文档库 最新最全的文档下载
当前位置:文档库 › 高中数学例题错题详解

高中数学例题错题详解

高中数学例题错题详解
高中数学例题错题详解

高中数学例题错题详解文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

高中数学经典例题、错

题详解

【例1】设M={1、2、3},N={e、g、h},从M至N的四种对应方式,其中是从M到N的映射是()

M N

A M N

B

M N

C

M N

D

映射的概念:设A、B是两个集合,如果按照某一个确定的对应关系f,是对于集合A 中的每一个元素x,在集合B中都有一个确定的元素y与之对应,那么就称对应f:

A→B为从集合A到集合B的一个映射。

函数的概念:一般的设A、B是两个非空数集,如果按照某种对应法则f,对于集合A中的每一个元素x,在集合B中都有唯一的元素y和它对应,这样的对应叫集合A 到集合B的一个函数。(函数的本质是建立在两个非空数集上的特殊对应)映射与函数的区别与联系:

函数是建立在两个非空数集上的特殊对应;而映射是建立在两个任意集合上的特殊对应;函数是特殊的映射,是数集到数集的映射,映射是函数概念的扩展,映射不一定是函数,映射与函数都是特殊的对应。

映射与函数(特殊对应)的共同特点:○1可以是“一对一”;○2可以是“多对一”;○3不能“一对多”;○4A中不能有剩余元素;○5B中可以有剩余元素。

映射的特点:(1)多元性:映射中的两个非空集合A、B,可以是点集、数集或由图形组成的集合等;(2)方向性:映射是有方向的,A到B的映射与B到A的映射往往不是同一个映射;(3)映射中集合A的每一个元素在集合B中都有它的象,不要求

B中的每一个元素都有原象;(4)唯一性:映射中集合A中的任一元素在集合B中的象都是唯一的;(5)一一映射是一种特殊的映射

方向性

上题答案应选 C

【分析】根据映射的特点○3不能“一对多”,所以A、B、D都错误;只有C完全满足映射与函数(特殊对应)的全部5个特点。

本题是考查映射的概念和特点,应在完全掌握概念的基础上,灵活掌握变型题。【例2】已知集合A=R,B={(x、y)︱x、y∈R},f是从A到B的映射fx:→

(x+1、x2),(1)求2在B中的对应元素;(2)(2、1)在A中的对应元素【分析】(1)将x=2代入对应关系,可得其在B中的对应元素为(2 +1、1);(2)由题意得:x+1=2,x2=1 得出x=1,即(2、1)在A中的对应元素为1

【例3】设集合A={a、b},B={c、d、e},求:(1)可建立从A到B的映射个数();(2)可建立从B到A的映射个数()

【分析】如果集合A中有m个元素,集合B中有n个元素,则集合A到集合B的映射共有 n m 个;集合B到集合A的映射共有 m n个,所以答案为23=9;32=8

【例4】若函数f(x)为奇函数,且当x﹥0时,f(x)=x-1,则当x﹤0时,有()

A、f(x) ﹥0

B、f(x) ﹤0

C、f(x)·f(-x)≤0

D、f(x)-f(-x) ﹥0

奇函数性质:

1、图象关于原点对称;

2、满足f(-x) = - f(x);

3、关于原点对称的区间上单调性一致;

4、如果奇函数在x=0上有定义,那么有f(0)=0;

5、定义域关于原点对称(奇偶函数共有的)

偶函数性质:

1、 图象关于y 轴对称;

2、满足f(-x) = f(x);

3、关于原点对称的区间上单调性相

反;4、如果一个函数既是奇函数有是偶函数,那么有f(x)=0;5、定义域关于原点对称(奇偶函数共有的) 基本性质:

唯一一个同时为奇函数及偶函数的函数为其值为0的常数函数(即对所有x ,f(x)=0)。 通常,一个偶函数和一个奇函数的相加不会是奇函数也不会是偶函数;如x + x 2。 两个偶函数的相加为偶函数,且一个偶函数的任意常数倍亦为偶函数。 两个奇函数的相加为奇函数,且一个奇函数的任意常数倍亦为奇函数。 两个偶函数的乘积为一个偶函数。 两个奇函数的乘积为一个偶函数。

一个偶函数和一个奇函数的乘积为一个奇函数。 两个偶函数的商为一个偶函数。 两个奇函数的商为一个偶函数。

一个偶函数和一个奇函数的商为一个奇函数。 一个偶函数的导数为一个奇函数。 一个奇函数的导数为一个偶函数。

两个奇函数的复合为一个奇函数,而两个偶函数的复合为一个偶函数。 一个偶函数和一个奇函数的复合为一个偶函数 【分析】 f(x)为奇函数,则f(-x) = -f(x),

当X ﹤0时,f(x) = -f(-x) = -[-(-x) – 1] = -x+1>0,所以A 正确,B 错误; f(x)·f(-x)=(x-1)(-x+1)﹤0,故C 错误; f(x)-f(-x)= (x-1)-(-x+1)﹤0,故D 错误

【例5】 已知函数f(x)是偶函数,且x ≤0时,f(x)=

x

x

-+11,求:(1)f(5)的值;

(2)f(x)=0时x 的值;(3)当x >0时,f(x)的解析式

【考点】 函数奇偶性的性质 【专题】计算题,函数的性质及应用 【分析及解答】

(1)根据题意,由偶函数的性质f(x)= f(-x),可得f(5)= f(-5)=

)()(5--15-1+=—3

2

(2)当x ≤0时,f(x)=0 可求x ,然后结合f(x)= f(-x),即可求解满足条件的x , 即当x ≤0时,

x

x

-+11=0 可得x=—1;又f(1)= f(-1),所以当f(x)=0时,x=±1 (3)当x >0时,根据偶函数性质f(x)= f(-x)=

)(1)(1x x ---+=x

x

+-11

【例6】 若f(x)=e x

+ae -x

为偶函数,则f(x-1)<e

e 1

2+的解集为( )

A.(2,+∞)

B.(0,2)

C.(-∞,2)

D.(-∞,0)∪(2,+∞) 【考点】 函数奇偶性的性质 【专题】转化思想;综合法;函数的性质及应用 【分析及解答】

根据函数奇偶性的性质先求出a 值,结合函数单调性的性质求解即可 ∵f(x)=e x +ae -x 为偶函数,∴f(-x)=e -x +ae x = f(x)= e x +ae -x ,∴a=1, ∴f(x)=e x +e -x 在(0,+∞)上单调递增,在(-∞,0)上单调递减,

则由f(x-1)<e

e 1

2+=e+e 1, ∴ -1 <x-1<1, 求得 0 <x <2 故B 正确

【点评】 本题主要考查不等式的求解,根据函数奇偶性的性质先求出a 值是解题关键 【例7】 函数f(x)=

2

1x b ax ++是定义在(-1,1)上的奇函数,且f(2

1

)=52,(1)确定函数f(x)的解析式;(2)证明f(x)在(-1,1)上为增函数;(3)解不等式f(2x-1)+ f(x) <0 【考点】 函数奇偶性与单调性的综合 【专题】函数的性质及应用 【分析及解答】

(1) 因为f(x)为(-1,1)上的奇函数,所以f(0)=0,可得b=0,

由f(2

1)=52,所以2)

