文档库 最新最全的文档下载
当前位置:文档库 › 银行家算法及结果

银行家算法及结果

银行家算法及结果
银行家算法及结果

#include

#include

#include

#include

//定义全局变量

const int x=10,y=10; //常量,便于修改

int Available[x]; //各资源可利用的数量

int Allocation[y][y]; //各进程当前已分配的资源数量

int Max[y][y]; //各进程对各类资源的最大需求数

int Need[y][y]; //尚需多少资源

int Request[x]; //申请多少资源

int Work[x]; //工作向量,表示系统可提供给进程继续运行所需的各类资源数量

int Finish[y]; //表示系统是否有足够的资源分配给进程,1为是

int p[y]; //存储安全序列

int i,j; //i表示进程,j表示资源

int n,m; //n为进程i的数量,m为资源j的种类数

int l=0; //l用来记录有几个进程是Finish[i]=1的,当l=n是说明系统状态是安全的

int counter=0;

//函数声明

void chushihua(); //初始化函数

void safe(); //安全性算法

void show(); //函数show,输出当前状态

void bank(); //银行家算法

void jieshu(); //结束函数

void chushihua()

{

cout<<"输入进程的数量: ";//从此开始输入有关数据

cin>>n;

cout<<"输入资源种类数: ";

cin>>m;

cout<

for (j=0; j

{

cout<<"输入资源"<

cin>>Available[j]; //输入数字的过程...

Work[j]=Available[j]; //初始化Work[j],它的初始值就是当前可用的资源数}

cout<

for (i=0; i

{

for (j=0; j

{

cout<<" 输入进程"<

cin>>Allocation[i][j];

}

cout<

Finish[i]=0;//初始化Finish[i]

}

cout<

for (i=0; i

{

for (j=0; j

{

cout<<" 输入进程"<

cin>>Max[i][j];

if(Max[i][j]>=Allocation[i][j]) //若最大需求大于已分配,则计算需求量

Need[i][j] = Max[i][j]-Allocation[i][j];

else

Need[i][j]=0;//Max小于已分配的时候,此类资源已足够不需再申请

}

cout<

}

cout<

}

//安全性算法函数

void safe()

{

l=0;

for (i=0; i

{ //i++

if (Finish[i]==0)

{ //逐个查找Finish[i]==0的进程条件一

counter=0; //记数器

for (j=0; j

{

if (Work[j]>=Need[i][j]) counter=counter+1;//

}

if(counter==m) //i进程的每类资源都符合Work[j]>=Need[i][j] 条件二

{

p[l]=i; //存储安全序列

Finish[i]=1; //i进程标志为可分配

for (j=0; j

Work[j]=Work[j]+Allocation[i][j]; //释放资源

l=l+1; //记数,现在有L个进程是安全的,当L=N时说明满足安全序列

i= -1; //从第一个进程开始继续寻找满足条件一二的进程}

}

}

}

//显示当前状态函数

void show() //函数show,输出当前资源分配情况

{

int i,j; //局部变量

int All[y]; //各种资源的总数量

int L1; //局部变量L1

cout<<"当前的状态为:"<

cout<<"各种资源的总数量:"<

for (j=0;j

{

cout<<" 资源"<

All[j]=Available[j]; //总数量=可用的+已分配的

for (i=0;i

cout<

}

cout<

for (j=0;j

cout<<" 资源"<

cout<

for(i=0;i

{

cout<<" 资源"<

}cout<

for(L1=0;L1

{

cout<<"进程"<

for (j=0;j

cout<

cout<

}

cout<

for(i=0;i

{

cout<<" 资源"<

}cout<

for(L1=0;L1

{

cout<<"进程"<

for (j=0;j

cout<

cout<

}

/* for(i=0;i<=m;i++)

{

for (j=i;j

cout<

for(L1=0;L1

{

cout<<"进程"<

for (j=i;j

cout<

cout<

}

}*/

}

//银行家算法函数

void bank()

{

cout<

int k=0; //用于输入进程编号

bool r=false; // 初值为假,输入Y继续申请则置为真

do{//输入请求

cout<<"输入申请资源的进程(0-"<

cin>>k;

cout<

while(k>n-1) //输入错误处理

{

cout<

cout<

cin>>k;

cout<

}

cout<

for (j=0; j

do{ //do……while 循环判断申请输入的情况

cout<<"进程"<

cin>>Request[j];

cout<

if(Request[j]>Need[k][j]){ //申请大于需求量时出错,提示重新输入(贷款数目不允许超过需求数目)

cout<<"申请大于需要量!"<

cout<<"申请的资源"<

cout<<"重新输入!"<

}

else //先判断是否申请大于需求量,再判断是否申请大于可利用量

if(Request[j]>Available[j]){ //申请大于可利用量,应该阻塞等待?…… ???

cout<<"\n没有那么多资源,目前可利用资源"<

Finish[k]=0; //该进程等待

goto ppp; //goto语句跳转,结束本次申请

}

}while(Request[j]>Need[k][j]); //Request[j]>Available[j]||

}

//改变Avilable、Allocation、Need的值

for (j=0; j

Available[j] = Available[j]-Request[j];

Allocation[k][j] = Allocation[k][j]+Request[j];

Need[k][j] = Need[k][j]-Request[j];

Work[j] = Available[j];

}

//判断当前状态的安全性

safe(); //调用安全性算法函数

if (l

{

l=0;

cout<<"\n试分配后,状态不安全,所以不予分配!恢复原状态"<

//恢复数据

for (j=0; j

{

Available[j] = Available[j]+Request[j];

Allocation[k][j] = Allocation[k][j]-Request[j];

Need[k][j] = Need[k][j]+Request[j];

Work[j] = Available[j];

}

for (i=0; i

Finish[i]=0; //进程置为未分配状态

else

{

l=0;

cout<<"\n申请资源成功!!!"<

for(j=0;j

{

if(Need[k][j]==0);

else { //有一种资源还没全部申请到,则该进程不可执行,不能释放拥有的资源l=1; //置l为1,作为判断标志

break;

}

}

if(l!=1){ //进程可以执行,则释放该进程的所有资源

for (j=0;j

Available[j]=Available[j]+Allocation[k][j];

