文档库 最新最全的文档下载
当前位置:文档库 › 毛细管胶束电动色谱分离技术

毛细管胶束电动色谱分离技术

毛细管胶束电动色谱分离技术
毛细管胶束电动色谱分离技术

基本原理

毛细管电色谱(Capillary electrochromatography, 简称CEC)是在毛细管中填充或在管壁涂布、键合液相色谱的固定相,然后在毛细管的两端施加高压直流电,在电场作用下产生电渗流(Electroosmotic flow ,简称EOF),流动相在电渗流的驱动下通过色谱柱。对中性化合物,其分离过程和HPLC类似,即通过溶质在固定相和流动相之间的分配差异而获得分离;当被分析的物质在流动相中带电荷时,除了和中性化合物一样的分配机理外,自身电泳淌度的差异对物质的分离也起相当的作用。

毛细管电色谱(capillary electro chromatography,CEC)以内含色谱固定相的毛细管为分离柱,兼具毛细管电泳及高效液相色谱的双重分离机理,既可分离带电物质也可分离中性物质。毛细管电色谱法是用电渗流或电渗流结合压力流来推动流动相的一种液相色谱法。

因此,毛细管电色谱法可以说是HPLC和HPCE 的有机结合,它不仅克服了HPLC 中压力流本身流速不均匀引起的峰扩展,而且柱内无压降,使峰扩展只与溶质扩散系数有关,从而获得了接近于HPCE 水平的高柱效,同时还具备了HPLC 的选择性。

HPLC是用压力驱动流动相。流速是随填充微粒的大小和柱长而变化的。流速在管中呈抛物线轮廓,因而造成了色谱峰谱带的展宽,降低了柱效。而CEC是采用电场推动流动相。其线速度是与柱的直径和填微粒的大小无关的,因而在毛细管中几乎没有流速梯度。谱带展宽效应相应的就十分小。这点是CEC与HPLC的本质差别,也是CEC

效率高于HPLC的根本。

依靠电渗流(EOF)和电渗流结合压力流推动流动相,使中性和带电荷的样品分子根据它们在色谱固定相和流动相间吸附、分配平衡常数的不同和电泳速率不同而达到分离分析。

仪器设备: 毛细管电色谱的早期研究是在改装的CE商品仪器上进行的,随着研究的深入和对研究前景的良好预期,现在已有商品仪器既可进行电泳模式也可方便地进行电色谱研究。目前,主要是Beckman 公司的P/ACE 系列和HP公司的HP3D系列。检测器根据分析样品性质的不同,可选UV 检测器( 包括DAD ) 、电化学检测器、LIF 及CE-MS等。

类型:在毛细管电色谱(CEC)中,色谱柱是电色谱的心脏,按照固定相的装填方式不同可以分为[7]:填充毛细管电色谱(PCCEC),开管毛细管电色谱(OTCEC),整体式毛细管电色谱(MCEC)。PCCEC是将固定相装填在毛细管中,OTCEC是将固定相涂渍或键合在毛细管内壁上,MCEC是通过在毛细管内原位聚合或固化的方法,制成的具有多孔结构的整体式固定相。根据分离过程中驱动力的不同可以将毛细管电色谱分为电驱动和压力驱动电色谱。前者是靠电渗流作为驱动力,这种情况下样品区带可以保持塞状流型,分离效率比较高。在最初的研究中人们都使用电驱动电色谱。压力驱动是指除了使用电渗流作为驱动力外,同时可以使用压力作为驱动力,这样可以加快分析速度,便于梯度洗脱,减小气泡生成的可能性。其缺点是流体力学所引起的抛物线流型使柱效有所损失,一般的操作过程中所使用的压力都

比较低。操作:毛细管电色谱柱的制备

应用和前景

从目前文献报道的情况看,当采用梯度洗脱技术、与质谱联用技术、热光吸收检验器以及无孔ODS快速分析等方法时,毛细管电色谱可成功地实现氨基酸分析。毛细管电色谱还被应用于肽、蛋白质、核苷酸和DNA添加物等的分析中。此外,毛细管电色谱还在离子分析、染料分析、食品分析、环境污染化合物的分离分析;石油化工产品组分的分离分析;手性对映体拆分;样品富集和预浓缩等。中得到了应用,柱效和分离度均达到令人满意的效果。

