文档库 最新最全的文档下载
当前位置:文档库 › ANSYS临界转速计算算例

ANSYS临界转速计算算例

ANSYS临界转速计算算例
ANSYS临界转速计算算例

ANSYS临界转速计算算例

1 结构

如图1所示单转子结构,密度7800Kg/m3,E=206GPa μ=0.3,

2 操作步骤

2.1 建模

根据几何模型建立有限元模型,转子主体部分(盘、轴)采用SOLID45单元,支承采用弹簧—阻尼单元COMBIN14。弹簧—阻尼单元的末端约束所有自由度。为了避免轴向的刚体位移,将弹簧—阻尼单元始端的轴向自由度约束。

2.2输入材料参数及弹簧刚度(COMBIN14的实常数)。

Main Menu>Preprocessor>Material Props> Material Models

Main Menu>Preprocessor>Real Constants>Add/Edit/Delete

2.3将转子主体的所有SOLID单元生成一个COMPONENT,命名为ROTOR。若为多转子,建立

不同的COMPONENT,并按一定的转速关系输入转速。

Utility Menu>Select>Comp/Assembly>Create Component

2.4对名称为ROTOR的COMPONENT施加转速(自转转速)。

a)注意对COMPONENT施加转速之前,必须将OMEGA命令中的KSPIN开关设置为1。即计算时考虑SPIN SOFTENING效应。但并不利用OMEGA命令输入转速。

Main Menu>Solution>Define Loads>Apply>Structural>Inertia>Angular Velocity>

Global

b)利用CMOMEGA命令对COMPONENT施加转速。该命令中的KSPIN开关控制转子的正、反进动。若KSPIN=0,为正进动;若KSPIN=1,为反进动。

Main Menu>Solution>Define Loads>Apply>Structural>Inertia>Angular Velocity>On Components>By origin

2.5STATIC求解,打开预应力开关。

Main Menu>Solution>Analysis Type>New Analysis

2.6MODAL求解,打开预应力开关。

2.7输入不同的转速值,重复2.4~2.6,得到不同自转转速下的特征值(公转频率)。

2.8利用CAMPBELL图求得临界转速(注意单位的统一)。

3 结果

通过CAMPBELL图得到:第一阶临界转速41.14Hz,第二阶临界转速299.1Hz。

WHIRL FREQUENCY(HZ) Campbell Diagram for Critical Speed

关于转子动力学中临界转速的计算以及Campbell图的绘制请看

帮助文档中第247和第254个例子。这两个例子有问题的详细描述和命令流,你对照着命令流看一下。如果有不明白的再电话联系我们。

临界转速的计算

一、临界转速分析的目的 临界转速分析的主要目的在于确定转子支撑系统的临界转速,并按照经验或有关的技术规定,将这些临界转速调整,使其适当的远离机械的工作转速,以得到可靠的设计。 例如设计地面旋转机械时,如果工作转速低于其一阶临界转速Nc1,应使N<0.75Nc1, 如果工作转速高于一阶临界转速,应使 1.4Nck

传递矩阵法 基本原理:传递矩阵法的基本原理是,去不同的转速值,从转子支撑系统的一端开始,循环进行各轴段截面状态参数的逐段推算,直到满足另一端的边界条件。 优点:对于多支撑多元盘的转子系统,通过其特征值问题或通过建立运动微分方程的方法求解系统的临界转速和不平衡响应,矩阵的维数随着系统的自由度的增加而增加,计算量往往较大:采用传递矩阵法的优点是矩阵的维数不随系统的自由度的增加而增大,且各阶临界转速计算方法相同,便于程序实现,所需存储单元少,这就使得传递矩阵法成为解决转子动力学问题的一个快速而有效的方法。 缺点:求解高速大型转子的动力学问题时,有可能出现数值不稳定现象。今年来提出的Riccati 传递矩阵法,保留传递矩阵的所有优点,而且在数值上比较稳定,计算精度高,是一种比较理想的方法,但目前还没有普遍推广。 轴段划分:首先根据支撑系统中刚性支撑(轴承)的个数划分跨度。在整个轴段内,凡是轴承、集中质量、轮盘、联轴器等所在位置,以及截面尺寸、材料有变化的地方都要划分为轴段截面。若存在变截面轴,应简化为等截面轴段,这是因为除了个别具有特殊规律的变截面轴段外,其他的变截面轴段的传递矩阵特别复杂。 传递矩阵: 4. 轴段传递矩阵 每段起始状态参数和终端状态参数的转换方程,根据是否考虑转轴的分布质量,可以建立两种轴段传递矩阵 ① 当考虑轴段的分布质量时:起始和终端的转换方程是均质等截面杆的振动弹性方程: ② 不考虑转轴的分布质量时建立的传递矩阵 i 0212222111212Q M X 1000L 100-L 10-L L 1Q M X ??????? ??????????????=??????? ??θααααααθki 其中,a11,a12,a21,a22为该轴段的影响系数,根据材料力学: ???? ?????====EJ L EJ L EJ 22221123 1123L αααα,a11和a12是终端的剪力和弯矩在终端引起的挠度,a21和

