文档库 最新最全的文档下载
当前位置:文档库 › 交流永磁同步电机结构与工作基础学习知识原理

交流永磁同步电机结构与工作基础学习知识原理

交流永磁同步电机结构与工作基础学习知识原理
交流永磁同步电机结构与工作基础学习知识原理

交流永磁同步电机结构与工作原理

2.1.1交流永磁同步电机的结构

永磁同步电机的种类繁多,按照定子绕组感应电动势的波形的不同,可以分为正

弦波永磁同步电机(PMSM)和梯形波永磁同步电机(BLDC)【261。正弦波永磁同步电机

定子由三相绕组以及铁芯构成,电枢绕组常以Y型连接,采用短距分布绕组;气隙场

设计为正弦波,以产生正弦波反电动势;转子采用永磁体代替电励磁,根据永磁体在

转子上的安装位置不同,正弦波永磁同步电机又分为三类:凸装式、嵌入式和内埋式。

本文中采用的电机为凸装式正弦波永磁同步电机,结构如图2一l所示,定子绕组一

般制成多相,转子由永久磁钢按一定对数组成,本系统的电机转子磁极对数为两对,

则电机转速为n=60f/p,f为电流频率,P为极对数。

图2一l凸装式正弦波永磁同步电机结构图

目前,三相同步电机现在主要有两种控制方式,一种是他控式(又称为频率开环

控制);另一种是自控式(又称为频率闭环控制)[27】。他控式方式主要是通过独立控

N#l-部电源频率的方式来调节转子的转速不需要知道转子的位置信息,经常采用恒压

频比的开环控制方案。自控式永磁同步电机也是通过改变外部电源的频率来调节转子

的转速,与他控式不同,外部电源频率的改变是和转子的位置信息是有关联的,转子

转速越高,定子通电频率就越高,转子的转速是通过改变定子绕组外加电压(或电流)

频率的大小来调节的。由于自控式同步电机不存在他控式同步电机的失步和振荡问

题,并且永磁同步电机永磁体做转子也不存在电刷和换向器,降低了转子的体积和质

量,提高了系统的响应速度和调速范围,且具有直流电动机的性能,所以本文采用了

自控式交流永磁同步电机。当把三相对称电源加到三相对称绕组上后,自然会产生同

步速的旋转的定子磁场,同步电机转子的转速是与外部电源频率保持严格的同步,且

与负载大小没关系。

2.1.2交流永磁同步电机的工作原理

本系统采用的是自控式交直交电压型电机控制方式,由整流桥、三相逆变电路、

控制电路、三相交流永磁电机和位置传感器构成,其结构原理图如图2—2所示。在

图2—2中,50HZ的市电经整流后,由三相逆变器给电机的三相绕组供电,三相对称

电流合成的旋转磁场与转子永久磁钢所产生的磁场相互作用产生转矩,拖动转子同步

旋转,通过位置传感器实时读取转子磁钢位置,变换成电信号控制逆变器功率器件开

关,调节电流频率和相位,使定子和转子磁势保持稳定的位置关系,才能产生恒定的

转矩,定子绕组中的电流大小是由负载决定的。定子绕组中三相电流的频率和相位随

转子位置的变化而变化的,使三相电流合成一个与转子同步的旋转磁场,通过电力电

子器件构成的逆变电路的开关变化实现三相电流的换相,代替了机械换向器。

图2—2自控式电机结构原理图

正弦波永磁同步电机属于自控式电机,只是电动机的定子反电势和电流波形均为

正弦波,并且保持同相,其可以获得与直流电机相同的转矩特性,而且能实现恒转矩

的调速特性。本位置伺服系统是通过正弦波永磁同步电机来实现位置伺服功能的。

2.1.3旋转式编码器

由自控式正弦波PMSM构成的伺服系统,需要实时检测电机转子的位置及转速,

本系统是通过旋转编码器来获取相关的信息。根据编码器的工作原理不同可分为磁性

编码器和光学编码器,而根据编码器的输出信号的不同又分为增量式(incremental)

和绝对式(absolute)编码器两种。绝对式编码器可以直接测得转子的绝对位置,每次为

检测到转子的位置提供一个独一无二的编码数字值。绝对式型编码器(旋转型)码盘

上有许多道光通道刻线,每道刻线依次以2线、4线、8线、16线??编排,在编码

器的每一个位置,通过读取每道刻线的通、暗,获得一组从2的零次方到2的n-1次

方的唯一的2进制编码,这就称为n位绝对编码器。这样的编码器是由光电码盘的机

械位置决定的,它不受停电、干扰的影响。

增量式编码器每次只能返回转子的相对位置。增量型只能测角位移(间接为角速度)

增量,以前一个时刻为基点。光电式增量式编码器(旋转型)由一个中心有轴的光电

码盘,其上有环形通、暗的刻线,有光电发射和接收器件读取,获得四组正弦波信号组

合成A、B、C、D,每个正弦波相差90度相位差(相对于一个周波为360度),将C、

D信号反向,叠加在A、B两相上,可增强稳定信号;另每转输出一个Z相脉冲以代

表零位参考位。由于A、B两相脉冲信号相差90度,可通过比较A相在前还是B相

在前,以判别编码器的正转与反转,通过零位脉冲,可获得编码器的零位参考位。编

码器以每旋转360度提供多少的通或暗刻线称为分辨率,也称解析分度、或直接称多

少线,一般在每转分度5~10000线。

光学增量式编码器和磁性增量式编码器,输出信号信息基本上一样的。光学编码

器的主要优点是对潮湿气体和污染敏感,但可靠性差,而磁性编码器不易受尘埃和结

露影响,同时其结构简单紧凑,可高速运转,响应速度快(达500~700kHz),体积比

光学式编码器小,而成本更低【28】。本系统采用的是旋转式增量磁性编码器,其适应

环境能力强,响应速度快,非常适用于在高速旋转运动中检测电动机的速度和位置。

2.2交流永磁同步电机的数学模型

正弦波PMSM定子与普通的电励磁的三相同步电机是基本一样的,并且反电动势

也是正弦波,那么其数学模型和电励磁的三相同步电机也是一样的。在定子通三相绕

组瞬时电流,如图2—3所示。三相定子绕组流过平衡电流分别为ia,ib,ic,在空间

上互差120。,瞬时电流表达式如下:

(2—1)

式中Im为电流最大值。

图2—3三相瞬时电流图

图2-4对称三线绕组

电机的三相对称绕组如图2—4所示,在定子静止三相坐标系下,建立电机的定子

(2-2)

式2-2中,%、%、甜。是定子三相绕组相电压;o‘、‘是定子三相绕组相电流;

鲴,(pb,鲈是三相定子绕组的磁链;r是定子三相绕组阻抗。磁链方程为【29】:

(2-3)

式2—3中乞,厶,三c分别是三相绕组的自感;厶=厶。,k=乞,k=k分别是

两相绕组间的互感;纷是永磁转子的磁链,秒=rot+岛是转子与三相静止坐标系a轴

的夹角,皖为转子的初始位置。为了简化分析,现作如下假定:

1)电机铁磁部分的磁路为线性,不计饱和,剩磁,磁滞和涡流的影响;

2)定子三相绕组对称且为集中式绕组;

3)忽略电枢反应对气隙磁场的影响;

这样就可使各相绕组的自感和互感与转子的位置角无关,且永磁同步电机的三相绕组

是对称分布,星形联接,则厶=厶=t=三,k=k=z-aac=乞=k=k=M,三和M 都为常量,乞+‘+之=0,由此整理磁链方程如下:

(2-4)

(2-5)

(2-6)

式2.5中国是同步角速度。

根据三相绕组的感应电动势方程2—5可得出,每相绕组的感应电动势e a、%、巳是

时变的,同样三相对称电流都也是时变的,所以系统的输出转矩时变并且各个参数耦

合紧密,使整个系统的转矩控制复杂实现困难。

交流电机的矢量控制理论提出,是电机控制理论的第一次质的飞跃,使得

交流电

机的控制跟直流电机控制一样简单,并且能获得较好的动态性能。矢量控制基本思想

是:在转子磁场定向坐标上,将电流矢量分解成产生磁通的励磁电流分量和产生转矩

的转矩电流分量,并使两个分量相互垂直和独立,这样就可以分开调节,实现了交流

电机控制的解耦【30I,此旋转坐标系也称为d-q坐标系,d轴固定在转子磁势轴线上,q

轴位于d轴逆时针方向旋转90。的电角度上,图2—5是极对数为2的旋转坐标系。

另外,定子绕组中的三相电流就可以通过一个空间矢量电流来表示,表达式如下:

(2-7)

式中o‘、之三相电流的有效值为I、角频率为彩的,则表达式2—7可以化简成:

(2-8)

这样i就可以看作是一个以角速度缈旋转的矢量,如图2.5所示。

图2—5旋转坐标系

图2—6静止坐标系一旋转坐标系

如果要把定子绕组中的三相电流转换到d-q坐标系上,完成输出转矩控制。首先,

要把三相交流电流所在的三相静止坐标系转换到两相静止的坐标系口一

∥。在固定的

定子上建立口一∥轴坐标系,口轴与a相重合,口轴逆时针旋转90。为∥轴,转换到

两相静止坐标系的表达式如下:

(2-9)

在PMSM系统中,定子绕组采用Y型连接,则/o=0。

然后,再由静止的口一∥轴坐标系转换到d-q坐标系,如图2—6所示,转换表达

式为:

(2-10)

式中目是两个坐标系的夹角。根据式2.10推导,可以得出d-q坐标系和三相静止坐标

系之间的转换关系如下:

(2-11)

坐标变换对于电压矢量仍然适用,由三相静止坐标系变换到d-q轴坐标系后,定子电

压方程表达式为:

(2-12)

式2—12中,,.为交、直轴阻抗;‘、乞为定子电流矢量f的直轴、交轴分量;P微分算

子;%、%交、直轴磁链。

交流永磁伺服电机定子磁链方程为:

(12-13)

式2-13中,盼为转子永磁体产生的磁链;厶、厶为电动机的交、直轴电感;

把定子

磁锛方程代入定子申.压方稗得:

(2-14)

通过坐标转换后,电机的转矩方程可以表示为:

(2-15)

将磁链方程代入后得:

(2-16)

式2—16中n是极对数5

在转子参考坐标中,若取d轴为虚袖.取q轴为实轴,则在这个复平面内,可将

定子电流空间矢量f表示为:

(2-17)

f与q轴的夹角为盯,则:

(2-18)

综上整理转矩方程得:

(2-19)

仃角实质上是定子三相绕组合成旋转磁场的轴线与转子磁场轴线间夹角。在上式

中,括号内第一项就是由这两磁场相互作用所产生的电磁转矩,如图2—7中曲线l

所示;括号内第二项称为磁阻转短(曲线2),它是由凸极效应引起的∞¨,并与两轴电

感参数的差值成正比。

2—7凸极同步电机矩角特性图2—8凸装式永磁同步电机矩角特性

本系统采用的是凸装式转子永磁同步电动机,所以Ld=Lq,于是电磁转矩

可以简化为:

(2-20)

式中不包含磁阻转矩项,电磁转矩仅与定子电流的交轴分量有关。当时盯:互,每

2

单位定子电流产生的电磁转矩值最大,如图2—8所示,本系统通过‘=0

控制,使

仃=三2,这样转矩响应仅与定子矢量电流成正比。

永磁同步电机基础知识

(一) PMSM 的数学模型 交流电机是一个非线性、强耦合的多变量系统。永磁同步电机的三相绕组分布在定子上,永磁体安装在转子上。在永磁同步电机运行过程中,定子与转子始终处于相对运动状态,永磁体与绕组,绕组与绕组之间相互影响,电磁关系十分复杂,再加上磁路饱和等非线性因素,要建立永磁同步电机精确的数学模型是很困难的。为了简化永磁同步电机的数学模型,我们通常做如下假设: 1) 忽略电机的磁路饱和,认为磁路是线性的; 2) 不考虑涡流和磁滞损耗; 3) 当定子绕组加上三相对称正弦电流时,气隙中只产生正弦分布的 磁势,忽略气隙中的高次谐波; 4) 驱动开关管和续流二极管为理想元件; 5) 忽略齿槽、换向过程和电枢反应等影响。 永磁同步电机的数学模型由电压方程、磁链方程、转矩方程和机械运动方程组成,在两相旋转坐标系下的数学模型如下: (l)电机在两相旋转坐标系中的电压方程如下式所示: d d s d d c q q q s q q c d di u R i L dt di u R i L dt ωψωψ?=+-????=++?? 其中,Rs 为定子电阻;ud 、uq 分别为d 、q 轴上的两相电压;id 、iq 分别为d 、q 轴上对应的两相电流;Ld 、Lq 分别为直轴电感和交轴电感;ωc 为电角速度;ψd 、ψq 分别为直轴磁链和交轴磁链。 若要获得三相静止坐标系下的电压方程,则需做两相同步旋转坐标系到三相静止坐标系的变换,如下式所示。 cos sin 22cos()sin()3322cos()sin()33a d b q c u u u u u θθθπθπθπθπ?? ?-????? ??=--- ? ???? ???? ?+-+? ? (2)d/q 轴磁链方程: d d d f q q q L i L i ψψψ=+???=?? 其中,ψf 为永磁体产生的磁链,为常数,0f r e ωψ=,而c r p ωω=是机械角速度,p 为同步电机的极对数,ωc 为电角速度,e0为空载反电动势,其值为 倍。

永磁同步电机的原理及结构

. . . . 第一章永磁同步电机的原理及结构 1.1永磁同步电机的基本工作原理 永磁同步电机的原理如下在电动机的定子绕组中通入三相电流,在通入电流后就会在电动机的定子绕组中形成旋转磁场,由于在转子上安装了永磁体,永磁体的磁极是固定的,根据磁极的同性相吸异性相斥的原理,在定子中产生的旋转磁场会带动转子进行旋转,最终达到转子的旋转速度与定子中产生的旋转磁极的转速相等,所以可以把永磁同步电机的起动过程看成是由异步启动阶段和牵入同步阶段组成的。在异步启动的研究阶段中,电动机的转速是从零开始逐渐增大的,造成上诉的主要原因是 其在异步转矩、永磁发电制动转矩、 矩起的磁阻转矩和单轴转由转子磁路不对称而引等一系列的因素共同作用下而引起的,所以在这个过程中转速是振荡着上升的。在起 动过程中,质的转矩,只有异步转矩是驱动性电动机就是以这转矩来得以加速的,其 他的转矩大部分以制动性质为主。在电动机的速度由零增加到接近定子的磁场旋转转速时,在永磁体脉振转矩的影响下永磁同步电机的转速有可能会超过同步转速,而出现转速的超调现象。但经过一段时间的转速振荡后,最终在同步转矩的作用下而被牵入同步。 1.2永磁同步电机的结构 永磁同步电机主要是由转子、端盖、及定子等各部件组成的。一般来说,永磁同步电机的最大的特点是它的定子结构与普通的感应电机的结构非常非常的相似,主要是区别于转子的独特的结构与其它电机形成了差别。和常用的异步电机的最大不同则是转子的独特的结构,在转子上放有高质量的永磁体磁极。由于在转子上安放永磁体的位置有很多选择,所以永磁同步电机通常会被分为三大类:内嵌式、面贴式以及插入式,如图1.1所示。永磁同步电机的运行性能是最受关注的,影响其性能的因素有很多,但是最主要的则是永磁同步电机的结构。就面贴式、插入式和嵌入式而言,各种结构都各有其各自的优点。