目前CEC或pCEC的报道中,很多是以药物为模型化合物来研究评价色谱柱的性能;同时也有很多研究尝试将CEC或pCEC用于生物体液,如尿液等临床药品分析检测中,这为临床或相关药检

机构实现药品的快速高效检测提高了更新更好的选择。

毛细管电色谱(CEC)结合了高效液相色谱(HPLC)和毛细管电泳(CE)

的共同优点,其分离机理中即包含溶质分配系数的不同又包含电泳淌度的不同,因而选择性好,CEC中流动相是由电渗流驱动的,由于电渗流呈平面流型,因而分离柱效高,又由于电渗流不存在反压,因而可以采用小粒子填料进一步提高柱效。CEC的理论及应用研究已成为分离分析科学领域研究的热点。尽管CEC的研究与应用飞速发展,但人们对其认识并不深刻,研究尚处在理论探索阶段。存在着诸如气泡产生、柱子易断、检测灵敏度低、填料种类有限等问题。特别

是在分离大分子生物样品,如DNA、蛋白质时,尚存在方法匮乏、重现性差等问题。而这恰是CE、HPLC的优势。因此,预计在很长一段时间内,三种方法将呈互相补充及相互验证的关系。CEC能否成为一种实用的分离分析技术主要取决于CEC试验技术的发展。目前,随着装柱技术、联用技术、梯度洗脱技术等的发展和完善,毛细管电色谱研究已进入实际分析应用研究阶段。毛细管电色谱技术作为新型的分离分析技术,将有着很大的发展前景。

毛细管胶束电动色谱分离原理

毛细管胶束电动色谱分离原理 概述 在电泳缓冲液中加入离子表面活性剂,当溶液中表面活性剂浓度超过临界胶束 浓度时,表面活性剂的单体就结合在一起,形成一个球体,称为胶束。胶束一般是由10--50个碳原子单位的长链分子组成,具有头部(或外层)亲水、尾部(或内层)疏水的特性。在溶液中,头部露在外面,尾部包在胶束中。这种胶束的形成是疏水效应的结果,能使系统的自由能减少。胶束可分为正相胶束和反相胶束两类,以前者应用较多。反相胶束则是指在有机溶剂中形成的胶束,尚未作系统研究。 用来作为表面活性剂的化合物很多,大体有四类:阴离子、阳离子、两性离子和 非离子表面活性剂,其典型化合物及主要性质如表4.1所示。 应用最多的是前两类,且尤以十二烷基硫酸钠(SDS)等使用最为普遍。图4.1是SDS胶束的结构示意, 里面有一个疏水内核,外面布满了.S03ˉ离子。

在MECC系统中,实际上存在着类似于色谱的两相,一是流动的水相,另一是起到固定相作用的胶束相,溶质在这两相之间分配,由其在胶束中不同的保留能力而产生不同的保留值。与毛细管区带电泳一样,由于缓冲液在靠近管壁处形成的正电,使其显示出强烈的电渗流而向阴极移动。对于SDS胶束来说,由于其外壳带很大的负电荷,本应以较大的淌度朝阳极迁移,但由于在一般情况下电渗流的速度大于胶束的迁移速度,这就迫使胶束最终以较低的速度向阴极移动,如图4.2所示。由此可见,毛细管胶束电动色谱有别于普通色谱的一个重要特性为它的“固定相”是移动的,这种移动的“固定相”又被称之为“准固定相’。 在毛细管胶束电动色谱中,中性粒子由于本身疏水性的不同而得以分离.具有不同疏水性的粒子与胶束的相互作用不同,疏水性强的作用力