计算球磨机临界转速

球磨机的临界转速 一、临界转速、转速率 前面讲的,当磨机以线速度υ带着钢球升到A点时,由于钢球重量G的法向分力N和离心力C相等,钢球即作 ,离心力大于钢球的抛物落一。如果磨机的速度增加,钢球开始抛落的点也就提高。到了磨机的转速增加到某一值υ C 重量,钢球升到磨机顶点Z不再落下,发生了离心运转。由此可见,离心运转的临界条件是Array 图1 离心运转时钢球的受力状况 C≥G 令m为球的质量,g为重力加速度,n为磨机每分钟的转数,R为球的中心到磨机中心的距离,a为球脱离圆轨迹时连心线OA与垂直轴的夹角。当磨机的线速度为υ,钢球升到A点时, 因G=mg,代入上式,得到 因,代入上式,得到 1

取g=9.81米/秒2,则,于是 R的单位为米。 这是研究钢球运动的最基本的公式,以后要经常用到它。 当转速为υ c ,相应的每分钟转数为n C 时,钢球上升到顶点Z,不再落下,.发生了离心化。此 时,C=G,a=0°,cosa=1,从而 此处,D=2R,单位皆为米。对贴着衬板的最外一层来说,因为球径比球磨机内径小得多,可略而不计,R可以算是磨机的内半径,D就是它的内直径。 由公式(3)可以看出,使钢球离心化所需的临界转数,决定于球心到磨帆中心的距离。最外层球距磨机中心最远,使它离心化所需的转数最少;最内层球距磨机中心最近,使它离心化所需的转数也最多。如果取磨机内半径用公式(3)算的结果作为磨机的转速,尽管最外层球已经离心化了,但其他层球仍然能够抛落,还是可以磨细矿石。只有转数比用最外层球按公式(3)求得的高出很多时,全部球层才会离心化,磨碎矿石的有用功才等于零。但是,装入的钢球希望全部能落下磨碎矿石,如果有一部分离心化,就会使有用功减少。因此,取磨机内半径用公式(3)算得的结果,说明要使最外层球也不会离心化时磨机转速的限度,就没有必要去计算使其他层球离心化的磨机转数了。山此可见,磨机的临界转数,是使最外层球也不会发生离心化的最高转速(转/分)。 尽管公式(3)是在没有考虑装球率及滑动等情况下导出的,但在采用不平滑衬板及装球率占40~50%时,它仍然符合实际情形。因此,生产中都采用公式(3)来计算磨机的临界转数,绝大多数磨机的转速都没有超过它。 设n为磨机的实际转速,它和n C 的比值用百分率来表示,叫做转速率(ф),即 将公式(2)代入上式,得 到 2

转子临界转速概念

1 转子临界转速概念 转子的固有频率除了与转子结构(和支承结构)参数有关外,它还随转子涡动转速和转子 自转转速的变化而变化。在转子不平衡力驱动下,转子一般作正同步涡动,当转子涡动转 速等于转子固有频率时,转子出现共振,相应转速就称为该转子的临界转速。 2 转子临界转速计算对程序的要求 计算转子临界转速必须能够考虑旋转结构涡动时产生的陀螺效应对转子临界转速的影响, 这是转子临界转速计算同其他非旋转结构固有频率计算的差异所在。一般有限元程序不具 备计算转子临界转速的功能。 3 ANSYS的临界转速计算功能 1) 计算转子临界转速可用单元 BEAM4; PIPE16。 COBIN14(用于模拟带阻尼的弹性支撑) 2) 单元特性及实常数 BEAM4和PIPE16: Keyoption(7)=1 实常数Spin=转子自转角速度(ω) rad/s。 3) 特征值求解方法 选取DAMP方法求解特征值。 4) 计算结果处理 采用有限元方法计算转子临界转速时,转子会出现正进动和反进动。由于陀螺效应的作用 ,随着转子自转角速度的提高,反进动固有频率将降低,而正进动固有频率将提高。根据 临界转速的定义,应只对正进动固有频率(Ωc)进行分析。 在后处理中首先剔除负固有频率,然后分析各阶模态振型,确定同一阶振型的正进动和反 进动固有频率。 改变转子自转角速度(ω),计算出新的Ωc,最后画出Ωc~ω曲线,根