21(121+a

=52,得出a=1,所以f(x)= 2

1x x + (2) 根据函数单调性的定义即可证明

任取-1 <x 1<x 2<1,f(x 1)—f(x 2)=

2

1

11x x +—

2

2

21x x +=

)

1)(1()1)((2

22

12121x x x x x x ++--

因为-1 <x 1<x 2<1,所以x 1-x 2<0,1—x 1x 2>0,所以f(x 1)—f(x 2) <0, 得出f(x 1) <f(x 2),即f(x)在(-1,1)上为增函数

(3) 根据函数的奇偶性、单调性可去掉不等式中的符号“f ”,再考虑到定义域可得一不

等式组,解出即可:f(2x-1)+ f(x)= <0,f(2x-1) <—f(x),由于f(x)为奇函数,所

以f(2x-1) <f(—x),因为f(x)在(-1,1)上为增函数,所以2x-1<—x ○

1, 因为-1 <2x-1<1○2,-1 <x <1○3,联立○1○2○3得 0 < x <3

1

,所以解不等式f(2x-1)+ f(x)

<0的解集为(0,3

1

【点评】 本题考查函数的奇偶性、单调性及抽象不等式的求解,定义是解决函数单调性、奇偶性的常用方法,而抽象不等式常利用性质转化为具体不等式处理。

【例8】 定义在R 上的奇函数f(x)在(0,+∞)上是增函数, 又f(-3)=0,则不等式x f(x) <0的解集为( )

【考点】 函数单调性的性质 【专题】综合题;函数的性质及应用

【分析及解答】 易判断f(x)在(-∞,0)上的单调性及f(x)图像所过特殊点,作出f(x)草图,根据图像可解不等式。

解:∵ f(x)在R 上是奇函数,且f(x)在(0,+∞)上是增函数,∴ f(x)在(-∞,0)上也是增函数,由f(-3)=0,可得- f(3)=0,即f(3)=0,由f(-0)=-f(0),得f(0)=0 作出f(x)的草图,如图所示:

由图像得:x f(x) <0??????0)(0x f x 或?

????0)(0

x f x ? 0﹤x ﹤3或-3﹤x ﹤0,

∴ x f(x) <0的解集为:(-3,0)∪(0,3),故答案为:(-3,0)∪(0,3) 【点评】 本题考查函数奇偶性、单调性的综合应用,考查数形结合思想,灵活作出函数的草图是解题关键。

【例9】 已知f (x+1)的定义域为[-2,3],则f (2x+1)的定义域为( )

抽象函数定义域求法总结:(1)函数y=f[g(x)]的定义域是(a ,b ),求f (x )的定义域:利用a <x <b ,求得g (x )的范围就是f (x )的定义域;(2)函数y=f (x )的定义域是(a ,b ),求y=f[g(x)]的定义域:利用a <g(x)<b ,求得x 的范围就是y=f[g(x)]的定义域。

【考点】 函数定义域极其求法

【分析及解答】 由f (x+1)的定义域为[-2,3],求出 f (x )的定义域,再由2x+1在函数f (x )的定义域内求解x 的取值集合,得到函数f (2x+1)的定义域。

解:由f (x+1)的定义域是[-2,3],得-1≤x+1≤4 ;再由-1≤2x+1≤4 ?0≤x ≤2

5

∴ f (2x+1)的定义域是[0,25

],故选A

【点评】 本题考查了复合函数定义域的求法,给出函数f[g(x)]的定义域是(a ,b ),求函数f (x )的定义域,就是求x ∈(a ,b )内的g(x)的值域;给出函数f (x )的定义域是(a ,b ),只需由a <g(x) <b ,求解x 的取值集合即可。 【例10】 已知函数f(x)=x 7+ax 5+bx-5,且f(-3)= 5,则f(3)= ( )

A. -15

B. 15 【考点】 函数的值;奇函数

【分析及解答】 令g(x)= x 7+ax 5+bx ,则g(-3)=

解法1:f(-3)= (-3)7+ a(-3)5+b(-3)-5=-(37+a35+3b-5)-10=- f(3)-10=5,∴f(3)=-15 解法2:设g(x)= x7+ax5+bx ,则g(x)为奇函数,f(-3)= g(-3)-5=- g(3)-5 ∴g(3)=-10, ∴f(3)= g(3)-5=-15

C. y=x0(x≠0)与y=1(x≠0)

D. y=2x+1(x∈Z)与y=2x-1(x∈Z)

当时,函数图像如图,由图知:只有当时,函数的图像在x 轴上方,即

时,

因为函数

收偶函数,偶函数的图像关于y 轴对称,所以

时,函数的图像在x 轴上方时,只有

则不等式

的解集为

故选D

18、如果函数f(x)=x2+2(a-1)x+2在区间(-∞,4]行单调递减,那么实数a 的取值范围是( )≦-3 ≧-3 ≦5 ≧5

19、定义在R 上的函数)(x f 对任意两个不相等实数a ,b ,总有

b

a b f a f --)

()(>0成立,则必有

_______ A. )(x f 在R 上是增函数 B. )(x f 在R 上是减函数 C.函数)(x f 是先增加,后减少 D.函数)(x f 是先减少,后增加

解:利用函数单调性定义,在定义域上任取x 1,x 2∈R ,且x 1

b

a b f a f --)

()(>0

所以f(a)-f(b)<0,所以)(x f 在R 上是增函数。

20、对于定义域R 上的函数f(x),有下列命题:(1)若f(x)满足f(2)>f(1),则f(x)在R 上时减函数;(2)若f(x)满足f(-2)=f (2),则函数f(x)不是奇函数;(3)若函数f(x)在区间(-∞,0)上是减函数,在区间(0,+∞)也是减函数,则f(x)在R 上也是减函数;(4)若f(x)满足f (-2)=f(2),则函数f(x)不是偶函数;其中正确的是_____________________

21、函数f(x)=x ∣x-2∣,(1)求作函数Y=f(x)的图象;(2)写出函数f(x)的单调区间并指出在各区间上是增函数还是减函数(不必证明)(3)已知f(x)=1,求x 的值

22、函数F(x)是定义域为R 的偶函数,当x ≧0 时,f(x)=x(2-x),(1)画出函数f(x)的图象(不列表);(2)求函数f(x)的解析式;(3)讨论方程f(x)-k=0的根的情况 23、已知f(x)的定义域为[-2,3],则f(2x-1)的定义域为( ) A.[0,5/2] B.[-4,4] C.[-5,5] D.[-3,7]

24、已知函数??

?

