文档库 最新最全的文档下载
当前位置:文档库 › 乙醇饱和蒸汽压

乙醇饱和蒸汽压

乙醇饱和蒸汽压
乙醇饱和蒸汽压

乙醇在101.3KPa下的饱和蒸气压:温度蒸气压(KPa)

-31.5 , 0.13

-12.0 , 0.67

8.0 , 2.67

19.0 , 5.333

26.0 , 8.00

34.9 , 13.33

48.4 , 26.66

63.5 , 53.93

78.3 , 101.33

水在不同温度下的饱和蒸气压

饱和蒸气压(saturated vapor pressure) 在密闭条件中,在一定温度下,与液体或固体处于相平衡的蒸气所具有的压力称为饱和蒸气压。同一物质在不同温度下有不同的蒸气压,并随着温度的升高而增大。不同液体饱和蒸汽压不同,溶剂的饱和蒸汽压大于溶液的饱和蒸汽压;对于同一物质,固态的饱和蒸汽压小于液态的饱和蒸汽压。例如,在30℃时,水的饱和蒸气压为4132.982Pa,乙醇为10532.438Pa。而在100℃时,水的饱和蒸气压增大到101324.72Pa,乙醇为222647.74Pa。饱和蒸气压是液体的一项重要物理性质,如液体的沸点、液体混合物的相对挥发度等都与之有关。 饱和蒸气压曲线 水在不同温度下的饱和蒸气压 Saturated Water Vapor Pressures at Different Temperatures

编辑本段饱和蒸汽压公式 (1)Clausius-Claperon方程:dlnp/d(1/T)=-H(v)/(R*Z(v)) 式中p为蒸汽压;H(v)为蒸发潜热;Z(v)为饱和蒸汽压缩因子与饱和液体压缩因子之差。 该方程是一个十分重要的方程,大部分蒸汽压方程是从此式积分得出的。 (2)Clapeyron方程: 若上式中H(v)/(R*Z(v))为与温度无关的常数,积分式,并令积分常数为A,则得Clapeyron 方程:ln p=A-B/T 式中B=H(v)/(R*Z(v))。 (3)Antoine方程:ln p=A-B/(T+C) 式中,A,B,C为Antoine常数,可查数据表。Antoine方程是对Clausius-Clapeyron方

乙醇度数含量对照表

酒精生产技术问答 11. 常用酸、碱系数表 12. 糖度、温度更正表 13. 酵母细胞简易统计表(一) 14. 酵母细胞简易统计表 (二) 17.淀粉质原料化学组成参考表 18.酒精中常见杂质物理系数表 1. 3. 5. 7. 表 纯酒精物理系数表 酒精蒸汽的重度和比容 酒精浓度、温度校正表 不同浓度的酒精与纯酒精的折算系数 9.灭菌温度和时间关系表 2.食用酒精的国家标准 GB 10343 — 89 4.蒸馏酒及配制酒国家卫生标准 6.酒精比重与百分含量对照表 8.稀释酒精浓度至50% (容量)换算表 10.波美度、糖度、比重换算表 15.饱和水蒸汽压力与温度换算表 16.常用化学药品浓度表

项目类别优级普通外观透明液体 色度,号w10 气味无异臭n 乙醇,%(V/V) 硫酸试验,号w10 80 氧化试验,分钟30 15 醛(以乙醛计),g/100mL w 杂醇油(以异丁醇异戊醇),g/100mL w 甲醇,g/100mL w 酸(以乙酸计),g/100mL w 不挥发物,g/100mL w 重金属(以Pb), mg/L w 1

附表4 蒸馏酒及配制酒国家卫生标准GB n47—77 指标名称指标感官指标透明,无异臭 甲醇以粮谷为原料者g/100ml 以苕干及代用品为原料g/100ml 杂醇油g/100ml 氰化物以木薯为原料(以HCN计)< 5mg/1000ml 以代用品为原料(以HCN计)< 2mg/1000ml 铅mg/1000ml (以Pb 计)<1 食品添加剂按GBn50- 77 酒度(容量% 60°注:高于或低于60°酒度的,按酒度60°折算