毛细管胶束电动色谱分离技术

基本原理 毛细管电色谱(Capillary electrochromatography, 简称 CEC)是在毛细管中填充或在管壁涂布、键合液相色谱的固定相,然后在毛细管的两端施加高压直流电,在电场作用下产生电渗流(Electroosmotic flow ,简称EOF),流动相在电渗流的驱动下通过色谱柱。对中性化合物,其分离过程和HPLC类似,即通过溶质在固定相和流动相之间的分配差异而获得分离;当被分析的物质在流动相中带电荷时,除了和中性化合物一样的分配机理外,自身电泳淌度的差异对物质的分离也起相当的作用。 毛细管电色谱(capillary electro chromatography,CEC)以内含色谱固定相的毛细管为分离柱,兼具毛细管电泳及高效液相色谱的双重分离机理,既可分离带电物质也可分离中性物质。毛细管电色谱法是用电渗流或电渗流结合压力流来推动流动相的一种液相色谱法。 因此,毛细管电色谱法可以说是HPLC和HPCE 的有机结合,它不仅克服了HPLC 中压力流本身流速不均匀引起的峰扩展,而且柱内无压降,使峰扩展只与溶质扩散系数有关,从而获得了接近于HPCE 水平的高柱效,同时还具备了HPLC 的选择性。 HPLC是用压力驱动流动相。流速是随填充微粒的大小和柱长而变化的。流速在管中呈抛物线轮廓,因而造成了色谱峰谱带的展宽,降低了柱效。而CEC是采用电场推动流动相。其线速度是与柱的直径和填微粒的大小无关的,因而在毛细管中几乎没有流速梯度。谱带展宽效应相应的就十分小。这点是CEC与HPLC的本质差别,也是CEC效率高于HPLC 的根本。 依靠电渗流(EOF)和电渗流结合压力流推动流动相,使中性和带电荷的样品分子根据它们在色谱固定相和流动相间吸附、分配平衡常数的不同和电泳速率不同而达到分离分析。 仪器设备: 毛细管电色谱的早期研究是在改装的CE商品仪器上进行的,随着研究的深入和对研究前景的良好预期,现在已有商品仪器既可进行电泳模式也可方便地进行电色谱研究。目前,主要是Beckman公司的 P/ACE 系列和HP公司的HP3D系列。检测器根据分析样品性质的不同,可选UV 检测器( 包括DAD ) 、电化学检测器、LIF及CE-MS等。 类型:在毛细管电色谱(CEC)中,色谱柱是电色谱的心脏,按照固定相的装填方式不同可以分为[7]:填充毛细管电色谱(PCCEC),开管毛细管电色谱(OTCEC),整体式毛细管电色谱(MCEC)。PCCEC是将固定相装填在毛细管中,OTCEC是将固定相涂渍或键合在毛细管内壁上,MCEC是通过在毛细管内原位聚合或固化的方法,制成的具有多孔结构的整体式固定相。根据分离过程中驱动力的不同可以将毛细管电色谱分

毛细管气相色谱法

毛细管气相色谱法条件及定量分析 指导老师:李建国 实验人:王壮 同组实验:陆潇、戈畅 实验时间:2016.4.18 一、实验目的 1.熟悉色谱分析的原理及色谱工作站的使用方法; 2、掌握气相色谱仪操作方法与氢火焰离子化检测器的原理; 3.用保留时间定性;用归一化法定量;用分离度对实验数据进行评价。 二、实验原理 不同组分在同一分离色谱柱上,在相同实验条件下有不同的保留行为,其保留时间的差异可以用来定性分析,每一组分的质量与相应色谱峰的积分面积成正比,因此可以公式计算,用归一化方法测定每一组分的质量百分含量。 1122100A is i i A A A s s ns n f A w f A f A f A =?++???+% 本实验是用气相色谱测定乙酸乙酯、乙酸丁酯及其混合试样,检测器用FID 。用色谱软件进行谱图处理和定量计算,让学生掌握用已知物对照定性、用归一化法测定混合物组分定量的实验。 混和试样的成功分离是气相色谱法定量分析的前提和基础,衡量一对色谱峰分 离的程度可用分离度:12121()2 R R t t R W W -=?+,式中1R t 、2R t 和1W 、2W 分别指两组分的保留时间和峰底宽度,R=1.5时两组分完全分离,实际中R=1.0(分离度98%)即可满足要求。 三、仪器与试剂 仪器:GC7890F 型气相色谱仪、氢火焰离子化检测器(FID )、氮气钢瓶、空气钢瓶、氢气发生器,微量注射器、3mm x 200cm 的10% SE-54不锈钢分离柱。GC5400型气相色谱仪、空气发生器、氮气发生器、氢气发生器,微量注射器、15m 毛细管分离柱。 试剂:乙酸乙酯、乙酸丁酯标准试样及其未知混合试样。 四、实验内容 1.按操作说明书使色谱仪正常运行,并调节至如下条件: 柱温:110C ? 检测器温度:120C ? 气化温度:120C ? 载气、氢气和空气流量分别为30、50和200mL/min 。 2.分别改变柱温至80、90、100、110、120C ?。每改变一次柱温,注入0.5L μ混合