???-≤++=)0(10

)0(63)(2x x x x a x f 且f(a)=10,则a=( ) 或1

25、已知函数f(x)=x7+ax 5

+bx-5,则f(3)=( )

26、若函数f(x)=4x 2

-kx-8在区间[5,8]上是单调函数,则k 的取值范围是( )

A.(-∞,0]

B.[40,64]

C.(- ∞,40]∪[64,+∞)

D.(64,+ ∞)

27、已知二次函数f(x)=x2+x+a(a>0),若f(m)<0,则f(m+1)的值为()

A.正数

B.负数

C.零

D.符号与a有关

28、函数f(x)=∣x2-2x∣-m有两个零点,m的取值范围__________

29、已知函数f(x)和g(x)均为奇函数,h(x)=af(x)+bg(x)+2,在区间(0,+∞)有最大值5,那么h(x)在区间(0,+∞)的最小值为________

30、对于每个实数x,设f(x)取y=x+1,y=2x+1,y=-2x三个函数中的最大值,用分段函数的形式写出f(x)的解析式,求出f(x)的最小值

由方程组y=x+1,y=2x+1,解得x=0,y=1,得到交点A(0,1);由方程组y=x+1,y=-2x,解得x=-

1/3,y=2/3,得到交点B(-1/3,2/3);由方程组y=2x+1,y=-2x,解得x=-1/4,y=1/2,得到交点C(-

1/4,1/2).由图像容易看出:

1)x<-1/3时,三直线的最大值是y=-2x,所以在此时f(x)=-2x;

2)-1/3≤x≤0时,三直线的最大值是y=x+1,所以此时的f(x)=x+1;

3)x>0时,三直线中最大值是y=2x+1,所以此时的f(x)=2x+1.

所以f(x)=-2x;(x<-1/3),x+1;(-1/3≤x≤0),2x+1.(x>0)

1)考察函数的图像(由射线—线段—射线组成的折线)可以看出函数的最小值是x=1/3时的y=2/3.

31、已知函数f(x)=x2+ax+3,(1)当X∈R时,f(x)≧a恒成立,求a的取值范围;(2)当X∈[-2,2]时,f(x)≧a恒成立,求a的取值范围;(3)若对一切a∈[-3,3],不等式f(x)≥a恒成立,那么实数x的取值范围是什么

1)f(x)≥a即x2+ax+3-a≥0,要使x∈R时,x2+ax+3-a≥0恒成立,

应有△=a2-4(3-a)≤0,即a2+4a-12≤0,解得-6≤a≤2;

(2)当x∈[-2,2]时,令g(x)=x2+ax+3-a,当x∈[-2,2]时,f(x)≥a恒成立,转化为g(x)min≥a,

分以下三种情况讨论:

①当-a/2≤-2,即a≥4时,g(x)在[-2,2]上是增函数,

∴g(x)在[-2,2]上的最小值为g(-2)=7-3a,∴a≤4 7-3a≥0,解得a无解

②当-a/2≥-2,即a≤4时,g(x)在[-2,2]上是递减函数,

∴g(x)在[-2,2]上的最小值为g(2)=7+a,

∴a ≤-4 7+a ≥0 解得-7≤a ≤-4

③当-2

上的最小值为

(3)不等式f (x )≥a 即x 2+ax+3-a ≥0.令h(a)=(x-1)a+x 2+3,要使h(a) ≥0在[-

3,3]上恒成立,只需???≥≥-0)3(0)3(h h 即???≥+≥+-0

30632x x x x 解得:x ≥0或x ≤-3

2016届高考数学经典例题集锦:数列(含答案)

数列题目精选精编 【典型例题】 (一)研究等差等比数列的有关性质 1. 研究通项的性质 例题1. 已知数列}{n a 满足1 111,3(2)n n n a a a n --==+≥. (1)求32,a a ; (2)证明: 312n n a -= . 解:(1)2 1231,314,3413a a a =∴=+==+= . (2)证明:由已知1 13 --=-n n n a a ,故)()()(12211a a a a a a a n n n n n -++-+-=--- 1 2 1313 3 312n n n a ---+=++++= , 所以证得31 2n n a -= . 例题2. 数列{}n a 的前n 项和记为11,1,21(1)n n n S a a S n +==+≥ (Ⅰ)求{}n a 的通项公式; (Ⅱ)等差数列{}n b 的各项为正,其前n 项和为n T ,且315T =,又112233,,a b a b a b +++成等比数列,求n T . 解:(Ⅰ)由121n n a S +=+可得121(2)n n a S n -=+≥, 两式相减得:112,3(2)n n n n n a a a a a n ++-==≥, 又21213a S =+=∴213a a = 故{}n a 是首项为1,公比为3的等比数列 ∴1 3 n n a -= (Ⅱ)设{}n b 的公差为d ,由315T =得,可得12315b b b ++=,可得25b = 故可设135,5b d b d =-=+,又1231,3,9a a a ===, 由题意可得2 (51)(59)(53)d d -+++=+,解得122,10d d == ∵等差数列{}n b 的各项为正,∴0d > ∴2d = ∴2(1) 3222n n n T n n n -=+ ?=+ 例题3. 已知数列{}n a 的前三项与数列{}n b 的前三项对应相同,且2 12322...a a a +++ 128n n a n -+=对任意的*N n ∈都成立,数列{} n n b b -+1是等差数列. ⑴求数列{}n a 与{}n b 的通项公式; ⑵是否存在N k * ∈,使得(0,1)k k b a -∈,请说明理由. 点拨:(1)2112322...28n n a a a a n -++++=左边相当于是数列{}12n n a -前n 项和的形式,可以联想到已知n S 求n a 的方法,当2n ≥时,1n n n S S a --=. (2)把k k a b -看作一个函数,利用函数的思想方法来研究k k a b -的取值情况. 解:(1)已知212322a a a +++ (1) 2n n a -+8n =(n ∈*N )① 2n ≥时,212322a a a +++ (2) 128(1)n n a n --+=-(n ∈*N )②

高中数学经典例题错题详解

高中数学经典例题、错 题详解

【例1】设M={1、2、3},N={e、g、h},从M至N的四种对应方式,其中是从M到N的映射是() M N A M N B M N C M N D 映射的概念:设A、B是两个集合,如果按照某一个确定的对应关系f,是对于集合A中的每一个元素x,在集合B中都有一个确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的一个映射。 函数的概念:一般的设A、B是两个非空数集,如果按照某种对应法则f,对于集合A中的每一个元素x,在集合B中都有唯一的元素y和它对应,这样的对应叫集合A到集合B的一个函数。(函数的本质是建立在两个非空数集上的特殊对应) 映射与函数的区别与联系: 函数是建立在两个非空数集上的特殊对应;而映射是建立在两个任意集合上的特殊对应;函数是特殊的映射,是数集到数集的映射,映射是函数概念的扩展,映射不一定是函数,映射与函数都是特殊的对应。 映射与函数(特殊对应)的共同特点:○1可以是“一对一”;○2可以是“多对一”;○3不能“一对多”;○4A中不能有剩余元素;○5B中可以有剩余元素。 映射的特点:(1)多元性:映射中的两个非空集合A、B,可以是点集、数集或由图形组成的集合等;(2)方向性:映射是有方向的,A到B的映射与B到A的映射往往不是同一个映射;(3)映射中集合A的每一个元素在集合B中都有它的象,不要求B中的每一个元素都有原象;(4)唯一性:映射中集合A中的任一元素在集合B中的象都是唯一的;(5)一一映射是一种特殊的映射方向性 上题答案应选 C 【分析】根据映射的特点○3不能“一对多”,所以A、B、D都错误;只有C完全满足映射与函数(特殊对应)的全部5个特点。 本题是考查映射的概念和特点,应在完全掌握概念的基础上,灵活掌握变型题。 【例2】已知集合A=R,B={(x、y)︱x、y∈R},f是从A到B的映射fx:→(x+1、x2),(1)求2在B 中的对应元素;(2)(2、1)在A中的对应元素 【分析】(1)将x=2代入对应关系,可得其在B中的对应元素为(2+1、1);(2)由题意得:x+1=2,x2=1 得出x=1,即(2、1)在A中的对应元素为1 【例3】设集合A={a、b},B={c、d、e},求:(1)可建立从A到B的映射个数();(2)可建立从B到A的映射个数() 【分析】如果集合A中有m个元素,集合B中有n个元素,则集合A到集合B的映射共有n m 个;集合B到集合A的映射共有m n个,所以答案为23=9;32=8 【例4】若函数f(x)为奇函数,且当x﹥0时,f(x)=x-1,则当x﹤0时,有() A、f(x) ﹥0 B、f(x) ﹤0 C、f(x)·f(-x)≤0 D、f(x)-f(-x) ﹥0 奇函数性质: 1、图象关于原点对称;? 2、满足f(-x) = - f(x)?; 3、关于原点对称的区间上单调性一致;? 4、如果奇函数在x=0上有定义,那么有f(0)=0;? 5、定义域关于原点对称(奇偶函数共有的)

