中,电路的稳定性、安全性和可调性是最重要的性能。

为了给射频模块提供稳定的电压,在直流偏置电路中采用单一电源供电,其好处是能够使每一个工作点的电压都是相同的,从一开始就保持整个电路的稳定性。为了防止电源电压的抖动,可以加稳压模块,即使电源电压有微小幅度的抖动,在通过稳压模块后仍然与期望电压值相同,从而进一步保证电路的稳定性[2]。MRF9060射频

收稿日期:2007-05-25;修回日期:2007-07-09

410

信 息 与 电 子 工 程

第5卷

模块需要漏极和栅极两个偏置电压。漏极的偏置电压可由28 V 电源直接提供,栅极电压对MRF9060的工作点影响较大,为了进一步增加电路的稳定性,可以采用运算放大电路构成一个负反馈减法器电路,通过这个电路的输出电压来给射频模块提供偏置,采用这种结构的一个最大的好处就是极大地增加了偏置电压的稳定性。减法器电路的构成可参见图1中的减法电路模块,它的核心芯片是LM7171。另外,提高电路的稳定性还有很重要的一点需要考虑,就是电路的温度漂移。在电路实际工作的过程中,由于功率很大,芯片会散发出大量热量,这样将导致电路元件产生一定的温度漂移。而前面所提到的负反馈减法器恰恰可以通过本身的负反馈机制,来达到抵消电路温度漂移,增加电路稳定性的目的[3]。

Fig.1 DC bias circuit and protection circuit 图1 直流偏置电路与保护电路

通过一些手段来尽量保持电路工作在一个稳定的工作点,与此同时,不能不考虑到一旦电路的工作点超过了电路本身所能承受的阀值,就很容易对元件本身和整个系统造成破坏。所以,必须在直流偏置电路中加入保护电路,以达到保护电路与元件的目的。图1是保护电路模块,在电路正常工作时,两个三极管都处于饱和状态,其作用是稳压。一旦电路出现问题,其工作状态就会发生变化,这就好比是一个开关电路的功能。通过这种设计,可以有效地保护电路,保证整个系统不会受到大的损害。

在直流偏置电路中,还应包含一个重要性能即系统的可调节性。每个射频模块的性能指标之间都可能存在着微小的差异,为了能够克服这种由生产工艺等问题带来的差异,可以在直流偏置电路中设计一个可调节模块,通过调节该模块中电阻的大小,来调节电路的分压比,这样就可以对减法器输入信号的大小做出控制,最终达到控制射频模块工作点的目的。电路的可调性模块也已标明在图1[4]。

3 射频匹配和滤波电路的设计

在设计电路时,高频信号在特定频域内的频率分量进行放大或衰减处理是十分重要的,一个好的滤波电路可以给系统带来一个平稳通带和一个衰减很快的带外抑制。由于该射频电路工作在一个特定的频率范围之内(170 MHz~230 MHz),因此首先要在射频电路输入端设计一个以170 MHz~230 MHz 为通带的带通滤波器电路。与此同时,射频电路必须要做到匹配,只有这样才能使系统传输功率最大,这可以通过一些无源器件来实现。由于射频放大系统是不可逆的,因此射频电路输入端是否匹配的决定性参数就是系统输入端的S 11参数以及相应的输入阻抗Z 11。S 11和Z 11可以利用Smith 圆图仿真[5]得到。因

此先设计滤波电路,再利用插入一些无源器件将系统

的输入阻抗调整到恰好匹配的方法,来设计一个完整

的匹配和滤波网络。

下面,利用ADS 软件设计该带通滤波器,其电路原理见图2,它由一个高通滤波器和一个低通滤波器

共同构成,其滤波器的谐振频率公式为:LC

F 1

π

2=,

其高通和低通的截止频率分别在170 MHz 和230 MHz ,C 表示电容,L 表示电感。

该滤波器的增益仿真曲线(S 21)见图3,可以看到它的中心频率在200 MHz 处,通带为170 MHz~230 MHz 。

在带通滤波器设计后,可以通过仿真软件对系统的S 11参数进行仿真,然后进行射频电路的匹配。根

50 100 150 200 250 300 350 400 450 500

frequency/MHz

-5

-10 -15 -20 -25

S (2,1)/d B

Fig.3 Gain of Band-pass filter 图3 带通滤波器增益曲线

Fig.2 Band-pass filter schematic diagram 图2 带通滤波器电路原理图

第6期 宋汉斌等:基于Smith 圆图的射频功放电路的设计与分析 411

据通带范围,最终选定使系统在190 MHz 时达到输入阻抗的完全匹配(50 ?)。在通带内,匹配性能虽然不能做到完全匹配,但是系统性能仍能保持在一个可以接受的范围(基本达到匹配)。在系统的输入端,由于系统存在偏置电压(4.1 V),需先通过一个电感(10 nH)和旁路电容后再加到输入端,因此首先对射频器件和电压、电感、旁路电容的整体做出S 11曲线,见图4。

分析滤波器电路中对系统匹配的影响。因为整个滤波器电路的4个元件都是无源的,而且对于图2的电路,输入/输出均为50 ?匹配且可逆,所以要将系统的输入阻抗匹配到50 ?,就要看这个滤波器电路的S 22曲线,然后再将其沿X 轴翻转,就可得到所需要的S 11点。滤波器电路的Smith 圆图见图5。

如果能将图5中的点匹配到图4中,就能满足系统的输入匹配。采用图6的连接电路来实现这个匹配。这个连接系统的作用是将射频模块与滤波器电路匹配起来,使滤波器的匹配最终达到50 ?。其匹配过程见图7。可以看到,通过2个串联电感的等电阻变换(1到2,3到4)以及并联电阻在Smith 圆图上产生的变化(2到3),图4和图5中的点很好地匹配。此时,整个输入端匹配滤波模块的电路原理图见图8。

在50 MHz~500 MHz 的频段之间对完整电路进行仿真,观察它的Smith 圆图中的S 11曲线,见图9,可见在190 MHz 处达到匹配。可以看到,在190 MHz 时系统达到了完全的匹配。在主频190 MHz 附近,系统也能够较

好地达到性能匹配,这时可以说系统的匹配特性已经达到要求。在190 MHz 时,

输入端由各个元件所形成的Smith 圆图上的移动可以从图10中很清晰地看出,其中:1号点为系统初始点;1到2为串联电感;2到3为并联电阻;3到4为串联电感;4到5为串联电容;5到6为并联电感;6到7为串联电感;7到8为并联电容。

在利用分立元件仿真结束之后,可以将一些元件替代成微带线的形式,此时整个系统的电路原理图见图11。

4 射频放大模块参数仿真

射频放大器的比较重要的两个指标是增益和回波损耗,通过观察系统的S 参数仿真曲线就可以很好地描绘这 两个指标。首先,可以通过观察系统S 21曲线来判断系统的增益大小。一个好的射频放大器增益曲线是在系统通

Fig.4 Initial S 11 trace at input port 图4 射频器件输入端初始S 11曲线 m1

S (1,1)

m1

freq=190.0 MHz

S (1,1)=0.655/-165.966 impedance=10.193-j5.902

frequency Fig.5 S 22 trace and S 11 trace after turnover of filter module 图5 滤波器模块S 22曲线以及翻转后的S 11曲线

S (2,2)