Allocation[k][j]=0;

}

cout<<"该进程已得到所有需求资源,执行后将释放其所有拥有资源!"<

}

l=0; //归零

cout<<"\n安全的状态!"<

cout<<"安全序列为: ";

cout<

Finish[0]=0;

for (i=1; i

cout<<"==>>"<<"进程"<<"("<

Finish[i]=0; //所有进程置为未分配状态

}

cout<

}

show(); //显示当前状态

ppp: //申请大于可利用量,应该阻塞等待,结束本次资源申请,GOTO 语句跳转至此cout<

char* b=new char; //输入y/n,判断是否继续申请<

cin>>b;

cout<

cout<<"-------------------------------------------"<

cout<

if(*b=='y'||*b=='Y')

r=true;

else{

r=false; //输入非Y 则令R =false

jieshu(); //调用结束函数

}

} while (r==true);

}

//结束函数

void jieshu()

{

cout<

cout<<"\t\t 演示计算完毕"<

cout<

}

//主函数

int main()

{

cout<

chushihua(); //初始化函数调用

cout<

show(); //输出当前状态

safe(); //判断当前状态的安全性

if (l

{

cout<<"\n当前状态不安全,拒绝申请!"<

cout<

return 0;

}

else

{

int i; //局部变量

l=0;

cout<

cout<<"进程"<<"("<

for (i=1; i>"<<"进程"<<"("<

for (i=0; i

cout<

}

bank(); //调用银行家算法函数

cout<<"\t\t 演示计算完毕"<

return 0;

}

银行家算法实验报告

操作系统 (实验报告) 银行家算法姓名:***** 学号:***** 专业班级:***** 学验日期:2011/11/22 指导老师:***

一、实验名称: 利用银行家算法避免死锁 二、实验内容: 需要利用到银行家算法,来模拟避免死锁:设计M个进程共享N类资源,M个进程可以动态的申请资源,并可以判断系统的安全性,进行打印出,相应的安全序列和分配表,以及最后可用的各资源的数量。 三、实验目的: 银行家算法是一种最有代表性的避免死锁的算法,在避免死锁的方法中允许进程动态地申请资源,但系统在进行资源分配之前,应先计算此次分配资源的安全性,若分配不会导致系统进入不安全状态,则分配,否则等待。 为实现银行家算法,系统必须设置若干数据结构,所以通过编写一个模拟动态资源分配的银行家算法程序,进一步深入理解死锁,产生死锁的必要条件,安全状态等重要的概念,并掌握避免死锁的具体实施方法。 四、实验过程 1.基本思想: 我们可以把操作系统看成是银行家,操作系统管理的资源相当于银行家管理的资金,进程向操作系统请求分配资源相当于用户向银行家贷款。操作系统按照银行家制定的规则为进程分配资源,当进程申请到资源时,要测试该进程对资源的最大需求量,如果系统现存的资源可以满足它的最大需求量则按当前的申请量分配资源,否则就推迟分配。当进程在执行中继续申请资源时,先测试该进程已占用的资源与本次申请的资源数之和是否超过了该进程对资源的最大需求量。若超过则拒绝分配资源,若没有超过再测试系统现资源能否满足该进程尚需的最大资源量,若能满足则按当前的申请量分配资源,否则也要推迟分配。 安全状态就是如果存在一个由系统中所有进程构成的安全序列P1……则系统处于安全状态。安全状态是没有死锁发生。而不安全状态则是不存在这样一个安全序列,从而一定会导致死锁。 2.主要数据结构: (1)可利用资源向量Available.这是一个含有m个元素的数组,其中的每一个 元素代表一类可利用的资源数目,其初始值是系统中所配置的该类全部可用资源的数目,其数值随该类的资源的分配和回收而动态地改变,如果Available[j]=K,则表示系统中现有Rj类资源K个。 (2)最大需求矩阵Max.这是一个n*m的矩阵,定义了系统中n 个进程中的每 一个进程对m类资源的最大需求。如果Max[i,j]=K,则表示进程i需要Rj类资源的最大数目为K. (3)分配矩阵Allocation.这也是一个n*m的矩阵,它定义了系统中每一类资源

实验二 银行家算法报告

昆明理工大学信息工程与自动化学院学生实验报告 (2011 —2012 学年第二学期) 一、实验目的和要求 银行家算法是避免死锁的一种重要方法,本实验要求用高级语言编写和调试一个简单的银行家算法程序。加深了解有关资源申请、避免死锁等概念,并体会和了解死锁和避免死锁的具体实施方法。 二、实验内容 1.设计进程对各类资源最大申请表示及初值确定。 2.设定系统提供资源初始状况。 3.设定每次某个进程对各类资源的申请表示。 4.编制程序,依据银行家算法,决定其申请是否得到满足。 三、实验说明 1.数据结构 假设有M个进程N类资源,则有如下数据结构: MAX[M*N] M个进程对N类资源的最大需求量 AVAILABLE[N] 系统可用资源数 ALLOCATION[M*N] M个进程已经得到N类资源的资源量 NEED[M*N] M个进程还需要N类资源的资源量 2.银行家算法 设进程I提出请求Request[N],则银行家算法按如下规则进行判断。 (1)如果Request[N]<=NEED[I,N],则转(2);否则,出错。 (2)如果Request[N]<=AVAILABLE,则转(3);否则,出错。 (3)系统试探分配资源,修改相关数据: AVAILABLE=AVAILABLE-REQUEST ALLOCATION=ALLOCATION+REQUEST

NEED=NEED-REQUEST (4)系统执行安全性检查,如安全,则分配成立;否则试探险性分配作废,系统恢复原状,进程等待。 3.安全性检查 (1)设置两个工作向量WORK=AVAILABLE;FINISH[M]=FALSE (2)从进程集合中找到一个满足下述条件的进程, FINISH[i]=FALSE NEED<=WORK 如找到,执行(3);否则,执行(4) (3)设进程获得资源,可顺利执行,直至完成,从而释放资源。 WORK=WORK+ALLOCATION FINISH=TRUE GO TO 2 (4)如所有的进程Finish[M]=true,则表示安全;否则系统不安全。 四、程序流程图 初始化算法流程图:

银行家算法例题——四步走解题

银行家算法例题 系统中原有三类资源A、B、C和五个进程P1、P2、P3、P4、P5,A资源17,B资源5,C资源20。当前(T0时刻)系统资源分配和进程最大需求如下表。 1、现在系统T0时刻是否处于安全状态? 2、是否可以允许以下请求? (1)T1时刻:P2 Request2=(0,3,4) (2)T2时刻:P4 Request4=(2,0,1) (3)T3时刻:P1 Request1=(0,2,0) 注:T0 T1 T2 T3时刻是前后顺序,后一时刻是建立在前一时刻的基础上。

解:由题设可知Need=Max-Allocation AvailableA=17-(2+4+4+2+3)=2(原有-分配) 同理AvailableB=3,AvailableC=3 可得T0时刻资源分配表如下所示(表中数据顺序均为A B C): 1、判断T0时刻是否安全,需要执行安全算法找安全序列,过程如下表: T0时刻能找到一个安全序列{P4,P3,P2,P5,P1},故T0时刻系统处于安全状态。

2、判断T1 T2 T3时刻是否满足进程请求进行资源分配。 (1)T1时刻,P2 Request2=(0,3,4) //第一步判断条件 ①满足Request2=(0,3,4)<=Need2(1,3,4) ②不满足Request2=(0,3,4)<=Available(2,3,3) 故系统不能将资源分配给它,此时P2必须等待。 (2)T2时刻,P4 Request4=(2,0,1) //第一步判断条件①满足Request4=(2,0,1)<=Need4(2,2,1) ②满足Request4=(2,0,1)<=Available(2,3,3) //第二步修改Need、Available、Allocation的值 Available=Available-Request4= (0,3,2) Allocation4=Allocation4+Request4=(4,0,5) Need4=Need4-Request4=(0,2,0) //第三步执行安全算法,找安全序列 (注解:先写上work,其初值是系统当前进行试分配后的Available(0,3,2) ,找五个进程中Need小于work的进程,比如Need4<=Work满足,则将P4写在第一行的最前面,同时写出P4的Need和Allocation,以此类推)

银行家算法-实验报告

淮海工学院计算机工程学院实验报告书 课程名:《操作系统原理》 题目:银行家算法 班级: 学号: 姓名:

一、实验目的 银行家算法是操作系统中避免死锁的典型算法,本实验可以加深对银行家算法的步骤和相关数据结构用法的更好理解。 实验环境 Turbo C 2.0/3.0或VC++6.0 实验学时 4学时,必做实验。 二、实验内容 用C语言编写一个简单的银行家算法模拟程序,用银行家算法实现资源分配。程序能模拟多个进程共享多种资源的情形。进程可动态地申请资源,系统按各进程的申请动态地分配资源。要求程序具有显示和打印各进程的某一时刻的资源分配表和安全序列;显示和打印各进程依次要求申请的资源数量以及为某进程分配资源后的有关资源数据的情况。 三、实验说明 实验中进程的数量、资源的种类以及每种资源的总量Total[j]最好允许动态指定。初始时每个进程运行过程中的最大资源需求量Max[i,j]和系统已分配给该进程的资源量Allocation[i,j]均为已知(这些数值可以在程序运行时动态输入),而算法中其他数据结构的值(包括Need[i,j]、Available[j])则需要由程序根据已知量的值计算产生。 四、实验步骤 1、理解本实验中关于两种调度算法的说明。 2、根据调度算法的说明,画出相应的程序流程图。 3、按照程序流程图,用C语言编程并实现。 五、分析与思考 1.要找出某一状态下所有可能的安全序列,程序该如何实现? 答:要找出这个状态下的所有可能的安全序列,前提是要是使这个系统先处于安全状态,而系统的状态可通过以下来描述: 进程剩余申请数=最大申请数-占有数;可分配资源数=总数-占有数之和; 通过这个描述来算出系统是否安全,从而找出所有的安全序列。 2.银行家算法的局限性有哪些?

用银行家算法实现资源分配

南通大学 杏林学院 操作系统实验(用银行家算法实现资源分配)班级:计121 小组成员:方筱雯1213023008 周徐莲1213023014 指导老师:丁卫平

一:实验目的 为了了解系统的资源分配情况,假定系统的任何一种资源在任一时刻只能被一个进程使用。任何资源已经占用的资源只能由自己释放,而不能由其他进程抢占。当进程申请的资源不能满足时,必须等待。因此,只要资源分配算法能保证进程的资源请求,且不出现循环等待,则系统不会出现死锁。 编写模拟系统进行资源调度的程序,采用银行家算法,有效的避免死锁的产生。模拟进程的分配算法,了解死锁的产生和避免的办法。二:实验要求 (1):为了观察死锁产生和避免的情况,要求设计3到4个并发进程,共享系统的10个同类不可抢占的资源。各进程是动态进行资源的申请和释放。 (2):用银行家算法设计一个资源分配程序,运行这个程序,观察系统运行情况,并对系统运行的每一步进行显示。三:实验流程图

四:源程序 #include #include #include #include #define MaxNumber 100 //定义进程控制块 struct Process_struct{ int Available[MaxNumber]; //可利用资源数组 int Max[MaxNumber][MaxNumber]; //最大需求矩陈 int Allocation[MaxNumber][MaxNumber]; //分配矩陈 int Need[MaxNumber][MaxNumber]; //需求矩陈 int Request[MaxNumber][MaxNumber]; //M个进程还需要N类资源的资源量 int Finish[MaxNumber]; int p[MaxNumber]; }Process; int M,N; //M个进程,N类资源 int i,j,k,l=0; int Work[MaxNumber]; //可利用资源 int Pinput(); int Safe(); int Peques(); //进程输入 int Pinput() { int i,j; cout<<"输入进程的数目:\n"; cin>>M; cout<<"输入资源的种类:\n"; cin>>N; cout<<"输入每个进程最多所需的各类资源数,按照"<>Process.Max[i][j]; cout<<"输入每个进程已经分配的各类资源数,按照"<