据临界转速的定 义,当Ωc=ω时,Ωc即所求临界转速。需注意:由于Ωc的单位为Hz,而ω为rad/s,计算 时应转换单位。 4 算例 单转子结构如图所示,转子轴近似无质量,轮盘密度8*104Kg/m3,其余材料参数为: E=200Gpa μ=0.3 || |----50--------| || _____________________________||d=120 ^ ^ d0=10 || || h=0.5 |---------- 100----------------------------------| 算例命令流文件如下: /PREP7 ET,1,BEAM4 !* KEYOPT,1,2,0 KEYOPT,1,6,0 KEYOPT,1,7,1 KEYOPT,1,9,0 KEYOPT,1,10,0 *SET,p,acos(-1) *SET,R1,5 *SET,R2,60 R,1,p*R1**2,p*R1**4/4,p*R1**4/4,2*R1,2*R1, , RMORE, ,p*R1**4/2, , ,2175, , R,2,p*R2**2,p*R2**4/4,p*R2**4/4,2*R2,2*R2, , RMORE, ,p*R2**4/2, , ,2175, ,

临界转速的计算

临界转速分析的目的 临界转速分析的主要目的在于确定转子支撑系统的临界转速,并按照经验或有关的技术 规定,将这些临界转速调整,使其适当的远离机械的工作转速,以得到可靠的设计。 例如设计地面旋转机械时,如果工作转速低于其一阶临界转速Nc1,应使N<0.75Nc1, 如果工作转速高于一阶临界转速,应使 1.4Nck

传递矩阵法 基本原理:传递矩阵法的基本原理是,去不同的转速值,从转子支撑系统的一端开始,循环 进行各轴段截面状态参数的逐段推算,直到满足另一端的边界条件。 优点:对于多支撑多元盘的转子系统,通过其特征值问题或通过建立运动微分方程的方法求 解系统的临界转速和不平衡响应,矩阵的维数随着系统的自由度的增加而增加,计算量往往 较大:采用传递矩阵法的优点是矩阵的维数不随系统的自由度的增加而增大,且各阶临界转 速计算方法相同,便于程序实现,所需存储单元少,这就使得传递矩阵法成为解决转子动力学问题的一个快速而有效的方法。 缺点:求解高速大型转子的动力学问题时, 传递矩 阵法,保留传递矩阵的所有优点,理想的方法, 但目前还没有普遍推广。 轴段划分:首先根据支撑系统中刚性支撑(轴承)的个数划分跨度。在整个轴段内,凡是轴承、集中质量、轮盘、联轴器等所在位置,以及截面尺寸、材料有变化的地方都要划分为轴段截面。若存在变截面轴,应简化为等截面轴段,这是因为除了个别具有特殊规律的变截面轴段外,其他的变截面轴段的传递矩阵特别复杂。 传递矩阵: 4. 轴段传递矩阵 每段起始状态参数和终端状态参数的转换方程,根据是否考虑转轴的分布质量,可以建 立两种轴段传递矩阵 ①当考虑轴段的分布质量时:起始和终端的转换方程是均质等截面杆的振动弹性方程: ②不考虑转轴的分布质量时建立的传递矩阵 X1L 1212 L - 11 X 01 2222 L - 21 M001L M Q ki0001Q 0i 其中,a11,a12,a21,a22为该轴段的影响系数,根据材料力学 3 11 12 3EJ L2 21 2EJ L a11和a12是终端的剪力和弯矩在终端引起的挠度, a21和EJ 有可能出现数值不稳定现象。今年来提出的Riccati 而且在数值上比较稳定,计算精度高,是一种比较

临界转速的计算修订稿

临界转速的计算 WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-

一、临界转速分析的目的 临界转速分析的主要目的在于确定转子支撑系统的临界转速,并按照经验或有关的技术规定,将这些临界转速调整,使其适当的远离机械的工作转速,以得到可靠的设计。 例如设计地面旋转机械时,如果工作转速低于其一阶临界转速Nc1,应使N<, 如果工作转速高于一阶临界转速,应使

应用不多 数值积分法 (前进法) 以数值积分的方法求解支撑系统的运动微分方程,从初始条件开始,以步长很小的 时间增量时域积分,逐步推算出轴系的运动 唯一能模拟非 线性系统的计 算方法,在校 核其他方法及 研究非线性对 临界转速的影 响方面很有价 值 计算量较大,必 须有足够的积分 步数注:斯托多拉法 莫克来斯塔德法 传递矩阵法 基本原理:传递矩阵法的基本原理是,去不同的转速值,从转子支撑系统的一 端开始,循环进行各轴段截面状态参数的逐段推算,直到满足另一端的边界条 件。 优点:对于多支撑多元盘的转子系统,通过其特征值问题或通过建立运动微分 方程的方法求解系统的临界转速和不平衡响应,矩阵的维数随着系统的自由度 的增加而增加,计算量往往较大:采用传递矩阵法的优点是矩阵的维数不随系 统的自由度的增加而增大,且各阶临界转速计算方法相同,便于程序实现,所 需存储单元少,这就使得传递矩阵法成为解决转子动力学问题的一个快速而有 效的方法。 缺点:求解高速大型转子的动力学问题时,有可能出现数值不稳定现象。今年 来提出的Riccati传递矩阵法,保留传递矩阵的所有优点,而且在数值上比较稳 定,计算精度高,是一种比较理想的方法,但目前还没有普遍推广。