饱和蒸气压计算方法

饱和蒸气压 编辑[bǎo hézhēng qìyā] 在密闭条件中,在一定温度下,与固体或液体处于相平衡的蒸气所具有的压力称为饱和蒸气 压。同一物质在不同温度下有不同的蒸气压,并随着温度的升高而增大。不同液体饱和蒸气 压不同,溶剂的饱和蒸气压大于溶液的饱和蒸气压;对于同一物质,固态的饱和蒸气压小于 液态的饱和蒸气压。 目录 1定义 2计算公式 3附录 ?计算参数 ?水在不同温度下的饱和蒸气压 1定义编辑 饱和蒸气压(saturated vapor pressure) 例如,在30℃时,水的饱和蒸气压为4132.982Pa,乙醇为10532.438Pa。而在100℃时,水的 饱和蒸气压增大到101324.72Pa,乙醇为222647.74Pa。饱和蒸气压是液体的一项重要物理性 质,液体的沸点、液体混合物的相对挥发度等都与之有关。 2计算公式编辑 (1)Clausius-Claperon方程:d lnp/d(1/T)=-H(v)/(R*Z(v)) 式中p为蒸气压;H(v)为蒸发潜热;Z(v)为饱和蒸汽压缩因子与饱和液体压缩因子之差。 该方程是一个十分重要的方程,大部分蒸汽压方程是从此式积分得出的。 (2)Clapeyron 方程: 若上式中H(v)/(R*Z(v))为与温度无关的常数,积分式,并令积分常数为A,则得Clapeyron方 程:ln p=A-B/T 式中B=H(v)/(R*Z(v))。 (3)Antoine方程:lg p=A-B/(T+C) 式中,A,B,C为Antoine常数,可查数据表。Antoine方程是对Clausius-Clapeyron方程最 简单的改进,在1.333~199.98kPa范围内误差小。 3附录编辑 计算参数 在表1中给出了采用Antoine公式计算不同物质在不同温度下蒸气压的常数A、B、C。其公 式如下 lgP=A-B/(t+C)(1) 式中:P—物质的蒸气压,毫米汞柱; t—温度,℃ 公式(1)适用于大多数化合物;而对于另外一些只需常数B与C值的物质,则可采用(2) 公式进行计算 lgP=-52.23B/T+C (2) 式中:P—物质的蒸气压,毫米汞柱; 表1 不同物质的蒸气压 名称分子式范围(℃) A B C 1,1,2-三氯乙烷C2H3Cl3 \ 6.85189 1262.570 205.170 1,1,2一三氯乙烯C2HCl3 \ 7.02808 1315.040 230.000 1,2一丁二烯C4H6 -60~+80 7.16190 1121.000 251.000

不同温度下空气中饱和水分含量及饱和蒸汽压..

不同温度下空气中饱和水分含量及饱和蒸汽压兰州真空设备有限责任公司

《真空设计手册》 粘滞流—分子流下管道流导 U n.f.20℃=) (3161)(4790)(27111.122 3P d P d P d l d +++? d :管道直径 m l :管道长度 m P :管道中平均压力 P =(P 1+P 2)/2

《真空设计手册》 符号:U——流导(L/s) a 和b——椭圆长半轴、短半轴l——管长(cm)A——面积(cm2) d——管道直径(cm)

材料物理性能

GB 5832.2-86 气体中微量水分的测定-露点法 1 适用范围 本标准适用于氧、氮、氢、氦、氖、氩、氪、氙、二氧化碳等气体中微量水分露点的测定。其测量范围0℃~-70℃。 2 原理 2.1术语说明 水分露点——在恒定的压力下,气体中的水蒸气达到饱和时的温度。 2.2方法原理 本法用露点仪进行测定。 使被测气体在恒定压力下,以一定的流量流经露点仪溅定室中的抛光金属镜面。该镜面的温度可人为地降低并可精确地测量。当气体中的水蒸气随着镜面温度的逐渐降低而达到饱和时,镜面上开始出现露,此时所测量到的镜面温度即为露点。(由露点和气体中水分含量的换算式或查表,即可得到气体中微量水分含量。) 3 仪器 3.1概述 仪器可以用不同的方法设计,主要的不同在于金属镜面的性质、用于冷却镜面的方法、如何控制镜面的温度、测定温度的方法以及检测出露的方法。镜子和它的附件通常安放在气体样品流经的测定室中。 3.2仪器的一般要求 提供下述装置、满足基本要求的任何露点仪都可以使用。 3.2.1当仪器温度高于气体中水分露点至少2℃时,可以控制气体进出仪器的流量。 3.2.2把流动的样品气冷到足够低的温度,使得水蒸气能凝结,冷却的速度可调。 3.2.3能观察露的出现和准确地测量露点。 3.2.4气路系统死体积小且气密性好,露点室内气压应接近大气压力。 3.2.5用标准样衡量仪器是否符合要求,按GB 4471-84《化工产品试验方法精密度室间试验重复性和再现性的确定》第 4.3条进行。 3.3目视和光电露点仪 简单的露点仪以手动调节冷量,控制镜面降温速度,用目视法观察露的生成。该法凭经验操作,人为误差较大。采用光电系统确定露生成的光电露点仪有相当高的准确度和精密度;用户按需要和可能进行选择。 3.4露的观察 目视露点仪用肉眼观察露的出现。光电露点仪是采用装在测定室的光源照射镜面,光源和光电池能以各种方式排列,当镜面未结露时,无散射发生,硅光电池上没有光照,镜面上结露后,入射光在镜面发生散射,一部分光照射到硅光电池上从而产生光生电压,给出出露信号。 3.5镜面制冷方法 用下述方法来降低和调节镜子温度,其中3.5.1和3.5.2所介绍的方法要求操作人员注意观察而不适用于自动装置。对自动装置,使用两种方法制冷:3.5.3和3.5.4所介绍的液化气体制冷及热电效应制冷。 3.5.1溶剂蒸发制冷

水在不同温度下的饱和蒸气压

水在不同温度下的饱和 蒸气压 Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT

饱和蒸(saturatedvaporpressure) 在密闭条件中,在一定下,与或处于相的蒸气所具有的称为饱和蒸气压。同一在不同温度下有不同的蒸气压,并随着温度的升高而增大。不同液体饱和蒸汽压不同,溶剂的饱和蒸汽压大于溶液的饱和蒸汽压;对于同一物质,固态的饱和蒸汽压小于液态的饱和蒸汽压。例如,在30℃时,水的饱和蒸气压为,为。而在100℃时,水的饱和蒸气压增大到,乙醇为。饱和蒸气压是液体的一项重要,如液体的、液体的相对挥发度等都与之有关。 饱和蒸气压 水在不同温度下的饱和蒸气压 SaturatedWaterVaporPressuresatDifferentTemperatures