S 11

m1

freq=190.0 MHz

S (2,2)=0.748/-172.998 impedance=7.222-j2.995

frequency

m1

S 22

Fig.7 Realization of match circuit 图7 匹配电路的实现过程

2 1

3

4S (1,1)

frequency

L

L

R

Fig.6 3 parts used in match circuit 图6 实现电路匹配的3

个元件

Fig.8 Complete match and filter circuit module at input port

图8 输入端完整的匹配和滤波电路模块

412

信 息 与 电 子 工 程

第5卷

Fig.11 Schematics of the entire system 图11 整个系统电路原理图

带内增益很高,而通带之外衰减速度很快,这样的系统可以做到很好的带内放大和带外抑制。同时,通过观察系统的S 11曲线,可以判断出系统回波损耗的大小[6]。一般来讲,要求系统回波损耗在-10 dB 之下,最好时可达到-20 dB ,甚至更低。通过ADS 软件仿真,可以得到系统的S 参数曲线见图12。

在图12中可以看到,系统S 21曲线在所需要的170 MHz~230 MHz 之内非常平坦,最大值之间相差0.9 dB ,而带外衰减非常迅速,很快地衰减到了3 dB 以下,这样既保证了系统增益的稳定性,又保证了系统的带通特性非常强,同时系统的最大增益达到了20 dB ,从而符合系统的设计要求。通过观察S 11曲线可以发现,系统在170

MHz ~230 MHz 的通带内回波损耗非常小,尤其是在190 MHz 时,系统的回波损耗达到了最小值-30 dB ,这与前一部分通过Smith 圆图模拟出的系统在190 MHz 恰好达到输入匹配也是相当吻合的,这也从另一个角度证明了Smith 圆图仿真的正确性。因为好的匹配必然会带来回波损耗的减小,这一点也再次说明了匹配电路在射频放大器设计当中所发挥的作用。

射频电路中还有两个比较重要的参数是电路的-1 dB 压缩点和电路的三阶互调性能,通过仿真软件ADS ,对电路的这两个性能做出比较好的判断和分析。

在放大器动态范围内,其增益是线性的,但是当超出其动态范围时,增益会下降,当增益下降到比其线性增益低-1 dB 时的输出功率值被定义为输出功率的-1 dB 压缩点。-1 dB 压缩点表征了RF 放大电路在线性工作区的最大输出功率[7]。对于电路的-1 dB 压缩点的仿真结果见图13。从图中可以看出,当输入功率小于30 dBm 时,输出功率始终保持比输入功率大19 dBm ,这一点和前面对S 21的仿真结果也是相当吻合的。当输入功率大于30 dBm 时,输出功率呈现非线性增加,即该电路的-1 dB 压缩点出现在输入功率30 dBm ,即在输出功率49 dBm 时,针对75 W

Fig.9 S 11 trace of match circuit of whole frequency range

图9 全频带完整匹配电路的S 11曲线

m1

freq=190.0 MHz S (1,1)=0.009/95.228

impedance=49.914+j0.863

S (1,1)

m1

frequency (50.0MHz to 500.0 MHz ) Fig.10 Several parts’ impacts on Smith chart 图10 各个元件对整个电路Smith 圆图的影响

m1

freq=190.0 MHz S (1,1)=0.009/95.228

impedance=49.914+j0.863

S (1,1)

7

6

4230

5frequency

m18

1

m1 m5 m2

m3

m4

50 100 150 200 250 300 350 400 450 500

frequency/MHz

30 20 10 0 -10 -20 -30 -40

S (2,1),S (1,1)/d B

S (2,1)

S (1,1)

m1

freq=170.0 MHz dB(S (2,1))=20.030m2

freq=230.0 MHz dB(S (2,1))=20.233m3

freq=170.0 MHz dB(S (1,1))=-8.786

m4

freq=230.0 MHz dB(S (1,1))=-10.780m5

freq=200.0 MHz dB(S (2,1))=20.953

Fig.12 S 21(gain) and S 11(return loss) traces of the system 图12 系统的S 21增益曲线和S 11回波损耗曲线

第6期宋汉斌等:基于Smith圆图的射频功放电路的设计与分析 413

输出功率,它相当于48.75 dBm,因此该模块-1 dB

压缩点的设计达到了设计要求。

由于放大器的非线性作用,当两个或多正弦信

号经过放大器时会输出包括多种频率的分量,其中

以三阶互调分量的功率电平最大,它是非线性项中

的三次项产生的[8]。假设两基频信号的频率分别是

F1和F2,那么三阶互调分量的频率为2F1-F2和

2F2-F1,由于该频率落在频带内,是非线性产物。

在分析电路的三阶互调时,给系统加上两路信

号,频率分别为199.5 MHz和200.5 MHz时,系统会

在198.5 MHz和201.5 MHz处出现两个三阶互调信号。

将系统的输出信号调整到上面-1 dB压缩点仿真中

所得出的系统最大输出49 dBm处,在此时来分析系

统的性能。此时,系统的三阶互调仿真结果见图14。

可以看出,当输出达到49 dBm时,系统三阶互调信

号仅为29 dBm,二者之间仍有20 dB的明显差异,

三阶互调信号在此时仍能满足设计要求,不会对系

统的性能造成明显损害。

5 结论

本文设计的射频放大电路,以MRF9060模块为主,可以工作在170 MHz~230 MHz的频段,增益能够稳定在20 dB,它的-1 dB压缩点为75 W,三阶互调在-20 dB以下,并且在190 MHz处达到50 ?的匹配。这种利用Smith 圆图来设计放大器匹配电路的方法,可以为今后的工作提供借鉴。对系统各项性能的仿真也可以在相关问题的解决上给出有用的参考。

参考文献:

[ 1 ] Reinhold Ludwig,Pavel Bretchko. 射频电路设计—理论与应用[M]. 北京:电子工业出版社, 2002.

[ 2 ] Peter J Poggi,Harris Corporation. Applications of high efficiency techniques to the design of RF power amplifier and am- plifier control circuits in tactical equipment[C]// MILCOM apos 95, 1995.

[ 3 ] 张义芳,冯健华. 高频电子线路[M]. 哈尔滨:哈尔滨工业大学出版社, 2003.

[ 4 ] 许 杰. 模拟电子线路[M]. 北京:国防工业出版社,2006.

[ 5 ] Tony Yeung,Jack Lau,H C Ho,et al. Design considerations for extremely high-Q intergrated inductors and theid application in CMOSRF Power Amplifier[C]// RAWCON, 1998.

[ 6 ] 吴明英. 微波技术[M]. 西安:西安电子科技大学出版社, 1990.

[ 7 ] 蒲 林,任 旭,蒋和全. 射频集成电路测试技术研究[J]. 微电子学, 2005,35(2):110-114.

[ 8 ] 张 星,周克生. 基于AD8367的压控增益放大系统设计[J]. 世界电子元器件, 2007,(1):45-47.

作者简介:

宋汉斌(1983-),男,河北省沧州市人,2006

年毕业于复旦大学信息学院通信科学与工程系

通信工程专业,获工学学士学位,现为在读硕

士研究生,主要研究方向为无线通信工程和射

频电路设计.E-mail: 062021077@https://www.wendangku.net/doc/ce16784787.html,.

陈晓光(1964-),男,安徽省五河市人,副

教授,1997年毕业于电子科技大学电磁场与微

波专业,获工学博士学位,主要研究方向为移

动通信、RF技术.

王超(1983-),男,上海市人,现为在读

硕士研究生,主要研究方向为无线通信工程设

计.

