文档库 最新最全的文档下载
当前位置:文档库 › 高一数学教案:已知三角函数值求角(二)

高一数学教案:已知三角函数值求角(二)

高一数学教案:已知三角函数值求角(二)
高一数学教案:已知三角函数值求角(二)

课 题§4.11.2 已知三角函数值求角(二)

教学目标

(一)知识目标

1.由已知三角函数值求角;

2.反三角函数表示角.

(二)能力目标

1.会由三角函数值求角;

2.会用反三角函数表示角.

(三)德育目标

1.培养学生的应用意识;

2.锻炼学生的思维能力;

3.提高解题能力;

4.提高数学素质.

教学重点

已知三角函数值求角

教学难点

根据角的三角函数值,确定出所属范围内的角

教学方法

强化训练题目,深刻理解其过程.(讲练结合法)

教具准备

计算器

教学过程

Ⅰ.课题导入

师:今天,我们继续探讨已知三角函数值求角问题.

Ⅱ.讲授新课

首先,来看这样一个例子:

[例1](1)已知tan x =

31,x ∈(-2π,2π),求x . (2)已知tan x =3

1,且x ∈[0,2π],求x 的取值集合. 解:(1)由正切曲线可知

y =tan x 在(-2π,2

π)上是增函数; 可知符合条件的角有且只有一个,利用计算器可求得x =18°26′

(2)由正切函数的周期性,可知

当x =

10π+π时,tan x =3

1 且10π+π=10

11π∈[0,2π] ∴所求x 的集合是{10π,1011π} 师:从这一题目可看出某一三角函数值在这一函数的单调区间上所对应的角是惟一的,对于正切函数,它在每个区间(k π-2π,k π+2

π)(k ∈Z )上均具有单调性,为了使符合条

件tan x =a (a 为任意实数)的角x 有且只有一个,我们选择开区间(-2

π,π)作为基本范围,在这个开区间内,符合条件tan x =a (a 为任意实数)的角x ,叫做实数a 的反正切,记作arctan a .

即:若tan x =a ,其中x ∈(-

2π,2π) 则x =arctan a

例如:上例答案可写为(1)x =arctan

31 (2){arctan 31,π+arctan 3

1} [例2](1)已知sin x =-0.3322,且x ∈[-2π,2

π],求x . (2)已知sin x =-0.3322,且x ∈[0,2π],求x 的取值集合.

解:(1)∵sin(-x )=-sin x =0.3322

由正弦曲线可知:

y =sin x 在[-2π,2

π]上为增函数. 符合条件的角有且只有一个. 利用计算器可求得x =-19°24′(或-

90097π) (2)由sin(180°+19°24′)=-sin19°24′=sin(-19°24′)

sin(360°-19°24′)=-sin19°24′=sin(-19°24′)

可知:180°+19°24′,360°-19°24′角的正弦值也是-0.3322.

∴所求的x 的集合是

{199°24′,340°36′}或{900

1703,90097ππ} 根据正弦函数的图象的性质,为了使符合条件sin x =a (-1≤a ≤1)的角有且只有一个,我们选择闭区间[-2π,2

π]作为基本的范围,在这个闭区间上,符合条件sin x =a (-1≤a ≤1)的角x ,叫做实数a 的反正弦,记作arcsin a . 即:当sin x =a (-1≤a ≤1)且x ∈[-

2π,2π],则x =arcsin a 这样的话,上例答案可写为:

(1){arcsin(-0.3322)}

(2){2π+arcsin(-0.3322),π-arcsin(-0.3322)}

依此类推,根据余弦函数的图象的性质,要使符合条件cos x =a (-1≤a ≤1)的角x 有且只有一个,我们选择闭区间[0,π]作为基本范围.在这个闭区间上,符合条件cos x =a (-1≤a ≤1)的角x ,叫做实数a 的反余弦,记作arccos a .

即:若cos x =a (-1≤a ≤1),x ∈[0,π]

则x =arccos a 例如:4π=arccos 22,43π=π-arccos 223

π=arccos 21,35π=2π-arccos 21

……

注意:已知三角函数值求角过程中,若为特殊角,则可直接求出;若为非特殊角,可通过计算器求出,也可用反三角函数形式表示,不过,用反三角函数形式表示角时,千万要注意角所属范围.

Ⅲ.课堂练习

生:(板演练习)课本P 76 3.

师:借助练习再次强调反三角函数的正确表示.

解:(1)cos x =-2

3,x ∈[0,2π] x =arccos(-2

3)=65π 或x =2π-arccos(-

23)=67π ∴x ∈{65π,6

7π} (2)tan x =3,x ∈[0,2π],x =arctan 3或π+arctan 3

即x =3π或34π,∴x ∈{3

π,34π} (3)sin x =0.7662,x ∈[0,2π]

x =arcsin(0.7662)或π+arcsin(0.7662)

∴x ∈{arcsin(0.7662),π+arcsin(0.7662)}

(4)tan x =-29.12,x ∈[0,2π]

x =arctan(-29.12)+π或arctan(-29.12)+2π

∴x ∈{arctan(-29.12)+π,arctan(-29.12)+2π}

Ⅳ.课时小结

师:通过本节学习,要学会用反三角函数表示角;熟练掌握已知三角函数值求角的基本方法;一般情况,应先找出基本范围内符合条件的角,再结合诱导公式找出所有符合条件的角.

Ⅴ.课后作业

(一)课本P 77 习题4.11 4.

(二)1.复习回顾本章基本内容.