交流永磁同步电机结构与工作原理

交流永磁同步电机结构与工作原理 2。1。1交流永磁同步电机得结构 永磁同步电机得种类繁多,按照定子绕组感应电动势得波形得不同,可以分为正 弦波永磁同步电机(PMSM)与梯形波永磁同步电机(BLDC)【261.正弦波永磁同步电机 定子由三相绕组以及铁芯构成,电枢绕组常以Y型连接,采用短距分布绕组;气隙场 设计为正弦波,以产生正弦波反电动势;转子采用永磁体代替电励磁,根据永磁体在 转子上得安装位置不同,正弦波永磁同步电机又分为三类:凸装式、嵌入式与内埋式。 本文中采用得电机为凸装式正弦波永磁同步电机,结构如图2一l所示,定子绕组一 般制成多相,转子由永久磁钢按一定对数组成,本系统得电机转子磁极对数为两对, 则电机转速为n=60f/p,f为电流频率,P为极对数。

图2一l凸装式正弦波永磁同步电机结构图 目前,三相同步电机现在主要有两种控制方式,一种就是她控式(又称为频率开环 控制);另一种就是自控式(又称为频率闭环控制)[27】。她控式方式主要就是通过独立控 N#l-部电源频率得方式来调节转子得转速不需要知道转子得位置信息,经常采用恒压 频比得开环控制方案。自控式永磁同步电机也就是通过改变外部电源得频率来调节转子 得转速,与她控式不同,外部电源频率得改变就是与转子得位置信息就是有关联得,转子

转速越高,定子通电频率就越高,转子得转速就是通过改变定子绕组外加电压(或电流) 频率得大小来调节得。由于自控式同步电机不存在她控式同步电机得失步与振荡问 题,并且永磁同步电机永磁体做转子也不存在电刷与换向器,降低了转子得体积与质 量,提高了系统得响应速度与调速范围,且具有直流电动机得性能,所以本文采用了 自控式交流永磁同步电机.当把三相对称电源加到三相对称绕组上后,自然会产生同 步速得旋转得定子磁场,同步电机转子得转速就是与外部电源频率保持严格得同步,且 与负载大小没关系. 2。1.2交流永磁同步电机得工作原理 本系统采用得就是自控式交直交电压型电机控制方式,由整流桥、三相逆变电路、 控制电路、三相交流永磁电机与位置传感器构成,其结构原理图如图2-2所示.在 图2-2中,50HZ得市电经整流后,由三相逆变器给电机得三相绕组供电,三相对称 电流合成得旋转磁场与转子永久磁钢所产生得磁场相互作用产生转矩,拖动转子同步

永磁同步电机基础知识

(一)PMSM的数学模型 交流电机是一个非线性、强耦合的多变量系统。永磁同步电机的三相绕组分布在定子上,永磁体安装在转子上。在永磁同步电机运行过程中,定子与转子始终处于相对运动状态,永磁体与绕组,绕组与绕组之间相互影响,电磁关系十分复杂,再加上磁路饱和等非线性因素,要建立永磁同步电机精确的数学模型是很困难的。为了简化永磁同步电机的数学模型,我们通常做如下假设: 1)忽略电机的磁路饱和,认为磁路是线性的; 2)不考虑涡流和磁滞损耗; 3)当定子绕组加上三相对称正弦电流时,气隙中只产生正弦分布的磁势,忽略气隙中的高次谐波; 4)驱动开关管和续流二极管为理想元件; 5)忽略齿槽、换向过程和电枢反应等影响。 永磁同步电机的数学模型山电压方程、磁链方程、转矩方程和机械运动方程组成,在两相旋转坐标系下的数学模型如下: (1)电机在两相旋转坐标系中的电压方程如下式所示: 叫=RJd + Ld - — 3趴 at 此 dt 其中,Rs为定子电阻;ud、uq分别为d、q轴上的两相电压;id、iq分别为d、q轴上对应的两相电流;Ld、Lq分别为直轴电感和交轴电感;为电角速度;巾d、Wq 分别为直轴磁链和交轴磁链。 若要获得三相静止坐标系下的电压方程,则需做两相同步旋转坐标系到三相静止坐标系的变换,如下式所示。 / X cos 8 一sin。 (22 、 2 / \ = cos(。一—-sm(8— 3 3 宀 2 2 cos(& + -?r) 一sin(8 + - I 3 3丿 (2)d/q轴磁链方程: 其中,Wf为永磁体产生的磁链,为常数,,而◎=% 是机械角速度,P为同步电机的 极对数,3c为电角速度,eO为空载反电动势,其值为

永磁同步电动机结构原理3D

永磁同步电动机 这些年永磁同步电动机得到较快发展,其特点是功率因数高、效率高,在许多场合开始逐步取代最常用的交流异步电机,其中异步起动永磁同步电动机的性能优越,是一种很有前途的节能电机。 永磁同步电动机的定子结构与工作原理与交流异步电动机一样,多为4极形式,三相绕组按3相4极布置,通电产生4极旋转磁场。下图是有线圈绕组的定子.如下示意图1。 图1定子铁芯与绕组 如下图2是电机机座与定子。 图2机座与定子

永磁同步电动机与普通异步电动机的不同是转子结构,转子上安装有永磁体磁极,图3左就是一个安装有永磁体磁极的转子,永磁体磁极安装在转子铁芯圆周表面上,称为凸装式永磁转子。磁极的极性与磁通走向图3右,这是一个4极转子。 图3凸装式永磁转子 根据磁阻最小原理,也就是磁通总是沿磁阻最小的路径闭合,利用磁引力拉动转子旋转,于是永磁转子就会跟随定子产生的旋转磁场同步旋转。 图4左是另一种安装有永磁体磁极的转子,永磁体磁极嵌装在转子铁芯表面,称为嵌入式永磁转子。磁极的极性与磁通走向见图右,这也是一个4极转子。 图4嵌入式永磁转子铁芯1

图5右是一种嵌入式永磁转子,永磁体嵌装在转子铁芯内部,为防止永磁体磁通短路,在转子铁芯开有空槽或在槽内填充隔磁材料。磁极的极性与磁通走向见下右图,这也是一个4极转子。 图5嵌入式永磁转子铁芯2 下图6为装上转轴的嵌入式永磁转子 图6嵌入式永磁转 转子铁芯两侧装上风扇然后与定子机座组装成整机,见下图7。

图7永磁同步电动机剖面图 这种永磁同步电动机不能直接通三相交流的起动,因转子惯量大,磁场旋转太快,静止的转子根本无法跟随磁场旋转。这种永磁同步电动机多用在变频调速场合,启动时变频器输出频率从0开始上升到工作频率,电机则跟随变频器输出频率同步旋转,是一种很好的变频调速电动机。 通过在永磁转子上加装笼型绕组,接通电源旋转磁场一建立,就会在笼型绕组感生电流,转子就会像交流异步电动机一样起动旋转。这就是异步起动永磁同步电动机,是近些年开始普及的节能电机。如下图8为永磁转子铁芯 图8笼型绕组永磁转子铁芯 笼型转子有焊接式与铸铝式:在转子每个槽内插入铜条,铜条与转子铁芯两侧的铜端环焊接形成笼型转子;与普通交流异步电动机一样采用铸铝式转子,将熔化的铝液直接注入转子槽内,并同时铸出端环与风扇叶片,是较廉价的做法,下图9是一个铸铝式笼型转子。