饱和蒸汽压公式 (1)Clausius-Claperon方程:dlnp/d(1/T)=-H(v)/(R*Z(v)) 式中p为蒸汽压;H(v)为蒸发潜热;Z(v)为饱和蒸汽压缩因子与饱和液体压缩因子之差。 该方程是一个十分重要的方程,大部分蒸汽压方程是从此式积分得出的。 (2)Clapeyron方程: 若上式中H(v)/(R*Z(v))为与温度无关的常数,积分式,并令积分常数为A,则得Clapeyron方程:lnp=A-B/T 式中B=H(v)/(R*Z(v))。 (3)Antoine方程:lnp=A-B/(T+C) 式中,A,B,C为Antoine常数,可查数据表。Antoine方程是对Clausius-Clapeyron方程最简单的改进,在~范围内误差小。 附录 在表1中给出了采用Antoine公式计算不同物质在不同温度下蒸气压的常数A、B、C。其公式如下 lgP=A-B/(t+C)(1) 式中:P—物质的蒸气压,毫米汞柱; t—温度,℃ 公式(1)适用于大多数化合物;而对于另外一些只需常数B与C值的物质,则可采用(2)公式进行计算 lgP=T+C(2) 式中:P—物质的蒸气压,毫米汞柱; 表1不同物质的蒸气压 名称分子式范围(℃)ABC 银Ag1650~1950公式(2) 氯化银AgCl1255~1442公式(2)三氯化铝AlCl370~190公式(2)氧化铝Al2O31840~2200公式(2)

乙醇沸点与真空度的对应关系修订稿

乙醇沸点与真空度的对 应关系 WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-

乙醇沸点与真空度的对应关系 2010-12-10 09:44:28|?分类: |标签: |字号大中小订阅 一.关于溶媒乙醇的浓度 含水乙醇浓度有体积百分浓度、质量百分浓度及摩尔百分浓度等。在具体采用时,这三种浓度之间根据工艺计算的需要常常要相互换算,其换算方法用计算实例演示其后。而一般厂家所指的浓度通常为体积百分浓度: 1.体积百分浓度 体积百分浓度=溶液中纯乙醇所占体积/溶液的总体积 其中,溶液的总体积=溶液中纯乙醇所占体积+溶液中水的体积 2.质量百分浓度 质量百分浓度=溶液单位体积纯乙醇的质量/溶液的比重 其中,溶液单位体积乙醇的质量=体积百分浓度×纯乙醇的比重 而溶液的比重=溶液单位体积中纯乙醇的质量+溶液单位体积中水的质量 3.摩尔百分浓度 摩尔百分浓度=单位质量溶液中乙醇的摩尔数/单位质量溶液中乙醇摩尔数与水的摩尔数之和 其中,单位质量溶液中乙醇的摩尔数=溶液乙醇的质量分数/乙醇的分子量 而单位质量溶液中水的摩尔数=溶液水的质量分数/水的分子量 而溶液中水的质量分数=100%-溶液乙醇的质量分数 下面进一步用实例来说明换算的具体方法: 例:将72%体积浓度乙醇(水溶液)换算成质量百分浓度和摩尔百分浓度 解:由《溶剂手册》【5】查得100%乙醇比重为 乙醇分子式为C2H5OH,分子量为46 水的分子式为H2O,分子量为18 换算如下: 质量百分浓度=72%×(72%×+28%×1)=67% 摩尔百分浓度=67%/46/(67%/46+33%/18)=% 用上面的方法同样可以计算出80%、92%体积百分浓度乙醇所对应的重量百分浓度和摩尔百分浓度,兹将计算结果列表如下: 乙醇的三种浓度表示方法互相对应数值表