临界转速理论基础

临界转速理论基础 一、临界转速定义 临界转速就是透平机组转速与透平机转子自振频率相重合时的转速,此时便会引起共振,结果导致机组轴系振动幅度加大,机组振动加剧,长时间在这种临界转速下运转,就会造成破坏事故的发生。 由于转子因材料、制造工艺的误差、受热弯曲等多种因素,转子各微段的质心一般对回转轴线有微小偏离。转子旋转时,由上述偏离造成的离心力会使转子产生横向振动,在工作过程中不可避免的产生振动现象。这种振动在某些转速上显得异常强烈,这些转速称为临界转速。转子的振动幅值(扰度、离心力)将随着转速的升高而增大,当转速继续升高而振动幅值出现下降且稳定在某一振动幅值范围之内,我们称转子系统此时发生了共振现象(批注:转子的振动幅值(扰度、离心力)将随着转速的升高而增大,当转速继续升高而振动幅值出现下降,继续升高下降)。我们把振动幅值出现极大值时对应的转速称为转子系统的临界转速,这个转速等于转子的固有频率。当转子速度继续升高,振动幅值再次出现极大值时,该振动幅值对应的转速称为二阶临界转速,以此类推我们可以定义转子的三阶临界转速,四阶临界转速。但是实际中由于支承刚度、轴系受力等情况,转子临界转速会与定义值有一定的偏差,比如转轴受到拉力时,临界转速会提高;转轴受到压力时,临界转速会下降。 转子的临界转速一般通过求解其振动频率来得到。转子的固有频率除了与转子结构(和支承结构)参数有关外,它还随转子涡动转速和转子自转转速的变化而变化。在不平衡力驱动下,转子一般作正向同步涡动,当转子涡动频率等于转子振动频率时,转子出现共振,相应振动频率下的转速就称为该转子的临界转速。转子的固有频率除了与转子结构(和支承结构)参数有关外,它还随转子涡动转速和转子自转转速的变化而变化。为确保机器在工作转速范围内不致发生共振,临界转速应适当偏离工作转速10%以上。 临界转速的研究对于旋转机械很重要。在旋转机械中,由于振动而引起很多故障甚至事故,造成了财力物力的损失。有效预防、及时发现、有效解决振动原因能够显著提高设备的运行安全性、可靠性并减少维修费用,带来巨大的经济和社会效益。引起旋转机械振动的原因很多,但是运行在临界转速下的转轴产生的振动破坏性最大。在运行中,要尽快通过临界转速,动力学特性研究指出,转子在越过临界转速后会自动定心,因而可以稳定运转。二、临界转速的分析 根据临界转速的定义可以看出,质心的偏移是临界转速产生的原因。当回转体在临界转速或其附近运行时,本身将出现很大变形并作弓状回旋,引起支承及整个机械的剧烈振动,甚至造成轴承和回转体的破坏,而当转速在这些特定转速的一定范围之外时,运转即趋于平稳。 以图2-1所示竖立单圆盘转轴为例分析临界转速。轴的重量忽略不计,只考虑圆盘的质量m,轴系的刚度为k,而阻尼可忽略,圆盘的几何中心为O,重心为G,偏心距e = O’G。当轴静止时,其轴心线与铅垂线AB 重合;当轴以角速度ω 旋转时,偏心质量将产生离心惯性力2meω,使轴弯曲而到达AO’B的位置,其振幅为OO’。 由图2-1可见,在临界转速下运动时,轴系作两种运动:一种是圆盘绕几何中心的转动;一种是弯曲了的轴AO’B 绕铅锤线AOB的转动,轴的变形呈弓状,因而称为弓状回旋。弓状回旋与轴系的横向振动不同。横向振动时,轴因反复弯曲而产生交变拉压应力;弓状回旋时,轴内不产生或仅产生频率远低于轴转频率的交变拉压应力,但离心惯性力对轴系施加频率等于轴自转频率的交变作用力而使系统发生振动。当不考虑回转效应和工作环境等因素时,回转体的临界转速在数值上与其横向振动的固有频率相同。设某回转体的临界转速为 n c(r/min),其横向振动的固有频率为ωn(rad/s),则有:

ANSYS用于转子临界转速计算

ANSYS用于转子临界转速计算 1 转子临界转速概念 转子的固有频率除了与转子结构(和支承结构)参数有关外,它还随转子涡动转速和转子自转转速的变化而变化。在转子不平衡力驱动下,转子一般作正同步涡动,当转子涡动转速等于转子固有频率时,转子出现共振,相应转速就称为该转子的临界转速。 2 转子临界转速计算对程序的要求 计算转子临界转速必须能够考虑旋转结构涡动时产生的陀螺效应对转子临界转速的影响,这是转子临界转速计算同其他非旋转结构固有频率计算的差异所在。一般有限元程序不具备计算转子临界转速的功能。 3 ANSYS的临界转速计算功能 1) 计算转子临界转速可用单元 BEAM4; PIPE16。 COBIN14(用于模拟带阻尼的弹性支撑) 2) 单元特性及实常数 BEAM4和PIPE16: Keyoption(7)=1 实常数Spin=转子自转角速度(ω) rad/s。 3) 特征值求解方法 选取DAMP方法求解特征值。 4) 计算结果处理 采用有限元方法计算转子临界转速时,转子会出现正进动和反进动。由于陀螺效应的作用,随着转子自转角速度的提高,反进动固有频率将降低,而正进动固有频率将提高。根据临界转速的定义,应只对正进动固有频率(Ωc)进行分析。在后处理中首先剔除负固有频率,然后分析各阶模态振型,确定同一阶振型的正进动和反进动固有频率。 改变转子自转角速度(ω),计算出新的Ωc,最后画出Ωc~ω曲线,根据临界转速的定义,当Ωc=ω时,Ωc即所求临界转速。需注意:由于Ωc的单位为Hz,而ω为rad/s,计算时应转换单位。 4 算例 单转子结构如图1所示,转子轴近似无质量,轮盘密度8*104Kg/m3,其余材料参数为: E=200Gpa μ=0.3 图1 模型转子结构(mm) 理论临界转速: 式中,m:轮盘质量;

ANSYS临界转速计算具体经典算例

ANSYS临界转速计算算例 1 结构 如图1所示单转子结构,密度7800Kg/m3,E=206GPa μ=0.3, 2 操作步骤 2.1 建模 根据几何模型建立有限元模型,转子主体部分(盘、轴)采用SOLID45单元,支承采用弹簧—阻尼单元COMBIN14。弹簧—阻尼单元的末端约束所有自由度。为了避免轴向的刚体位移,将弹簧—阻尼单元始端的轴向自由度约束。 2.2输入材料参数及弹簧刚度(COMBIN14的实常数)。 Main Menu>Preprocessor>Material Props> Material Models Main Menu>Preprocessor>Real Constants>Add/Edit/Delete 2.3将转子主体的所有SOLID单元生成一个COMPONENT,命名为ROTOR。若为多转子,建立 不同的COMPONENT,并按一定的转速关系输入转速。 Utility Menu>Select>Comp/Assembly>Create Component 2.4对名称为ROTOR的COMPONENT施加转速(自转转速)。 a)注意对COMPONENT施加转速之前,必须将OMEGA命令中的KSPIN开关设置为1。即计算时考虑SPIN SOFTENING效应。但并不利用OMEGA命令输入转速。 Main Menu>Solution>Define Loads>Apply>Structural>Inertia>Angular Velocity> Global b)利用CMOMEGA命令对COMPONENT施加转速。该命令中的KSPIN开关控制转子的正、反进动。若KSPIN=0,为正进动;若KSPIN=1,为反进动。