2.对本章各部分内容进行总结. 课题

一、反三角函数定

二、1.反正弦

三、2.反余弦

四、3.反正切

二、例题讲解 例1 例2 课时小结

备课资料

1.设α=arcsin(-31),β=arctan(-2),γ=arccos(-3

2),则α、β、γ的大小关系是( )

A.α<β<γ

B.α<γ<β

C.β<α<γ

D.β<γ<α

解析:

∴γαβ<<

答案:C

2.下列函数中,存在反函数的是( )

A.y =sin x (x ∈[-π,0])

B.y =sin x (x ∈[

4

π,43π]) C.y =sin x (x ∈[3π,23π]) D.y =sin x (x ∈[32π,23π]) 解析:一个函数是否存在反函数,是由这个函数的性质决定的,若一个函数在指定的区间内是单调的,则此函数在指定区间内有反函数,只要画出以上各函数的图象,就可以断定本题应选D.

答案:D

3.函数y =arccos x 1

的值域是 ( )

A.[0,2π]

B.(0,2

π] C.[0,π) D.(0,π] 解析:0<x 1

<1?0<y <2

π 答案:A

评述:解此题时需理解反余弦意义且结合定义域中的隐含条件考虑值域.

4.已知sin θ=-31且θ∈(-π,-2

π),则θ可以表示成( ) –2π<β<2π sin β=–2 ?–2π<β<-4π 0<πγ< cos γ=–32 ?–2π<γ<π –2π<α<2π sin α=–3

1 ?–4π<α<0

A.-arcsin(-

31) B.-2

π-arcsin(-31) C.-π+arcsin(-31) D.-π-arcsin(-3

1) 解析:由-1<-31<0,∴arcsin(-31)∈(-2

π,0) 由此可知:-arcsin(-31)∈(0,2π)-2π-arcsin(-31)∈(-2

π,0) -π+arcsin(-31)∈(-23π,-π)它们都不能表示θ,所以应选D. 答案:D

评述:本题考查反正弦符号的理解,反三角符号是反三角概念的数学表示,要全面认识. 附1:arcsin a 的含义是什么?

当|a |≤1时,其含义是:

①arcsin a 表示一个角; ②这个角不小于-

2π,不大于2π,且当0≤a ≤1时,0≤arcsin a ≤2

π; 当-1≤a ≤0时,-2π≤arcsin a <0; ③这个角的正弦值等于a ,即sin(arcsin a )=a .

当|a |>1时,arcsin a 没有意义,这是因为没有一个角的正弦的绝对值能大于1.

[例1]sin(arcsin ab b a 222+)=ab

b a 22

2+能成立吗?其中a >0,b >0,且a ≠b . 解:∵(a -b )2>0,∴a 2+b 2

>2ab 即ab

b a 22

2+>1 ∴arcsin ab

b a 22

2+没有意义. 因此,命题中的等式不能成立.

附2:arcsin(sin x )等于x 吗? arcsin(sin 6

π)=arcsin 21=6π; arcsin(sin 4π)=arcsin 2

2=4π; 它们均满足arcsin(sin x )=x . 然而,我们绝不能依此归纳出arcsin(sin x )=x 恒成立,如arcsin(sin

65π)=arcsin(sin 6

π)=arcsin 21=6π.

事实上,arcsin x 只能直接表示区间[-

2π,2π]内的角,因此,等式arcsin(sin x )=x 成立的条件是x ∈[-2π,2

π]. 同样可知:

等式arccos(cos x )=x 成立的条件是x ∈[0,π];

等式arctan(tan x )=x 成立的条件是x ∈[-2π,2

π]. 你只要弄清楚上述几个等式分别成立的条件,那么对于各类试题中经常出现的这类问题就可正确迅速地求解.

[例2]设α=

3

4π,则arccos(cos x )的值是( ) A.24π B.-π32 C.32π D.3

π 解析:∵α=34π,∴cos α=cos 34π=cos(2π-34π)=cos 3

2π 又3

2π∈[0,π] ∴arccos(cos α)=arccos(cos 32π)=32π 答案:C

教学后记

高中数学_三角函数公式大全全部覆盖

三角公式汇总 一、任意角的三角函数 在角α的终边上任取..一点),(y x P ,记:22y x r +=, 正弦:r y =αsin 余弦:r x =αcos 正切:x y = αtan 注:我们还可以用单位圆中的有向线段表示任意角的三角函数:如图,与单位圆有关的有向..线段MP 、OM 、AT 分别叫做角α的正弦线、余弦线、正切线。 二、同角三角函数的基本关系式 商数关系:α α αcos sin tan = , 平方关系:1cos sin 22=+αα, 三、诱导公式 ⑴παk 2+)(Z k ∈、α-、απ+、απ-、απ-2的三角函数值,等于α的同名函数值,前面加上一个把α看成..锐角时原函数值的符号。(口诀:函数名不变,符号看象限) ⑵ απ +2、απ-2 、απ+23、απ -23的三角函数值,等于α的异名函数值, 前面加上一个把α看成..锐角时原函数值的符号。(口诀:函数名改变,符号看象限) 四、和角公式和差角公式 βαβαβαsin cos cos sin )sin(?+?=+ βαβαβαsin cos cos sin )sin(?-?=- βαβαβαsin sin cos cos )cos(?-?=+

βαβαβαsin sin cos cos )cos(?+?=- βαβ αβαtan tan 1tan tan )tan(?-+=+ β αβ αβαtan tan 1tan tan )tan(?+-= - 五、二倍角公式 αααcos sin 22sin = ααααα2222sin 211cos 2sin cos 2cos -=-=-=…)(* α α α2tan 1tan 22tan -= 二倍角的余弦公式)(*有以下常用变形:(规律:降幂扩角,升幂缩角) αα2cos 22cos 1=+ αα2sin 22cos 1=- 2)cos (sin 2sin 1ααα+=+ 2)cos (sin 2sin 1ααα-=- 六、万能公式(可以理解为二倍角公式的另一种形式) ααα2tan 1tan 22sin +=,ααα22tan 1tan 12cos +-=,α α α2 tan 1tan 22tan -=。 万能公式告诉我们,单角的三角函数都可以用半角的正切.. 来表示。 七、辅助角公式 )sin(cos sin 22?++=+x b a x b x a () 其中:角?的终边所在的象限与点),(b a 所在的象限相同, 2 2sin b a b += ?,2 2cos b a a += ?,a b = ?tan 。 八、正弦定理