毛细管气相色谱

毛细管气相色谱 一、毛细管柱与填充柱的区别 ◆与填充柱相比,毛细管柱的特点为: 1.分离效能高 2.分析速度快 3.样品用量少 可在几十分钟内分离出包含几百种化合物的汽油馏分,然而样品用量仅有数微克 在快速分析方面,可在几秒钟内分离含十几个组份的样品。 ◆其独特的特点在于: ◇渗透性大,分析速度快 ◇传质阻力小,可用长柱,并得高的总柱效。 ◇色谱动力学认为:填充柱可看作是一束长毛细管的组合,其内径约等于粒子粒度,因其弯曲,多径扩散严重,故理论板数少。 毛细管柱完全没有这些缺陷,故理论板数可高大106数量级。 ◆用毛细管柱,有利于: ⊙提高色谱分离能力, ⊙加快色谱分析速度, ⊙促进色谱的应用都是十分必要的: 二、毛细管色谱法的相关理论 ◆在毛细管柱,柱内只有一个流路,故多径项2λdp为0,弯曲因子γ=1,且用其液膜厚代替了填 充柱中载体的颗粒直径dp。 2.毛细管柱的最小理论板高 ◆毛细管柱的H—U图也是一个双曲线,在U值是最佳值时,H值最小。 ◆式中Cg、C1的大小取决于分配系数及柱的几何性(以相比β为代表),但一般毛细管柱液膜 薄,β值较大,液相传质阻力C1项不起控制作用。 ◆当被测物质的k﹥10时,如果每米理论板数大于1000/d时,则所用柱子的性能较好 ◆表中为K值很大时最好柱效(每米板数)值,其值由H/L = 1000 / d ◆一般认为直径在0.1—0.7mm较好 小于0.1mm,入口压力增加,柱负荷减少 大于0.7mm,虽柱负荷增大,但柱效下降 ◆目前流行0.53mm的大口径管,不必分流。 3.载气线速

◆从速率方程可知,最小板高时的最佳线速为: ◆如果Cl很小,则有: 可见,细管径,轻载气更适合于快速分析。 4.样品容量 一根色谱柱的最大允许进样量,约为一块理论板的有效体积。 ◆可见最大允许进样量与柱半径、柱长、分配比成正比,与塔板数成反比 比较填充柱和毛细管柱的柱容量 一根长20米,内径为0.25毫米的毛细管柱,一般可涂上6 mg的固定液,柱内体积 而一根长两米,内径3毫米的不锈钢填充柱,柱内体积 按12:100的液载比,可涂上800mg固定液。 ◆可见,一根2米长的填充柱中固定液的含量是一根20米长毛细管柱中固定液含量约150倍,故允许进样量也在一百倍以上。 5、柱效能 ◆毛细管柱每米塔片数通常在2000-5000之间,长20米的毛细管柱总柱效为4万至10万。 ◆填充柱每米塔片数在1000-1500之间,长2米的填充柱的柱效为2000-3000 ★所以毛细管柱的总柱效可以比填充柱高10-100倍。 根据上式,分离度正比于总塔片数N。即毛细管柱色谱总效高,其分离效能也高。 如果柱效高,K值也大是最理想的,目前流行大孔厚膜毛细管柱可望具有这两重性质。 6、分析时间 ◆根据公式,样品的保留时间正比于柱长,在以氮为载气时,毛细管柱的线速可达16厘米/秒, 而填充柱在4厘米/秒 ◆毛细管柱可采用很高的载气线速来缩短保留时间。且毛细管柱的K值比填充柱小,因此保留 时间小。 ◆故:毛细管柱上可实现快速分析。 三、毛细管柱的色谱系统 ◆与填充柱系统基本一样。 ◆因毛细管柱内径细,柱容量小,出峰快、峰形窄,因此对色谱仪本身(如进样系统、检测器、 记录器等)有些特殊的要求。 1、进样系统 ◆毛细管柱进样量必须极小(一般液样10—2~10—3微升,气样约1微升)。