永磁同步电机的原理及结构

完美格式整理版 第一章永磁同步电机的原理及结构 1.1永磁同步电机的基本工作原理 永磁同步电机的原理如下在电动机的定子绕组中通入三相电流,在通入电流后就会在电动机的定子绕组中形成旋转磁场,由于在转子上安装了永磁体,永磁体的磁极是固定的,根据磁极的同性相吸异性相斥的原理,在定子中产生的旋转磁场会带动转子进行旋转,最终达到转子的旋转速度与定子中产生的旋转磁极的转速相等,所以可以把永磁同步电机的起动过程看成是由异步启动阶段和牵入同步阶段组成的。在异步启动的研究阶段中,电动机的转速是从零开始逐渐增大的,造成上诉的主要原因是 其在异步转矩、永磁发电制动转矩、 矩起的磁阻转矩和单轴转由转子磁路不对称而引等一系列的因素共同作用下而引起的,所以在这个过程中转速是振荡着上升的。在起 动过程中,质的转矩,只有异步转矩是驱动性电动机就是以这转矩来得以加速的,其 他的转矩大部分以制动性质为主。在电动机的速度由零增加到接近定子的磁场旋转转速时,在永磁体脉振转矩的影响下永磁同步电机的转速有可能会超过同步转速,而出现转速的超调现象。但经过一段时间的转速振荡后,最终在同步转矩的作用下而被牵入同步。 1.2永磁同步电机的结构 永磁同步电机主要是由转子、端盖、及定子等各部件组成的。一般来说,永磁 同步电机的最大的特点是它的定子结构与普通的感应电机的结构非常非常的相似,主要是区别于转子的独特的结构与其它电机形成了差别。和常用的异步电机的最大不同则是转子的独特的结构,在转子上放有高质量的永磁体磁极。由于在转子上安放永磁体的位置有很多选择,所以永磁同步电机通常会被分为三大类:内嵌式、面贴式以及插入式,如图1.1所示。永磁同步电机的运行性能是最受关注的,影响其性能的因素有很多,但是最主要的则是永磁同步电机的结构。就面贴式、插入式和嵌入式而言,各种结构都各有其各自的优点。

永磁同步电机的原理及结构

第一章永磁同步电机的原理及结构 1.1永磁同步电机的基本工作原理 永磁同步电机的原理如下在电动机的定子绕组中通入三相电流,在通入电流后 就会在电动机的定子绕组中形成旋转磁场,由于在转子上安装了永磁体,永磁体的磁极是固定的,根据磁极的同性相吸异性相斥的原理,在定子中产生的旋转磁场会带动转子进行旋转,最终达到转子的旋转速度与定子中产生的旋转磁极的转速相等,所以可以把永磁同步电机的起动过程看成是由异步启动阶段和牵入同步阶段组成的。在异步启动的研究阶段中,电动机的转速是从零开始逐渐增大的,造成上诉的主要原因是 其在异步转矩、永磁发电制动转矩、 矩起的磁阻转矩和单轴转由转子磁路不对称而引等一系列的因素共同作用下而引起的,所以在这个过程中转速是振荡着上升的。在起 动过程中,质的转矩,只有异步转矩是驱动性电动机就是以这转矩来得以加速的,其 他的转矩大部分以制动性质为主。在电动机的速度由零增加到接近定子的磁场旋转转速时,在永磁体脉振转矩的影响下永磁同步电机的转速有可能会超过同步转速,而出现转速的超调现象。但经过一段时间的转速振荡后,最终在同步转矩的作用下而被牵入同步。 1.2永磁同步电机的结构 永磁同步电机主要是由转子、端盖、及定子等各部件组成的。一般来说,永磁同步电机的最大的特点是它的定子结构与普通的感应电机的结构非常非常的相似,主要是区别于转子的独特的结构与其它电机形成了差别。和常用的异步电机的最大不同则是转子的独特的结构,在转子上放有高质量的永磁体磁极。由于在转子上安放永磁体的位置有很多选择,所以永磁同步电机通常会被分为三大类:内嵌式、面贴式以及插入式,如图1.1所示。永磁同步电机的运行性能是最受关注的,影响其性能的因素有很多,但是最主要的则是永磁同步电机的结构。就面贴式、插入式和嵌入式而言,各种结构都各有其各自的优点。

永磁同步伺服电机(PMSM)驱动器原理

永磁同步伺服电机(PMSM)驱动器原理 来源:开关柜无线测温 https://www.wendangku.net/doc/c717362882.html, 摘要:永磁交流伺服系统以其卓越的性能越来越广泛地应用到机器人、数控等领域,本文对其驱动器的功能实现 做了简单的描述,其中包括整流部分的整流过程、逆 变部分的脉宽调制(PWM)技术的实现、控制单元相应 的算法等三个部分。 关键词: DSP 整流逆变 PWM 矢量控制 1 引言 随着现代电机技术、现代电力电子技术、微电子技术、永磁材料技术、交流可调速技术及控制技术等支撑技术的快速发展,使得永磁交流伺服技术有着长足的发展。永磁交流伺服系统的性能日渐提高,价格趋于合理,使得永磁交流伺服系统取代直流伺服系统尤其是在高精度、高性能要求的伺服驱动领域成了现代电伺服驱动系统的一个发展趋势。永磁交流伺服系统具有以下等优点:(1)电动机无电刷和换向器,工作可靠,维护和保养简单;(2)定子绕组散热快;(3)惯量小,易提高系统的快速性;(4)适应于高速大力矩工作状态;(5)相同功率下,体积和重量较小,广泛的应用于机床、机械设备、搬运机构、印刷设备、装配机器人、加工机械、高速卷绕机、纺织机械等场合,满足了传动领域的发展需求。 永磁交流伺服系统的驱动器经历了模拟式、模式混合式的发展后,目前已经进入了全数字的时代。全数字伺服驱动器不仅克服了模拟式伺服的分散性大、零漂、低可靠性等确定,还充分发挥了数字控制在控制精度上的优势和控制方法的灵活,使伺服驱动器不仅结构简单,而且性能更加的可靠。现在,高性能的伺服系统,大多数采用永磁交流伺服系统其中包括永磁

同步交流伺服电动机和全数字交流永磁同步伺服驱动器两部分。伺服驱动器有两部分组成:驱动器硬件和控制算法。控制算法是决定交流伺服系统性能好坏的关键技术之一,是国外交流伺服技术封锁的主要部分,也是在技术垄断的核心。 2 交流永磁伺服系统的基本结构 交流永磁同步伺服驱动器主要有伺服控制单元、功率驱动单元、通讯接口单元、伺服电动机及相应的反馈检测器件组成,其结构组成如图1所示。其中伺服控制单元包括位置控制器、速度控制器、转矩和电流控制器等等。我们的交流永磁同步驱动器其集先进的控制技术和控制策略为一体,使其非常适用于高精度、高性能要求的伺服驱动领域,还体现了强大的智能化、柔性化是传统的驱动系统所不可比拟的。 目前主流的伺服驱动器均采用数字信号处理器(DSP)作为控制核心,其优点是可以实现比较复杂的控制算法,事项数字化、网络化和智能化。功率器件普遍采用以智能功率模块(IPM)为核心设计的驱动电路,IPM内部集成了驱动电路,同时具有过电压、过电流、过热、欠压等故障检测保护电路,在主回路中还加入软启动电路,以减小启动过程对驱动器的冲击。 图1 交流永磁同步伺服驱动器结构 伺服驱动器大体可以划分为功能比较独立的功率板和控制板两个模块。如图2所示功率板(驱动板)是强电部,分其中包括两个单元,一是功率驱动单元IPM用于电机的驱动,二是开关电源单元为整个系统提供数字和模拟电源。 控制板是弱电部分,是电机的控制核心也是伺服驱动器技术核心控制算法的运行载体。控制板通过相应的算法输出PWM信号,