高中数学典型例题详解和练习- 求分段函数的导数

求分段函数的导数 例 求函数?????=≠=0 ,00 ,1sin )(2 x x x x x f 的导数 分析:当0=x 时因为)0(f '存在,所以应当用导数定义求)0(f ',当 0≠x 时,)(x f 的关系式是初等函数x x 1 sin 2,可以按各种求导法同求它的导数. 解:当0=x 时,01sin lim 1 sin lim ) 0()(lim )0(0200 ===-='→?→?→?x x x x x x f x f f x x x 当 ≠x 时, x x x x x x x x x x x x x x x f 1 cos 1sin 2)1cos 1(1sin 2)1(sin 1sin )()1sin ()(22222-=-+='+'='=' 说明:如果一个函数)(x g 在点0x 连续,则有)(lim )(0 0x g x g x x →=,但如 果我们不能断定)(x f 的导数)(x f '是否在点00=x 连续,不能认为 )(lim )0(0 x f f x →='. 指出函数的复合关系 例 指出下列函数的复合关系. 1.m n bx a y )(+=;2.32ln +=x e y ; 3.)32(log 322+-=x x y ;4.)1sin(x x y +=。 分析:由复合函数的定义可知,中间变量的选择应是基本函数的结构,解决这类问题的关键是正确分析函数的复合层次,一般是从最外层开始,由外及里,一层一层地分析,把复合函数分解成若干个常

见的基本函数,逐步确定复合过程. 解:函数的复合关系分别是 1.n m bx a u u y +==,; 2.2,3,ln +===x e v v u u y ; 3.32,log ,322+-===x x v v u y u ; 4..1,sin ,3x x v v u u y +=== 说明:分不清复合函数的复合关系,忽视最外层和中间变量都是基本函数的结构形式,而最内层可以是关于自变量x 的基本函数,也可以是关于自变量的基本函数经过有限次的四则运算而得到的函数,导致陷入解题误区,达不到预期的效果. 求函数的导数 例 求下列函数的导数. 1.43)12(x x x y +-=;2.2 211x y -= ; 3.)3 2(sin 2π +=x y ;4.21x x y +=。 分析:选择中间变量是复合函数求导的关键.必须正确分析复合函数是由哪些基本函数经过怎样的顺序复合而成的,分清其间的复合关系.要善于把一部分量、式子暂时当作一个整体,这个暂时的整体,就是中间变量.求导时需要记住中间变量,注意逐层求导,不遗漏,而其中特别要注意中间变量的系数.求导数后,要把中间变量转换成自变量的函数.

高一数学平面向量知识点及典型例题解析

高一数学 第八章 平面向量 第一讲 向量的概念与线性运算 一.【要点精讲】 1.向量的概念 ①向量:既有大小又有方向的量。几何表示法AB u u u r ,a ;坐标表示法),(y x j y i x a 。 向量的模(长度),记作|AB u u u r |.即向量的大小,记作|a |。向量不能比较大小,但向量的模可以比较大小. ②零向量:长度为0的向量,记为0 ,其方向是任意的,规定0r 平行于任何向量。(与0的区别) ③单位向量| a |=1。④平行向量(共线向量)方向相同或相反的非零向量,记作a ∥b ⑤相等向量记为b a 。大小相等,方向相同 ),(),(2211y x y x 2121y y x x 2.向量的运算(1)向量加法:求两个向量和的运算叫做向量的加法.如图,已知向量a ,b ,在平面内任 取一点A ,作AB u u u r a ,BC u u u r b ,则向量AC 叫做a 与b 的和,记作a+b ,即 a+b AB BC AC u u u r u u u r u u u r 特殊情况: a b a b a+b b a a+b (1) 平行四边形法则三角形法则C B D C B A A 向量加法的三角形法则可推广至多个向量相加: AB BC CD PQ QR AR u u u r u u u r u u u r u u u r u u u r u u u r L ,但这时必须“首尾相连”。②向量减法: 同一个图中画出 a b a b r r r r 、 要点:向量加法的“三角形法则”与“平行四边形法则”(1)用平行四边形法则时,两个已知向量是要共始点的,和向量是始点与已知向量的始点重合的那条对角线,而差向量是另一条对角线,方向是从减向量指向被减向量。(2) 三角形法则的特点是“首尾相接”,由第一个向量的起点指向最后一个向量的终点的有向线段就表示这些向量的和;差向量是从减向量的终点指向被减向量的终点.(3)实数与向量的积 3.两个向量共线定理:向量b 与非零向量a 共线 有且只有一个实数 ,使得b =a 。 二.【典例解 析】 题型一: 向量及与向量相关的基本概念概念 例1判断下列各命题是否正确 (1)零向量没有方向 (2)b a 则, (3)单位向量都相等 (4) 向量就是有向线段

高中数学错题集建立方法

高中数学错题集建立方法 每一次练习也好,考试也罢,老师评讲过后,绝大多数同学都会觉得自己不应该出现 错误。可是,下一次考试仍然会重复昨天的故事。究其原由,考试中丢分主要是学生对要 考试的知识点掌握不够,累计的漏洞超多的反映。所以,要想尽可能减少失误,必须找到 补漏的灵丹妙药,而错题集正是我们事半功倍的绝佳助手。 如你想通过错题集来提醒自己注意一些小毛病,你就可以把原来的错误过程抄下来, 再在错的地方加上简单的小注释,这样就可以清晰地反映出为什么出错;再如你想用错题 集来积累一些解题方法,你就可以用简单的语言描述清楚题意和解题方向,不用写太多细节……总之你所做的是为你自己的目的服务的。这样大家的错题集也会各有千秋! 1、准备好一个专门的记录错题的笔记本,简陋或精致都无所谓,但一定能足够满足 你整理错题所用。 2、选题。 作为数学教师,为使学生能乐于做错题集。首先应紧扣学生都想学习能好一点的心理。做好舆论宣传,阐明其重要意义。 其次,教师在课堂教学中应不断暗示,什么样的一些习题可以收录在错题集中,现在 应作好标记,以备选用。 然后阐明选题的原则:要据本人具体学习情况而定,不同的学生,选题有所不同,甚 至差别很大;一般是从自己做错的习题中选择,但也有一些不一定是自己做错的习题。 具体选题范围如下: <1>尚未理解、掌握的习题; <2>特别易错的习题,把做错的原题在错题集上原原本本地抄一遍或剪贴在错题集上,把原来错误的解法清晰地摘要在错题集上,然后在题前加了特别符号以显示有些习题只要 自己细心一点可以避免错误的,这些习题则不要收录; <3>难记题; <4>教师指定题即典型例题。由于学生认知水平有限,应在其过程中予以适当的补充 对于培养学生分析、归纳、解决问题能力以及培养思维能力、创新意识、正确的心理素质 很有作用的习题。总之,选题量不一定要多,选题要尽量具有代表性,类型尽量不要重复。选好题抄在本子上后要在后面留下一定的空白,方便解题跟注释。 3、解题、注释 据不同的错题特点,应采用不同的方法。