198.5 199.0 199.5 200.0 200.5 201.0 201.5

frequence/MHz

50

40

30

20

10

m

i

x

(

V

o

u

t

,

t

o

n

e

s

)

/

d

B

m

Fig.14 Third-order intermodulation of the system at output power of 49dBm

图14 输出功率为49dBm时系统的三阶互调

m1

20 25 30 35 40 45 50

RF_pwr

55

50

45

40

35

-

1

d

B

c

o

m

p

r

e

s

s

i

o

n

_

t

r

a

c

e

/

d

B

m

m1

RF_pwr=30.000

-1dB compression_trace..dBm_out=49.096

Fig.13 -1dB compression simulation of the system—output vs. input

图13 系统-1dB压缩点仿真—电路的输入/输出功率关系

射频阻抗匹配与史密斯_Smith_圆图:基本原理详解

阻抗匹配与史密斯(Smith)圆图:基本原理
在处理 RF 系统的实际应用问题时,总会遇到一些非常困难的工作,对各部分级联电路的不同阻抗进行匹配就是其中之一。一般情况下, 需要进行匹配的电路包括天线与低噪声放大器(LNA)之间的匹配、 功率放大器输出(RFOUT)与天线之间的匹配、 LNA/VCO 输出与混频器输入 之间的匹配。匹配的目的是为了保证信号或能量有效地从“信号源”传送到“负载”。
在高频端,寄生元件(比如连线上的电感、板层之间的电容和导体的电阻)对匹配网络具有明显的、不可预知的影响。频率在数十兆赫兹 以上时,理论计算和仿真已经远远不能满足要求,为了得到适当的最终结果,还必须考虑在实验室中进行的 RF 测试、并进行适当调谐。 需要用计算值确定电路的结构类型和相应的目标元件值。
有很多种阻抗匹配的方法,包括
?
计算机仿真: 由于这类软件是为不同功能设计的而不只是用于阻抗匹配,所以使用起来比较复杂。设计者必须熟悉用正确的 格式输入众多的数据。设计人员还需要具有从大量的输出结果中找到有用数据的技能。另外,除非计算机是专门为这个用途 制造的,否则电路仿真软件不可能预装在计算机上。
? ? ?
手工计算: 这是一种极其繁琐的方法,因为需要用到较长(“几公里”)的计算公式、并且被处理的数据多为复数。 经验: 只有在 RF 领域工作过多年的人才能使用这种方法。总之,它只适合于资深的专家。 史密斯圆图:本文要重点讨论的内容。
本文的主要目的是复习史密斯圆图的结构和背景知识,并且总结它在实际中的应用方法。讨论的主题包括参数的实际范例,比如找出匹 配网络元件的数值。当然,史密斯圆图不仅能够为我们找出最大功率传输的匹配网络,还能帮助设计者优化噪声系数,确定品质因数的 影响以及进行稳定性分析。
图 1. 阻抗和史密斯圆图基础
基础知识
在介绍史密斯圆图的使用之前,最好回顾一下 RF 环境下(大于 100MHz) IC 连线的电磁波传播现象。这对 RS-485 传输线、PA 和天线之间 的连接、LNA 和下变频器/混频器之间的连接等应用都是有效的。

音频功率放大器设计详解

音频功率放大器设计 一、设计任务 设计一个实用的音频功率放大器。在输入正弦波幅度≤5mV,负载电阻等于8Ω的 条件下,音频功率放大器满足如下要求: 1、最大输出不失真功率P OM≥8W。 2、功率放大器的频带宽度BW≥50Hz~15KHz。 3、在最大输出功率下非线性失真系数≤3%。 4、输入阻抗R i≥100kΩ。 5、具有音调控制功能:低音100Hz处有±12dB的调节范围,高 音10kHz处有±12dB的调节范围。 二、设计方案分析 根据设计课题的要求,该音频功率放大器可由图所示框图实现。 下面主要介绍各部 分电路的特点及要求。 图1 音频功率放大器组成框图 1、前置放大器 音频功率放大器的作用是将声音源输入的信号进行放大,然后输

出驱动扬声器。声音源 的种类有多种,如传声器(话筒)、电唱机、录音机(放音磁头)、CD唱机及线路传输等,这些声音源的输出信号的电压差别很大,从零点几毫伏到几百毫伏。一般功率放大器的输入灵敏度是一定的,这些不同的声音源信号如果直接输入到功率放大器中的话,对于输入过低的信号,功率放大器输出功率不足,不能充分发挥功放的作用;假如输入信号的幅值过大,功率放大器的输出信号将严重过载失真,这样将失去了音频放大的意义。所以一个实用的音频功率放大系统必须设置前置放大器,以便使放大器适应不同的的输入信号,或放大,或衰减,或进行阻抗变换,使其与功率放大器的输入灵敏度相匹配。另外在各种声音源中,除了信号的幅度差别外,它们的频率特性有的也不同,如电唱机输出信号和磁带放音的输出信号频率特性曲线呈上翘形,即低音被衰减,高音被提升。对于这样的输入信号,在进行功率放大器之前,需要进行频率补偿,使其频率特性曲线恢复到接近平坦的状态,即加入频率均衡网络放大器。 对于话筒和线路输入信号,一般只需将输入信号进行放大和衰减,不需要进行频率均衡。前置放大器的主要功能一是使话筒的输出阻抗与前置放大器的输入阻抗相匹配;二是使前置放大器的输出电压幅度与功率放大器的输入灵敏度相匹配。由于话筒输出信号非常微弱,一般只有100μV~几毫伏,所以前置放大器输入级的噪声对整个放大器的信噪比影响很大。前置放大器的输入级首先采用低噪声电路,对于由晶体管组成的分立元件组成的前置放大器,首先要选择低

一个简单功放设计制作与电路图分析

一个简单功放设计制作与电路图分析|电路图 - dickmoore的日志 - 网易博客 默认分类 2009-11-09 19:01 阅读32 评论0 字号:大中小 一个简单功放设计制作与电路图分析|电路图 电子资料 2009-11-06 11:15 功放电路图 一个简单功放设计制作与电路图分析 我的电脑音响坏了快一年了,每次看电影都用耳机,每次用的耳朵都痛,很不爽.因此就想亲手做一个小功放用用,前几天又去了趟电子市场发现有LM386,很便宜,所以干脆用386做了一个单声道的功放先用着,有时间把另外一个声道也加上.在这里把功放设计到调试基本完成的过程写写,纪念这个过程. 1.设计 我们是听听就算的门外汉,对20~20K的音域也不是完全敏感.所以幅频特性不用考虑太多,但是自己要用得爽声音一定要大,因此LM386一般的输出功率肯定是不够拉(好像极限功率也就1W左右,具体还是看芯片资料吧),所以就浪费些多加个LM386做成BTL电路,提高一倍再说.设计出来的电路就是这个样子,原理很简单,就不说了 2.调试 a. 两个104的电容本来是用来隔直的,不过好像电脑主板和声卡上出来的音频都不带直流成份,而且用104时输入电平 比较高的时候声音有失真,(估计是低频过滤在输入电平高的时候人听起来比较明显).于是去掉两个104的电容. b. 在这个时候上电(我用的是12V),接上我的MP3一听,嗯!还不错,可是就是杂声比较厉害,调了调R1的大小,当R1被 调到最大的时候杂声没有了,最小的时候也没有了(这不是废话么,最小的时候输入都没有了 .把连接到功放的音频线拔了也没杂音了,原因可能有两个音频线上有电容在输入电阻R1比较小的时候,和LM386自激产生杂音,一放大就不得了了.于是决定R1就直接调到50K,音量就让MP3调去吧. c. 好像一切都没有问题了,拿到电脑上吧,刚接上去,嗯声音停大,不错!!刚以为要完事,电脑里一首歌就放完了,本来该是安静的却听见喇叭里噼噼啪啪,这个噪声奇了怪了,开始还是以为是R1的问题,索性就把R1去掉(反正LM386也不希罕从前级得到能量),噪音仍然存在,怀疑是主板上的高频噪声,于是在输入端并上一个102的电容---不起作用.这个电容也不敢并大了,大了要影响高频特性.又怀疑是功率大了C1吃不消,于是又在电源上并了一个100uF的电容,还是不行....... d. 就在这个时候用手一抓我的功放输入端的焊点,好了!没杂音了,仔细一想,原来是这样:我从电脑接出来的线是一个声