高中三角函数公式大全必背知识点

三角函数公式 两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) =tanAtanB -1tanB tanA + tan(A-B) =tanAtanB 1tanB tanA +- cot(A+B) =cotA cotB 1 -cotAcotB + cot(A-B) =cotA cotB 1 cotAcotB -+ 倍角公式 tan2A =A tan 12tanA 2 - Sin2A=2SinA?CosA Cos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 三倍角公式 sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosA tan3a = tana ·tan(3π+a)·tan(3π -a) 半角公式 sin( 2 A )=2cos 1A - cos( 2 A )=2cos 1A + tan( 2 A )=A A cos 1cos 1+- cot( 2 A )=A A cos 1cos 1-+ tan( 2A )=A A sin cos 1-=A A cos 1sin + 和差化积 sina+sinb=2sin 2b a +cos 2b a - sina-sinb=2cos 2 b a +sin 2b a - cosa+cosb = 2cos 2b a +cos 2b a - cosa-cosb = -2sin 2b a +sin 2 b a - tana+tanb=b a b a cos cos ) sin(+ 积化和差 sinasinb = -21 [cos(a+b)-cos(a-b)] cosacosb = 21 [cos(a+b)+cos(a-b)] sinacosb = 21 [sin(a+b)+sin(a-b)] cosasinb = 21 [sin(a+b)-sin(a-b)] 诱导公式 sin(-a) = -sina cos(-a) = cosa sin(2π -a) = cosa cos(2π -a) = sina sin(2π +a) = cosa cos(2 π +a) = -sina sin(π-a) = sina cos(π-a) = -cosa sin(π+a) = -sina cos(π+a) = -cosa tgA=tanA =a a cos sin 万能公式

高一数学同角三角函数的基本关系式及诱导公式

同角三角函数的基本关系式及诱导公式 一、基本知识: (1)同角三角函数的基本关系式:平方关系:sin 2α+cos 2α=1, 1tan sec 22=-αα, 1cot csc 22=-αα, 商式关系: sin α cos α =tan α, αα αcot sin cos =, 倒数关系:tan αcot α=1, ααcos 1sec = ααsin 1csc = (2)诱导公式:函数名称不变,符号看象限。 二、例题分析: 例1 化简 sin(2π-α)tan(π+α)cot(-α-π) cos(π-α)tan(3π-α) . 解 原式= (-sin α)tan α[-cot(α+π) ] (-cos α)tan(π-α) = (-sin α)tan α(-cot α) (-cos α)(-tan α) = sin α·cos α sin α cos α =1 . 例2 若sin θcos θ= 18 ,θ∈(π4 ,π2 ),求cos θ-sin θ的值. 解 (cos θ-sin θ)2=cos 2θ+sin 2θ-2sin θcos θ=1- 14 = 34 . ∵θ∈(π4 ,π2 ),∴ cos θ<sin θ. ∴cos θ-sin θ= - 3 2 . 变式1 条件同例, 求cos θ+sin θ的值.

变式2 已知cos θ-sin θ= - 3 2 , 求sin θcos θ,sin θ+cos θ的值. 例3 已知tan θ=3.求(1) α αααsin 3cos 5cos 2sin 4+-;(2)cos 2θ+sin θcos θ的值. 例4、证明:1+2sin αcos α cos 2α-sin 2α =1+ tan α 1-tan α

高中数学公式三角函数公式大全

高中数学公式:三角函数公式大全三角函数看似很多,很复杂,但只要掌握了三角函数的本质及内部规律就会发现三角函数各个公式之间有强大的联系。而掌握三角函数的内部规律及本质也是学好三角函数的关键所在,下面是三角函数公式大全: 锐角三角函数公式 sin α=∠α的对边 / 斜边 cos α=∠α的邻边 / 斜边 tan α=∠α的对边 / ∠α的邻边 cot α=∠α的邻边 / ∠α的对边 倍角公式 Sin2A=2SinA?CosA Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1 tan2A=(2tanA)/(1-tanA^2) (注:SinA^2 是sinA的平方 sin2(A)) 三倍角公式 sin3α=4sinα·sin(π/3+α)sin(π/3-α) cos3α=4cosα·cos(π/3+α)cos(π/3-α) tan3a = tan a · tan(π/3+a)· tan(π/3-a) 三倍角公式推导 sin3a

=sin(2a+a) 页 1 第 =sin2acosa+cos2asina 辅助角公式 Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中 sint=B/(A^2+B^2)^(1/2) cost=A/(A^2+B^2)^(1/2) tant=B/A Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B 降幂公式 cos(2α))/2=versin(2α)/2sin^2(α)=(1- cos^2(α)=(1+cos(2α))/2=covers(2α)/2 -cos(2α))/(1+cos(2α))tan^2(α)=(1 推导公式 tanα+cotα=2/sin2α 2cot2α-cotα=-tanα s2α=2cos^2α1+co 1-cos2α=2sin^2α 1+sinα=(sinα/2+cosα /2)^2=2sina(1-sin2a)+(1-2sin2a)sina =3sina-4sin3a cos3a =cos(2a+a) =cos2acosa-sin2asina 页 2 第 =(2cos2a-1)cosa-2(1-sin2a)cosa =4cos3a-3cosa

高中数学必修三角函数常考题型同角三角函数的基本关系

高中数学必修三角函数常考题型同角三角函数 的基本关系 集团文件版本号:(M928-T898-M248-WU2669-I2896-

同角三角函数的基本关系 【知识梳理】 同角三角函数的基本关系 (1)平方关系:同一个角α的正弦、余弦的平方和等于1.即sin 2 α+cos 2 α=1. (2)商数关系:同一个角α的正弦、余弦的商等于这个角的正切,即 sin α cos α=tan_α ? ?? ??其中α≠k π+π2?k ∈Z ?. 【常考题型】 题型一、已知一个三角函数值求另两个三角函数值 【例1】 (1)已知sin α=12 13 ,并且α是第二象限角,求cos α和tan α. (2)已知cos α=-4 5 ,求sin α和tan α. [解] (1)cos 2 α=1-sin 2 α=1-? ????12132=? ?? ??5132 ,又α是第二象限角, 所以cos α<0,cos α=- 513,tan α=sin αcos α=-125 . (2)sin 2 α=1-cos 2 α=1-? ????-452=? ?? ??352 , 因为cos α=-4 5 <0,所以α是第二或第三象限角, 当α是第二象限角时,sin α=35,tan α=sin αcos α=-3 4;当α是第 三象限角时,sin α=-35,tan α=sin αcos α=3 4 .