银行家算法课程设计报告

中南大学软件技术课程设计报告 课程名称:模拟银行家算法原理班级: 学号: 姓名: 指导老师: 2009年5月2日

一设计目的 模拟实现银行家算法,用银行家算法实现资源分配。 二问题描述 在死锁的避免中,银行家算法把系统状态分为安全状态和不安全状态,只要能使系统始终处于安全状态,便可以避免发生死锁。所谓安全状态,是指系统能按某种顺序为每个进程分配所需资源,直到最大需求,使每一个进程都可以顺利完成,即可找到一个安全资源分配序列。模拟实现这个工作过程。 三设计思路 我们可以把操作系统看作是银行家,操作系统管理的资源相当于银行家管理的资金,进程向操作系统请求分配资源相当于用户向银行家贷款。操作系统按照银行家制定的规则为进程分配资源,当进程首次申请资源时,要测试该进程对资源的最大需求量,如果系统现存的资源可以满足它的最大需求量则按当前的申请量分配资源,否则就推迟分配。当进程在执行中继续申请资源时,先测试该进程已占用的资源数与本次申请的资源数之和是否超过了该进程对资源的最大需求量。若超过则拒绝分配资源,若没有超过则再测试系统现存的资源能否满足该进程尚需的最大资源量,若能满足则按当前的申请量分配资源,否则也要推迟分配。 四详细设计 1、初始化

由用户输入数据,分别对可利用资源向量矩阵AVAILABLE、最大需求矩阵MAX、分配矩阵ALLOCATION、需求矩阵NEED赋值。 2、银行家算法 在避免死锁的方法中,所施加的限制条件较弱,有可能获得令人满意的系统性能。在该方法中把系统的状态分为安全状态和不安全状态,只要能使系统始终都处于安全状态,便可以避免发生死锁。银行家算法的基本思想是分配资源之前,判断系统是否是安全的;若是,才分配。 设进程cusneed提出请求REQUEST [i],则银行家算法按如下规则进行判断。 (1)如果REQUEST [cusneed] [i]<= NEED[cusneed][i],则转(2);否则,出 错。 (2)如果REQUEST [cusneed] [i]<= AVAILABLE[cusneed][i],则转(3);否 则,出错。 (3)系统试探分配资源,修改相关数据: AVAILABLE[i]-=REQUEST[cusneed][i]; ALLOCATION[cusneed][i]+=REQUEST[cusneed][i]; NEED[cusneed][i]-=REQUEST[cusneed][i]; (4)系统执行安全性检查,如安全,则分配成立;否则试探险性分配作废, 系统恢复原状,进程等待。

银行家算法报告和代码

1
课程设计(论文)
题 目: 银行家算法 院 (系): 信息与控制工程系 专业班级: 姓 名: 学 号: 指导教师:
2016 年 1 月 15 日
页脚内容 16

1
西安建筑科技大学华清学院课程设计(论文)任务书
专业班级: 学生姓名:
指导教师(签名):
一、课程设计(论文)题目
银行家算法:设计一个 n 个并发进程共享 m 个系统资源的程序以实现银行家算法。
二、本次课程设计(论文)应达到的目的
操作系统课程实践性比较强。课程设计是加强学生实践能力的一个强有力手段。课程设计要求学 生在完成程序设计的同时能够写出比较规范的设计报告。严格实施课程设计这一环节,对于学生基本 程序设计素养的培养和软件工作者工作作风的训练,将起到显著的促进作用。
本题目要达到目的:了解多道程序系统中,多个进程并发执行的资源分配。掌握银行家算法,了 解资源在进程并发执行中的资源分配情况。掌握预防死锁的方法,系统安全状态的基本概念。
三、本次课程设计(论文)任务的主要内容和要求(包括原始数据、技术参 数、设计要求等)
要求: 1)能显示当前系统资源的占用和剩余情况。 2)为进程分配资源,如果进程要求的资源大于系统剩余的资源,不与分配并且提示分配不成功; 3)撤销作业,释放资源。 编写和调试一个系统动态分配资源的简单模拟程序,观察死锁产生的条件,并采用适当的算法, 有效地防止和避免死锁的发生。 银行家算法分配资源的原则是:系统掌握每个进程对资源的最大需求量,当进程要求申请资源时, 系统就测试该进程尚需资源的最大量,如果系统中现存的资源数大于或等于该进程尚需求资源最大量 时,就满足进程的当前申请。这样就可以保证至少有一个进程可能得到全部资源而执行到结束,然后 归还它所占有的全部资源供其它进程使用。
四、应收集的资料及主要参考文献:
操作系统经典算法的编程实现资料非常丰富,可以在图书馆找书籍或在因特网上找资料,都很容 易找到,但是大部分代码是不全的,不能直接运行,希望大家只是把它当参考,编码还是自己做。
参考文献: 【1】汤小丹、梁红兵、哲凤屏、汤子瀛 编著.计算机操作系统(第三版).西安:西 安电子科技大学出版社,2007.5 【2】史美林编.计算机操作系统教程.北京:清华大学出版社,1999.11 【3】徐甲同编著.操作系统教程.西安:西安电子科技大学出版社,1996.8 【4】Clifford,A.Shaffer 编著.数决结构与算法分析(C++版).北京:电子工业出版 社,2005.7 【5】蒋立翔编著.C++程序设计技能百练.北京:中国铁道出版社,2004.1
五、审核批准意见
教研室主任(签字)
1 页脚内容