高中数学圆的方程典型例题及详细解答

新课标高中数学圆的方程典型例题 类型一:圆的方程 例1 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系. 分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P 与圆的位置关系,只须看点P 与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内. 解法一:(待定系数法) 设圆的标准方程为2 2 2 )()(r b y a x =-+-. ∵圆心在0=y 上,故0=b . ∴圆的方程为2 2 2 )(r y a x =+-. 又∵该圆过)4,1(A 、)2,3(B 两点. ∴?????=+-=+-2 22 24)3(16)1(r a r a 解之得:1-=a ,202 =r . 所以所求圆的方程为20)1(2 2 =++y x . 解法二:(直接求出圆心坐标和半径) 因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为 13 12 4-=--= AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为:23-=-x y 即01=+-y x . 又知圆心在直线0=y 上,故圆心坐标为)0,1(-C ∴半径204)11(2 2= ++==AC r . 故所求圆的方程为20)1(2 2 =++y x . 又点)4,2(P 到圆心)0,1(-C 的距离为 r PC d >=++==254)12(22. ∴点P 在圆外. 说明:本题利用两种方法求解了圆的方程,都围绕着求圆的圆心和半径这两个关键的量,然后根据圆心与定点之间的距离和半径的大小关系来判定点与圆的位置关系,若将点换成直线又该如何来判定直线与圆的位置关系呢?

高中数学经典例题、错题详解

【例1】设M={1、2、3},N={e、g、h},从M至N的四种对应方式,其中是从M 到N的映射是() M N A M N B M N C M N D 1 2 3 e g h 1 2 3 e g h 1 2 3 e g h 1 2 3 e g h 映射的概念:设A、B是两个集合,如果按照某一个确定的对应关系f,是对于集合 A中的每一个元素x,在集合B中都有一个确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的一个映射。 函数的概念:一般的设A、B是两个非空数集,如果按照某种对应法则f,对于集合A中的每一个元素x,在集合B中都有唯一的元素y和它对应,这样的对应叫集合A 到集合B的一个函数。(函数的本质是建立在两个非空数集上的特殊对应)映射与函数的区别与联系: 函数是建立在两个非空数集上的特殊对应;而映射是建立在两个任意集合上的特殊对应;函数是特殊的映射,是数集到数集的映射,映射是函数概念的扩展,映射不一定是函数,映射与函数都是特殊的对应。 映射与函数(特殊对应)的共同特点:○1可以是“一对一”;○2可以是“多对一”;○3不能“一对多”;○4A中不能有剩余元素;○5B中可以有剩余元素。 映射的特点:(1)多元性:映射中的两个非空集合A、B,可以是点集、数集或由图形组成的集合等;(2)方向性:映射是有方向的,A到B的映射与B到A的映射往往不是同一个映射;(3)映射中集合A的每一个元素在集合B中都有它的象,不要求B中的每一个元素都有原象;(4)唯一性:映射中集合A中的任一元素在集合B中的象都是唯一的;(5)一一映射是一种特殊的映射 方向性 上题答案应选C 【分析】根据映射的特点○3不能“一对多”,所以A、B、D都错误;只有C完全满足映射与函数(特殊对应)的全部5个特点。 本题是考查映射的概念和特点,应在完全掌握概念的基础上,灵活掌握变型题。【例2】已知集合A=R,B={(x、y)︱x、y∈R},f是从A到B的映射fx:→(x+1、x2),(1)求2在B中的对应元素;(2)(2、1)在A中的对应元素 【分析】(1)将x=2代入对应关系,可得其在B中的对应元素为(2+1、1);(2)由题意得:x+1=2,x2=1得出x=1,即(2、1)在A中的对应元素为1 【例3】设集合A={a、b},B={c、d、e},求:(1)可建立从A到B的映射个数();(2)可建立从B到A的映射个数() 高中数学经典例题、错题详解

高中数学经典题型50道(另附详细答案)

高中数学习题库(50道题另附答案) 1.求下列函数的值域: 解法2 令t=sin x,则f(t)=-t2+t+1,∵|sin x|≤1, ∴|t|≤1.问题转化为求关于t的二次函数f(t)在闭区间[-1,1]上的最值. 本例题(2)解法2通过换元,将求三角函数的最值问题转化为求二次函数在闭区间上的最值问题,从而达到解决问题的目的,这就是转换的思想.善于从不同角度去观察问题,沟通数学各学科之间的内在联系,是实现转换的关键,转换的目的是将数学问题由陌生化熟悉,由复杂化简单,一句话:由难化易.可见化归是转换的目的,而转换是实现化归段手段。

2. 设有一颗慧星沿一椭圆轨道绕地球运行,地球恰好位于椭圆轨道 的焦点处,当此慧星离地球相距m 万千米和m 3 4 万千米时,经过地球和慧星的直线与椭圆的长轴夹角分别为32 π π和,求该慧星与地球 的最近距离。 解:建立如下图所示直角坐标系,设地球位于焦点)0,(c F -处,椭圆的 方程为122 22=+b y a x (图见教材P132页例1)。 当过地球和彗星的直线与椭圆的长轴夹角为3π 时,由椭圆的几何 意义可知,彗星A 只能满足)3 (3/π π=∠=∠xFA xFA 或。作 m FA FB Ox AB 3 2 21B ==⊥,则于 故由椭圆第二定义可知得????? ??+-=-=)32(34)(2 2 m c c a a c m c c a a c m 两式相减得,2 3)4(21.2,3 2 31 c c c m c a m a c m =-==∴?=代入第一式得 .3 2.32m c c a m c ==-∴=∴ 答:彗星与地球的最近距离为m 3 2 万千米。 说明:(1)在天体运行中,彗星绕恒星运行的轨道一般都是椭圆,而恒星正是它的一个焦点,该椭圆的两个焦点,一个是近地点,另一个则是远地点,这两点到恒星的距离一个是c a -,另一个是.c a + (2)以上给出的解答是建立在椭圆的概念和几何意义之上的,以数学概念为根基充分体现了数形结合的思想。另外,数学应用问题的解决在数学化的过程中也要时刻不忘审题,善于挖掘隐含条件,有意识