双声道BTL功放电路的设计

双声道BTL功放电路的设计

双声道BTL 功放电路的设计 一、任务 根据设计课题的要求,音频功率放大器主要有电源电路、前置放大电路、音量控制电路、功率放大电路等四部分构成,构成框图见图所示。 二、要求 (1)设计产生±14V 的直流电源。 (2)设计前置放大器为左、右声道各提供 一级同向比例运算放大器(电压串联负反馈电路)进行电压放大,电压放大倍数约为6,可消除高频杂波。 (3)设计双声道BTL 功放电路, 8 负载上 的输出功率大于20W 。 三、思考题 音量控制 功率放大 扬声器 前置放大 音 电 源 电 路

1、音调控制电路由那些滤波器所构成 【设计参考】: (1)电源电路 直流电源电路有降压变压器、全波整流、滤波和稳压电路构成。由于我们选择TDA2030作为

功放管,其直流供电电压为6V ~18V ,因此为了产生±14V 的直流电源,我们选择100W 的环牛变压器,输出双12V 交流电,负载为8Ω扬声器。整流电路,见图1.4所示: Tr1 1 2 3 4 RL D1 D2 D3 D4 + - u 1 +A -B u 2 +- 图1.4 整流电路 u1正半周时,Tr1次级A 点电位高于B 点电位,二极管D1、D3导通,电流自上而下流过RL ;u1负半周时,Tr1次级A 点电位低于B 点电位,二极管D2、D4导通,电流自上而下流过RL 。于是RL 两端产生单方向全波脉动直流电压uo 。 负载和整流二极管上的电压和电流: 负载电压: =10.8V 负载电流: 二极管的平均电流: =0.65A 2 9.0U U =L 2 L 09.0R U R U I = = 02 1 I I D =

音响灯光汽车功放电源电路分析

音响灯光汽车功放电源电路分析 时间:2010-09-20 10:13来源:unknown 作者:admin 点击:5次 汽车功放电源电路分析2010-06-10 18:43一。电源电路采用开关电源方式,将蓄电池的+12V直流电变换成为±22V供功放电路使用。它由一片集成电路TL494CN和几只大功率场效应管以及一只开关变压器等组成了比较典型的并联型开关稳压电路。为了提高输出功率。两路开关管均采用双管并联的方式,即Q1和Q2并联,Q3和Q4并联。在电路中,B+端接蓄电池的正极,REMOTE为开机控制端。开机时,控制电压+12V通过D4加到TL494的电源脚12脚,其14脚输出基准电压5V,13脚为输出状态控制端,当13脚接地时,两路输出晶体管同时导通或截止,形成单端工作状态。在图中,13脚与14脚相连,形成双端工作状态,其内部两路输出晶体管交替导通。TL494的⑤脚和⑥脚上外接的电阻R9和电容c4及内部电路组成振荡电路,可输出约几十千赫的振荡信号。该信号经片内处理后,从⑨脚和⑩脚输出两路相位差180度、宽度可变的调制脉冲,加到Q1、Q2和Q3、Q4的基极,使两路开关管轮流处于饱和与截止状态。在变压器B1初级得到的交流脉冲电压感应到次级绕组,经高频整流滤波后获得末级功放所需的±22V直流电压;再经过7815、7915稳压后得到±15V的直流电压作为功放前级的电源。从次级输出电压反馈回来的电压分别经R15与R13和R14与R12分压送到TL494的误差放大器的同相输入端①脚和反相输入端②脚。当输出的±22V电压不稳时,反馈到①脚和②脚的电压经片内误差放大器放大后,调整振荡脉

功放电路设计说明书

功率放大器(OTL ) 一、基本原理及原理图 下图为乙类推挽功率放大器的电路原理图。图中,Q1和Q2为两个特 性配对的互补功率管(NPN 型和PNP 型);若忽略功率管发射结导通电压,则当V1正半周时,NPN 型Q1管导通、PNP 型Q2管截止,i 1C (≈i 1E )为处于正半周的半个正弦波;当V1负半周时,Q1管截止、Q2管导通,i 1C (≈i 1E )为处于负半周的半个正弦波,通过R L 的电流i L = i 1E -i 2E ,合成完整的正弦波。但在实际电路中由于有导通电压,零偏置会使输出电压波形产生交越失真,图中选用二极管偏置电路为互补功率管加合适的偏置电压,使之工作在乙类状态,减小失真且具有高热稳定性;采用单电源供电(加大容量的C3)使两互补管电压均是2 1V CC ;互补管间加两个电阻帮助两管散热;输入信号为互补功率管提供振幅接近电源电压的推动电压,产生自举效应;设计合适的参数使此电路高效地使功率放大相应的倍数驱动负载。 功率放大器电路原理图 二、设计步骤 1.设计要求: (分立元件)设计并仿真功率放大器(OTL ),要求: ① 电压增益:5倍以上

②负载:0.5W以上(8Ω扬声器) ③频率范围:20Hz~20kHz 2.设计过程: ①电源的选取: 由P=I2R L =U2/R L (R L =8Ω)得U=2V ∴U P P-=2×2√2≈5.7V ∴V CC =15V ②电阻的选取: P=I2R L =U2/R L ,令U=3v,I L R = 2 1U P P- /R L ≈350mA (β=100) ∴i 1 B =I L R /β=3.5mA 取i 3 R =20mA ∴R 5+R 6 =3/(20mA)≈150 ∴R 5 =10Ω,R 6 =90Ω ∵R2/(R 1+R 2 +R 9 )=3+0.7=3.7 即R 1 /(R 2 +R 9 )≈4 取调试好的R 1=10kΩ,R 2 =41kΩ(R 2 为1kΩ,起保护作用;R 9 可 调) 令R 3=600Ω,R 4 可调,不要取太大,起到作用即可 取R 7=R 8 =1Ω(一般取小点) ③电容的选取: C1=10uF,C2=47uF,C3=470 uF (电容大,交流压降趋于零) 三、仿真调试 1. 仿真电路图:

SMITH圆图分析与归纳

《射频电路》课程设计题目:SMITH圆图分析与归纳 系部电子信息工程学院 学科门类工学 专业电子信息工程 学号 姓名 2012年6月25日

SMITH 圆图分析与归纳 摘 要 Smith 圆图在计算机时代就开发了,至今仍被普遍使用,几乎所有的计算机辅助设计程序都应用Smith 圆图进行电路阻抗的分析、匹配网路的设计及噪声系数、增益和环路稳定性的计算。 在Smith 圆图中能简单直观地显示传输线阻抗以及反射系数。 Smith 圆图是在反射系数复平面上,以反射系数圆为低圆,将归一化阻抗圆或归一化导纳圆盖在底图上而形成的。因而Smith 圆图又分为阻抗圆图和导纳圆图。 关键字:Smith 圆图 阻抗圆图 导纳圆图 归一化阻抗圆 归一化导纳圆 一 引言 通过对射频电路的学习,使我对射频电路的视野得到了拓宽,以前自己的视野只局限于低频电路的设计,从来没考虑过波长和传输线之间的关系,而且从来没想过,一段短路线就可以等效为一个电感,一段开路线可以等效为一个电容,一条略带厚度的微带竟然可以传输电波,然而在低频电路我们只把它当做一条阻值可以忽略的导线,同时在低频电路设计时好多原件,都要自己手动计算,然而在学习射频电路时,我发现我们不仅要考虑波长和传输线之间的关系,同时还要考虑每一条微带的长度和宽度,当然我感到最重要的是,通过Smith 圆图可以大大的简化了,我对电阻和电容的计算, 二 史密斯圆图功能分析 2.1 史密斯圆图的基本基本知识 史密斯圆图的基本在于以下的算式: )0/()0(Z ZL Z ZL +-=Γ Γ代表其线路的反射系数,即散射矩阵里的S11,Z 是归一负载值,即0/Z ZL 。当中,ZL 是线路的负载值,Z0是传输线的特征阻抗值,通常会使用50Ω。 圆图中的横坐标代表反射系数的实部,纵坐标代表虚部。圆形线代表等电阻圆,每个圆的圆心为()1/(+R R ,0),半径为)1/(1+R 。R 为该圆上的点的电阻值。 中间的横线与向上和向下散出的线则代表阻抗的虚数值,即等电抗圆,圆心为(1,X /1),半径为X /1。由于反射系数是小于等于1的,所以在等电抗圆落在单位圆以外的部分没有意义。当中向上发散的是正数,向下发散的是负数。 圆图最中间的点(01J Z +=,0=Γ)代表一个已匹配的电阻数值(此ZL=Z0,即1=Z ),同时其反射系数的值会是零。圆图的边缘代表其反射系数的幅度是1,即100%反射。在图边的数字代表反射系数的角度(0-180度)。 有一些圆图是以导纳值来表示,把上述的阻抗值版本旋转180度即可。 圆图中的每一点代表在该点阻抗下的反射系数。该电的阻抗实部可以从该电所在的等