饱和蒸汽压

饱和蒸汽压

饱和蒸气压 编辑 [bǎo hézhēng qìyā] 饱和蒸汽压即饱和蒸气压。 在密闭条件中,在一定温度下,与固体或液体处于相平衡的蒸气所具有的压力称为饱和蒸气压。同一物质在不同温度下有不同的蒸气压,并随着温度的升高而增大。不同液体饱和蒸气压不同,溶剂的饱和蒸气压大于溶液的饱和蒸气压;对于同一物质,固态的饱和蒸气压小于液态的饱和蒸气压。 蒸汽压指的是在液体(或者固体)的表面存在着该物质的蒸汽,这些蒸汽对液体表面产生的压强就是该液体的蒸汽压。比如,水的表面就有水蒸汽压,当水的蒸汽压达到水面上的气体总压的时候,水就沸腾。我们通常看到水烧开,就是在100摄氏度时水的蒸汽压等于一个大气压。蒸汽压随温度变化而变化,温度越高,蒸汽压越大,当然还和液体种类有关。一定的温度下,与同种物质的液态(或固态)处于平衡状态的蒸汽所产生的压强叫饱和蒸汽压,它随温度升高而增加。如:放在杯子里的水,会因不断蒸发变得愈来愈少。如果把纯水放在一个密闭的容器里,并抽走上方的空气。当水不断蒸发时,水面上方汽相的压力,即水的蒸汽所具有的压力就不断增加。但是,当温度一定时,汽相压力最终将稳定在一个固定的数值上,这时的汽相压力称为水在该温度下的饱和蒸汽压力。当汽相压力的数值达到饱和蒸汽压力的数值时,液相的水分子仍然不断地气化,汽相的水分子也不断地冷凝成液体,只是由于水的气化速度等于水蒸汽的冷凝速度,液体量才没有减少,气体量也没有增加,液体和气体达到平衡状态。所以,液态纯物质蒸汽所具有的压力为其饱和蒸汽压力时,汽液两相即达到了相平衡。饱和蒸汽压是物质的一个重要性质,它的大小取决于物质的本性和温度。饱和蒸汽压越大,表示该物质越容易挥发。 1定义编辑 饱和蒸气压(saturated vapor pressure) 例如,在30℃时,水的饱和蒸气压为4132.982Pa,乙醇为10532.438Pa。而在100℃时,水的饱和蒸气压增大到101324.72Pa,乙醇为222647.74Pa。饱和蒸气压是液体的一项重要物理性质,液体的沸点、液体混合物的相对挥发度等都与之有关。 2计算公式编辑 (1)Clausius-Claperon方程:d lnp/d(1/T)=-H(v)/(R*Z(v)) 式中p为蒸气压;H(v)为蒸发潜热;Z(v)为饱和蒸汽压缩因子与饱和液体压缩因子之差。 该方程是一个十分重要的方程,大部分蒸汽压方程是从此式积分得出的。 (2)Clapeyron 方程: 若上式中H(v)/(R*Z(v))为与温度无关的常数,积分式,并令积分常数为A,则得Clapeyron方程:ln p=A-B/T 式中B=H(v)/(R*Z(v))。 (3)Antoine方程:lg p=A-B/(T+C) 式中,A,B,C为Antoine常数,可查数据表。Antoine方程是对Clausius-Clapeyron方程最简单的改进,在1.333~199.98kPa范围内误差小。 3附录编辑 计算参数 在表1中给出了采用Antoine公式计算不同物质在不同温度下蒸气压的常数A、B、C。其公式如下 lgP=A-B/(t+C)(1) 式中:P—物质的蒸气压,毫米汞柱; t—温度,℃ 公式(1)适用于大多数化合物;而对于另外一些只需常数B与C值的物质,则可采用(2)公式进行计算 lgP=-52.23B/T+C (2)

静态法测定液体的饱和蒸气压

静态法测定液体的饱和蒸气压 一、实验目的 1. 掌握用静态法测定液体在不同温度下蒸气压的方法,并通过实验求出在所测温度范围内的平均摩尔气化热。 2.掌握真空泵和恒温槽的使用方法。 3.掌握福廷式大气压计的使用方法。 二、实验原理 在一定温度下,与液体处于平衡状态时蒸气的压力称为该温度下液体的饱和蒸气压。密闭于真空容器中的液体,在某一温度下,有动能较大的分子从液相跑到气相;也有动能较小的分子由气相碰回液相。当二者的速率相等时,就达到了动态平衡,气相中的蒸气密度不再改变,因而有一定的饱和蒸气压。液体的蒸气压是随温度而改变的,当温度升高时,有更多的高动能的分子能够由液面逸出,因而蒸气压增大;反之,温度降低时,则蒸气压减小。当蒸气压外界压力相等时,液体便沸腾。我们把外压为 P液体的饱和蒸气压与温度的关系可用克劳修斯一克拉贝龙方程式 dlnp/dt=Δvap H m/RT2 式中: p 为液体在温度T时的饱和蒸气压:T为绝对温度;ΔvapHm 为液体摩尔气化热(J.mol-1);R为气体常数即8.314 J.m01-1.K-l。在温度较小的变化范围内,ΔvapHm可视为常数,积分上式可得: lnp=-Δvap H m/RT+B’ 由此可知,若将lnp 对1/T作图应得一直线,斜率为负值。直线斜率 m=-Δvap H m/R ΔvapHm=-Rm 本实验是在不同温度下测定乙醇的蒸气压,通常用等压计进行测量。U型管等压计如图所示,I 球内储存液体,Ⅱ、Ⅲ管之间由U型管相连通。当II、Ⅲ间U型管中的液体在同一水平时,表示 I、III管间空间的液体蒸气压恰与管II上方的体系压力相等;记下此时的温度和压力值,即为该温度下的蒸气压。 三、仪器设备 精密数字压力计:于台; 玻璃U型等压计:一支; 不锈钢稳压包:一只; 真空泵:一台; 玻璃水浴:一套。 四、仪器的安装及调试 1.如图连接实验装置。 2.精密数字压力计的使用: (1)预热:按下开关,通电预热半小时后方可进行实验,否则将影响实验精度。 (2)调零:连通系统和大气,调节零点读数为0.00,重复二--三次。则压力计显示读数为系统压力和大气压的差值。 (3) 单位选择:按下“单位”按钮,选择压力计显示数值单位为“kPa”。 3.不锈钢稳压包的使用 (1)如图,进气阀连接真空泵和压力罐,开启即可改变压力罐内压力。平衡阀2(系统调压