银行家算法详解

一、课程设计目的和意义 本设计的目的是通过编写和调试一个系统动态分配资源的简单模拟程序,观察死锁产生的条件,并采用适当的算法,有效地防止和避免死锁地发生。集体要求如下: (1)模拟一个银行家算法; (2)初始化时让系统拥有一定的资源; (3)用键盘输入的方式申请资源; (4)如果预分配后,系统处于安全状态,则修改系统的资源分配情况; (5)如果预分配后,系统处于不安全状态,则提示不能满足请求, 此次课程设计的主要内容时模拟实现动态资源分配。同时要求编写和调试一个系统动态资源的简单模拟程序,观察死锁产生的条件,并使用适当的算法,有效的防止和避免死锁的发生。 银行家算法是避免死锁的一种重要方法,通过编写一个简单的银行家算法程序,加深了解有关资源申请、避免死锁等概念,并体会和了解死锁和避免死锁的具体实施方法。死锁的产生,必须同时满足四个条件,即一个资源每次只能由一个进程张勇;第二个为等待条件,即一个进程请求资源不能满足时,它必须等待,单它仍继续宝石已得到的所有其他资源;第三个为非剥夺条件,即在出现死锁的系统中一定有不可剥夺使用的资源;第四个为循环等待条件,系统中存在若干个循环等待的进程,即其中每一个进程分别等待它前一个进程所持有的资源。防止死锁的机构只能确保上述四个条件之一不出现,则系统就不会发生死锁。通过这个算法可以用来解决生活中的实际问题,如银行贷款等。 二、方案设计及开发过程 (一)银行家算法,顾名思义是来源于银行的借贷业务,一定数量的本金要应多个客户的借贷周转,为了防止银行加资金无法周转而倒闭,对每一笔贷款,必须考察其是否能限期归还。在操作系统中研究资源分配策略时也有类似问题,系统中有限的资源要供多个进程使用,必须保证得到的资源的进程能在有限的时间内归还资源,以供其他进程使用资源。如果资源分配不得到就会发生进程循环等待资源,则进程都无法继续执行下去的死锁现象。 把一个进程需要和已占有资源的情况记录在进程控制中,假定进程控制块PCB其中“状态”有就绪态、等待态和完成态。当进程在处于等待态时,表示系统不能满足该进程当前的资源申请。“资源需求总量”表示进程在整个执行过程中总共要申请的资源量。显然,,每个进程的资源需求总量不能超过系统拥有的资源总数, 银行算法进行资源分配可以避免死锁. (二).算法描述 1.银行家算法: 设进程i提出请求Request[n],则银行家算法按如下规则进行判断。 (1)如果Request[n]>Need[i,n],则报错返回。 (2)如果Request[n]>Available,则进程i进入等待资源状态,返回。 (3)假设进程i的申请已获批准,于是修改系统状态: Available=Available-Request

银行家算法_实验报告

课程设计报告课程设计名称共享资源分配与银行家算法 系(部) 专业班级 姓名 学号 指导教师 年月日

目录 一、课程设计目的和意义 (3) 二、方案设计及开发过程 (3) 1.课题设计背景 (3) 2.算法描述 (3) 3.数据结构 (4) 4.主要函数说明 (4) 5.算法流程图 (5) 三、调试记录与分析 四、运行结果及说明 (6) 1.执行结果 (6) 2.结果分析 (7) 五、课程设计总结 (8)

一、程设计目的和意义 计算机科学与技术专业学生学习完《计算机操作系统》课程后,进行的一次全面的综合训练,其目的在于加深催操作系统基础理论和基本知识的理解,加强学生的动手能力.银行家算法是避免死锁的一种重要方法。通过编写一个模拟动态资源分配的银行家算法程序,进一步深入理解死锁、产生死锁的必要条件、安全状态等重要概念,并掌握避免死锁的具体实施方法 二、方案设计及开发过程 1.课题设计背景 银行家算法又称“资源分配拒绝”法,其基本思想是,系统中的所有进程放入进程集合,在安全状态下系统受到进程的请求后试探性的把资源分配给他,现在系统将剩下的资源和进程集合中其他进程还需要的资源数做比较,找出剩余资源能满足最大需求量的进程,从而保证进程运行完成后还回全部资源。这时系统将该进程从进程集合中将其清除。此时系统中的资源就更多了。反复执行上面的步骤,最后检查进程的集合为空时就表明本次申请可行,系统处于安全状态,可以实施本次分配,否则,只要进程集合非空,系统便处于不安全状态,本次不能分配给他。请进程等待 2.算法描述 1)如果Request[i] 是进程Pi的请求向量,如果Request[i,j]=K,表示进程Pi 需要K个Rj类型的资源。当Pi发出资源请求后,系统按下述步骤进行检查: 如果Requesti[j]<= Need[i,j],便转向步骤2;否则认为出错,因为它所需要的资源数已超过它所宣布的最大值。 2)如果Requesti[j]<=Available[j],便转向步骤3,否则,表示尚无足够资源,进程Pi须等待。 3)系统试探着把资源分配给进程Pi,并修改下面数据结构中的数值: Available[j]:=Available[j]-Requesti[j]; Allocation[i,j]:=Allocation[i,j]+Requesti[j]; Need[i,j]:=Need[i,j]-Requesti[j];

银行家算法

操作系统原理 课程设计 课程名称:死锁的避免;模拟银行家算法 专业班级:14级信管2班 组长:赵贤杰 成员:云靖宿熙隆 指导教师:付维娜 2016 / 2017 学年第 2 学期 【设计题目】

死锁的避免;银行家算法 【设计目标】 (1)进一步理解利用银行家算法避免死锁的问题; (2)在了解和掌握银行家算法的基础上,编制银行家算法通用程序,将调试结果显示在计算机屏幕上,再检测和笔算的一致性。 (3)理解和掌握安全序列、安全性算法 (4)了解和理解死锁; (5)理解利用银行家算法避免死锁的原理; (6)会使用某种编程语言。 【设计原理】 一、安全状态 指系统能按照某种顺序如(称为序列为安全序列),为每个进程分配所需的资源,直至最大需求,使得每个进程都能顺利完成。 二、银行家算法 假设在进程并发执行时进程i提出请求j类资源k个后,表示为Requesti[j]=k。系统按下述步骤进行安全检查: 如果Requesti≤Needi则继续以下检查,否则显示需求申请超出最大需求值的错误。 如果Requesti≤Available则继续以下检查,否则显示系统无足够资源,Pi阻塞等待。 (3)系统试探着把资源分配给进程Pi,并修改下面数据结构中的数