高考考前复习资料—高中数学立体几何部分错题精选

高考考前复习资料—高中数学立体几何部分错题精选 一、选择题: 1.(石庄中学)设ABCD 是空间四边形,E ,F 分别是AB ,CD 的中点,则BC AD EF ,,满足( ) A 共线 B 共面 C 不共面 D 可作为空间基向量 正确答案:B 错因:学生把向量看为直线。 2.(石庄中学)在正方体ABCD-A 1B 1C 1D 1,O 是底面ABCD 的中心,M 、N 分别是棱DD 1、 D 1C 1的中点,则直线OM( ) A 是AC 和MN 的公垂线 B 垂直于A C 但不垂直于MN C 垂直于MN ,但不垂直于AC D 与AC 、MN 都不垂直 正确答案:A 错因:学生观察能力较差,找不出三垂线定理中的射影。 3.(石庄中学)已知平面α∥平面β,直线L ?平面α,点P ∈直线L,平面α、β间的距离为8,则在β内到点P 的距离为10,且到L 的距离为9的点的轨迹是( ) A 一个圆 B 四个点 C 两条直线 D 两个点 正确答案:B 错因:学生对点线距离、线线距离、面面距离的关系不能灵活掌握。 4.(石庄中学)正方体ABCD-A 1B 1C 1D 1中,点P 在侧面BCC 1B 1及其边界上运动,并且总保 持A P ⊥BD 1,则动点P 的轨迹( ) A 线段 B 1 C B BB 1的中点与CC 1中点连成的线段 C 线段BC 1 D CB 中点与B 1C 1中点连成的线段 正确答案:A 错因:学生观察能力较差,对三垂线定理逆定理不能灵活应用。 5. (石庄中学)下列命题中: ① 若向量、与空间任意向量不能构成基底,则∥ 。 ② 若a ∥b , b ∥c ,则c ∥a . ③ 若 、 、是空间一个基底,且 = 31+31 +3 1 ,则A 、B 、C 、D 四点共面。 ④ 若向量 a + b , b + c , c + a 是空间一个基底,则 a 、 b 、 c 也是空间的一个基 底。其中正确的命题有( )个。 A 1 B 2 C 3 D 4 正确答案:C 错因:学生对空间向量的基本概念理解不够深刻。

专题34 常用逻辑用语-高中数学经典错题深度剖析及针对训练 含解析 精品

【标题01】没能准确全面理解命题的概念 【习题01】判断下列语句是否是命题?(1)2008年5月12日在四川汶川县难道没有发生了里氏8.0特大级地震吗?(2)对2(1)0x -≤,有210x -<. 【经典错解】(1)(2)都不是命题. 【习题01针对训练】判断下列语句是否是命题?(1)请举起手来!(2)今天天气真好!(3)0x > ;(4)0a b >>,则ac bc >. 【标题02】混淆了逻辑联结中的“或”与日常生活中的“或” 【习题02】若命题p :方程(2)(1)0x x +-=的根是2-,命题q :方程(2)(1)0x x +-=的根是1,则命题“方程(2)(1)0x x +-=的根是2-或1”是__________________(填“真”或“假”)命题. 【经典错解】由条件易知命题p 与命题q 都是假命题,而命题“方程(2)(1)0x x +-=的根是2-或1”为“p ∨q ”,故就填假命题. 【详细正解】所判断命题应为真命题.根据一真“或”为真判断出命题为真命题. 【深度剖析】(1)经典错解混淆了逻辑联结中的“或”与日常生活中的“或”.(2)命题“方程(2)(1)0x x +-=的根是2-或1”中的“或”不是逻辑联结词,有“和”的意思.正确区分数学中的“或”与日常用语中的“或”的不同点.日常用语中的“或”,带有两者选择其一的意思.如:我暑假准备到海南或昆明旅游,意思是或去海南,或去昆明,绝没有两地都去的意思,如果两地都去,应说成:我准备暑假到海南和昆明旅游.逻辑联结词“或”,用在数学命题的分解与合成上,包含了三层:如0ab =包含了“0a =,0b ≠;或0a ≠,0b =;或0a =且0b =”.

高中数学典型例题分析

高中数学典型例题分析 第八章 平面向量与空间向量 §8.1平面向量及其运算 一、知识导学1.模(长度):向量的大小,记作||。长度为0的向量称为零向量,长度等于1个单位长度的向量,叫做单位向量。 2.平行向量:方向相同或相反的非零向量叫做平行向量,又叫做共线向量。 3.相等向量:长度相等且方向相同的向量。 4.相反向量:我们把与向量a 长度相等,方向相反的向量叫做a 的相反向量。记作-a 。 5.向量的加法:求两个向量和的运算。 已知a ,b 。在平面内任取一点,作AB =a ,BC =b ,则向量AC 叫做a 与b 的和。 记作a +b 。 6. 向量的减法:求两个向量差的运算。 已知a ,b 。在平面内任取一点O ,作OA =a ,OB =b ,则向量BA 叫做a 与b 的差。 记作a -b 。 7.实数与向量的积: (1)定义: 实数λ与向量a 的积是一个向量,记作λa ,并规定: ①λa 的长度|λa |=|λ|·|a |; ②当λ>0时,λa 的方向与a 的方向相同; 当λ<0时,λa 的方向与a 的方向相反; 当λ=0时,λa =0 (2)实数与向量的积的运算律:设λ、μ为实数,则 ①λ(μa )=(λμ) a ②(λ+μ) a =λa +μa ③λ(a +)=λa +λ 8.向量共线的充分条件:向量b 与非零向量a 共线的充要条件是有且只有一个实数λ,使得b =λa 。 另外,设a =(x 1 ,y 1), b = (x 2,y 2),则a //b x 1y 2-x 2y 1=0 9.平面向量基本定理: 如果1e 、2e 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,有且只有一对实数λ1、λ 2 使 a =λ11e +λ22e ,其中不共线向量1e 、2e 叫做表示这一

关于数学错题本的使用说明

关于数学错题本的使用说明 本学期我指导学生使用错题本来搜集典型错题,通过错题本进行数学反思;通过错题本培养学生良好学习态度和习惯,指导学生学会归纳分析、梳理,抓住问题的关键,条理化、系统化地解决问题;通过错题本解决零散、疏漏等问题。具体做法如下: (1)经常阅读 错题本不是把做错的习题记下来就完了。学生要经常在空闲时间或准备下一次考试时,拿出错题本,浏览一下,对错题不妨再做一遍,这样就使每一道题都发挥出最大效果,在今后遇到同类习题时,会立刻回想起曾经犯过的错误,从而避免再犯。做到同一道题不能错两次,同一类题目不能错两次,从而减少习题量。这样经常温故知错、持之以恒,学生的成绩就会得到提高。 (2)相互交流 由于基础不同,各位同学所建立的错题本也不同。通过交流,同学们可以从别人的错误中吸取教训,得到启发,以此警示自己不犯同样的错误,提高练习的准确性。 俗话说,吃一堑,长一智。如果同学们能从做的错题中得到启发,从而不再犯类似的错误,成绩就能有较大的提高。考试并不需要灯光下的熬夜苦战,也不需要题海中的无边漫游,有一套适合自己的学习方法,才是最为重要的。 (3) 格式完整 每天做当日作业前,把昨天的错题解决后再开始新的作业。对每道错题都要重新摘录,然后做错误过程陈述、错误原因分析、将正确解题过程写、最后出错误类型总结。如果有多种方法也应该做出。例:(这几张都是12班同学最近错