水在不同温度下的饱和蒸气压

饱和蒸气压(s a t u r a t e d v a p o r p r e s s u r e) 在密闭条件中,在一定温度下,与液体或固体处于相平衡的蒸气所具有的压力称为饱和蒸气压。同一物质在不同温度下有不同的蒸气压,并随着温度的升高而增大。不同液体饱和蒸汽压不同,溶剂的饱和蒸汽压大于溶液的饱和蒸汽压;对于同一物质,固态的饱和蒸汽压小于液态的饱和蒸汽压。例如,在30℃时,水的饱和蒸气压为4132.982Pa,乙醇为10532.438Pa。而在100℃时,水的饱和蒸气压增大到101324.72Pa,乙醇为222647.74Pa。饱和蒸气压是液体的一项重要物理性质,如液体的沸点、液体混合物的相对挥发度等都与之有关。 饱和蒸气压曲线 水在不同温度下的饱和蒸气压 SaturatedWaterVaporPressuresatDifferentTemperatures

编辑本段饱和蒸汽压公式 (1)Clausius-Claperon方程:dlnp/d(1/T)=-H(v)/(R*Z(v)) 式中p为蒸汽压;H(v)为蒸发潜热;Z(v)为饱和蒸汽压缩因子与饱和液体压缩因子之差。 该方程是一个十分重要的方程,大部分蒸汽压方程是从此式积分得出的。 (2)Clapeyron方程: 若上式中H(v)/(R*Z(v))为与温度无关的常数,积分式,并令积分常数为A,则得Clapeyron 方程:lnp=A-B/T 式中B=H(v)/(R*Z(v))。 (3)Antoine方程:lnp=A-B/(T+C)

式中,A,B,C为Antoine常数,可查数据表。Antoine方程是对Clausius-Clapeyron方程最简单的改进,在1.333~199.98kPa范围内误差小。 编辑本段附录 在表1中给出了采用Antoine公式计算不同物质在不同温度下蒸气压的常数A、B、C。其公式如下 lgP=A-B/(t+C)(1) 式中:P—物质的蒸气压,毫米汞柱; t—温度,℃ 公式(1)适用于大多数化合物;而对于另外一些只需常数B与C值的物质,则可采用(2)公式进行计算 lgP=-52.23B/T+C(2) 式中:P—物质的蒸气压,毫米汞柱; 表1不同物质的蒸气压 名称分子式范围(℃)ABC 银Ag1650~1950公式(2)2508.76 氯化银AgCl1255~1442公式(2)185.58.179 三氯化铝AlCl370~190公式(2)11516.24 氧化铝Al2O31840~2200公式(2)54014.22 砷As440~815公式(2)13310.800 砷As800~860公式(2)47.16.692 三氧化二砷As2O3100~310公式(2)111.3512.127 三氧化二砷As2O3315~490公式(2)52.126.513 氩Ar-207.62~-189.19公式(2)7.81457.5741 金Au2315~2500公式(2)3859.853 三氯化硼BCl3……6.18811756.89214.0 钡Ba930~1130公式(2)35015.765 铋Bi1210~1420公式(2)2008.876 溴Br2……6.83298113.0228.0 碳C3880~4430公式(2)5409.596 二氧化碳CO2……9.641771284.07268.432 二硫化碳CS2-10~+1606.851451122.50236.46 一氧化碳CO-210~-1606.24020230.274260.0 四氯化碳CCl4……6.933901242.43230.0 钙Ca500~700公式(2)1959.697 钙960~1100公式(2)37016.240 镉Cd150~320.9公式(2)1098.564 镉500~840公式(2)99.97.897 氯Cl2……6.86773821.107240 二氧化氯ClO2-59~+11公式(2)27.267.893 钴Co2374公式(2)3097.571 铯Cs200~230公式(2)73.46.949 铜Cu2100~2310公式(2)46812.344 氯化亚铜Cu2Cl2878~1369公式(2)80.705.454 铁Fe2220~2450公式(2)3097.482

乙醇和水的饱和蒸汽压

乙醇在101.3KPa下的饱和蒸气压:温度蒸气压(KPa) -31.5 , 0.13 -12.0 , 0.67 8.0 , 2.67 19.0 , 5.333 26.0 , 8.00 34.9 , 13.33 48.4 , 26.66 63.5 , 53.93 78.3 , 101.33 水的饱和蒸汽压表 温度( ℃ ) 绝对压强蒸汽的 密度 (kg/m 3 ) 焓汽化热 (kgf/cm 2 ) (kPa) 液体蒸汽 (kcal/kg) (kJ/kg) (kcal/kg) (kJ/kg) (kcal/kg) (kJ/kg ) 0 5 10 15 20 25 30 0.0062 0.0089 0.0125 0.0174 0.0238 0.0323 0.0433 0.6082 0.8731 1.2262 1.7068 2.3346 3.1684 4.2474 0.00484 0.00680 0.00940 0.01283 0.01719 0.02304 0.03036 5.0 10.0 15.0 20.0 25.0 30.0 20.94 41.87 62.80 83.74 104.67 125.60 595 597.3 599.6 602.0 604.3 606.6 608.9 2491.1 2500.8 2510.4 2520.5 2530.1 2539.7 2549.3 595 592.3 598.6 587.0 584.3 581.6 578.9 2491.1 2479.86 2468.53 2457.7 2446.3 2435.0 2423.7