【类题通法】 已知三角函数值求其他三角函数值的方法 (1)若已知sin α=m,可以先应用公式cos α=±1-sin2α,求得 cos α的值,再由公式tan α=sin α cos α 求得tan α的值. (2)若已知cos α=m,可以先应用公式sin α=±1-cos2α,求得 sin α的值,再由公式tan α=sin α cos α 求得tan α的值. (3)若已知tan α=m,可以应用公式tan α=sin α cos α =m?sin α= m cos α及sin2α+cos2α=1,求得cos α=± 1 1+m2 ,sin α= ± m 1+m2 的值. 【对点训练】 已知tan α= 4 3 ,且α是第三象限角,求sin α,cos α的值.解:由tan α= sin α cos α = 4 3 ,得sin α= 4 3 cos α,① 又sin2α+cos2α=1,② 由①②得 16 9 cos2α+cos2α=1,即cos2α= 9 25 . 又α是第三象限角,故cos α=- 3 5 ,sin α= 4 3 cos α=- 4 5 . 题型二、化切求值 【例2】已知tan α=3,求下列各式的值.

高中数学三角函数公式大全全解

三角函数公式 1.正弦定理: A a sin = B b sin =C c sin = 2R (R 为三角形外接圆半径) 2.余弦定理:a 2=b 2+c 2-2bc A cos b 2=a 2+c 2-2ac B cos c 2=a 2+b 2-2ab C cos bc a c b A 2cos 2 22-+= 3.S ⊿= 21a a h ?=21ab C sin =21bc A sin =21ac B sin =R abc 4=2R 2A sin B sin C sin =A C B a sin 2sin sin 2=B C A b sin 2sin sin 2=C B A c sin 2sin sin 2=pr=))()((c p b p a p p --- (其中)(2 1 c b a p ++=, r 为三角形内切圆半径) 4.诱导公试 注:奇变偶不变,符号看象限。 注:三角函数值等于α的同名三角函数值,前面加上一个把α看作锐角时,原三角函数值的符号;即:函数名不变,符号看象限 注:三角函数值等于α的 异名三角函数值,前面加上一个把α看作锐角时,原三角函数值的符号;即:

函数名改变,符号看象限 5.和差角公式 ①βαβαβαsin cos cos sin )sin(±=± ②βαβαβαsin sin cos cos )cos( =± ③β αβ αβαtg tg tg tg tg ?±= ± 1)( ④)1)((βαβαβαtg tg tg tg tg ?±=± 6.二倍角公式:(含万能公式) ①θ θ θθθ2 12cos sin 22sin tg tg += = ②θ θ θθθθθ2 22 2 2 2 11sin 211cos 2sin cos 2cos tg tg +-=-=-=-= ③θθθ2122tg tg tg -= ④22cos 11sin 222θθθθ-=+=tg tg ⑤22cos 1cos 2 θθ+= 7.半角公式:(符号的选择由 2 θ 所在的象限确定) ①2cos 12 sin θθ -± = ②2 cos 12sin 2θ θ-= ③2cos 12cos θθ+±= ④2cos 12 cos 2 θθ += ⑤2sin 2cos 12θθ=- ⑥2 cos 2cos 12θθ=+ ⑦2 sin 2 cos )2 sin 2 (cos sin 12θ θθθθ±=±=± ⑧θ θ θθθθθ sin cos 1cos 1sin cos 1cos 12 -=+=+-± =tg 8.积化和差公式: [])sin()sin(21cos sin βαβαβα-++=[] )sin()sin(21 sin cos βαβαβα--+=[])cos()cos(21cos cos βαβαβα-++= ()[]βαβαβα--+-=cos )cos(2 1 sin sin 9.和差化积公式:

高中数学-同角三角函数的基本关系式练习题

高中数学-同角三角函数的基本关系式练习题 5分钟训练(预习类训练,可用于课前) 1.已知sinα= 5 3 ,α∈(0,π),则tanα的值等于( ) A.34 B.43 C.±43 D.±3 4 解析:由sin 2 α+cos 2 α=1,α∈(0,π), ∴cosα=±α2sin 1-=±5 4 . ∴tanα=ααcos sin =±4 3 . 答案:C 2.已知cosθ= 5 4 ,且23π<θ<2π,那么θtan 1的值为( ) A.43 B.43- C.35 D.3 4 - 解析:由sin 2 θ+cos 2 θ=1,得sinθ=±θ2cos 1-. 因为 23π<θ<2π,故sinθ<0,所以sinθ=2)54(1--=53-,tanθ=θθcos sin =3 4 -. 答案:D 3.若tanα=t(t≠0),且sinα=2 1t t +- ,则α是( ) A.第一、二象限角 B.第二、三象限角 C.第三、四象限角 D.第一、四象限角 解析:由tanα= ααcos sin 得cosα=αα tan sin ,所以cosα=211t +-<0,故α是第二、三象 限角. 答案:B 4.若tanα=2,则(1)cos 2α=________________;(2)sin 2α-cos 2 α=________________. 解析:(1)由题意和基本三角恒等式,列出方程组 ? ?? ??==+,2cos sin ,1cos sin 22α α αα 由②得sinα=2cosα,代入①,整理得5cos 2 α=1,cos 2 α=5 1. (2)由(1)得sin 2 α=1-51=5 4,