题本上总结归纳较好的)

(4)经常翻阅 每周或两周一次重做一下错题本,考试前更应重做“错题本”。开始“错题本”里由于粗心的类型会占大多数,但随着该项工作的深入,“错题本”中的错误质量会越来越高,数量会越来越少,更多是由于概念点和思路而引发的错误,这些题就是属于平常没有作对,考试又犯错的典型类型,如果平时就能够解决好,到最后

高中数学经典例题 错题详解

高中数学经典例题、错题 详解

【例1】设M={1、2、3},N={e、g、h},从M至N的四种对应方式,其中是从M到N的映射是() M N A M N B M N C M N D 映射的概念:设A、B是两个集合,如果按照某一个确定的对应关系f,是对于集合A中的每一个元素x,在集合B中都有一个确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的一个映射。 函数的概念:一般的设A、B是两个非空数集,如果按照某种对应法则f,对于集合A中的每一个元素x,在集合B中都有唯一的元素y和它对应,这样的对应叫集合A到集合B的一个函数。(函数的本质是建立在两个非空数集上的特殊对应) 映射与函数的区别与联系: 函数是建立在两个非空数集上的特殊对应;而映射是建立在两个任意集合上的特殊对应;函数是特殊的映射,是数集到数集的映射,映射是函数概念的扩展,映射不一定是函数,映射与函数都是特殊的对应。 映射与函数(特殊对应)的共同特点:○1可以是“一对一”;○2可以是“多对一”;○3不能“一对多”;○4A中不能有剩余元素;○5B中可以有剩余元素。 映射的特点:(1)多元性:映射中的两个非空集合A、B,可以是点集、数集或由图形组成的集合等;(2)方向性:映射是有方向的,A到B的映射与B到A的映射往往不是同一个映射;(3)映射中集合A的每一个元素在集合B中都有它的象,不要求B中的每一个元素都有原象;(4)唯一性:映射中集合A中的任一元素在集合B中的象都是唯一的;(5)一一映射是一种特殊的映射 方向性 上题答案应选C 【分析】根据映射的特点○3不能“一对多”,所以A、B、D都错误;只有C完全满足映射与函数(特殊对应)的全部5个特点。 本题是考查映射的概念和特点,应在完全掌握概念的基础上,灵活掌握变型题。 【例2】已知集合A=R,B={(x、y)︱x、y∈R},f是从A到B的映射fx:→(x+1、x2),(1)求2在B中的对应元素;(2)(2、1)在A中的对应元素 【分析】(1)将x=2代入对应关系,可得其在B中的对应元素为(2+1、1);(2)由题意得:x+1=2,x2=1 得出x=1,即(2、1)在A中的对应元素为1 【例3】设集合A={a、b},B={c、d、e},求:(1)可建立从A到B的映射个数();(2)可建立从B到A的映射个数() 【分析】如果集合A中有m个元素,集合B中有n个元素,则集合A到集合B的映射共有n m 个;集合B到集合A的映射共有m n个,所以答案为23=9;32=8 【例4】若函数f(x)为奇函数,且当x﹥0时,f(x)=x-1,则当x﹤0时,有() A、f(x) ﹥0 B、f(x) ﹤0 C、f(x)·f(-x)≤0 D、f(x)-f(-x) ﹥0 奇函数性质: 1、图象关于原点对称; 2、满足f(-x) = - f(x) ; 3、关于原点对称的区间上单调性一致; 4、如果奇函数在x=0上有定义,那么有f(0)=0; 5、定义域关于原点对称(奇偶函数共有的) 偶函数性质: 1、图象关于y轴对称; 2、满足f(-x) = f(x) ; 3、关于原点对称的区间上单调性相反; 4、如果一个函数既是奇函数有是偶函数,那么有f(x)=0; 5、定义域关于原点对称(奇偶函数共有的) 基本性质: 唯一一个同时为奇函数及偶函数的函数为其值为0的常数函数(即对所有x,f(x)=0)。

高一数学必修三知识点总结及典型例题解析

新课标必修3概率部分知识点总结及典型例题解析 ◆ 事件:随机事件( random event ),确定性事件: 必然事件( certain event )和不 可能事件( impossible event ) ? 随机事件的概率(统计定义):一般的,如果随机事件 A 在n 次实验中发生了m 次,当实验的次数n 很大时,我们称事件A 发生的概率为()n m A P ≈ 说明:① 一个随机事件发生于具有随机性,但又存在统计的规律性,在进行大量的重复事件时某个事件是否发生,具有频率的稳定性 ,而频率的稳定性又是必然的,因此偶然性和必然性对立统一 ② 不可能事件和确定事件可以看成随机事件的极端情况 ③ 随机事件的频率是指事件发生的次数和总的试验次数的比值,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这个摆动的幅度越来越小,而这个接近的某个常数,我们称之为概事件发生的概率 ④ 概率是有巨大的数据统计后得出的结果,讲的是一种大的整体的趋势,而频率是具体的统计的结果 ⑤ 概率是频率的稳定值,频率是概率的近似值 ? 概率必须满足三个基本要求:① 对任意的一个随机事件A ,有()10≤≤A P ② ()()0,1,=Φ=ΩΦΩP P 则有可能事件分别表示必然事件和不和用③如果事件 ()()()B P A P B A P B A +=+:,则有互斥和 ? 古典概率(Classical probability model ):① 所有基本事件有限个 ② 每个基本事件发生的可能性都相等 满足这两个条件的概率模型成为古典概型 如果一次试验的等可能的基本事件的个数为个n ,则每一个基本事件发生的概率都是n 1,如果某个事件A 包含了其中的m 个等可能的基本事件,则事件A 发生的概率为 ()n m A P = ? 几何概型(geomegtric probability model ):一般地,一个几何区域D 中随机地取一点, 记事件“改点落在其内部的一个区域d 内”为事件A ,则事件A 发生的概率为 ()的侧度 的侧度D d A P = ( 这里要求D 的侧度不为0,其中侧度的意义由D 确定,一般地,线段的侧度为该线段的长度;平面多变形的侧度为该图形的面积;立体图像的侧度为其体积 ) 几何概型的基本特点:① 基本事件等可性 ② 基本事件无限多 颜老师说明:为了便于研究互斥事件,我们所研究的区域都是指的开区域,即不含边界,在区域D 内随机地取点,指的是该点落在区域D 内任何一处都是等可能的,落在任何部分的可能性大小只与该部分的侧度成正比,而与其形状无关。 互斥事件(exclusive events):不能同时发生的两个事件称为互斥事件

高中数学函数与方程知识点总结、经典例题及解析、高考真题及答案

高中数学函数与方程知识点总结、经典例题及解析、高考真题及答案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

函数与方程 【知识梳理】 1、函数零点的定义 (1)对于函数)(x f y =,我们把方程0)(=x f 的实数根叫做函数)(x f y =的零点。 (2)方程0)(=x f 有实根?函数()y f x =的图像与x 轴有交点?函数()y f x =有零点。因此判断一个函数是否有零点,有几个零点,就是判断方程0)(=x f 是否有实数根,有几个实数根。函数零点的求法:解方程0)(=x f ,所得实数根就是()f x 的零点 (3)变号零点与不变号零点 ①若函数()f x 在零点0x 左右两侧的函数值异号,则称该零点为函数()f x 的变号零点。 ②若函数()f x 在零点0x 左右两侧的函数值同号,则称该零点为函数()f x 的不变号零点。 ③若函数()f x 在区间[],a b 上的图像是一条连续的曲线,则0)()(?)(x f y =有2个零点?0)(=x f 有两个不等实根; 0?=?)(x f y =有1个零点?0)(=x f 有两个相等实根; 0?