35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 0.0573 0.0752 0.0977 0.1258 0.1605 0.2031 0.2550 0.3177 0.393 0.483 0.590 0.715 0.862 1.033 1.232 1.461 1.724 2.025 2.367 2.755 3.192 3.685 4.238 5.6207 7.3766 9.5837 12.340 15.743 19.923 25.014 31.164 38.551 47.379 57.875 70.136 84.556 101.33 120.85 143.31 169.11 198.64 232.19 270.25 313.11 361.47 415.72 0.03960 0.05114 0.06543 0.0830 0.1043 0.1301 0.1611 0.1979 0.2416 0.2929 0.3531 0.4229 0.5039 0.5970 0.7036 0.8254 0.9635 1.1199 1.296 1.494 1.715 1.962 2.238 35.0 40.0 45.0 50.0 55.0 60.0 65.0 70.0 75.0 80.0 85.0 90.0 95.0 100.0 105.1 110.1 115.2 120.3 125.4 130.5 135.6 140.7 145.9 146.54 167.47 188.41 209.34 230.27 251.21 272.14. 293.08 314.01 334.94 355.88 376.81 397.75 418.68 440.03 460.97 482.32 503.67 525.02 546.38 567.73 589.08 610.85 611.2 613.5 615.7 618.0 620.2 622.5 624.7 626.8 629.0 631.1 633.2 635.3 637.4 639.4 641.3 643.3 645.2 647.0 648.8 650.6 652.3 653.9 655.5 2559.0 2568.6 2577.8 2587.4 2596.7 2606.3 2615.5 2624.3 2633.5 2642.3 2651.1 2659.9 2668.7 2677.0 2685.0 2693.4 2701.3 2708.9 2716.4 2723.9 2731.0 2737.7 2744.4 576.2 573.5 570.7 568.0 565.2 562.5 559.7 556.8 554.0 551.2 548.2 545.3 542.4 539.4 536.3 533.1 530.0 526.7 523.5 520.1 516.7 513.2 509.7 2412.4 2401.1 2389.4 2378.1 2366.4 2355.1 2343.4 2331.2 2319.5 2307.8 2295.2 2283.1 2270.9 2258.4 2245.4 2232.0 2219.0 2205.2 2291.8 2177.6 2163.3 2148.7 2134.0

饱和蒸汽压的测定

实验名称液体饱和蒸汽压的测定 一、实验目的 1、掌握用等位计测定乙醇在不同温度下的饱和蒸气压。 2、学会用图解法求乙醇在实验温度范围内的平均摩尔蒸发焓与正常沸点。 二、实验原理 一定温度下,液体纯物质与其气相达平衡时的压力,称为该温度下纯物质的饱和蒸气压,简称蒸气压。 纯物质的蒸气压随温度的变化可用克拉贝龙方程表示: dp/dT=△vap H m/T△V m ……………………………(2.2.1) 设蒸气为理想气体,在试验温度范围内摩尔蒸发焓△vap H m可视为常数,并略去液体的体积,将(2.2.1)积分得克劳修斯—克拉贝龙方程: ln(P/Pa)= -△vap H m/RT+C…………………………(2.2.2) 由(2.2.2) 式可见,实验测定不同温度T下的饱和蒸气压p,以ln(P/kPa)对1/(T/K)作图,得一直线,求得直线的斜率m和截距C,则乙醇的平均摩尔蒸发焓为: △vap H m= -mR………………………………(2.2.3) 习惯上把液体的蒸气压等于101.325kPa时的沸腾温度定义为液体的正常沸点,由(2.2.2)式还可以求算乙醇的正常沸点。 本实验采用静态法直接测定乙醇在一定温度下的蒸气压。 三、实验仪器、试剂 试剂:无水乙醇(A.R) 仪器:DPCY-2C型饱和蒸气压教学实验仪1套、HK-1D型恒温水槽1套、WYB-1型真空稳压包1个、稳压瓶1个、安全瓶1个 装置图:如右图 四、实验步骤 1、读取室温及大气压 2、装样:将等位计内装入适量待测液 体乙醇,如上图所示 3、教学仪器置零:打开教学仪器电源, 预热5分钟,选择开关打到kPa, 按下面板上的置零键,显示值为 00.00数值(大气压被视为零值看

乙醇的饱和蒸汽压

Antoine Vapor Pressure EQN: lnP=A-B/(T+C) SI单位: Kp, K CH 3CH 2 OH A B C 16.67583 3674.491 -46.702 Temp/℃Temp/K lnP P/Kp V EtOH /V Loop 0 273.0 0.44 1.55 0.0151 0.1 273.1 0.45 1.56 0.0152 0.2 273.2 0.45 1.57 0.0153 0.3 273.3 0.46 1.58 0.0154 0.4 273.4 0.47 1.60 0.0155 0.5 273.5 0.47 1.61 0.0156 0.6 273.6 0.48 1.62 0.0157 0.7 273.7 0.49 1.63 0.0158 0.8 273.8 0.50 1.64 0.0159 0.9 273.9 0.50 1.65 0.0161 1.0 274.0 0.51 1.67 0.0162 1.1 274.1 0.52 1.68 0.0163 1.2 274.2 0.52 1.69 0.0164 1.3 274.3 0.53 1.70 0.0165 1.4 274.4 0.54 1.71 0.0166 1.5 274.5 0.55 1.73 0.0167 1.6 274.6 0.55 1.74 0.0169 1.7 274.7 0.56 1.75 0.0170 1.8 274.8 0.57 1.76 0.0171 1.9 274.9 0.57 1.77 0.0172 2.0 275.0 0.58 1.79 0.0173 2.1 275.1 0.59 1.80 0.0175 2.2 275.2 0.59 1.81 0.0176 2.3 275.3 0.60 1.83 0.0177 2.4 275.4 0.61 1.84 0.0178 2.5 275.5 0.62 1.85 0.0179 2.6 275.6 0.62 1.86 0.0181 2.7 275.7 0.63 1.88 0.0182 2.8 275.8 0.64 1.89 0.0183 2.9 275.9 0.64 1.90 0.0184 3.0 276.0 0.65 1.92 0.0186 3.1 276.1 0.66 1.93 0.0187 3.2 276.2 0.66 1.94 0.0188 3.3 276.3 0.67 1.96 0.0190 3.4 276.4 0.68 1.97 0.0191 3.5 276.5 0.69 1.99 0.0192 3.6 276.6 0.69 2.00 0.0193 3.7 276.7 0.70 2.01 0.0195