值: Available[j]∶=Available[j]-Requesti[j]; Allocation[i,j]∶=Allocation[i,j]+Requesti[j]; Need[i,j]∶=Need [i,j]-Requesti[j]; (4)系统执行安全性算法,检查此次资源分配后,系统是否处于安全状态。若安全,才正式将资源分配给进程Pi,以完成本次分配;否则,将本次的试探分配作废,恢复原来的资源分配状态,让进程Pi 等待。 三、安全性算法 设置两个向量: ①工作向量Work: 它表示系统可提供给进程继续运行所需的各类资源数目,它含有m个元素,在执行安全算法开始时,Work∶=Available; ② Finish: 它表示系统是否有足够的资源分配给进程,使之运行完成。开始时先做Finish[i]∶=false; 当有足够资源分配给进程时,再令Finish[i]∶=true。 从进程集合中找到一个能满足下述条件的进程: ① Finish[i]=false; ② Need[i,j]≤Work[j];若找到,执行步骤(3),否则,执行步骤(4)。(3)当进程Pi获得资源后,可顺利执行,直至完成,并释放出分配给它的资源,故应执行: Work[j]∶=Work[i]+Allocation[i,j];

计算机操作系统银行家算法实验报告

计算机操作系统实验报告 一、实验名称:银行家算法 二、实验目的:银行家算法是避免死锁的一种重要方法,通过编写 一个简单的银行家算法程序,加深了解有关资源申请、避免死锁等概念,并体会和了解死锁和避免死锁的具体实施方法。 三、问题分析与设计: 1、算法思路:先对用户提出的请求进行合法性检查,即检查请 求是否大于需要的,是否大于可利用的。若请求合法,则进行预分配,对分配后的状态调用安全性算法进行检查。若安全,则分配;若不安全,则拒绝申请,恢复到原来的状态,拒绝申请。 2、银行家算法步骤:(1)如果Requesti<or =Need,则转向步 骤(2);否则,认为出错,因为它所需要的资源数已超过它所宣 布的最大值。 (2)如果Request<or=Available,则转向步骤(3);否则,表示 系统中尚无足够的资源,进程必须等待。 (3)系统试探把要求的资源分配给进程Pi,并修改下面数据结构 中的数值: Available=Available-Request[i]; Allocation=Allocation+Request;

Need=Need-Request; (4)系统执行安全性算法,检查此次资源分配后,系统是否处于安 全状态。 3、安全性算法步骤: (1)设置两个向量 ①工作向量Work。它表示系统可提供进程继续运行所需要的各类资源数目,执行安全算法开始时,Work=Allocation; ②布尔向量Finish。它表示系统是否有足够的资源分配给进程,使之运行完成,开始时先做Finish[i]=false,当有足够资源分配给进程时,令Finish[i]=true。 (2)从进程集合中找到一个能满足下述条件的进程: ①Finish[i]=false ②Need

《银行家算法的模拟实现》—实验报告

《银行家算法的模拟实现》 --实验报告 题目: 银行家算法的模拟实现 专业: 班级: 组员: 指导老师:

一、实验目的 死锁会引起计算机工作僵死,因此操作系统中必须防止。本实验的目的在于让学生独立的使用高级语言编写和调试一个系统动态分配资源的简单模拟程序,了解死锁产生的条件和原因,并采用银行家算法有效地防止死锁的发生,以加深对课堂上所讲授的知识的理解。 二、实验内容 模拟实现银行家算法实现死锁避免。要求:初始数据(如系统在T0时刻的资源分配情况、每一种资源的总数量)从文本文件读入,文件中给出最大需求矩阵Max、分配矩阵Allocation,在程序中求得需求矩阵Need和可利用资源向量Available。 三、实验分析过程 1、整个银行家算法的思路。 先对用户提出的请求进行合法性检查,再进行预分配,利用安全性检查算法进行安全性检查。 1)进程一开始向系统提出最大需求量. 2)进程每次提出新的需求(分期贷款)都统计是否超出它事先提出的最大需求量. 3)若正常,则判断该进程所需剩余剩余量(包括本次申请)是否超出系统所掌握的 剩余资源量,若不超出,则分配,否则等待 2、算法用到的主要数据结构和C语言说明。 (1)、可利用资源向量INT A V AILABLE[M] M为资源的类型。 (2)、最大需求矩阵INT MAX[N][M] N为进程的数量。 (3)、已分配矩阵INT ALLOCA TION[N][M] (4)、还需求矩阵INT NEED[N][N] (5)、申请各类资源数量int Request[x]; // (6)、工作向量int Work[x]; (7)、int Finish[y]; //表示系统是否有足够的资源分配给进程,0为否,非0为是 3、银行家算法(主程序) (1)、系统初始化。输入进程数量,资源种类,各进程已分配、还需求各资源数量,各资源可用数量等 (2)、输入用户的请求三元组(I,J,K),为进程I申请K个J类资源。 (3)、检查用户的请求是否小于还需求的数量,条件是K<=NEED[I,J]。如果条件不符则提示重新输入,即不允许索取大于需求量 (4)、检查用户的请求是否小于系统中的可利用资源数量,条件是K<=A V ALIABLE[I,J]。 如果条件不符则申请失败,阻塞该进程,重新进行进程动态资源申请(使用goto语句) (5)、进行资源的预分配,语句如下: A V ALIBLE[I][J]= A V ALIBLE[I][J]-K; ALLOCATION[I][J]= ALLOCATION[I][J]+K; NEED[I][J]=NEED[I][J]-K;

银行家算法报告

课程设计报告 题 目 银行家算法程序设计 课 程 名 称 操作系统课程设计 院 部 名 称 信息技术学院 专 业 计算机科学与技术 班 级 。。。。。。。。。。。。。。。。。。。。。。。 学 生 姓 名 。。。。 学 号 。。。。。。。。。。 课程设计地点 。。。。 课程设计学时 20 指 导 教 师 。。。 金陵科技学院教务处制