临界转速

转子的振幅随转速的增大而增大,到某一转速时振幅达到最大值,超过这一转速后振幅随转速增大逐渐减少,且稳定于某一范围内,这一转子振幅最大的转速称为转子的临界转速。 旋转机械转子的工作转速接近其横向振动的固有频率而产生共振的特征转速。汽轮机、压缩机和磨床等高速旋转机械的转子,由于制造和装配不当产生的偏心以及油膜和支承的反力等原因,运行中会发生弓状回旋。当转速接近临界转速时,挠曲量显著增加,引起支座剧烈振动,形成共振,甚至波及整个机组和厂房,造成破坏性事故。转子横向振动的固有频率有多阶,故相应的临界转速也有多阶,按数值由小到大分别记为n c1,n c2,…n ck…等。有工程实际意义的是较低的前几阶。任何转子都不允许在临界转速下工作。对于工作转速n低于其一阶临界转速的刚性转子,要求n<0.75n c1;对于工作转速n高于其一阶临界转速的柔性转子,要求 1.4n ck<n<0.7n ck+1。限元法利用电子计算机计算各阶临界转速。对于已经制造出的转子,可用各种〖HTK〗激励法实测其各阶横向振动固有频率,进而确定各阶临界转速,为避免事故、改进设计提供依据。因此,旋转机械在设计和使用中,必须设法使工作转速避开各阶临界转速。临界转速的数值与转子的材料、几何形状、尺寸、结构形式、支承情况和工作环境等因素有关。计算转子临界转速的精确值很复杂,需要同时考虑全部影响因素,在工程实际中常采用近似计算法或实测法来确定。对于在图纸设计阶段的转子,可用分解代换法、当量直径法或图解法估算其一阶临界转速,也可用传递矩阵法或有 振动物体离开平衡位置的最大距离叫振动的振幅。振幅在数值上等于最大位移的大小。振幅是标量,单位用米或厘米表示。 振幅的物理意义,振幅描述了物体振动幅度的大小和振动的强弱。发音体振动的位移幅度,振幅大小同发音受到的外力大小有关,振幅的大小决定声音的强弱。 →如果您认为本词条还有待完善 次同步谐振是指汽轮机发电机组轴系振荡和发电机电气系统的电气振荡之间,通过发电机转子气隙中电气转矩的耦合作用而形成的整个机网系统的共振行为。含有串联补偿线路的电网,其电气谐振频率f1与轴系某阶固有频率f2互补,即满足f1+f2=f(工频50Hz)条件时,将出现低于电网频率的负阻尼振荡,诱发机电谐振,由于频率低于电网频率,故称为次同步谐振。 impeller 又称工作轮。离心式压缩机中惟一对气流作功的元件。转子上的最主要部件。一般由轮盘、轮盖和叶片等零件组成。气体在叶轮叶片的作用下,随叶轮作高速旋转,气体受旋转离心力的作用,以及在叶轮里的扩压流动,使它通过叶轮后的压力得到提高。 对叶轮的要求是:(1)能给出较大的能量头;(2)气体流过叶轮的损失要小,即气体流经叶轮的效率要高;(3)气体流出叶轮时各参数合宜,使气体流过后面固定元件时的流动损失较小;(4)叶轮型式能使级或整机性能曲线的稳定工况区及高效区范围较宽。常分为闭式、半开式和开式叶轮。 在风里发电机组中,叶轮由轮毂和叶片组成。风经过叶轮,带动叶轮转动,从而带动发电机转动,将风能转化为电能。此时,要求叶轮转动时有足够大的迎风面,以从风中提取足够多的能量;同时,在风速过大时,要能够自动调整叶片迎风角度,避免因受力过大而损坏机械 根据ISO标准,由轴承支撑的旋转体称为转子。如光盘等自身没有旋转轴的物体,当它采用刚性连接或附加轴时,可视为一个转子,转子多为动力机械和工作机械中的主要旋转部件。典型的转子有透平机械转子、电机转子、各种泵的转子和透平压缩机的转子等。转子在某些特定的转速下转动时会发生很大的变形并引起共振,引起共振时的转速称为转子的临界转速。在工程上,工作转速低于第一阶临界转速的转子称为刚性转子,大于第一阶临界转

临界转速的计算

临界转速的计算

————————————————————————————————作者:————————————————————————————————日期:

一、临界转速分析的目的 临界转速分析的主要目的在于确定转子支撑系统的临界转速,并按照经验或有关的技术规定,将这些临界转速调整,使其适当的远离机械的工作转速,以得到可靠 的设计。 例如设计地面旋转机械时,如果工作转速低于其一阶临界转速Nc1,应使N<0.75N c1, 如果工作转速高于一阶临界转速,应使1.4Nck

高速旋转轴的临界转速

第五节 高速旋转轴的临界转速 一、概述 1、临界转速 如果作用于转轴的外来干扰频率(转子的转速)恰好等于转子的固有频率,系统将发生共振,发生共振时的转速,称为临界转速。 2、计算临界转速的目的 使离心机的工作转速避开共振区。 3、临界转速的阶数 转轴的临界转速不止一个,与系统的自由度数有关,如果一根轴上带有一个比轴重得多的转子,为一个自由度系统,具有一个临界转速; 如果转轴带有两个转子,即为两个自由度系统,那么具有两个临界转速。以此类推。 在临界转速中,称最小的为一阶临界转速,比他大的为二阶、三阶、…… 4、刚性轴、挠性轴 刚性轴:n 工 > nk1 挠性轴:n 工>nk1 二、临界转速的计算 单自由度系统 式中:A —最大振幅 φ—初相角 ωn —固有频率 式中:K —轴的刚度 δ—挠度(J 、l 、E 、a 、b) K 与J 、l 、E 、a 、b 有关,J ∝d4 ∴ ωn ∝ d2 ∴改变固有频率的一般方法是改变轴的直径 02 2=+Ky dt y d m )sin()sin(?ω?+=+?=t A t m K A y n m K n = ω1-=δK 75.01