奇声AV-757DB功放电路原理与分析

奇声AV-757DB功放电路原理与分析 奇声A V-757DB功放电路原理与分析整机电路由系统控制、信号源选择、杜比定向逻辑解码、卡拉OK、前置、功放与保护等电路组成,如图2-63所示。 (1).系统控制电路 系统控制电路由IC501(767DB)和有关外围元件组成,如图2-64所示。 767DB是微处理器集成电路,内部结构及引脚功能(见表2-6)均与89C55基本相同。 767DB根据键矩阵电路送入的键控指令脉冲,去控制杜比环绕声解码等电路的工作,同时驱动LED显示电路显示整机的工作状态。 767DB⑦脚为复位端,外接复位电容C501。在每次开机时,+5V电压均会经C501在⑨脚产生一个高电平脉冲电压,使微处理器内部电路清零复位,进入初始化状态。 767DB⑦脚为工作模式控制端,外接控制开关K702-2,可分别选择DSP声场处理、PRO杜比定向逻辑解码、3CH三声道和2CH二声道共四种工作模式。 IC502(4094)在微处理器767DB的作用下,通过C1~C3、D1和D2的输出信号去控制杜比定向逻辑解码电路。

(2).信号源选择电路 信号源选择电路由电子开关集成电路IC001(4052)、转换开关K001和有关外围元件组成,如图2-65所示。 K001为四挡转换开关,可控制IC001⑨脚和⑩脚的电平,从而控制其内部的电子开关,分别选择ID,VCD、TAPE和TUNER四路音频信号。

(3).杜比定向逻辑解码电路 杜比定向逻辑电路由IC704(M69032P)和IC2701(YSS228)、IC702(4053)等组成,见图2-66和图2-67。 信号源选择电路选出的左、右声道音频信号分别从IC2704的(15)脚和(22)脚输人,经环绕声解码处理后的左、右声道信号分别从(32)脚和(33)脚输出,经信号直通/解码处理转换继电器J801送往前置放大电路的E端和F端。中置声道信号从(38)脚输出,经C761送往前置放大电路的C端。 解码后的环绕声道信号从IC704(39)脚输出,经IC702转换后送入IC701进行延时处理。延时处理后的环绕声信号经IC704(47)脚内部的7kHz低通滤波器滤波后从其(42)脚馈入,再经杜比B降噪电路降噪后,从(29)脚输出,经C762送往前置放大电路的D端。 IC704的(36)脚外接中置声道模式控制电路,(23)脚~(25)脚接受来自微处理器IC501的测试控制信号和IC502的调配组合转换控制信号。IC501还通过DA TA、CLK和REQ信号对IC701进行控制。 IC704(34)脚输出L+R信号,经C765、11743加至前置放大器的B端。

双声道音频功放的设计

双声道音频功放的设计 1引言 音频功率放大器是一个技术已经相当成熟的领域,几十年来,人们为之付出了不懈的努力,无论从线路技术还是元器件方面,乃至于思想认识上都取得了长足的进步。回顾一下功率放大器的发展历程。1906年美国人德福雷斯特发明了真空三极管,开创了人类电声技术 的先河。1927年贝尔实验室发明了负反馈技术后,使音响技术的发 展进入了一个崭新的时代,比较有代表性的如"威廉逊"放大器,较成功地运用了负反馈技术,使放大器的失真度大大降低,至50年代电 子管放大器的发展达到了一个高潮时期,各种电子管放大器层出不穷。音响技术的发展历史可以分为电子管、晶体管、集成电路、场效应管四个阶段。 音频放大器的目的是在产生声音的输出元件上重建输入的音频 信号,信号音量和功率级都要理想——如实、有效且失真低。音频范围为约20Hz~ 20kHz,因此放大器在此范围内必须有良好的频率响 应(驱动频带受限的扬声器时要小一些,如低音喇叭或(高音喇叭)。根据应用的不同,功率大小差异很大,从耳机的毫瓦级到TV或PC音频的数瓦,再到“迷你”家庭立体声和汽车音响的几十瓦,直到功率更大的家用和商用音响系统的数百瓦以上,大到能满足整个电影院或礼堂的声音要求。音频放大器的一种简单模拟实现方案是采用线性模式的晶体管,得到与输入电压成比例的输出电压。正向电压增益通常

很高(至少40dB)。如果反馈环包含正向增益,则整个环增益也很高。因为高环路增益能改善性能,即能抑制由正向路径的非线性引起的失真,而且通过提高电源抑制能力(PSR)来降低电源噪音,所以经常采用反馈。 高频功率放大器用于发射级的末级,作用是将高频已调波信号进行功率放大,以满足发送功率的要求,然后经将其辐射到空间,保证在一定区域内的接收级可以接收到满意的信号电平,并且不干扰相邻信道的通信。 高频功率放大器是通信系统中发送装置的重要组件。按其工作频带的宽窄划分为窄带高频功率放大器和宽带高频功率放大器两种,窄带高频功率放大器通常以具有选频滤波作用的选频电路作为输出回路,故又称为调谐功率放大器或;宽带高频功率放大器的输出电路则是或其他宽带匹配电路,因此又称为非调谐功率放大器。高频功率放大器是一种能量转换器件,它将电源供给的直流能量转换成为高频交流输出。在课程中已知,放大器可以按照电流导通角的不同,将其分为甲、乙、丙三类工作状态。甲类放大器电流的流通角为360o,适用于小信号低功率放大。乙类放大器电流的流通角约等于180o;丙类放大器电流的流通角则小于180o。乙类和丙类都适用于大功率工作。丙类工作状态的输出功率和效率是三种工作状态中最高者。高频功率放大器大多工作于丙类。但丙类放大器的电流波形失真太大,因而不能用于低频功率放大,只能用于采用调谐回路作为负载的谐振功率放大。由于调谐回路具有滤波能力,回路电流与电压仍然极近于

运算放大器的电路仿真设计

运算放大器的电路仿真设计 一、电路课程设计目的 错误!深入理解运算放大器电路模型,了解典型运算放大器的功能,并仿真实现它的功能; 错误!掌握理想运算放大器的特点及分析方法(主要运用节点电压法分析); ○3熟悉掌握Multisim软件。 二、实验原理说明 (1)运算放大器是一种体积很小的集成电路元件,它包括输入端和输出端。它的类型包括:反向比例放大器、加法器、积分器、微分器、电 压跟随器、电源变换器等. (2) (3)理想运放的特点:根据理想运放的特点,可以得到两条原则: (a)“虚断”:由于理想运放,故输入端口的电流约为零,可近似视为断路,称为“虚断”。 (b)“虚短”:由于理想运放A,,即两输入端间电压约为零,可近似视为短路,称为“虚短”. 已知下图,求输出电压。