目录 目录………………………………………………………………………I 摘要…………………………………………………………………… II 引言 (1) 1、课程设计的目的和要求 (2) 2、课程设计的环境 (2) 3、课程设计的主要内容 (2) 3.1、项目名称 (2) 3.2、项目的主要内容 (2) 4、系统的组成及工作原理 (3) 4.1、系统主要过程的流程图 (3) 4.2、系统的设计方法 (4) 5、模块划分 (5) 5.1各模块间的调用关系 (6) 5.2安全性算法流程图 (7) 6、运行与测试结果 (8) 6.1欢迎界面 (8) 6.2初始化界面 (8) 6.3界面显示 (11) 6.4出错界面图 (12) 6.5程序运行结束 (12) 7、总结 (13) 8、课程设计的心得体会 (14) 9、参考文献 (15) 附录 (16) 摘要

随着时代的发展,对生活的追求越来越高,生活品质也越来越好。在学习方面的研究也越来越有成效。Dijkstra提出的银行家算法,是最具代表性的避免死锁的算法。加深了解有关资源申请、避免死锁等概念,并体会和了解死锁和避免死锁的具体实施方法。死锁的产生,必须同时满足四个条件,即一个资源每次只能由一个进程占用:第二个为等待条件,即一个进程请求资源不能满足时,它必须等待,但它仍继续保持已得到的所有其他资源:第四个为循环等待条件,系统中存在若干个循环等待的进程,即其中每一个进程分别等待它前一个进程所持有的资源。防止死锁的机构只能确保上述四个条件之一不出现,则系统就不会产生死锁。通过这个算法可用解决生活中的实际问题,如银行贷款等。 本文对如何用银行家算法来处理操作系统给进程分配资源做了详细的说明,包括需求分析、概要设计、详细设计、测试与分析、总结、源程序清单。首先做了需求分析,解释了什么是银行家算法,并指出它在资源分配中的重要作用。然后给出了银行家算法的概要设计,包括算法思路、步骤,以及要用到的主要数据结构、函数模块及其之间的调用关系等。在概要设计的基础上,又给出了详细的算法设计,实现概要设计中定义的所有函数,对每个函数写出核心算法,并画出了流程图。接着对编码进行了测试与分析。最后对整个设计过程进行了总结。 关键字:死锁安全序列银行家算法进程

操作系统课程设计(银行家算法的模拟实现)

操作系统课程设计 (银行家算法的模拟实现) 一、设计目的 1、进一步了解进程的并发执行。 2、加强对进程死锁的理解。 3、用银行家算法完成死锁检测。 二、设计内容 给出进程需求矩阵C、资源向量R以及一个进程的申请序列。使用进程启动拒绝和资源分配拒绝(银行家算法)模拟该进程组的执行情况。 三、设计要求 1、初始状态没有进程启动。 2、计算每次进程申请是否分配,如:计算出预分配后的状态情况(安全状态、不安全状态),如果是安全状态,输出安全序列。 3、每次进程申请被允许后,输出资源分配矩阵A和可用资源向量V。 4、每次申请情况应可单步查看,如:输入一个空格,继续下个申请。 四、算法原理 1、银行家算法中的数据结构

(1)、可利用资源向量Available,这是一个含有m个元素的数组,其中的每个元素代表一类可利用资源的数目,其初始值是系统中所配置的该类全部资源的数目,其数值随该类资源的分配和回收而动态改变。如果Available[j]=K,则表示系统中现有Rj类资源K个。 (2)、最大需求矩阵Max,这是一个n*m的矩阵,它定义了系统中n个进程中的每一个进程对m类资源的最大需求。如果 Max[i,j]=K,则表示进程i需要Rj类资源的最大数目为K。 (3)、分配矩阵Allocation。这也是一个n*m的矩阵,它定义了系统中每一类资源当前已分配给每一进程的资源数。如果Allocation[i,j]=K,则表示进程i当前已经分得Rj类资源的数目为K。 (4)、需求矩阵Need。这也是一个n*m的矩阵,用以表示每个进程尚需要的各类资源数。如果Need[i,j]=K,则表示进程i还需要 Rj类资源K个,方能完成其任务。上述三个矩阵间存在以下关系:Need[i,j]=Max[i,j]-Allocation[i,j] 2、银行家算法应用 模拟实现Dijkstra的银行家算法以避免死锁的出现,分两部分组成:一是银行家算法(扫描);二是安全性算法。 (1)银行家算法(扫描) 设Requesti是进程Pi的请求向量,如果Requesti[j]=K,表示进程Pi需要K个Ri类型的资源。当Pi发出资源请求后,系统按下述步骤进行检查: ①如果Requesti[j]<=Need[i,j],便转向步骤②;否则认为出错,

银行家算法课程设计报告

《操作系统原理》课程设计报告 1设计目的 (1)进一步了解进程的并发执行 (2)加强对进程死锁的理解 (3)用银行家算法完成死锁检测 2设计内容 给出进程需求矩阵C、资源向量R以及一个进程的申请序列。使用进程启动拒绝和资源分配拒绝(银行家算法)模拟该进程组的执行情况。 3设计要求 (1)初始状态没有进程启动; (2)计算每次进程申请是否分配,如:计算出预分配后的状态情况(安全状态,不安全状态),如果是安全状态,输出安全序列; (3)每次进程申请被允许后,输出资源分配矩阵A和可用资源向量V; (4)每次申请情况应可单步查看,如:输入一个空格,继续下个申请。 4算法原理 4.1银行家算法中的数据结构 (1)可利用资源向量Available 它是一个含有m个元素的数组,其中的每一个元素代表一类可利用的资源数目,其初始值是系统中所配置的该类全部可用资源数目。其数值随该类资源的分配和回收而动态地改变。如果Available[j]=K,则表示系统中现有Rj类资源K 个。 (2)最大需求短阵Max 这是—个n×m的矩阵,它定义了系统中n个进程中的每一个进程对m类资源的最大需求。如果Max(i,j)=K,表示进程i需要Rj类资源的最大数目为K。(3)分配短阵Allocation 这是一个n×m的矩阵,它定义了系统中每一类资源当前已分配给每个进程的资源数。如果Allocation(i,j)=K,表示进程i当前已分得Rj类资源的数目为K。 (4)需求矩阵Need