三、离心机的减振方法 1、设计时 刚性轴: 挠性轴: 2、设置布料器 3、机器另立大块地基 4、将机器放在隔振器上 注意:1)绕性轴离心机启动停止时,通过固有频率区可能产生较大振幅,应产生相应的措施,如采用有一定阻尼值的隔振器;尽快启动和停止等。 2)将离心机装在地板上,在地板与地基间状隔振器 3)进料、排料管与其他设备的联接管道应采用挠性联接 求解单自由度系统的固有频率公式 75.01

变频电机转子临界转速有限元计算

变频电机转子临界转速有限元计算 * 刘劲松,陈得意 (重庆交通大学,重庆 400074) 摘 要:采用有限元法对某变频电机转子进行了模态分析,计算得到了转子的临界转速二固有频率和振型三通过临界转速和振型图分析了转子的振动特性三计算结果表明,转子的设计具有良好的结构刚度,转子系统临界转速安全系数合理三最后对比了有限元法和传递矩阵法的临界转速计算结果,证实了有限元法的准确性三关键词:转子;有限元;临界转速;模态分析 中图分类号:TM303 文献标志码:A 文章编号:1007-4414(2014)05-0096-03 Finite Element Calculation of Critical Speed of a Rotor in Frequency Converted Motor LIU Jin-song ,CHEN De-yi (Chongqing Jiaotong University ,Chongqing 400074,China ) Abstract :In this paper ,modal analysis of a rotor in frequency converted motor is made by using the finite element method , and the critical speed ,natural frequency and vibration of the rotor are abtained.Vibration characteristics of the rotor is ana-lyzed through the critical speed and vibration diagram.The calculation results show that design of the rotor has good structural stiffness ,and the safety factor of the critical speed of rotor system is reasonable.By comparing the critical speed results of the finite element method and the transfer matrix method ,the accuracy of the finite element method has been confirmed.Key words :rotor ;finite element ;critical speed ;modal analysis 0 引 言 旋转机械被广泛应用于燃气轮机二航空发动机二工业压缩机及各种电动机等机械装置中,在电力二航空二机械二化工二纺织等国民经济领域中起着非常重要 的作用[1],而对其动力学特性的研究也成了一门专门的学科 转子动力学三 转子系统是旋转机械的重要组成部分,旋转机械的转子系统的动力学特性决定着旋转机械的工作性能和结构安全,临界转速特性作为转子系统动力学特性的一个重要组成部分,对其进行研究和计算具有很重要的意义三 现代常用的分析转子动态特性的方法有传递矩阵法和有限元法三传递矩阵法是工程上计算临界转速与不平衡响应的主要方法三有限元法则在计算机技术快速发展后得到了广泛的应用三 1 模态分析理论 进行模态分析时的通用动力学方程为:[M ]{U 四四 }+[C ]{U 四 }+[K ]{U }={F }(1) 在转子动力学中,这个方程要加陀螺效应和旋转阻尼,其运动学方程如下: [M ]{U 四四 }+([C ]+[G ]){U 四 }+([K ]+[B ]){U } ={F }(2)式中:[]M 为质量矩阵;[]C 为阻尼矩阵;[]G 为陀螺 矩阵;[]K 为刚度矩阵;[]B 为旋转阻尼矩阵;{}F 为外力和离心力;{}U 为节点位移三 以上矩阵一般都是转速为ω的函数三陀螺矩阵取决于转速,并且对转子动力学计算做主要的贡献三旋转阻尼矩阵也取决于转速,它明显地修改结构刚度,并且能够使结构产生不稳定的运动三上式是用有限元法求解结构动力学问题的基本方程,简称为动力方程三计算一个旋转系统的临界转速,就是计算该系统动力方程的特征值三 2 建立有限元模型 2.1 建立模型 研究对象为某变频电机转子,图1为该转子轴承系统的结构简图三笔者采用ANSYS 的命令流文件求解,命令流文件转子模型的建立采用自上而下(依次生成点二线二面二体)的建模方法三质量是影响固有频率的主要因素之一,因此,建模时应尽可能地接近实物模型的实际尺寸,但一些细小的结构如倒角可忽 略三主要部件的材料参数与实际情况相符三滚动轴承具有径向刚度与阻尼二轴向刚度与阻尼等多种力学性能参数,对临界转速影响最大的是其径向刚度,故在临界转速的计算中,可忽略除径向刚度之外的其它参数三笔者在建模时考虑轴承两个垂直方向的径向刚度,用弹簧单元模拟轴承的径向刚度三 四 69四应用与实验 2014年第5期(第27卷,总第133期) 四机械研究与应用四 *收稿日期:2014-09-14 作者简介:刘劲松(1989-),男,四川人,在读研究生,研究方向:现代车辆设计方法与理论三