永磁同步电机矢量控制简要原理

关于1.5KW永磁同步电机控制器的初步方案 基于永磁同步电机自身的结构特点,要实现对转速及位置的伺服控制,采用矢量控制算法结合SVPWM技术实现对电机的精确控制,通过改变电机定子电压频率即可实现调速,为防止失步,采用自控方式,利用转子位置检测信号控制逆变器输出电流频率,同时转子位置检测信号作为同步电机的启动以及实现位置伺服功能的组成部分。 矢量控制的基本思想是在三相永磁同步电动机上设法模拟直流 电动机转矩控制的规律,在磁场定向坐标上,将电流矢量分量分解成产生磁通的励磁电流分量id和产生转矩的转矩电流iq分量,并使两分量互相垂直,彼此独立。当给定Id=0,这时根据电机的转矩公式可以得到转矩与主磁通和iq乘积成正比。由于给定Id=0,那么主磁通就基本恒定,这样只要调节电流转矩分量iq就可以像控制直流电动机一样控制永磁同步电机。 根据这一思想,初步设想系统的主要组成部分为:主控制板部分,电源及驱动板部分,输入输出部分。 其中主控制板部分即DSP板,根据控制指令和位置速度传感器以及采集的电压电流信号进行运算,并输出用于控制逆变器部分的控制信号。 电源和驱动板部分主要负责给各个部分供电,并提供给逆变器部分相应的驱动信号,以及将控制信号与主回路的高压部分隔离开。 输入输出部分用来输入控制量,显示实时信息等。

原理框图如下: 基本控制过程:速度给定信号与检测到的转子信号相比较,经过速度控制器的调节,产生定子电流转矩分量Isq_ref,用这个电流量作为电流控制器的给定信号。励磁分量Isd_ref由外部给定,当励磁分量为零时,从电机端口看,永磁同步电机相当于一台他励直流电机,磁通基本恒定,简化了控制问题。另一端通过电流采样得到三相定子电流,经过Clarke变换将其变为α-β两相静止坐标系下的电流,再通过park 变换将其变为d-q两相旋转坐标系下电流Isq,Isd,分别与两个调节器的参考值比较,经过控制器调节后变为电压信号Vsd_ref和Vsq_ref,再经过park逆变换,得到Vsa_ref和Vsb_ref作为SVPWM的控制信

永磁同步电机基础知识精品

【关键字】设计、情况、方法、环节、运行、问题、系统、快速、保持、建立、特点、位置、理想、基础、需要、主导、作用、标准、结构、速度、关系、简化、调节、保护、保证、解决、方向、实现、转变、落实 (一) PMSM 的数学模型 交流电机是一个非线性、强耦合的多变量系统。永磁同步电机的三相绕组分布在定子上,永磁体安装在转子上。在永磁同步电机运行过程中,定子与转子始终处于相对运动状态,永磁体与绕组,绕组与绕组之间相互影响,电磁关系十分复杂,再加上磁路饱和等非线性因素,要建立永磁同步电机精确的数学模型是很困难的。为了简化永磁同步电机的数学模型,我们通常做如下假设: 1) 忽略电机的磁路饱和,认为磁路是线性的; 2) 不考虑涡流和磁滞损耗; 3) 当定子绕组加上三相对称正弦电流时,气隙中只产生正弦分布的磁势, 忽略气隙中的高次谐波; 4) 驱动开关管和续流二极管为理想元件; 5) 忽略齿槽、换向过程和电枢反应等影响。 永磁同步电机的数学模型由电压方程、磁链方程、转矩方程和机械运动方程组成,在两相旋转坐标系下的数学模型如下: (l)电机在两相旋转坐标系中的电压方程如下式所示: 其中,Rs 为定子电阻;ud 、uq 分别为d 、q 轴上的两相电压;id 、iq 分别为d 、q 轴上对应的两相电流;Ld 、Lq 分别为直轴电感和交轴电感;ωc 为电角速度;ψd 、ψq 分别为直轴磁链和交轴磁链。 若要获得三相静止坐标系下的电压方程,则需做两相同步旋转坐标系到三相静止坐标系的变换,如下式所示。 (2)d/q 轴磁链方程: 其中,ψf 为永磁体产生的磁链,为常数,0f r e ωψ=,而c r p ωω=是机械角速度,p 为同步电机的极对数,ωc 为电角速度,e0为空载反电动势,其值为每项 倍。 (3)转矩方程: 把它带入上式可得: 对于上式,前一项是定子电流和永磁体产生的转矩,称为永磁转矩;后一项是转 子突极效应引起的转矩,称为磁阻转矩,若Ld=Lq ,则不存在磁阻转矩,此时,转矩方程为: 这里,t k 为转矩常数,32 t f k p ψ=。 (4)机械运动方程: 其中,m ω是电机转速,L T 是负载转矩,J 是总转动惯量(包括电机惯量和负载惯量),B 是摩擦系数。 (二) 直线电机原理 永磁直线同步电机是旋转电机在结构上的一种演变,相当于把旋转电机的定

永磁同步电机的原理和结构

第一章永磁同步电机的原理及结构 永磁同步电机的基本工作原理 永磁同步电机的原理如下在电动机的定子绕组中通入三相电流,在通入电流后就会在电动机的定子绕组中形成旋转磁场,由于在转子上安装了永磁体,永磁体的磁极是固定的,根据磁极的同性相吸异性相斥的原理,在定子中产生的旋转磁场会带动转子进行旋转,最终达到转子的旋转速度与定子中产生的旋转磁极的转速相等,所以可以把永磁同步电机的起动过程看成是由异步启动阶段和牵入同步阶段组成的。在异步启动的研究阶段中,电动机的转速是从零开始逐渐增大的,造成上诉的主要原因是其在异步转矩、永磁发电制动转矩、由转子磁路不对称而引起的磁阻转矩和单轴转矩等一系列的因素共同作用下而引起的,所以在这个过程中转速是振荡着上升的。在起动过程中,只有异步转矩是驱动性质的转矩,电动机就是以这转矩来得以加速的,其他的转矩大部分以制动性质为主。在电动机的速度由零增加到接近定子的磁场旋转转速时,在永磁体脉振转矩的影响下永磁同步电机的转速有可能会超过同步转速,而出现转速的超调现象。但经过一段时间的转速振荡后,最终在同步转矩的作用下而被牵入同步。 永磁同步电机的结构 永磁同步电机主要是由转子、端盖、及定子等各部件组成的。一般来说,永磁同步电机的最大的特点是它的定子结构与普通的感应电机的结构非常非常的相似,主要是区别于转子的独特的结构与其它电机形成了差别。和常用的异步电机的最大不同则是转子的独特的结构,在转子上放有高质量的永磁体磁极。由于在转子上安放永磁体的位置有很多选择,所以永磁同步电机通常会被分为三大类:内嵌式、面贴式以及插入式,如图所示。永磁同步电机的运行性能是最受关注的,影响其性能的因素有很多,但是最主要的则是永磁同步电机的结构。就面贴式、插入式和嵌入式而言,各种结构都各有其各自的优点。