它是一个n×m的矩阵,用以表示每一个进程尚需的各类资源数,如果Need[i,j]=K,则表示进程i还需要Rj类资源k个,方能完成其任务。 上述三个矩阵间存在下述关系: Need[i,j]=Max[i,j]-Allocation[i,j] 4.2银行家算法 设Requesti是进程Pi的请求向量。如果Requesti[j]=k,表示进程只需要k个Rj类型的资源。当Pi发出资源请求后,系统按下述步骤进行检查: (1)如果 Requesti[j]<=Need[i,j],则转向步骤2;否则,认为出错,因为它所 3需要的资源数已超过它所宣布的最大值。 (2)如果Requesti[j]<=Available[j] ,则转向步骤3;否则,表示系统中尚无足够的资源,Pi必须等待。 (3)系统试探把要求的资源分配给进程Pi,并修改下面数据结构中的数值: Available[j]:=Available[j]-Requesti[j]; Allocation[i,j]:=Allocation[i,j]+Requesti[j]; Need[i,j]:=Need[i,j]-Requesti[j]; (4)系统执行安全性算法,检查此次资源分配后,系统是否处于安全状态。若安全,才正式将资源分配给进程Pi,以完成本次分配;否则,将试探分配作废,恢复原来的资源分配状态,让进程Pi等待。 4.3安全性算法 系统所执行的安全性算法可描述如下: (1)设置两个向量 ①、工作向量Work。它表示系统可提供给进程继续运行所需要的各类资源数目,它含有m个元素,执行安全算法开始时,Work = Available。 ②、Finish。它表示系统是否有足够的资源分配给进程,使之运行完成,开始时先做Finish[i]:=false ;当有足够资源分配给进程时,令 Finish[i]:=true。 (2)从进程集合中找到一个能满足下述条件的进程: ①、Finish[i]=false; ②、Need[i,j]<=Work[j];如找到,执行步骤(3);否则,执行步骤(4)。 (3)当进程Pi获得资源后,可顺利执行,直至完成,并释放出分配给它的资源,故应执行: Work[j]:=Work[i]+Allocation[i,j]; Finish[i]:=true; goto step 2; (4)如果所有进程的Finish[i]:=true,则表示系统处于安全状态;否则,系统处于不安全状态。

银行家算法

银行家算法 一、实验目的:银行家算法是避免死锁的一种重要方法,通过编写一个简单的银行家算法程序,加深了解有关资源申请、避免死锁等概念,并体会和了解死锁和避免死锁的具体实施方法。 二、问题分析与设计: 1、算法思路:先对用户提出的请求进行合法性检查,即检查请求是否大于需要的,是否大于可利用的。若请求合法,则进行预分配,对分配后的状态调用安全性算法进行检查。若安全,则分配;若不安全,则拒绝申请,恢复到原来的状态,拒绝申请。 2、银行家算法步骤: (1)如果Requesti<or =Need,则转向步骤(2);否则,认为出错,因为它所需要的资源数已超过它所宣布的最大值。 (2)如果Request<or=Available,则转向步骤(3);否则,表示系统中尚无足够的资源,进程必须等待。 (3)系统试探把要求的资源分配给进程Pi,并修改下面数据结构中的数值:Available=Available-Request[i]; Allocation=Allocation+Request; Need=Need-Request; (4)系统执行安全性算法,检查此次资源分配后,系统是否处于安全状态。 3、安全性算法步骤: (1)设置两个向量 ①工作向量Work。它表示系统可提供进程继续运行所需要的各类资源数目,执行安全算法开始时,Work=Allocation; ②布尔向量Finish。它表示系统是否有足够的资源分配给进程,使之运行完成,开始时先做Finish[i]=false,当有足够资源分配给进程时,令Finish[i]=tru e。 (2)从进程集合中找到一个能满足下述条件的进程: ①Finish[i]=false ②Need

银行家算法的实现

实验四银行家算法的实现 1、实验目的 通过编写和调试银行家算法的模拟程序以加深对避免死锁方案的理解。熟悉银行家算法的分配思想。 2、实验要求 设计一个银行家方案。并编写模拟程序实现之。已知系统总共的资源数、进程名、进程已分配的资源、进程运行完毕最大最资源的需求量,以书上例题为例,分析某一时刻系统的安全状态,如果安全,输出安全序列。 3、算法描述 银行家算法中数据结构如下: n :系统中的进程个数; m :系统中的资源类数。 1)Available(m):现有资源向量。 Available(j)=k表示k个未分配的j类资源 2)Max(n,m):资源最大申请量矩阵。 Max(i,j)=k表示第i个进程在运行过程中对第j类资源的最大申请量为k。 3)Allocation(n,m):资源分配矩阵。 Allocation(i,j)=k表示进程i已占有k个j类资源。 4)Need(n,m):进程以后还需要的资源矩阵。 Need(i,j)=k表示进程i以后还需要k个第j类资源。 显然有Need[i,j]=Max[i,j]-Allocation[i,j]。 5)Request(n,m):进程申请资源矩阵。 Request(i,j)=k表示进程i申请k个第j类资源。 银行家算法思想如下: 若进程i申请资源,申请资源向量为Request(i),则有如下资源分配过程: 1)如果Request(i)〉Need(i),则报错返回。 2)如果Request(i)〉Avaliable,则进程i进入等待资源状态,返回。 3)假设进程进程i的申请已获批准,于是修改系统状态: Avaliable=Avaliable-Request(i) Allocation(i)=Allocation(i)+Request(i) Need(i)=Need(i)-Request(i) 4)调用安全状态检查算法。 设Work(m)为临时工作向量。初始时Work=Available。令N={1,2,……n}。 寻求j∈N 使其满足:Need(j)<=Work,若不存在这样的j则转至3)。 Work=Work+Allocation(j)N=N-{j} 转至1)。 如果N=空集则返回(系统安全)。如果N≠空集则返回(系统不安全)。 5)若系统处于安全状态,则将进程i申请的资源分配给进程i,返回。 6)若系统处于不安全状态,则不将进程i申请的资源分配给进程i,恢复原来的资源分配状态,让进程i等待。 Avaliable = Avaliable + Request(i) Allocation(i)=Allocation(i)-Request(i) Need(i)=Need(i)+ Request(i) 4、源程序代码

相关文档