液体饱和蒸气压的测定

物理化学实验教案(王素娜) 1 实验一 液体饱和蒸气压的测定 【目的要求】 1. 掌握静态法测定液体饱和蒸气压的原理及操作方法。学会由图解法求其平均摩尔气化热和正常沸点。 2. 了解纯液体的饱和蒸气压与温度的关系、克劳修斯-克拉贝龙(Clausius- Clapeyron)方程式的意义。 3 . 了解真空泵、玻璃恒温水浴,缓冲储气罐及精密数字压力计的使用及注意事项。 【实验原理】 通常温度下(距离临界温度较远时),纯液体与其蒸气达平衡时的蒸气压称为该温度下液体的饱和蒸气压,简称为蒸气压。蒸发1mol 液体所吸收的热量称为该温度下液体的摩尔气化热。液体的蒸气压随温度而变化,温度升高时,蒸气压增大;温度降低时,蒸气压降低,这主要与分子的动能有关。当蒸气压等于外界压力时,液体便沸腾,此时的温度称为沸点,外压不同时,液体沸点将相应改变,当外压为1atm (101.325kPa )时,液体的沸点称为该液体的正常沸点。 液体的饱和蒸气压与温度的关系用克劳修斯-克拉贝龙方程式表示: 2 m vap d ln d RT H T p ?= (1) 式中,R 为摩尔气体常数;T 为热力学温度;Δvap H m 为在温度T 时纯液体的摩尔气化热。 假定Δvap H m 与温度无关,或因温度范围较小,Δvap H m 可以近似作为常数,积分上式,得: C T R H p +??-=1ln m vap (2) 其中C 为积分常数。由此式可以看出,以ln p 对1/T 作图,应为一直线,直线的斜率为 R H m vap ?- , 由斜率可求算液体的Δvap H m 。 测定通常有静态法和动态法,静态法:把待测物质放在一个封闭体系中,在不同的温度下,蒸气压与外压相等时直接测定外压;或在不同外压下测定液体的沸点。动态法:常用的

乙醇的饱和蒸汽压

实验数据记录与处理】 实验相关物理量数据的处理 温度( o C ) 压力示数均值 (kP a) 温度 (K) 液体饱和蒸汽压 (kP a)ln P1/T 20.3 -95.25 293.45 6.95 8.84650 0.00341 25.4 -93.71 298.55 8.50 9.04723 0.00335 30.5 -91.42 303.65 10.78 9.28545 0.00329 35.6 -87.80 308.75 14.40 9.57498 0.00324 40.5 -83.84 313.65 18.36 9.81793 0.00319 ①作ln p-1/T的函数关系图,求外压为102.02Kpa条件下乙醇的沸点 ∵标准大气压为102020Pa,则ln p=11.5329 代入y = -4487.33435x + 24.10257 得:11.5347=-4487.33435x + 24.10257 解得:1/T=x =2.8001×10-3 K-1 ∴乙醇的正常沸点为:T=357.130K. (t=83.980℃) ②根据l n p-1/T直线的斜率,求乙醇在实验温度区内的平均摩尔汽化热Δvap H m Δvap H m=-Rm=-8.314×(-37307.69)=37.30769 kJ/mol ③数据误差分析: a.通过查阅附录,得到乙醇的平均摩尔汽化热参考值vap H m = 42.59kJ g mol-1 实验所得乙醇的平 均摩尔汽化热相对误差 = 37.30769 - 42.590= 0.124027 42.59 b.通过查阅附录,得到乙醇在1atm 下的沸点t = 78.30o C 实验所得乙醇的T 的相对误差:1= (83.980 - 78.30)= 0.0725