临界转速的计算

临界转速的计算 公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

一、临界转速分析的目的 临界转速分析的主要目的在于确定转子支撑系统的临界转速,并按照经验或有关的技术规定,将这些临界转速调整,使其适当的远离机械的工作转速,以得到可靠的设计。 例如设计地面旋转机械时,如果工作转速低于其一阶临界转速Nc1,应使N<, 如果工作转速高于一阶临界转速,应使

优点:对于多支撑多元盘的转子系统,通过其特征值问题或通过建立运动微分方程的方法求解系统的临界转速和不平衡响应,矩阵的维数随着系统的自由度的增加而增加,计算量往往较大:采用传递矩阵法的优点是矩阵的维数不随系统的自由度的增加而增大,且各阶临界转速计算方法相同,便于程序实现,所需存储单元少,这就使得传递矩阵法成为解决转子动力学问题的一个快速而有效的方法。 缺点:求解高速大型转子的动力学问题时,有可能出现数值不稳定现象。今年来提出的Riccati 传递矩阵法,保留传递矩阵的所有优点,而且在数值上比较稳定,计算精度高,是一种比较理想的方法,但目前还没有普遍推广。 轴段划分:首先根据支撑系统中刚性支撑(轴承)的个数划分跨度。在整个轴段内,凡是轴承、集中质量、轮盘、联轴器等所在位置,以及截面尺寸、材料有变化的地方都要划分为轴段截面。若存在变截面轴,应简化为等截面轴段,这是因为除了个别具有特殊规律的变截面轴段外,其他的变截面轴段的传递矩阵特别复杂。 传递矩阵: 4. 轴段传递矩阵 每段起始状态参数和终端状态参数的转换方程,根据是否考虑转轴的分布质量,可以建立两种轴段传递矩阵 ① 当考虑轴段的分布质量时:起始和终端的转换方程是均质等截面杆的振 动弹性方程: ② 不考虑转轴的分布质量时建立的传递矩阵 ③ i 0212222111212Q M X 1 00L 100-L 10-L L 1Q M X ???? ? ?? ??????????? ???=? ?????? ??θααααααθki 其中,a11,a12,a21,a22为该轴段的影响系数,根据材料力学:

临界转速的计算

、临界转速分析的目的 临界转速分析的主要目的在于确定转子支撑系统的临界转速,并按照经验或有关的技术 规定,将这些临界转速调整,使其适当的远离机械的工作转速,以得到可靠的设计。 例如设计地面旋转机械时,如果工作转速低于其一阶临界转速Nc1,应使N<0.75Nc1, 如果工作转速高于一阶临界转速,应使 1.4Nck

传递矩阵法 基本原理:传递矩阵法的基本原理是,去不同的转速值,从转子支撑系统的一端开始,循环 进行各轴段截面状态参数的逐段推算,直到满足另一端的边界条件。 优点:对于多支撑多元盘的转子系统,通过其特征值问题或通过建立运动微分方程的方法求 解系统的临界转速和不平衡响应,矩阵的维数随着系统的自由度的增加而增加,计算量往往 较大:采用传递矩阵法的优点是矩阵的维数不随系统的自由度的增加而增大,且各阶临界转 速计算方法相同,便于程序实现,所需存储单元少,这就使得传递矩阵法成为解决转子动力学问题的一个快速而有效的方法。 缺点:求解高速大型转子的动力学问题时, 传 递矩阵法,保留传递矩阵的所有优点,理想的 方法,但目前还没有普遍推广。 轴段划分:首先根据支撑系统中刚性支撑(轴承)的个数划分跨度。在整个轴段内,凡是轴承、集中质量、轮盘、联轴器等所在位置,以及截面尺寸、材料有变化的地方都要划分为轴段截面。若存在变截面轴,应简化为等截面轴段,这是因为除了个别具有特殊规律的变截面轴段外,其他的变截面轴段的传递矩阵特别复杂。 传递矩阵: 4. 轴段传递矩阵 每段起始状态参数和终端状态参数的转换方程,根据是否考虑转轴的分布质量,可以建 立两种轴段传递矩阵 ①当考虑轴段的分布质量时:起始和终端的转换方程是均质等截面杆的振动弹性方 程: ②不考虑转轴的分布质量时建立的传递矩阵 X、■1L?12a12L^11 1 Q01 a 22a22L^21 e M001L M 2J ki卫00 1 一IQ” 其中,a11,a12,a21,a22为该轴段的影响系数,根据材料力学: L3 3EJ L2 12 =「21 = ? 2EJ ail和a12是终端的剪力和弯矩在终端引起的挠度, a21和 L EJ 有可能出现数值不稳定现象。今年来提出的Riccati 而且在数值上比较稳定,计算精度高,是一种比较 ?22

相关文档