已知三角函数值求角知识讲解

【学习目标】 1、掌握已知三角函数值求角的解题步骤; 2、要求学生初步(了解)理解反正弦,反余弦,反正切函数的意义,会由已知角的正弦值、余弦值、正切值求出[]π2,0范围内的角,并能用反正弦,反余弦,反正切的符号表示角或角的集合 【要点梳理】 要点一:反正弦,反余弦,反正切函数的定义 (1)一般地,对于正弦函数sin y x =,如果已知函数值[](1,1)y y ∈-,那么在,22ππ?? -???? 上有唯一的x 值 和它对应,记为arcsin x y =(其中11,22y x ππ-≤≤-≤≤).即arcsin y (||1y ≤)表示,22ππ?? -???? 上正弦等于y 的那个角. (2)在区间[]0,π上符合条件cos (11)x y y =-≤≤的角x ,记为arccos x y =. (3)一般地,如果tan ()x y y R =∈,且,22x ππ??∈- ???,那么对每一个正切值y ,在开区间,22ππ?? - ??? 内, 有且只有一个角x ,使tan x y =.符合上述条件的角x ,记为arctan ,(,)22 x y x ππ =∈-. 要点二:已知正弦值、余弦值和正切值,求角 已知角x 的一个三角函数值求角x ,所得的角不一定只有一个,角的个数要根据角的取值范围来确定,这个范围应该在题目中给定,如果在这个范围内有已知三角函数值的角不止一个,解法可以分为以下几步: 第一步,决定角可能是第几象限角. 第二步,如果函数值为正数,则先求出对应的锐角1x ;如果函数值为负数,则先求出与其绝对值对应的锐角1x . 第三步,如果函数值为负数,则可根据x 可能是第几象限角,得出(0,2π)内对应的角;如果它是第二象限角,那么可表示为-1x +π;如果它是第三或第四象限角,那么可表示为1x +π或-1x +2π. 第四步,如果要求(0,2π)以外对应的角,则可利用终边相同的角有相同的三角函数值这一规律写出结果. 【典型例题】 类型一:已知正弦值、余弦值,求角 例1.已知sin x =,(1)x ∈[]0,2π,(2)x R ∈,求角x . 【思路点拨】因为所给的正弦值是负数,所以先求出其绝对值对应的锐角,然后在求出其他象限的角. 【解析】 (1)由sin x =知x 的正弦值是个负值,所以x 是第三象限或第四象限的角.因为sin 4π=,所以第三象限的那个角是544π ππ+ = ,第四象限的角是7244 ππ π-=. (2)在R 上符合条件的角是所有与 54 π终边相同的角和所有与74π 终边相同的角.因此x 的取值集合为

三角函数公式大全(很详细)

高中三角函数公式大全[图] 1 三角函数的定义1.1 三角形中的定义 图1 在直角三角形中定义三角函数的示意图在直角三角形ABC,如下定义六个三角函数: ?正弦函数 ?余弦函数 ?正切函数 ?余切函数 ?正割函数 ?余割函数 1.2 直角坐标系中的定义

图2 在直角坐标系中定义三角函数示意图在直角坐标系中,如下定义六个三角函数: ?正弦函数 ?余弦函数 r ?正切函数 ?余切函数 ?正割函数 ?余割函数 2 转化关系2.1 倒数关系 2.2 平方关系 2 和角公式 3.1 倍角公式

3.3 万能公式 4 积化和差、和差化积 4.1 积化和差公式 证明过程 首先,sin(α+β)=sinαcosβ+sinβcosα(已证。证明过程见《和角公式与差角公式的证明》)因为sin(α+β)=sinαcosβ+sinβcosα(正弦和角公式) 则 sin(α-β) =sin[α+(-β)] =sinαcos(-β)+sin(-β)cosα =sinαcosβ-sinβcosα 于是 sin(α-β)=sinαcosβ-sinβcosα(正弦差角公式) 将正弦的和角、差角公式相加,得到 sin(α+β)+sin(α-β)=2sinαcosβ 则 sinαcosβ=sin(α+β)/2+sin(α-β)/2(“积化和差公式”之一) 同样地,运用诱导公式cosα=sin(π/2-α),有 cos(α+β)= sin[π/2-(α+β)] =sin(π/2-α-β) =sin[(π/2-α)+(-β)] =sin(π/2-α)cos(-β)+sin(-β)cos(π/2-α) =cosαcosβ-sinαsinβ 于是

北师版新课标高中数学必修二教案《同角三角函数的基本关系》

《同角三角函数的基本关系》教学设计 与三角函数的定义域、符号的确定一样,同角三角函数的基本关系式的推导,紧扣了定义,是按照一切从定义出发的原则进行的,通过对基本关系的推导,应注意学生重视对基本概念学习的良好习惯的形成,学会通过对基本概念的学习,善于钻研,从中不断发掘更深层次的内涵. 同角三角函数的基本关系式将“同角”的四种不同的三角函数直接或间接地联系起来,在使用时一要注意“同角”,至于角的表达形式是至关重要的,如sin 24π+cos 24π=1等,二要注意这些关系式都是对于使它们有意义的那些角而言的,如tanα中的α是使得tanα有意义的值,即α≠kπ+2 ,k ∈Z . 已知任意角的正弦、余弦、正切中的一个值便可以运用基本关系式求出另外的两个,这是同角三角函数关系式的一个最基本功能,在求值时,根据已知的三角函数值,确定角的终边的位置是关键和必要的,有时由于角的终边的位置不确定,因此解的情况不止一种,解题时产生遗漏的主要原因一是没有确定好或不去确定终边的位置;二是利用平方关系开方时,漏掉了负的平方根. 1.通过三角函数的定义导出同角三角函数基本关系式,并能运用同角三角函数的基本关系式进行三角函数的化简与证明. 2.同角三角函数的基本关系式主要有三个方面的应用:(1)求值(知一求二);(2)化简三角函数式;(3)证明三角恒等式.通过本节的学习,学生应明了如何进行三角函数式的化简与三角恒等式的证明. 3.通过同角三角函数关系的应用使学生养成探究、分析的习惯,提高三角恒等变形的能力,树立转化与化归的思想方法. 教学重点:课本的三个公式的推导及应用. 教学难点:课本的三个公式的推导及应用.