永磁同步电机基础知识

(一) P M S M 的数学模型 交流电机是一个非线性、强耦合的多变量系统。永磁同步电机的三相绕组分布在定子上,永磁体安装在转子上。在永磁同步电机运行过程中,定子与转子始终处于相对运动状态,永磁体与绕组,绕组与绕组之间相互影响,电磁关系十分复杂,再加上磁路饱和等非线性因素,要建立永磁同步电机精确的数学模型是很困难的。为了简化永磁同步电机的数学模型,我们通常做如下假设: 1) 忽略电机的磁路饱和,认为磁路是线性的; 2) 不考虑涡流和磁滞损耗; 3) 当定子绕组加上三相对称正弦电流时,气隙中只产生正弦分布的磁势,忽略气隙中的高次谐波; 4) 驱动开关管和续流二极管为理想元件; 5) 忽略齿槽、换向过程和电枢反应等影响。 永磁同步电机的数学模型由电压方程、磁链方程、转矩方程和机械运动方程组成,在两相旋转坐标系下的数学模型如下: (l)电机在两相旋转坐标系中的电压方程如下式所示: 其中,Rs 为定子电阻;ud 、uq 分别为d 、q 轴上的两相电压;id 、iq 分别为d 、q 轴上对应的两相电流;Ld 、Lq 分别为直轴电感和交轴电感;ωc 为电角速度;ψd 、ψq 分别为直轴磁链和交轴磁链。 若要获得三相静止坐标系下的电压方程,则需做两相同步旋转坐标系到三相静止坐标系的变换,如下式所示。 (2)d/q 轴磁链方程: 其中,ψf 为永磁体产生的磁链,为常数,0f r e ωψ=,而c r p ωω=是机械角速度,p 为同步电机的极对数,ωc 为电角速度,e0为空载反电动势,其值为每项 倍。 (3)转矩方程: 把它带入上式可得: 对于上式,前一项是定子电流和永磁体产生的转矩,称为永磁转矩;后一项是转 子突极效应引起的转矩,称为磁阻转矩,若Ld=Lq ,则不存在磁阻转矩,此时,转矩方程为: 这里,t k 为转矩常数,32 t f k p ψ=。 (4)机械运动方程: 其中,m ω是电机转速,L T 是负载转矩,J 是总转动惯量(包括电机惯量和负载惯量),B 是摩擦系数。 (二) 直线电机原理 永磁直线同步电机是旋转电机在结构上的一种演变,相当于把旋转电机的定子和动子沿轴向剖开,然后将电机展开成直线,由定子演变而来的一侧称为初级,转子演变而来的一侧称为次级。由此得到了直线电机的定子和动子,图1为其转变过程。

永磁同步电机学习笔记精编版

永磁同步电机学习笔记 精编版 MQS system office room 【MQS16H-TTMS2A-MQSS8Q8-MQSH16898】

1.内功率因数角:定子相电流与空载反电势的夹角,定子相电流超前时为正。 2.功率角(转矩角):外施相电压超前空载反电势的角度,是表征负载大小的象征。 3.功率因数角:外施相电压与定子相电流的夹角。 4.内功率因数角决定直轴电枢反应是出于增磁还是去磁状态的因素。 5.实际的空载反电势由磁钢产生的空载气隙磁通在电枢绕组中感应产生,当实际反电势大于临界反电势时,电动机将处于去磁工作状态。空载损耗与空载电流是永磁电机出厂试验的两个重要指标,而空载反电势对这两个指标的影响尤其重大。空载反电势变动时空载损耗和空载电流也有一个最小值,空载反电势设计得过大或过小都会导致空载损耗和空载电流的上升,这是因为过大或过小都会导致空载电流中直轴电流分量急剧增大的缘故。还对电动机的动、稳态性能均影响较大。永磁机的尺寸和性能改变时,曲线定子电流I=f(E)是一条V形曲线。(类似于电励磁同步机定子电流和励磁电流的关系曲线) 6.由于永磁同步电动机的直轴同步电抗一般小于交轴同步电抗,磁阻转矩为一负正弦函数,因而矩角特性曲线上最大值所对应的转矩角大于90度,而不像电励磁同步电机那样小于90度。这是一个特点。 7.工作特性曲线: 知道了空载反电势、直轴同步电抗、交轴同步电抗和定子电阻后,给出一系列不同的转矩角,便可以求出相应的输入功率,定子相电流和功率因数,然后求出电动机在此时的损耗,便可以得到电动机出去功

率和效率,从而得到电动机稳态运行性能与输出功率之间的关系曲线,即为电动机工作曲线。 8.铁心损耗: 电动机温度和负载变化导致磁钢工作点改变,定子齿、轭部磁密也随之变化。温度越高,负载越大,定子齿、轭部的磁密越小,铁耗越小。工程上采用与感应电机铁耗类似的公式,然后进行经验修正。9.计算极弧系数: 气隙磁密平均值与最大值的比值。它的大小决定气隙磁密分布曲线的形状,因而决定励磁磁势分布的形状、空气隙的均匀程度以及磁路的饱和程度。其大小还影响气隙基波磁通与气隙总磁通比值,即磁钢利用率,和气隙中谐波的大小。 10.永磁电机气隙长度: 是非常关键的尺寸。尽管他对于永磁机的无功电流影响不如感应电机敏感,但对于交直轴电抗影响很大,继而影响电动机的其他性能。还对电动机的装配工艺和杂散损耗影响较大。 11.空载漏磁系数: 是很重要的参数,是空载时总磁通与主磁通之比,是个大于1 的数,反映空载时永磁体向外磁路提供的总磁通的有效利用程度。空载漏磁系数以磁导表示的表达式又正好是负载时外磁路应用戴维宁定理进行等效转换的变换系数,同时由于负载情况的不同,电枢磁动势大小不同,磁路的饱和程度也随之改变,气隙磁导、漏磁导和空载漏磁系数都不是常数。 一方面,空载漏磁系数大表明漏磁导大,磁钢利用率差。