毛细管气相色谱法

毛细管气相色谱法条件及定量分析 指导老师:李建国 实验人:王壮 同组实验:陆潇、戈畅 实验时间:2016.4.18 一、实验目的 1.熟悉色谱分析的原理及色谱工作站的使用方法; 2、掌握气相色谱仪操作方法与氢火焰离子化检测器的原理; 3.用保留时间定性;用归一化法定量;用分离度对实验数据进行评价。 二、实验原理 不同组分在同一分离色谱柱上,在相同实验条件下有不同的保留行为,其保留时间的差异可以用来定性分析,每一组分的质量与相应色谱峰的积分面积成正比,因此可以公式计算,用归一化方法测定每一组分的质量百分含量。 1122100A is i i A A A s s ns n f A w f A f A f A =?++???+% 本实验是用气相色谱测定乙酸乙酯、乙酸丁酯及其混合试样,检测器用FID 。用色谱软件进行谱图处理和定量计算,让学生掌握用已知物对照定性、用归一化法测定混合物组分定量的实验。 混和试样的成功分离是气相色谱法定量分析的前提和基础,衡量一对色谱峰分 离的程度可用分离度:12121()2 R R t t R W W -=?+,式中1R t 、2R t 和1W 、2W 分别指两组分的保留时间和峰底宽度,R=1.5时两组分完全分离,实际中R=1.0(分离度98%)即可满足要求。 三、仪器与试剂 仪器:GC7890F 型气相色谱仪、氢火焰离子化检测器(FID )、氮气钢瓶、空气钢瓶、氢气发生器,微量注射器、3mm x 200cm 的10% SE-54不锈钢分离柱。GC5400型气相色谱仪、空气发生器、氮气发生器、氢气发生器,微量注射器、15m 毛细管分离柱。 试剂:乙酸乙酯、乙酸丁酯标准试样及其未知混合试样。 四、实验内容 1.按操作说明书使色谱仪正常运行,并调节至如下条件: 柱温:110C ? 检测器温度:120C ? 气化温度:120C ? 载气、氢气和空气流量分别为30、50和200mL/min 。 2.分别改变柱温至80、90、100、110、120C ?。每改变一次柱温,注入0.5L μ混合酯试样,记下保留时间,观察其出峰顺序和分离情况。

毛细管电色谱

毛细管电色谱(CEC) 近年来发展起来的一种新型微分离分析技术,这种分离模式结合了高效液相色谱(HPLC)和毛细管区带电泳(CZE)的特征,溶质可以按多种机制在柱内完成分离。毛细管电色谱为纳升级技术,适合与质谱(MS)方法联用。将CEC分离速度快、柱效高和样品、试剂用量少等特点与MS能提供精确分子量和结构信息、灵敏度高以及专属性强等功能相结合,为复杂生化、环境等样品的定性、定量分析提供了强有力的工具。(最后的荣耀,丁香园战友) 光色谱: 90年代中期出现的利用辐射力和流体介质分离粒子的新方法,在生物大分子的分离及研究中有广泛应用前景。光色谱的概念首次由日本福岗九州大学工学院化学工程系的今板藤太郎等人提出,几年来该研究小组在光色谱理论、应用等方面做了许多工作,大大推进了光色谱的发展。 光色谱是指以激光的辐射压力为色谱分离的驱动力,在毛细管中将待分离组分(或粒子)按几何尺寸的大小予以分离的技术。今板藤太郎等人的研究表明,与其它色谱分离技术相比光色谱具有许多独特之处,以下列举一些:(1)进样简单;(2)改变分离操作条件简单;(3)不需要标准物质对照定性;(4)通过适当地延长测定时间可以比较准确地测定粒子的位置,提高分离度;(5)色谱柱的尺寸可以减小至微米级,可以为微米区域内的化学或分子生物研究提供场所。(最后的荣耀,丁香园战友) 离子色谱(IC): 作为高效液相色谱(HP LC)的一种,是分析离子的一种新的液相色谱方法。由于操作简便,对常见阴阳离子分析的高灵敏度,特别是对阴离子和价态形态分析的突出优点,已广泛应用于环境、电厂、半导体、食品卫生、石油化工和生命科学等领域。 世纪著名色谱学家G.Guiochon认为,近30年来气相色谱(GC)和高压液相色谱(HP LC)取得了辉煌成就。在GC 和HP LC中;HP LC是应用最广泛,发表文献最多的一个领域。1977年后,以6%-8%的速度递增,其中离子色谱是最活跃的领域之一。