乙醇饱和蒸汽压的测定

液体饱和蒸气压的测定 1. 实验目的(要求) (1) 掌握等压管测定液体饱和蒸气压的原理和方法。 (2) 了解蒸气压的概念和影响因素。 (3) 学会应用克-克方程,求得乙醇的摩尔气化热。 (4) 学会温度计露出校正方法。 2. 实验原理(概要) 在一定温度下,纯液体与其蒸气达到相平衡状态时的压力,称为该液体在此温度下的饱和蒸气压。液体的饱和蒸气压与液体的本性及温度等因素有关,纯液体饱和蒸气压随温度上升而增加。根据热力学理论可以导出饱和蒸气压与温度的关系式,此式称克拉贝龙-克劳修斯方程,简称克-克方程。其微分式如下: 2 m vap d ln d RT H T p ?= (S20-1) 式中p 为纯液体饱和蒸气压,T 为绝对温度,△vap H m 为液体的摩尔气化热,R 为通用气体常数。 当上述各物理量用SI 制单位时,R = 8.314 J ?mol - 1?K - 1。 在一定外压下,纯液体与其蒸气达到气液平衡时的温度称为沸点。因此,克-克方程也表示纯液体的外压p 与沸点T 的关系。在101325 Pa 的外压下,纯液体的沸点称为正常沸点。 纯液体的气化热随温度上升而降低。通常温度下,气化热随温度变化较小,在临界温度附近,气化热急剧下降。在临界温度时,纯物质气化热为零。 当远离临界温度,而且温度变化较小时,气化热△vap H m 可视为常数。对式(S20-1)不定积分,得: C T R H p +??-=1ln m vap (S20-2) 式中,C 为不定积分常数。由此式可知,ln p 与1/T 成直线关系。以1n p 与1/T 的实验值作图,应得直线,若直线斜率为m ,则: △vap H m = - mR (S20-3)

液体饱和蒸汽压的测定-实验报告

液体饱和蒸汽压的测定 一、实验目的 1.明确液体饱和蒸汽压的意义,熟悉纯液体的饱和蒸汽压与温度的关系以及克劳休斯-克拉贝农方程。 2.了解静态法测定液体饱和蒸汽压的原理。 3.学习用图解法求解被测液体在试验温度范围内的平均摩尔蒸发焓与正常沸点。 二、实验原理 1.热力学原理 通常温度下(距离临界温度较远时),纯液体与其蒸气达平衡时的蒸气压称为该温度下液体的饱和蒸气压,简称为蒸气压。蒸发1mol 液体所吸收的热量称为该温度下液体的摩尔气化热。 液体的蒸气压随温度而变化,温度升高时,蒸气压增大;温度降低时,蒸气压降低,这主要与分子的动能有关。当蒸气压等于外界压力时,液体便沸腾,此时的温度称为沸点,外压不同时,液体沸点将相应改变。当外压为101.325kPa 时,液体的沸点称为该液体的正常沸点。 液体的饱和蒸气压与温度的关系用克劳修斯-克拉贝龙方程式表示: 2 m vap d ln d RT H T p ?= (1) 式中,R 为摩尔气体常数;T 为热力学温度;Δvap H m 为在温度T 时纯液体的摩尔气化热。 假定Δvap H m 与温度无关,或因温度范围较小,Δvap H m 可以近似作为常数,积分上式,得: C T R H p +??-=1ln m vap (2) 其中C 为积分常数。由此式可以看出,以ln p 对1/T 作图,应为一直线,直线的斜率为 R H m vap ?-,由斜 率可求算液体的Δvap H m 。 2.实验方法 静态法测定液体饱和蒸气压,是指在某一温度下,直接测量饱和蒸气压,此法一般适用于蒸气压比较大的液体。静态法测量不同温度下纯液体饱和蒸气压,有升温法和降温法二种。本次实验采用升温法测定不同温度下纯液体的饱和蒸气压,所用仪器是纯液体饱和蒸气压测定装置。 平衡管由A 球和U 型管B 、C 组成。平衡管上接一冷凝管,以橡皮管与压力计相连。A 内装待测液体,当A 球的液面上纯粹是待测液体的蒸气,而B 管与C 管的液面处于同一水平时,则表示B 管液面上的(即A 球液面上的蒸气压)与加在C 管液面上的外压相等。此时,体系气液两相平衡的温度称为液体在此外压下的沸点。可见,利用平衡管可以获得并保持系统中为纯试样时的饱和蒸汽,U 形管中的液体起液封和平衡指示作用。 精密数字压力计

饱和蒸汽压计算方法

There is a large number of saturation vapor pressure equations used to calculate the pressure of water vapor over a surface of liquid water or ice. This is a brief overview of the most important equations used. Several useful reviews of the existing vapor pressure curves are listed in the references. Please note the updated discussion of the WMO formulation. 1) Vapor Pressure over liquid water below 0°C ?Goff Gratch equation (Smithsonian Tables, 1984, after Goff and Gratch, 1946): Log10p w = -7.90298 (373.16/T-1) [1] + 5.02808 Log10(373.16/T) - 1.3816 10-7 (1011.344 (1-T/373.16)-1) + 8.1328 10-3 (10-3.49149 (373.16/T-1) -1) + Log10(1013.246) with T in [K] and p w in [hPa] ?WMO (Goff, 1957): Log10p w = 10.79574 (1-273.16/T)[2] - 5.02800 Log10(T/273.16) + 1.50475 10-4 (1 - 10(-8.2969*(T/273.16-1))) + 0.42873 10-3 (10(+4.76955*(1-273.16/T)) - 1) + 0.78614 with T in [K] and p w in [hPa] (Note: WMO based its recommendation on a paper by Goff (1957), which is shown here. The recommendation published by WMO (1988) has several typographical errors and cannot be used. A corrigendum (WMO, 2000) shows the term +0.42873 10-3 (10(-4.76955*(1-273.16/T)) - 1) in the fourth line compared to the original publication by Goff (1957). Note the different sign of the exponent. The earlier 1984 edition shows the correct formula.) ?Hyland and Wexler (Hyland and Wexler, 1983): Log p w = -0.58002206 104 / T [3] + 0.13914993 101

相关文档