高中数学典型题型与解析

高中数学典型题型与解析 一、选择题 1.设,21,a b R a b +∈+=、则2224ab a b --有( ) A .最大值 1 4 B .最小值14 C .最大值 212 - D .最小值54- 2. 某校有6间不同的电脑室,每天晚上至少开放2间,欲求不同安排方案的种数,现有四 位同学分别给出下列四个结果:①2 6C ;②6 65 64 63 62C C C C +++;③726 -;④2 6A .其中 正确的结论是( ) A .仅有① B .仅有② C .②和③ D .仅有③ 3. 将函数y =2x 的图像按向量a →平移后得到函数y =2x +6的图像,给出以下四个命题:① a →的坐标可以是(-3.0);②a →的坐标可以是(0,6);③a →的坐标可以是(-3,0)或(0, 6);④a →的坐标可以有无数种情况,其中真命题的个数是( ) A .1 B .2 C .3 D .4 4. 不等式组? ??>->-a x a x 2412,有解,则实数a 的取值范围是( ) A .(-1,3) B .(-3,1) C .(-∞,1) (3,+∞) D .(-∞,-3) (1,+∞) 5. 设a >0,c bx ax x f ++=2 )(,曲线y =f (x )在点P (0x ,f (0x ))处切线的倾斜角 的取值范围为[0,4π ],则P 到曲线y =f (x )对称轴距离的取值范围为( ) A .[0,]1a B .0[,]21a C .0[,|]2|a b D .0[,|]21 |a b - 6. 已知)(x f 奇函数且对任意正实数1x ,2x (1x ≠2x )恒有 0) ()(2 121>--x x x f x f 则一定正确的是( ) A .)5()3(->f f B .)5()3(-<-f f C .)3()5(f f >- D .)5()3(->-f f 7. 将半径为R 的球加热,若球的半径增加R ?,则球的体积增加≈?V ( ) A . R R ?3 π3 4 B .R R ?2π4 C .2π4R D .R R ?π4 8. 等边△ABC 的边长为a ,将它沿平行于BC 的线段PQ 折起,使平面APQ ⊥平面BPQC ,若折叠后AB 的长为d ,则d 的最小值为( ) A . a 43 B .a 45 C .4 3a D . a 410 9. 锐角α、β满足β α βα2424sin cos cos sin +=1,则下列结论中正确的是( ) A .2π≠ +βα B .2π<+βα C .2π>+βα D .2 π=+βα

高中数学排列组合经典题型全面总结版

高中数学排列与组合 (一)典型分类讲解 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排, 先排末位共有1 3C 然后排首位共有1 4C 最后排其它位置共有 34A 由分步计数原理得1 1 3 434 288C C A = 练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法? 二.相邻元素捆绑策略 例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元 素内部进行自排。由分步计数原理可得共有 522522480A A A =种不同的排法 练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 20 三.不相邻问题插空策略 例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种? 解:分两步进行第一步排2个相声和3个独唱共有55A 种, 第二步将4舞蹈插入第一步排好的6个元素中间包含首尾两个空位共有种 46 A 不同的方法,由分步计数原理,节目的不同顺序共有54 56A A 种 练习题:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为 30 四.定序问题倍缩空位插入策略 例4. 7人排队,其中甲乙丙3人顺序一定共有多少不同的排法 解:(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行排列,然后用总排列数除以这几个元素 之间的全排列数,则共有不同排法种数是: 73 73/A A (空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有 47 A 种方法,其余的三个位置甲乙丙共有 1种坐法,则共有4 7A 种方法。 思考:可以先让甲乙丙就坐吗? (插入法)先排甲乙丙三个人,共有1种排法,再把其余4四人依次插入共有 方法 练习题:10人身高各不相等,排成前后排,每排5人,要求从左至右身高逐渐增加,共有多少排法? 5 10C 五.重排问题求幂策略 例5.把6名实习生分配到7个车间实习,共有多少种不同的分法 解:完成此事共分六步:把第一名实习生分配到车间有 7 种分法.把第二名实习生分配到车间也有7种分依此类推,由分步计数原 理共有6 7种不同的排法 练习题: 1. 某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插 法的种数为 42 4 4 3 允许重复的排列问题的特点是以元素为研究对象,元素不受位置的约束,可以逐一安排各个元素的位置,一般地n 不同的元素没有限制地安排在m 个位置上的排列数为n m 种

高中数学错题总结

高中数学错题总结、归纳 一、错题归类 第一类问题是会的却做错了的题。就是分明会做,反而做错了的题;心知肚明是很有把握的题,却没做对;还有明明会又非常简单的题,却是落笔就错;确实会,答案就在嘴边盘旋,却在考场上怎么也回忆不起来了。有时一走出考场立即就想起来了;有时试卷发下来一看,都不太相信是自己答的,当时在考场上怎么会做成这个样子等等。这类问题是低级错误。出现这类问题是考试后最后悔的事情。 第二类问题是模棱两可似是而非的问题。就是第一遍做对了,一改反而改错了,或第一遍做错了,后来又改对了,或回答不严密、不完整的等等。这类问题是记忆的不准确,理解的不够透彻,应用的不够自如的问题。 第三类问题是不会的题。由于不会,因而答错了或蒙的,或者根本没有答。这是没记住、不理解,更谈不上应用的问题。 二、解决策略 我的策略安排是:消灭第一类问题;攻克第二类问题;暂放第三类问题。 有些同学虽然也知道将问题分成三类,但他们对待三类问题的策略不同,方法有别。有人重点攻第三类问题;轻视第二类问题;忽略第一类问题。自以为将难点攻下来了,一切问题就可以迎刃而解了。第二类问题不是难点,好解决。第一类问题就是“马虎”了,下次注意就是了。这套方案对于个别同学可能有效果,但对于绝大多数同学收效甚微,经常是事倍功半,不可取。还有一些同学是按科目找问题来解决问题。按科目找问题没错,重要的是将各科的问题集中到一起分类。就差这一步,效果就相去甚远。将问题分好类后,首先要消灭第一类问题。 1.消灭第一类问题 许多同学和家长将第一类问题归结为“马虎”,正是由于有了这样一种认定,所以是屡错屡犯总也根除不掉。因为“马虎”人人都曾有过。任何人在学生时代都曾出现过“马虎”现象。既然人人都有,就不必大惊小怪了。还有的同学认为“马虎”不是什么大问题,只是没注意、不小心,稍一留意即可铲除。这次我“马虎”了,下次我就能改过来,但事实上这类问题的反复发生率很高。其根源在“马虎”的说法是一种定性的认定,没有定量。既是定性,则范围不清,形状不

相关文档
相关文档 最新文档