毛细管气相色谱法的应用

毛细管色谱法测定洛美沙星中的有机溶剂残留量 来源: 作者:王国成,陈莹,徐波 摘要:目的:建立毛细管气相色谱法测定洛美沙星中的有机溶剂残留量。方法: 用INNOWAX 毛细管气相色谱柱,FID检测器, 以22戊酮为内标进行测定。结果: 乙酸乙酯、四氢呋喃、乙醇、乙腈的线性范围分别为0~80μg/m l ( r =0.999 7)、0~11.52μg/ml( r=0.9996)、0~80μg/ml( r=0.9997) , 0~6.56 μg/ml( r= 0.9996);平均回收率分别为100.5%、100.1%、101.2%、100.1%; RSD 分别为1.30%、0.9%、1.18%和1.23% (n = 9)。结论: 本方法简单、准确、灵敏度高、重现性好, 适用于洛美沙星中有机溶剂残留量的测定。 关键词洛美沙星,毛细管气相色谱法,有机溶剂残留量 药物生产过程中残存的有机溶剂均有不同程度的毒性, 不仅对人体有害, 而且这些溶剂与药物的治疗作用无关, 原则上应愈少愈好。洛美沙星为第三代喹诺酮类广谱抗菌药, 是由日本北陆株式会社研制的第一代口服长效抗菌药。该药物在合成过程中采用了乙酸乙酯、四氢呋喃、乙醇、乙腈等有机溶剂, 故对此4种有机溶剂加以检测有利于药物质量控制。本试验采用毛细管色谱法测定洛美沙星原料药中有机溶剂的含量,方法简便,结果准确可靠。 1 仪器与试剂 Agilent6890 增强型气相色谱仪, Agilent6890 工作站。乙酸乙酯、四氢呋喃、乙醇、乙腈均为分析纯(上海化学试剂公司) , 22戊酮(内标物) 为色标试 剂(天津化学试剂一厂) , 1-甲基-2-吡咯烷酮, 溶解样品用溶剂为化学纯(上海化学试剂公司)。 2 方法与结果 2.1 色谱条件色谱柱: Agilent HP-NNOWAX (固定液为键合聚乙二醇, 30m×0.53mm,1.0μm) 毛细管柱; 气化室温度: 220℃; 程序升温: 起始温度为40℃, 保持10min, 然后以20℃/min 升温至220℃,保持4 min;载气为氮气;分流比:1∶1; 进样量2μl; 检测器温度: 氢焰离子化检测器(FID) , 240 ℃。 2.2 溶液及试样制备 2. 2. 1 内标溶液的制备精密量取色标试剂2-戊酮124.0μl (约相当于100mg) , 置100ml 量瓶中, 用1-甲基-2-吡咯烷酮稀释至刻度, 摇匀; 精密量取1m l, 置10ml容量瓶中, 用1-甲基-2-吡咯烷酮稀释至刻度, 摇匀, 作为内标溶液。 2. 2. 2 对照溶液的制备精密量取乙酸乙酯111. 1μl (约相当于100mg) , 乙醇126.6μl(约相当于100mg) 置100ml 量瓶中, 用1-甲基-2-吡咯烷酮稀释至刻度,摇匀,作为对照贮备液A; 精密量取四氢呋喃162.2μl(约相当于144m g) , 乙腈105.0μl (约相当于82mg) 置100ml量瓶中, 用1-甲基-2-吡咯烷酮稀释至刻度, 摇匀, 作为对照贮备液B。精密量取对照贮备液A 10ml 与对照贮备液B 1ml 置同一100ml 量瓶中, 用1-甲基-2-吡咯烷酮稀释至刻度, 摇匀, 作为对照贮备液。精密量取对照贮备液5ml, 置10ml 量瓶中,精密加入内标溶液 1ml, 加1-甲基-2-吡咯烷酮稀释至刻度, 摇匀, 即得对照溶液。 2. 2. 3 供试品溶液的配制取本品约0.1g, 精密称定, 置10ml 量瓶中, 精密加入内标溶液1ml, 加1-甲基-2-吡咯烷酮适量, 振摇使溶解并稀释至刻度, 摇匀,作为供试品溶液。 2.3 系统适用性试验精密量取对照品溶液2μl, 注入气相色谱仪, 记