理论分析: 由题意可得:(列节点方程) 011(1)822A U U +-= 0111 ()0422 B U U +-= A B U U = 解得: 三、 电路设计内容与步骤 如上图所示设计仿真电路. 仿真电路图:

V18mV R11Ω R22Ω R32Ω R44Ω U2 DC 10MOhm 0.016 V + - U3 OPAMP_3T_VIRTUAL U1 DC 10MOhm 0.011 V + - 根据电压表的读数,, 与理论结果相同. 但在试验中,要注意把电压调成毫伏级别,否则结果误差会很大, 致结果没有任何意义。如图所示,电压单位为伏时的仿真结 果:V18 V R11Ω R22Ω R32Ω R44Ω U2 DC 10MOhm 6.458 V + - U3 OPAMP_3T_VIRTUAL U1 DC 10MOhm 4.305 V + - ,与理论结果相差甚远。 四、 实验注意事项 1)注意仿真中的运算放大器一般是上正下负,而我们常见的运放是上负下正,在仿真过程中要注意。

OCL功率放大器的设计报告解析

课程设计报告 题目:由集成运放和晶体管组成的OCL 功率放大器的设计 学生姓名:郭二珍 学生学号: 07 系别:电气学院 专业:自动化 届别: 2015年 指导教师:廖晓纬 电气信息工程学院制 2014年3月

OCL功率放大器的设计 学生:郭二珍 指导老师:廖晓纬 电气学院10级自动化 1、绪论 功率放大器(简称功放)的作用是给音频放大器的负载R L(扬声器)提供一定的输出功率。当负载一定时,希望输出的功率尽可能大,输出信号的非线性失真尽可能地小,效率尽可能高。 OCL是英文Output Capacitor Less的缩写,意为无输出电容的功率放大器。采用了两组电源供电,使用了正负电源。在输入电压不太高的情况下,也能获得较大的输出频率。省去了输出端的耦合电容,使放大器的频率特性得到扩展。OCL 功率放大器是一种直接耦合的功率放大器,它具有频响宽、保真度高、动态特性好及易于集成化等特点。性能优良的集成功率放大器给电子电路功放级的调试带来了极大的方便。集成功率放大电路还具有输出功率大、外围元件少、使用方便等优点,因此在收音机、电视机、扩音器、伺服放大电路中也得到了广泛的应用。 功率放大器可分为三种工作状态:(1)甲类工作状态Q点在交流负载的中点,输出的是一种没有削波失真的完整信号,但效率较低。(2)乙类工作状态Q点在交流负载线和IB=0输出特性曲线的交界处,放大器只有半波输出,存在严重的失真。 (3)甲乙类工作状态Q点在交流负载线上略高于乙类工作点处,克服了乙类互补电路产生交越失真,提高了效率。 因此,本设计可采用甲乙类互补电路。

2、内容摘要 本设计中要求设计一个由集成运放和晶体管组成的OCL功率放大器。在输入正弦波幅度Ui等于200mV,负载电阻R L等于8Ω的条件下最大输出不失真功率P ≥2W,功率放大器的频带宽度BW≥80Hz~10KHZ o 功率放大电路实质上是能量转换电路,它主要要求输出功率尽可能大,效率尽可能的高,非线性失真尽可能要小,功率器件的散热较好。 本设计选用的是双电源供电的OCL互补推挽对称功放电路。 此推挽功率放大器的工作状态为甲乙类,其目的是为了减少“交越失真”。 由于两管的工作点稍高于截止点,因而均有一很小的静态工作电流I CQ。这样,便可克服管子的死区电压,使两管交替工作处的负载中电流能按正弦规律变化,从而克服了交越失真。 OCL互补推挽对称功放电路一般包括驱动级和功率输出级,前者为后者提供一定的电压幅度,后者则向负载提供足够的信号频率,以驱动负载工作。 因此,需要设计两部分,即驱动级和功率输出级。

阻抗匹配与史密斯(Smith)圆图 基本原理

阻抗匹配与史密斯(Smith)圆图:基本原理 本文利用史密斯圆图作为RF阻抗匹配的设计指南。文中给出了反射系数、阻抗和导纳的 作图范例,并用作图法设计了一个频率为60MHz的匹配网络。 实践证明:史密斯圆图仍然是计算传输线阻抗的基本工具。 在处理RF系统的实际应用问题时,总会遇到一些非常困难的工作,对各部分级联电路的不同阻抗进行匹配就是其中之一。一般情况下,需要进行匹配的电路包括天线与低噪声放大器(LNA)之间的匹配、功率放大器输出(RFOUT)与天线之间的匹配、LNA/VCO输出与混频器输入之间的匹配。匹配的目的是为了保证信号或能量有效地从“信号源”传送到“负载”。 在高频端,寄生元件(比如连线上的电感、板层之间的电容和导体的电阻)对匹配网络具有明显的、不可预知的影响。频率在数十兆赫兹以上时,理论计算和仿真已经远远不能满足要求,为了得到适当的最终结果,还必须考虑在实验室中进行的RF测试、并进行适当调谐。需要用计算值确定电路的结构类型和相应的目标元件值。 有很多种阻抗匹配的方法,包括: ?计算机仿真:由于这类软件是为不同功能设计的而不只是用于阻抗匹配,所以使用起来比较复杂。设计者必须熟悉用正确的格式输入众多的数据。设计人员还需要具有从大量的输出结果中找到有用数据的技能。 另外,除非计算机是专门为这个用途制造的,否则电路仿真软件不可能预装在计算机上。 ?手工计算:这是一种极其繁琐的方法,因为需要用到较长(“几公里”)的计算公式、并且被处理的数据多为复数。 ?经验:只有在RF领域工作过多年的人才能使用这种方法。总之,它只适合于资深的专家。 ?史密斯圆图:本文要重点讨论的内容。 本文的主要目的是复习史密斯圆图的结构和背景知识,并且总结它在实际中的应用方法。讨论的主题包括参数的实际范例,比如找出匹配网络元件的数值。当然,史密斯圆图不仅能够为我们找出最大功率传输的匹配网络,还能帮助设计者优化噪声系数,确定品质因数的影响以及进行稳定性分析。 图1.阻抗和史密斯圆图基础

扩音机电路的设计

课程设计报告 课程名称:模拟电子技术基础 设计名称:扩音机电路设计 姓名: 学号: 班级: 成绩: 指导教师: 起止日期:2009年12月28日至2010年1月1日

课程设计任务书

扩音机电路的设计 一、 设计的目的和意义 (一)、实验目的 1,了解扩音机电路的形成和用途。 2,掌握音频放大电路的一种实现方法。 3,提高独立设计电路和验证试验的能力。。 (二)、意义:对以后的毕业设计打下基础,锻炼个人的学习和查阅资料的能力以及对课外相关本专业知识的了解。 二、 设计原理 扩音机电路的工作原理与音频功率放大器的工作原理相似,具有放大音频先好并将其还原纯真声音信号的电子装置。扩音机电路时一个典型的多级放大器,其原理如下图所示。 前置级主要完成对小信号的放大。一般要求输入阻抗要高,输出阻抗低,频带宽度要宽,噪声要小。音调控制级主要实现对输入信号高、低音的提升和衰减。功率放大器决定了整机的输出功率、非线性失真系数等指标,要求效率高、失真尽可能小、输出功率大。首先根据技术指标要求,对整机电路作适当安排,确定各级的增益分配,然后对各级电路进行具体的设计计算。 因为P0max=8W 。所以此时的输出电压:V0=RL P m ax *0 =8V 。要使输入为5mv 的信号放大到8v 的输出,所需要的总放大倍数为1600倍,扩音机中各级增益的分配为:前置级电压放大倍数为80;音调控制级中频电压放大倍数为1;功率放大级电压放大倍数为20。 三、 详细设计及实验步骤 1、 前置放大级 由于信号源提供的信号非常微弱,因此在音调控制器前面要加一级前置放大级。该前置放大级的下限频率要小于音调控制器的低音转折频率,前置放大器的