高中常用三角函数公式大全

高中常用三角函数公式 两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) =tanAtanB -1tanB tanA + tan(A-B) =tanAtanB 1tanB tanA +- cot(A+B) =cotA cotB 1-cotAcotB + cot(A-B) =cotA cotB 1cotAcotB -+ 倍角公式 tan2A =A tan 12tanA 2- Sin2A=2SinA?CosA Cos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 半角公式 sin(2A )=2 cos 1A - cos(2A )=2 cos 1A + tan(2A )=A A cos 1cos 1+- cot( 2A )=A A cos 1cos 1-+ tan(2 A )=A A sin cos 1-=A A cos 1sin + 诱导公式 sin(-a) = -sina cos(-a) = cosa sin( 2 π-a) = cosa cos(2 π-a) = sina sin(2π+a) = cosa

cos( 2 π+a) = -sina sin(π-a) = sina cos(π-a) = -cosa sin(π+a) = -sina cos(π+a) = -cosa tgA=tanA =a a cos sin 万能公式 sina=2 )2 (tan 12tan 2a a + cosa=2 2 )2 (tan 1)2(tan 1a a +- tana=2 )2 (tan 12tan 2a a - 其它公式 a?sina+b?cosa=)b (a 22+×sin(a+c) [其中tanc= a b ] a?sin(a)-b?cos(a) = )b (a 22+×cos(a-c) [其中tan(c)=b a ] 1+sin(a) =(sin 2a +cos 2 a )2 1-sin(a) = (sin 2a -cos 2 a )2 公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: sin (2kπ+α)= sinα cos (2kπ+α)= cosα tan (2kπ+α)= tanα cot (2kπ+α)= cotα 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin (π+α)= -sinα cos (π+α)= -cosα tan (π+α)= tanα cot (π+α)= cotα 公式三: 任意角α与 -α的三角函数值之间的关系:

高一数学必修一三角函数的概念及公式

三角函数的概念及公式 教学目标 1、掌握同终边角的求法,熟悉象限角、轴线角,掌握角度与弧度的互化,会求弧长与扇形面积; 2、掌握三角函数的概念,会求角的三角函数值; 3、同角三角函数的基本关系; 4、掌握诱导公式及应用。 重瞬占分析 重点:''1、角度、弧度的转化; 2、同角三角函数基本关系; 3、诱导公式。 难点:1、角度的表示; 2、同角三角函数值的求解; 3、诱导公式的变换。 知识点梳理 1、角度槪念:角可以看成是平而内一条射线绕着端点从一个位宜旋转到另一个位置所成的图形。 2、角度分类:按逆时针方向旋转的角叫做正角;按顺时针方向旋转的角叫做负角:若一条射线没有任何旋转,我们称它形成了一个零角。 3、彖限角:角的顶点与原点重合,角的始边与兀轴的非负半轴重合,那么,角的终边在第几象限,就说这个角是第几象限的角。如果角的终边在坐标轴上,就认为这个角不属于任何一个象限。 4、终边相同的角:所有与角&的终边相同的角,连同Q在内,可构成一个集合S=___________________ , 即任一与角α终边相同的角,都可以表示成角α与整数个周角的和。 5、把长度等于半径长的弧所对的圆心角叫做1弧度的角。 6、弧度制与角度制的换算关系式:兀弧度=180°. 7、在弧度制下,弧长公式为l = a?R、扇形而积公式为S = -l?R.(α为圆心角,R为半径) 2 8、一般的,设角Q终边上任意一点的坐标为(x, y),它与原点的距离为厂,那么 (1)上叫做α的正弦,记作Sina; r (2)艺叫做a的余弦,记作COSa ;

(3)上叫做α的正切,记作tana。 X 9、同角三角函数关系的基本关系式 (I)平方关系:sin2 x + cos2 x = l (2)商数关系:UmX =竺上 COSX 10、同角三角函数基本关系式的常用变形 (1) sin2a = ______________ ; cos2a ≡_____________ ; (2)(Sina+ cosa)2=_________________ ;(Sina_cos&)'=_________________ (3)Sina COSa= =_________________ 。 注意:用同角三角函数的基本关系式求值时应注意 (1)注意“同角”,至于角的形式无关重要,如siι√4a+cos2 4a = 1等: (3)对这些关系式不仅要牢固掌握,还要能灵活运用(正用、反用、变形用),如: CoSa = ±√l-sin2a,开方时要注意正负。 11、诱导公式:奇变偶不变、符号看彖限。

(完整版)高中三角函数公式大全整理版

高中三角函数公式大全 sin30°=1/2 sin45°=√2/2 sin60°=√3/2 cos30°=√3/2 cos45°=√2/2 cos60°=1/2 tan30°=√3/3 tan45°=1 tan60°=√3 cot30°=√3 cot45°=1 cot60°=√3/3 sin15°=(√6-√2)/4 sin75°=(√6+√2)/4 cos15°=(√6+√2)/4 cos75°=(√6-√2)/4(这四个可根据sin (45°±30°)=sin45°cos30°±cos45°sin30°得出) sin18°=(√5-1)/4 (这个值在高中竞赛和自招中会比较有用,即黄金分割的一半) 正弦定理:在△ABC 中,a / sin A = b / sin B = c / sin C = 2R (其中,R 为△ABC 的外接圆的半径。) 两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) =tanAtanB -1tanB tanA + tan(A-B) =tanAtanB 1tanB tanA +- cot(A+B) =cotA cotB 1-cotAcotB + cot(A-B) =cotA cotB 1cotAcotB -+ 倍角公式 tan2A =A tan 12tanA 2- Sin2A=2Sin A?CosA Cos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 三倍角公式 sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosA Tan3A=)3tan()3tan(tan )(tan 1)(tan 3tan 32 3A A A A A A +-=--ππ 半角公式