高效毛细管电泳色谱仪的介绍

高效毛细管电泳色谱仪的介绍 高效毛细管电泳色谱仪(CE)是以毛细管为分离通道,以高压直流电场为驱动力,利用荷电粒子之间的淌度差异和分配系数差异进行分离。由于CE溶质区带的超小体积特性导致光程太短,圆柱形毛细管作为光学表面不够理想,对检测器灵敏度要求相当高。CE常用检测器有紫外检测器、激光诱导荧光检测器、质谱检测器和电化学检测器等。 一、紫外检测器: 紫外检测器是基于物质对紫外吸收进行检测,是成熟的检测器,在CE中应用广。 1、原理: 入射紫外光通过样品时,被吸收的多少符合朗伯-比耳定律。 检测点在毛细管的末端,检测点的毛细管的外涂层要烧掉。 2、检测方法: (1)固定波长: 光源为低紫外氘灯,用滤光片获得固定波长的光。 (2)可变波长: 光源为氘灯或钨灯,用单色器(棱镜或光栅)获得连续可调波长的光。 (3)快速扫描: 1)利用线性二极管阵列快速捕获紫外光。 2)利用硅光电倍增管作快速扫描。 3、特点: (1)通用性好,特别是对蛋白质的适用性很强。 (2)灵敏度不足。 4、提高灵敏度的方法: 由于CE检测池的光路长度为毛细管内径,一般不超过100μm,小内径的毛细管限制了紫外检测器的灵敏度,可采用以下几种方法来提高灵敏度。 (1)优化测定波长: 通过测定不同波长下的信噪比来选择测定波长,以提高灵敏度。

(2)减少检测噪音: 1)提高光源强度。 2)采用聚焦和狭缝等减少背景光的影响。 3)采用良好的信号放大系统。 (3)扩展吸光光路长度: 1)为了克服圆柱形毛细管表面引起的散射、失真等不利的光学特性和增加光路长度,可采用矩形、扁形、Z形和泡型等特殊毛细管。当然柱效会有所下降。 2)对于普通毛细管,可采用轴向照射和多次反射来增加光路长度。 ①轴向照射:将激光光束从毛细管末端沿管轴方向入射,在毛细管侧面进行检测。 ②多次反射:在毛细管壁镀上银,分别开入射窗和出射窗。当入射光以特定角度入射后,在毛细管内反射30~40次后从出射窗口射出。 二、激光诱导荧光检测器: 激光诱导荧光检测器采用激发光源使检测物质产生荧光进行检测。 检测下限为10ˉ12~10ˉ10mol/L。 三、质谱检测器: 在CE-MS联用中,毛细管区带电泳为常用。电子喷雾离子源可检测多种高质量的带电分子,从CE分离出来的分子经过接口后直接进入MS,是MS的离子源。 检测下限为10ˉ9~10ˉ7mol/L,通用性好,可获得溶质的结构信息,但接口复杂。 四、电化学检测器: 电化学检测器可避免光学类检测器遇到的光程太短的问题,是CE中灵敏的检测器之一。 1、电导检测器: 柱上电导检测是在毛细管壁上用激光钻两个孔,插上两根铂电极,再将孔封住进行检测。 检测下限为10ˉ7~10ˉ5mol/L,通用性好,但需专门装置和毛细管处理。 2、安培检测器: CE中微量样品可使库仑效率大大提高,可达40%以上,而在HPLC中很少超过10%。 检测下限为10ˉ9~10ˉ8mol/L,灵敏度高,选择性好,但仅适用于电活性物

相关文档