功率放大电路分析

B类OTL功率放大电路原理 发布: | 作者:--| 来源: --| 查看:351次| 用户关注: 三极管Hi-Fi放大器的功率级大部分使用B类SEPP.OTL功率放大电路。因为B类放大电路功率较高,最高达78.5%,除非是发烧级的音响,为求完美的不失真才会用A类。就三极管的散热以及电源电路的容量,B类都比A类好很多。PP电路中虽然有输出电路产生的偶次高谐波可互相抵销的优点,但实际上, 三极管Hi-Fi放大器的功率级大部分使用B类SEPP.OTL功率放大电路。因为B类放大电路功率较高,最高达78.5%,除非是发烧级的音响,为求完美的不失真才会用A类。就三极管的散热以及电源电路的容量,B类都比A类好很多。PP电路中虽然有输出电路产生的偶次高谐波可互相抵销的优点,但实际上,主放大器推动PP电路中的A类驱动级就会产生二次高谐波,因此高谐波还是很多。不过,B类PP电路为减少交叉失真,须特别注意偏压的稳定。以下介绍几个代表性的B类SEPP.OTL电路 图a 半对称互补OTL放大电路 图b 全对称互补OTL放大电路

图一输入变压器式功放电路输入变压器式SEPP电路如图一,利用输入变压器进行相位反转作用。线路简单而中心电压又稳定,如果使用两电源方式,可简单剪掉输出电容器。又,输出短路时,不容易流出大电流,对过载引起的破坏,有很大的防止作用。不过因为输入变压器的影响,不能有较深的负反馈,所以不能获得较低的失真,在高频特性及失真会显著恶化是主要缺点。 CE分割方式

图二CE分割方式 如图二所示,利用三极管Q1 集电极与发射极之相位相反进行反向的方式,与真空管的PK分割相同。因为可以由NPN型三极管构成,所以很容易找到特性整齐的三极管。但是,因为有电路比较复杂,需用的交连电容多,低频特性不好,所以一直不能成为主流的电路。 互补方式

双声道音频功率放大电路

唐 山 学 院 Protel DXP 课 程 设 计 题 目 系 (部) 班 级 姓 名 学 号 指导教师 张雅静 2016 年1 月 18 日 至 2016 年 1 月 29 日 共 2 周 2016年 1 月 30 日 双声道音频功率放大电路 智能与信息工程学院 12电信一班

1前言 (1) 2 Protel DXP 2004的简介 (2) 2.1 Protel DXP的简介 (2) 2.2 DXP的主要工作界面 (2) 2.3原理图设计基本操作 (4) 2.3.1项目文件和原理图文件的创建 (4) 2.3.2 工作环境设置 (4) 2.3.3 放置元件 (5) 2.3.4 原理图连线 (5) 3 功率放大器简介 (6) 3.1 功率放大器原理 (6) 3.2功率放大器的性能指标 (7) 3.3 TDA 2030简介 (7) 4 双声道音频功放电路的设计 (9) 4.1 系统总体流程图 (9) 4.2 直流稳压电源的设计 (9) 4.3 前置放大电路设计 (10) 4.4 音量控制电路设计 (10) 4.5 功率放大电路设计 (12) 4.6 总体设计图 (13) 5 PCB电路板制作 (13) 5.1原理图的绘制 (13) 5.2 PCB图的绘制 (14) 6 总结 (15) 参考文献 (16)

在当代生活中,人们因生活层次、文化习俗、音乐修养、欣赏口味的提高,人们对音响的性能要求也越来越高。所以,制作出完美音响也成了人们追求的目标。音频功率放大器作为音响设备的重要器件,完美的音频功率放大器是做出完美音响的必要条件。音频功率放大器是一个技术已经相当成熟的领域,几十年来,人们为之付出了不懈的努力。无论是从线路技术还是元器件方面,乃至思想认识上都获得了长足的进步。回顾一下功率放大器的发展历程,对我们来说也是一件积极有意义的事情。随着时代的发展,信息时代的来临,音频功率放大领域取得了喜人的硕果。新的技术飞跃往往是新材料、新理论、新方法的出现之后产生的,音频放大器同样也不会例外。在科技日新月异的时代,我们有理由期待更完美的功率放大器的出现。 此次电子技术课程设计我们选择的就是音频功率放大电路的设计。音频放大器的目的是在产生声音的输出元件上重建输入的音频信号,信号音量和功率级都要理想——如实、有效且失真低。音频范围为约20Hz~ 20kHz,因此放大器在此范围内必须有良好的频率响应(驱动频带受限的扬声器时要小一些,如低音喇叭或(高音喇叭)。根据应用的不同,功率大小差异很大,从耳机的毫瓦级到TV 或PC音频的数瓦,再到“迷你”家庭立体声和汽车音响的几十瓦,直到功率更大的家用和商用音响系统的数百瓦以上,大到能满足整个电影院或礼堂的声音要求。音频放大器的一种简单模拟实现方案是采用线性模式的晶体管,得到与输入电压成比例的输出电压。正向电压增益通常很高(至少40dB)。如果反馈环包含正向增益,则整个环增益也很高。因为高环路增益能改善性能,即能抑制由正向路径的非线性引起的失真,而且通过提高电源抑制能力(PSR)来降低电源噪音,所以经常采用反馈。

基于LM386的功放电路设计

基于LM386的简单功放系统设计 一、系统概述、设计思路 功率放大器的作用是给音响放大器的负载(扬声器)提供一定的输出概率。当负载一定时,希望输出的功率尽可能大,输出的信号的非线性失真尽可能小,效率尽可能高。 LM386是美国的国家半导体公司生产的音频功率放大器,主要应用于低电压消费类产品。为使外围元件最少,电压增益内置为20,但在1脚和8脚之间增加一只外接电阻或电容,便可将电压增益调为任意值,直至200。输入端以地为参考,同时输出端被自动地偏置到电源电压的一半,工作电压范围宽,4~12V 或5~18V,在6V电源电压下,它的静态功耗仅为24mV,且外围元件少。 二、系统组成及工作原理 (1)外形与引脚功能 LM386是8引脚双排直插式塑料封装结构,其外形与引脚排列如图所示, 2脚为反向输入端,3脚为同向输入端,5脚为输出端,6脚与4脚分别为电源和地端,1脚和8脚为电压增益设定端;使用时,引脚7和地之间接旁路电容,通常为10uf。 (2)其内部电路如下 由图可知,该集成OTL型功放电路的常见类型,与通用型集成运放的特性相似,是一个三级放大电路:第一级为差分放大电路;第二级为共射放大电路;第三级

为准互补输出级功放电路。 第一级为差分放大电路,T1和T3、T2和T4分别构成复合管,作为差分放大电路的放大管;T5和T6组成镜像电流源作为T1和T2的有源负载;T3和T4信号从管的基极输入,从T2管的集电极输出,为双端输入单端输出差分电路。使用镜像电流源作为差分放大电路有源负载,可使单端输出电路的增益近似等于双端输出电容的增益。 第二级为共射放大电路,T7为放大管,恒流源作有源负载,以增大放大倍数。第三级中的T8和T9管复合成PNP型管,与NPN型管T10构成准互补输出级。二极管D1和D2为输出级提供合适的偏置电压,可以消除交越失真。 引脚2为反相输入端,引脚3为同相输入端。电路由单电源供电,故为OTL电路。输出端(引脚5)应外接输出电容后再接负载。 电阻R7从输出端连接到T2的发射极,形成反馈通路,并与R5和R6构成反馈网络,从而引入了深度电压串联负反馈,使整个电路具有稳定的电压增益。 当1脚和8脚之间开路时,电压增益为26db;若在1脚和8脚之间接阻容串联元件,则增益可达46DB,改变阻容值则增益可在26db-46db之间任意选取。电阻值越小增益越大。 (3)功能框图 LM386集成功放属于直接耦合的多级放大器结构,它是一个三级放大电路,如下图所示。 输入级由差分放大器组成,它可以克服直接耦合产生的零漂现象,使电路工作稳定。中间放大要求有较高的电压增益,因此由共射放大电路组成,它为输出级提供足够大的信号电压。输出级要驱动负载,所以要求输出电阻小,输出电压幅度高,输出功率大,因此采用互补对称功放电路。 (4)设计电路图