已知三角函数值求角知识讲解

已知三角函数值求角 【学习目标】 1、掌握已知三角函数值求角的解题步骤; 2、要求学生初步(了解)理解反正弦,反余弦,反正切函数的意义,会由已知角的正弦值、余弦值、正切值求出[]π2,0范围内的角,并能用反正弦,反余弦,反正切的符号表示角或角的集合 【要点梳理】 要点一:反正弦,反余弦,反正切函数的定义 (1)一般地,对于正弦函数sin y x =,如果已知函数值[](1,1)y y ∈-,那么在,22ππ?? -???? 上有唯一的x 值 和它对应,记为arcsin x y =(其中11,22y x ππ-≤≤-≤≤).即arcsin y (||1y ≤)表示,22ππ?? -???? 上正弦等于y 的那个角. (2)在区间[]0,π上符合条件cos (11)x y y =-≤≤的角x ,记为arccos x y =. (3)一般地,如果tan ()x y y R =∈,且,22x ππ??∈- ???,那么对每一个正切值y ,在开区间,22ππ?? - ??? 内, 有且只有一个角x ,使tan x y =.符合上述条件的角x ,记为arctan ,(,)22 x y x ππ =∈-. 要点二:已知正弦值、余弦值和正切值,求角 已知角x 的一个三角函数值求角x ,所得的角不一定只有一个,角的个数要根据角的取值范围来确定,这个范围应该在题目中给定,如果在这个范围内有已知三角函数值的角不止一个,解法可以分为以下几步: 第一步,决定角可能是第几象限角. 第二步,如果函数值为正数,则先求出对应的锐角1x ;如果函数值为负数,则先求出与其绝对值对应的锐角1x . 第三步,如果函数值为负数,则可根据x 可能是第几象限角,得出(0,2π)内对应的角;如果它是第二象限角,那么可表示为-1x +π;如果它是第三或第四象限角,那么可表示为1x +π或-1x +2π. 第四步,如果要求(0,2π)以外对应的角,则可利用终边相同的角有相同的三角函数值这一规律写出结果. 【典型例题】 类型一:已知正弦值、余弦值,求角 例1.已知sin 2 x =- ,(1)x ∈[]0,2π,(2)x R ∈,求角x . 【思路点拨】因为所给的正弦值是负数,所以先求出其绝对值对应的锐角,然后在求出其他象限的角. 【解析】 (1)由sin 2x =- 知x 的正弦值是个负值,所以x 是第三象限或第四象限的角.因为sin 42 π=,所以第三象限的那个角是544π ππ+ = ,第四象限的角是7244 ππ π-=. (2)在R 上符合条件的角是所有与 54 π终边相同的角和所有与74π 终边相同的角.因此x 的取值集合为

必修4三角函数公式大全(经典)

三角函数 公式大全 姓名: 1、两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) =tanAtanB -1tanB tanA + tan(A-B) = tanAtanB 1tanB tanA +- cot(A+B) =cotA cotB 1 -cotAcotB + cot(A-B) =cotA cotB 1 cotAcotB -+ 2、倍角公式 tan2A = A tan 12tanA 2 - Sin2A=2SinA?CosA Cos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 3、三倍角公式 sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosA tan3a = tana ·tan( 3π+a)·tan(3 π-a) 4、半角公式 sin( 2A )=2cos 1A - cos( 2A )=2 cos 1A + tan( 2A )=A A cos 1cos 1+- cot(2A )=A A cos 1cos 1-+ tan( 2 A )=A A sin cos 1-=A A cos 1sin + 5、和差化积 sina+sinb=2sin 2b a +cos 2b a - sina-sinb=2cos 2b a +sin 2b a - cosa+cos b = 2cos 2b a +cos 2 b a - cosa-cosb = -2sin 2b a +sin 2 b a - tana+tanb=b a b a cos cos ) sin(+ 6、积化和差 sinasinb = -21 [cos(a+b)-cos(a-b)] cosacosb = 21 [cos(a+b)+cos(a-b)] sinacosb = 2 1 [sin(a+b)+sin(a-b)] cosasinb = 2 1 [sin(a+b)-sin(a-b)]

知识讲解_已知三角函数值求角

已知三角函数值求角 【学习目标】 1、掌握已知三角函数值求角的解题步骤; 2、要求学生初步(了解)理解反正弦,反余弦,反正切函数的意义,会由已知角的正弦值、余弦值、正切值求出[]π2,0范围内的角,并能用反正弦,反余弦,反正切的符号表示角或角的集合 【要点梳理】 要点一:反正弦,反余弦,反正切函数的定义 (1)一般地,对于正弦函数sin y x =,如果已知函数值[](1,1)y y ∈-,那么在,22ππ?? -???? 上有唯一的x 值 和它对应,记为arcsin x y =(其中11,22y x ππ-≤≤-≤≤).即arcsin y (||1y ≤)表示,22ππ?? -???? 上正弦等于y 的那个角. (2)在区间[]0,π上符合条件cos (11)x y y =-≤≤的角x ,记为arccos x y =. (3)一般地,如果tan ()x y y R =∈,且,22x ππ??∈- ???,那么对每一个正切值y ,在开区间,22ππ?? - ??? 内, 有且只有一个角x ,使tan x y =.符合上述条件的角x ,记为arctan ,(,)22 x y x ππ =∈-. 要点二:已知正弦值、余弦值和正切值,求角 已知角x 的一个三角函数值求角x ,所得的角不一定只有一个,角的个数要根据角的取值范围来确定,这个范围应该在题目中给定,如果在这个范围内有已知三角函数值的角不止一个,解法可以分为以下几步: 第一步,决定角可能是第几象限角. 第二步,如果函数值为正数,则先求出对应的锐角1x ;如果函数值为负数,则先求出与其绝对值对应的锐角1x . 第三步,如果函数值为负数,则可根据x 可能是第几象限角,得出(0,2π)内对应的角;如果它是第二象限角,那么可表示为-1x +π;如果它是第三或第四象限角,那么可表示为1x +π或-1x +2π. 第四步,如果要求(0,2π)以外对应的角,则可利用终边相同的角有相同的三角函数值这一规律写出结果. 【典型例题】 类型一:已知正弦值、余弦值,求角 例1.已知sin 2 x =- ,(1)x ∈[]0,2π,(2)x R ∈,求角x . 【思路点拨】因为所给的正弦值是负数,所以先求出其绝对值对应的锐角,然后在求出其他象限的角. 【解析】 (1)由sin 2 x =- 知x 的正弦值是个负值,所以x 是第三象限或第四象限的角.因为sin 42π=,所 以第三象限的那个角是544π ππ+ = ,第四象限的角是7244 ππ π-=.