同步电机转子结构

高强度永磁同步电机的转子结构 —北京明正维元电机技术有限公司专利 本实用新型涉及一种高强度永磁同步电机的转子结构,它由中心轴,铁芯和附着在其外圆表面上的至少1对圆弧面形的磁钢构成圆辊状结构,各相邻两磁钢侧面之间留有气隙,各磁钢通过相应的锁紧件与铁芯构成锁紧联结结构,它解决了现有技术强度差、磁钢易被甩出,易出现事故的问题,用于制作各型永磁同步电机。 交流永磁同步调速电梯电机之特性 石正铎路子明 我国电梯性能随着计算机控制技术和变频技术的发展有很大的提高,但是异步变频电动机存在低频低压低速时的转矩不够平稳进而影响低速段运行不理想的缺点。用永磁同步调速电机替代交流异步电机,用同步变频替代异步变频可以解决低速段的缺点和启动及运行中的抖动问题,使电梯运行更平稳、更舒适,同时减小电机的体积,降低噪音。采用有齿轮电梯曳引机,当电梯制动器失灵、轿厢产生自由落体时,可利用永磁同步电机的电流制动功能保证轿厢低速溜车,为电梯安全增加了一道安全屏障。 一、永磁同步电机与异步电机的主要区别及特点 由于异步电机是靠电机定子电流为电机转子励磁的,而永磁电机转子是用永磁体直接产生磁场不需要电励磁。因此永磁同步电机具有结构简单、运行可靠、体积小、重量轻、效率高、形状和尺寸灵活多样等特点。 二、交流永磁同步调速电梯电机的主要优点 1、结构简单运行可靠,由于永磁电机转子不需要励磁,省去了线圈或鼠笼,简化了结构,实现了无刷,减少了故障,维修方便简单,维修复杂系数大大降低。 2、低温升、小体积永磁同步电机与感应电机相比,因为不需要无功励磁电流,而具备: (1)、功率因数高近于1。 (2)、反电势正弦波降低了高次谐波的幅值,有效的解决了对电源的干扰。 (3)、减小了电机的铜损和铁损。 同步电机发温升小(约38K),电机外形小,体积与异步电机相比,降低一至两个机座号。 3、高效率超节能,因为功率因数高(可近似为1),又省去电励磁,减少了定子电流和定子转子电阻的损耗,效率高(94~96%),满载起动电流比异步减少一半,所以节能效果明显,用于电梯时,同步电机可节能40%以上(用户实际使用后测试结果),轻载电流小,只相当于异步电机的10%,如11KW异步电机轻载时异步电机电流10A,而同步电机轻载电流只有0.7A。 4、调速范围宽,可达1:1000甚至于更高(异步电机只有1:100),调速精度极高,可大大提高电梯的品质。

永磁同步电机的基本知识和结构

WORD 文档可编辑 技术资料 专业分享 第一章永磁同步电机的原理及结构 1.1永磁同步电机的基本工作原理 永磁同步电机的原理如下在电动机的定子绕组中通入三相电流,在通入电流后就会在电动机的定子绕组中形成旋转磁场,由于在转子上安装了永磁体,永磁体的磁极是固定的,根据磁极的同性相吸异性相斥的原理,在定子中产生的旋转磁场会带动转子进行旋转,最终达到转子的旋转速度与定子中产生的旋转磁极的转速相等,所以可以把永磁同步电机的起动过程看成是由异步启动阶段和牵入同步阶段组成的。在异步启动的研究阶段中,电动机的转速是从零开始逐渐增大的,造成上诉的主要原因是其在异步转矩、永磁发电制动转矩、矩起的磁阻转矩和单轴转由转子磁路不对称而引等一系列的因素共同作用下而引起的,所以在这个过程中转速是振荡着上升的。在起动 过程中,质的转矩,只有异步转矩是驱动性电动机就是以这转矩来得以加 速的,其他的转矩大部分以制动性质为主。在电动机的速度由零增加到接近定子的磁场旋转转速时,在永磁体脉振转矩的影响下永磁同步电机的转速有可能会超过同步转速,而出现转速的超调现象。但经过一段时间的转速振荡后,最终在同步转矩的作用下而被牵入同步。 1.2永磁同步电机的结构 永磁同步电机主要是由转子、端盖、及定子等各部件组成的。一般来说,永磁同步电机的最大的特点是它的定子结构与普通的感应电机的结构非常非常的相似,主要是区别于转子的独特的结构与其它电机形成了差别。和常用的异步电机的最大不同则是转子的独特的结构,在转子上放有高质量的永磁体磁极。由于在转子上安放永磁体的位置有很多选择,所以永磁同步电机通常会被分为三大类:内嵌式、面贴式以及插入式,如图1.1所示。永磁同步电机的运行性能是最受关注的,影响其性能的因素有很多,但是最主要的则是永磁同步电机的结构。就面贴式、插入式和嵌入式而言,各种结构都各有其各自的优点。

永磁同步电机综合保护器工作原理

永磁同步电机工作原理 同步发电机为了实现能量的转换,需要有一个直流磁场而产生这个磁场的直流电流,称为发电机的励磁电流。根据励磁电流的供给方式,凡是从其它电源获得励磁电流的发电机,称为他励发电机,从发电机本身获得励磁电源的,则称为自励发电机。 一、发电机获得励磁电流的几种方式 1、直流发电机供电的励磁方式:这种励磁方式的发电机具有专用的直流发电机,这种专用的直流发电机称为直流励磁机,励磁机一般与发电机同轴,发电机的励磁绕组通过装在大轴上的滑环及固定电刷从励磁机获得直流电流。这种励磁方式具有励磁电流独立,工作比较可靠和减少自用电消耗量等优点,是过去几十年间发电机主要励磁方式,具有较成熟的运行经验。缺点是励磁调节速度较慢,维护工作量大,故在10MW以上的机组中很少采用。 2、交流励磁机供电的励磁方式,现代大容量发电机有的采用交流励磁机提供励磁电流。交流励磁机也装在发电机大轴上,它输出的交流电流经整流后供给发电机转子励磁,此时,发电机的励磁方式属他励磁方式,又由于采用静止的整流装置,故又称为他励静止励磁,交流副励磁机提供励磁电流。交流副励磁机可以是永磁机或是具有自励恒压装置的交流发电机。为了提高励磁调节速度,交流励磁机通常采用100200HZ的中频发电机,而交流副励磁机则采用400500HZ的中频发电机。这种发电机的直流励磁绕组和三相交流绕组都绕在定子槽内,转子只有齿与槽而没有绕组,像个齿轮,因此,它没有电刷,滑环等转动接触部件,具有工作可靠,结构简单,制造工艺方便等优点。缺点是噪音较大,交流电势的谐波分量也较大。 3、无励磁机的励磁方式: 在励磁方式中不设置专门的励磁机,而从发电机本身取得励磁电源,经整流后再供给发电机本身励磁,称自励式静止励磁。自励式静止励磁可分为自并励和自复励两种方式。自并励方式它通过接在发电机出口的整流变压器取得励磁电流,经整流后供给发电机励磁,这种励磁方式具有结简单,设备少,投资省和维护工作量少等优点。自复励磁方式除没有整流变压外,还设有串联在发电机定子回路的大功率电流互感器。这种互感器的作用是在发生短路时,给发电机提供较大的励磁电流,以弥补整流变压器输出的不足。这种励磁方式具有两种励磁电源,通过整流变压器获得的电压电源和通过串联变压器获得的电流源。 二、发电机与励磁电流的有关特性 1、电压的调节 自动调节励磁系统可以看成为一个以电压为被调量的负反馈控制系统。无功负荷电流是造成发电机端电压下降的主要原因,当励磁电流不变时,发电机的端

永磁同步电机的工作原理

永磁同步电机的工作原理 永磁同步电机的工作原理与同步电机的工作原理是相同的。永磁同步电机在现在应用及其广泛。和感应电机一样是一种常用的交流电机。特点是:稳态运行时,转子的转速和电网频率之间又不变得关系n=ns=60f/p,ns成为同步转速。若电网的频率不变,则稳态时同步电机的转速恒为常数而与负载的大小无关。 同步电机的主要运行方式有三种,即作为发电机、电动机和补偿机运行。作为发电机运行是同步电机最主要的运行方式,作为电动机运行是同步电机的另一种重要的运行方式。同步电动机的功率因数可以调节,在不要求调速的场合,应用大型同步电动机可以提高运行效率。近年来,小型同步电动机在变频异步电动机又称感应电动机,是由气隙旋转磁场与转子绕组感应电流相互作用产生电磁转矩,从而实现机电能量转换为机械能量的一种交流电机。异步电动机按照转子结构分为两种形式:有鼠笼式〔鼠笼式异步电机〕绕线式异步电动机。 永磁同步电机的工作原理如下: 永磁同步电机主磁场的建立:励磁绕组通以直流励磁电流,建立极性相间的励磁磁场,即建立起主磁场。 永磁同步电机的载流导体:三相对称的电枢绕组充当功率绕组,成为感应电势或者感应电流的载体。 永磁同步电机的切割运动:原动机拖动转子旋转(给电机输入机械能),极性相间的励磁磁场随轴一起旋转并顺次切割定子各相绕组(相当于绕组的导体反向切割励磁磁场)。 永磁同步电机交变电势的产生:由于电枢绕组与主磁场之间的相对切割运动,电枢绕组中将会感应出大小和方向按周期性变化的三相对称交变电势。通过引出线,即可提供交流电源。 永磁同步电机的交变性与对称性:由于旋转磁场极性相间,使得感应电势的极性交变;由于电枢绕组的对称性,保证了感应电势的三相对称性。 下一篇:限压式变量叶片泵的特性曲线