史密斯圆图基本原理

阻抗匹配与史密斯(Smith)圆图:基本原理 摘要:本文利用史密斯圆图作为RF阻抗匹配的设计指南。文中给出了反射系数、阻抗和导纳的作图范例,并给出了MAX2474工作在900MHz时匹配网络的作图范例。 事实证明,史密斯圆图仍然是确定传输线阻抗的基本工作。 在处理RF系统的实际应用问题时,总会遇到一些非常困难的工作,对各部分级联电路的不同阻抗进行匹配就是其中之一。一般情况下,需要进行匹配的电路包括天线与低噪声放大器(LNA)之间的匹配、功率放大器输出(RFOUT)与天线之间的匹配、LNA/VCO输出与混频器输入之间的匹配。匹配的目的是为了保证信号或能量有效地从“信号源”传送到“负载”。 在高频端,寄生元件(比如连线上的电感、板层之间的电容和导体的电阻)对匹配网络具有明显的、不可预知的影响。频率在数十兆赫兹以上时,理论计算和仿真已经远远不能满足要求,为了得到适当的最终结果,还必须考虑在实验室中进行的RF测试、并进行适当调谐。需要用计算值确定电路的结构类型和相应的目标元件值。 有很多种阻抗匹配的方法,包括 计算机仿真:由于这类软件是为不同功能设计的而不只是用于阻抗匹配,所以使用起来比较复杂。设计者必须熟悉用正确的格式输入众多的数据。设计人员还需要具有从大量的输出结果中找到有用数据的技能。另外,除非计算机是专门为这个用途制造的,否则电路仿真软件不可能预装在计算机上。 手工计算:这是一种极其繁琐的方法,因为需要用到较长(“几公里”)的计算公式、并且被处理的数据多为复数。 经验:只有在RF领域工作过多年的人才能使用这种方法。总之,它只适合于资深的专家。 史密斯圆图:本文要重点讨论的内容。 本文的主要目的是复习史密斯圆图的结构和背景知识,并且总结它在实际中的应用方法。讨论的主题包括参数的实际范例,比如找出匹配网络元件的数值。当然,史密斯圆图不仅能够为我们找出最大功率传输的匹配网络,还能帮助设计者优化噪声系数,确定品质因数的影响以及进行稳定性分析。 图1. 阻抗和史密斯圆图基础

OCL功放电路详解与维修

OCL功放电路调试与维修总结 本功放采用最简洁的单差分OCL功放电路。 输入级Q1、Q2按惯例采用差分放大级,但与一般常见电路稍不同的是采用PNP管,这与采用NPN管相比,两管配对容易且一致性好,噪声较低。 第二级Q3为主电压放大级,它提供大部分电压增益。但未采用常见的“自举”电路,大功率放大器采用“自举”电路,对增大输出功率意义不大,且能省去一个对音质有影响的电解电容,并有利于减少元件简化电路,C12为相位补偿电容。 IC1、R12、D4、C14、R13、Q8、K1等组成功放过载保护电路,当负载发生短路时,继电器动作切断功放电源,保护功放电路避免故障扩大化。当负载短路 故障排除自动恢复工作。 因 电路板上搭锡,线路明显损坏 引起的故障可以直接排查解 决。 1、现象:无电; 解决方案:查找变压器有无电 压输出;无,查看保险丝是否 损坏;未损坏,则查找变压器 有无市电输入;无,察看保险 丝管是否接触不良或未接触, 查电源线是否损坏。 2、现象:输出小 解决方案:查看电阻是否装 错,分别查2.7K(常见错装为 4.7K,100K,10K等),100K (常见错装为10K,4.7K);电 阻阻值正确的情况下,检查差 动放大电路后的C2383是否 良好。 3、现象:输出大 解决方案:察看电阻是否装 错,如100K装为150K等。 4、现象:波形失真 解决方案:察看电阻是否装 错,如4.7K电阻装错,10K 电阻装错。电位器阻值无限大(半波)等。 5、现象:无声音输出 解决方案:检查有无管子损坏,输入短路、断路,0欧姆电阻缺失、损坏等。 6、现象:开码后不断自保护

解决方案:查有无2N4007虚焊,装反,检测电路板铜线有无断开,5W水泥电阻有无损坏等。 7、现象:开码后,功率瞬时达到最大,又逐渐减小 解决方案:查缺0.1uF电容。 8、现象:交付使用后,出现半夜机鸣,不定时开机 解决方案:查功放板缺0.1uF电容两个。 9、现象:输出声音有电流声 解决方案:查7805输出电压波动,将其供电端的1000uF电容更换为2200uF电容(较少出现)。 10、现象:在元器件都正确无损的情况下,输出略微大或小 解决方案:可以对100K电阻进行其它阻值代替。 11、现象:波峰略有失真 解决方案:查2N5408有一脚虚焊。

史密斯圆图地详解

本文利用史密斯圆图作为RF阻抗匹配的设计指南。文中给出了反射系数、阻抗和导纳的作图范例,并用作图法设计了一个频率为60MHz的匹配网络。 在处理RF系统的实际应用问题时,总会遇到一些非常困难的工作,对各部分级联电路的不同阻抗进行匹配就是其中之一。一般情况下,需要进行匹配的电路包括天线与低噪声放大器(LNA)之间的匹配、功率放大器输出(RFOUT)与天线之间的匹配、LNA/VCO输出与混频器输入之间的匹配。匹配的目的是为了保证信号或能量有效地从“信号源”传送到“负载”。 在高频端,寄生元件(比如连线上的电感、板层之间的电容和导体的电阻)对匹配网络具有明显的、不可预知的影响。频率在数十兆赫兹以上时,理论计算和仿真已经远远不能满足要求,为了得到适当的最终结果,还必须考虑在实验室中进行的RF测试、并进行适当调谐。需要用计算值确定电路的结构类型和相应的目标元件值。 有很多种阻抗匹配的方法,包括: 计算机仿真: 由于这类软件是为不同功能设计的而不只是用于阻抗匹配,所以使用起来比较复杂。设计者必须熟悉用正确的格式输入众多的数据。设计人员还需要具有从大量的输出结果中找到有用数据的技能。另外,除非计算机是专门为这个用途制造的,否则电路仿真软件不可能预装在计算机上。 手工计算: 这是一种极其繁琐的方法,因为需要用到较长(“几公里”)的计算公式、并且被处理的数据多为复数。 经验: 只有在RF领域工作过多年的人才能使用这种方法。总之,它只适合于资深的专家。 史密斯圆图: 本文要重点讨论的内容。 本文的主要目的是复习史密斯圆图的结构和背景知识,并且总结它在实际中的应用方法。讨论的主题包括参数的实际范例,比如找出匹配网络元件的数值。当然,史密斯圆图不仅能够为我们找出最大功率传输的匹配网络,还能帮助设计者优化噪声系数,确定品质因数的影响以及进行稳定性分析。 图1. 阻抗和史密斯圆图基础 图1. 阻抗和史密斯圆图基础

相关文档
相关文档 最新文档