最全高中数学三角函数公式

定义式 ) ct 函数关系 倒数关系:;; 商数关系:;. 平方关系:;;.诱导公式

公式一:设为任意角,终边相同的角的同一三角函数的值相等: 公式二:设为任意角,与的三角函数值之间的关系: 公式三:任意角与的三角函数值之间的关系: 公式四:与的三角函数值之间的关系: 公式五:与的三角函数值之间的关系: 公式六:及与的三角函数值之间的关系:

记背诀窍:奇变偶不变,符号看象限.即形如(2k+1)90°±α,则函数名称变为余名函数,正弦变余弦,余弦变正弦,正切变余切,余切变正切。形如2k×90°±α,则函数名称不变。 诱导公式口诀“奇变偶不变,符号看象限”意义: k×π/2±a(k∈z)的三角函数值.(1)当k为偶数时,等于α的同名三角函数值,前面加上一个把α看作 锐角时原三角函数值的符号; (2)当k为奇数时,等于α的异名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号。 记忆方法一:奇变偶不变,符号看象限:

记忆方法二:无论α是多大的角,都将α看成锐角. 以诱导公式二为例: 若将α看成锐角(终边在第一象限),则π十α是第三象限的角(终边在第三象限),正弦函数的函数值在第三象限是负值,余弦函数的函数值在第三象限是负值,正切函数的函数值在第三象限是正值.这样,就得到了诱导公式二. 以诱导公式四为例: 若将α看成锐角(终边在第一象限),则π-α是第二象限的角(终边在第二象限),正弦函数的三角函数值在第二象限是正值,余弦函数的三角函数值在第二象限是负值,正切函数的三角函数值在第二象限是负值.这样,就得到了诱导公式四. 诱导公式的应用: 运用诱导公式转化三角函数的一般步骤: 特别提醒:三角函数化简与求值时需要的知识储备:①熟记特殊角的三角函数值;②注意诱导公式的灵活运用;③三角函数化简的要求是项数要最少,次数要最低,函数名最少,分母能最简,易求值最好。

(word完整版)高一数学同角三角函数的基本关系式同步练习

1.2.3 同角三角函数的基本关系式 同步练习 1.若sin α=45,且α是第二象限角,则tan α的值等于( ) A .-43 B.34 C .±34 D .±43 解析:选A.∵α为第二象限角, ∴cos α=-1-sin 2α=-1-(45)2=-35 , ∴tan α=sin αcos α=4 5-35 =-43. 2.化简1-sin 2160°的结果是( ) A .cos160° B .-cos160° C .±cos160° D .±|cos160°| 解析:选B. 1-sin 2160°=cos 2160°=-cos160°. 3.若tan α=2,则2sin α-cos αsin α+2cos α 的值为( ) A .0 B.34 C .1 D.54 解析:选B.2sin α-cos αsin α+2cos α=2tan α-1tan α+2=34 . 4.若cos α=-817 ,则sin α=________,tan α=________. 解析:∵cos α=-817 <0, ∴α是第二或第三象限角. 若α是第二象限角,则sin α>0,tan α<0. ∴sin α=1-cos 2α=1517,tan α=sin αcos α=-158 . 若α是第三象限角,则sin α<0,tan α>0. ∴sin α=-1-cos 2α=-1517,tan α=sin αcos α=158 . 答案:1517或-1517 -158或158 一、选择题 1.若α是第四象限的角,tan α=-512 ,则sin α等于( ) A.15 B .-15 C.315 D .-513

高一三角函数公式大全

三角函数公式 两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) =tanAtanB -1tanB tanA + tan(A-B) =tanAtanB 1tanB tanA +- cot(A+B) =cotA cotB 1-cotAcotB + cot(A-B) =cotA cotB 1cotAcotB -+ 倍角公式 tan2A =A tan 12tanA 2- Sin2A=2SinA?CosA Cos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 三倍角公式 sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosA tan3a = tana ·tan(3π+a)·tan(3 π-a) 半角公式 sin(2A )=2cos 1A - cos(2A )=2 cos 1A + tan(2A )=A A cos 1cos 1+- cot(2A )=A A cos 1cos 1-+ tan( 2A )=A A sin cos 1-=A A cos 1sin + 和差化积 sina+sinb=2sin 2b a +cos 2b a - sina-sinb=2cos 2b a +sin 2 b a - cosa+cosb = 2cos 2b a +cos 2b a - cosa-cosb = -2sin 2b a +sin 2 b a - tana+tanb=b a b a cos cos )sin(+ 积化和差 sinasinb = -21[cos(a+b)-cos(a-b)] cosacosb = 2 1[cos(a+b)+cos(a-b)] sinacosb = 21[sin(a+b)+sin(a-b)] cosasinb = 2 1[sin(a+b)-sin(a-b)]

相关文档
相关文档 最新文档