永磁同步电机结构

永磁同步电机结构 永磁同步电机结构永磁同步电机伺服系统除电机外,系统主要包括驱动单元、位置控制系统、速度控制器、转矩和电流控制器、位置反馈单元、电流反馈单元、通讯接口单元等。 1(永磁式交流同步伺服电机。永磁同步电机永磁式同步电机具有结构简单、体积小、重量轻、损耗小、效率高的特点。和直流电机相比,它没有直流电机的换向器和电刷等需要更多维护给应用带来不便的缺点。相对异步电动机而言则比较简单,定子电流和定子电阻损耗减小,且转子参数可测、控制性能好,但存在最大转矩受永磁体去磁约束,抗震能力差,高转速受限制,功率较小,成本高和起动困难等缺点。与普通同步电动机相比,它省去了励磁装置,简化了结构,提高了效率。永磁同步电机矢量控制系统能够实现高精度、高动态性能、大范围的调速或定位控制,因此永磁同步电机矢量控制系统引起了国内外学者的广泛关注。 2(驱动单元。驱动单元采用三相全桥自控整流,三相正弦PWM电压型逆变器变频的AC-DC-AC结构。设有软启动电路和能耗泄放电路可避免上电时出现过大的瞬时电流以及电机制动时产生很高的泵升电压。逆变部分采用集驱动电路,保护电路和功率开关于一体的智能功率模块(IPM)。 3(控制单元。控制单元是整个交流伺服系统的核心, 实现系统位置控制、速度控制、转矩和电流控制器。具有快速的数据处理能力的数字信号处理器(DSP)被广泛应用于交流伺服系统,集成了丰富的用于电机控制的专用集成电路,如A/D转换器、PWM发生器、定时计数器电路、异步通讯电路、CAN总线收发器以及高速的可编程静态RAM和大容量的程序存储器等。 4(位置控制系统。对于不同的信号,位置控制系统所表现出的特性是不同的。典型的输入信号有三种形式:位置输入(位置阶跃输入)、速度输入(斜坡输入)以及

永磁同步电机原理

永磁同步电机原理、特点、应用详解 电机对于工农业来说至关重要,本文将会对电机的定义、分类、电机驱动的分类进行简介,并详细介绍永磁同步电机的原理、特点以及应用。 电机的定义 所谓电机,顾名思义,就是将电能与机械能相互转换的一种电力元器件。当电能被转换成机械能时,电机表现出电动机的工作特性;当电能被转换成机械能时,电机表现出发电机的工作特性。电机主要由转子,定子绕组,转速传感器以及外壳,冷却等零部件组成。 电机的分类 按结构和工作原理划分:直流电动机、异步电动机、同步电动机。 按工作电源种类划分:可分为直流电机和交流电机。 交流电机还可分:单相电机和三相电机。 直流电动机按结构及工作原理可划分:无刷直流电动机和有刷直流电动机。 有刷直流电动机可划分:永磁直流电动机和电磁直流电动机。 电磁直流电动机划分:串励直流电动机、并励直流电动机、他励直流电动机和复励直流电动机。 永磁直流电动机划分:稀土永磁直流电动机、铁氧体永磁直流电动机和铝镍钻永磁直流电动机。 按结构和工作原理划分:可分为直流电动机、异步电动机、同步电动机。 同步电机可划分:永磁同步电动机、磁阻同步电动机和磁滞同步电动机。 异步电机可划分:感应电动机和交流换向器电动机。 感应电动机可划分:三相异步电动机、单相异步电动机和罩极异步电动机等。 交流换向器电动机可划分:单相串励电动机、交直流两用电动机和推斥电动机。 按起动与运行方式划分:电容起动式单相异步电动机、电容运转式单相异步电动机、电容起动运转式单相异步电动机和分相式单相异步电动机。 按用途划分:驱动用电动机和控制用电动机

永磁同步电机 所谓永磁,指的是在制造电机转子时加入永磁体,使电机的性能得到进一步的提升。而所谓同步,则指的是转子的转速与定子绕组的电流频率始终保持一致。因此,通过控制电机的定子绕组输入电流频率,电动汽车的车速将最终被控制。而如何调节电流频率,则是电控部分所要解决的问题。 永磁同步电动机的特点 永磁电动机具有较高的功率/质量比,体积更小,质量更轻,比其他类型电动机的输出转矩更大,电动机的极限转速和制动性能也比较优异,因此永磁同步电动机已成为现今电动汽车应用最多的电动机。但永磁材料在受到振动、高温和过载电流作用时,其导磁性能可能会下降,或发生退磁现象,有可能降低永磁电动机的性能。另外,稀土式永磁同步电动机要用到稀土材料,制造成本不太稳定 永磁同步电机与异步电机 除了永磁同步电机,异步电机也因特斯拉的使用而被广泛关注。与同步电机相比起来,电机转子的转速总是小于旋转磁场(由定子绕组电流产生)的转速。因此,转子看起来与定子绕组的电流频率总是“不一致”,这也是其为什么叫异步电机的原因。 相比于永磁同步电机,异步电机的优点是成本低,工艺简单;当然其缺点就是其功率密度与转矩密度要低于永磁同步电机。而特斯拉Models为何选用异步电机而不是永磁同步电机,除了控制成本这个主要原因之外,较大的Models车体能够有足够空间放的下相对大一点的异步电机,也是一个很重要的因素。 永磁同步电动机怎样产生动力? 在交流异步电动机中,转子磁场的形成要分两步走:第一步是定子旋转磁场先在转子绕组中感应出电流;第二步是感应电流再产生转子磁场。在楞次定律的作用下,转子跟随定子旋转磁场转动,但又“永远追不上”,因此才称其为异步电动机。如果转子绕组中的电流不是由定子旋转磁场感应的,而是自己产生的,则转子磁场与定子旋转磁场无关,而且其磁极方向是固定的,那么根据同性相斥、异性相吸的原理,定子的旋转磁场就会拉动转子旋转,并且使转子磁场及转子与定子旋转磁场“同步”旋转。这就是同步电动机的工作原理。 根据转子自生磁场产生方式的不同,又可以将同步电动机分为两种: 一是将转子绕组通上外接直流电(励磁电流),然后由励磁电流产生转子磁场,进而使转子与 定子磁场同步旋转。这种由励磁电流产生转子磁场的同步电动机称为励磁同步电动机。 二是干脆在转子上嵌上永久磁体,直接产生磁场,省去了励磁电流或感应电流的环节。这种由永久磁体产生转子磁场的同步电动机,就称为永磁同步电动机。

相关文档
相关文档 最新文档